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Abstract

The study of social, economic and biological systems is often (when not always) lim-
ited by the partial information about the structure of the underlying networks. An
example of paramount importance is provided by financial systems: information on the
interconnections between financial institutions is privacy-protected, dramatically reduc-
ing the possibility of correctly estimating crucial systemic properties such as the resilience
to the propagation of shocks. The need to compensate for the scarcity of data, while
optimally employing the available information, has led to the birth of a research field
known as network reconstruction. Since the latter has benefited from the contribution
of researchers working in disciplines as different as mathematics, physics and economics,
the results achieved so far are still scattered across heterogeneous publications. Most
importantly, a systematic comparison of the network reconstruction methods proposed
up to now is currently missing. This review aims at providing a unifying framework to
present all these studies, mainly focusing on their application to economic and financial
networks.
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The study of truth requires a considerable effort
which is why few are willing to undertake it out of love of knowledge

— Thomas Aquinas, Summa Contra Gentiles
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List of the symbols employed in the review

Throughout this work we shall employ top-hatted letters (e.g., ŝouti , ŝini , ŵij , etc.) for
the measured values of the empirical networks to be reconstructed, while we shall use
the same letters (e.g., sout

i , sini , wij , etc.) without any addition to indicate the same
quantities when considered as (deterministic or stochastic) variables. In particular:

• Ĝ: the (observed) network to reconstruct;

• G: ensemble of network configurations used to reconstruct Ĝ;

• N : (fixed) number of nodes of Ĝ (and of all networks in the ensemble G);

• G: a generic network configuration belonging to G;

• P (G): probability measure on the ensemble of configurations G;

• I(G): information content of the configuration G;

• H(G): network Hamiltonian of the configuration G, i.e. linear combination of the
constraints determining its probability P (G);

• S: Shannon entropy;

• L : Lagrangian functional, i.e., the constrained Shannon entropy;

• M : number of constraints (excluding normalization) in L ;

• Cm: m-th constraint;

• λm: m-th Lagrange multiplier, controlling for the m-th constraint;

• λ̂m: estimation of the m-th Lagrange multiplier for Ĝ;

• L(G|~λ): log-likelihood of G given the Lagrange multipliers defining P (G);

• 〈X〉: expected value over the ensemble G of a generic quantity of interest X;

• σX : ensemble standard deviation of a generic quantity of interest X;

• Xname: estimate of quantity X by the algorithm “name”;

• L: number of links in a network;

• ρ = L/[N(N − 1)]: density of links in a (directed) network, defined as the fraction
of possible connections in the network that are actually realized;

• W: weighted adjacency matrix representing a network, with generic element wij
denoting the weight of the link from node i to node j;

• A: adjacency matrix representing a binary version of W, with generic element
aij = 1 if wij > 0 (and 0 otherwise);
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• sout
i =

∑N
j=1 wij and sini =

∑N
j=1 wji: out-strength and in-strength of node i, or

equivalently the marginal row and column sums of W;

• kout
i =

∑N
j=1 aij and kin

i =
∑N
j=1 aji: out-degree and in-degree of node i, or equiv-

alently the marginal row and column sums of A;
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1. Introduction

Networks: the why and how of a theory. There is nowadays an overwhelming evidence
that a large deal of complex systems around us can be successfully described by means of
complex networks [1, 2, 3]. Graph theory, from which complex networks theory originates,
was firstly developed in the XVIII century as an application of discrete mathematics to
the well-known “Königsberg bridge problem” [4] and for many years it remained relegated
to merely solving puzzling topological problems [5].

A new burst of activity was registered in 1920, to provide mathematical support
to the analysis of social networks [6, 7]. This laid the foundation for “sociometry”, a
discipline characterized by a mathematical description of social sciences1. Later on, the
seminal papers of Erdős and Rényi [9, 10], lately extended to combinatorics by Bollobás
[11], opened the field of “random graph theory” [12].

Only after the digital revolution, complex networks became part of everybody’s life.
Indeed current technology has made the presence of personal computers pervasive and
also constantly reduced the cost of backup memories. These two features have produced
immense databases, collecting information about a wide range of relationships. Just
to name a few we have: the Internet wiring [13, 14, 15], the set of WWW connections
[16, 17], e-mail exchanges [18, 19] [20], mobile communication networks [21, 22, 23], online
social networks [24, 25, 26, 27], protein-protein interactions [28, 29, 30], food-webs and
ecological networks [31, 32, 33], production activities [34, 35, 36, 37, 38, 39], financial
exchanges and stock investments [40, 41, 42].

The network representation clearly highlights qualitative universal behaviors, irre-
spectively from the specific case-studies [43]. In what follows we name some of the
features shared by many real-world networks:

• a long-tail (or even scale-free) degree distribution [13, 44];

• a small-world effect [45]: distances are distributed around a characteristic average
value, usually “very small”, (i.e. 3−10) and scaling as the logarithm of the system
size;

• a large clustering [46]: we spot the presence of densely-connected subgraphs in
many complex networks. The small-world and the large clustering effects co-exist
thanks to presence of the so-called “weak-ties” in the social networks literature, al-
lowing for “long-range” interconnections without affecting the locally large density
of links;

• a distinct centrality structure [47] implying that some nodes appear to have a higher
importance than others;

• a well-defined assortativity structure [48]: the neighbors of each node have a degree
that is either positively or negatively correlated to the degree of the node itself
(more intuitively, “my” neighbors have a degree that is either very similar or very
different from mine). In the case of bipartite networks, a well-defined nestedness
structure has been observed, mainly in ecological and economic contexts [49, 50, 51].

1A similar approach coupled to modern technology constitutes the core of a newborn field, “computa-
tional social science” [8], where mathematics is employed to analyze the huge amount of data generated
by online social networks.
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The problem of missing information. After an initial activity aimed at determining the
structure of real-world networks by measuring standard topological quantities, a more
theoretical activity was started, aiming at both defining new quantities and devising
proper models to explain observations [45, 44, 52, 53, 54]. Given the complexity that
can arise even from a simple mathematical model based upon graphs, researchers have
recently focused on the development of a topological theory: loosely speaking, topolog-
ical quantities are employed to define statistical models, rather than reproduced from
microscopic dynamical rules [55, 56, 57, 58, 59].

Unfortunately, when moving to the validation of such models a common problem
arises: very often, the data available on the real network are either incomplete or impre-
cise (or both). This problem is particularly evident in the case of economic and financial
networks: in this case, data collection suffers from the problem of partial accounting
and the presence of disclosure requirements. In order to illustrate the importance of
such an issue, let us think of a bipartite, financial network whose node sets represent
investors and the investments they do. Although the knowledge of the whole network
structure could help regulators to take immediate countermeasures to stop the propa-
gation of financial distress, this information is seldom available (the knowledge of the
whole network of investments would pose immense problems of privacy), thus hindering
the possibility of providing a realistic estimate of the extent of the contagion. As con-
firmed by the analysis of the various papers reported in this review, the incompleteness
of network instances seems to be unavoidable [60, 61]: since addressing the problem of
estimating the resilience of financial networks cannot be addressed without knowing the
structural details of national and cross-countries interbank networks, information theory
seems indeed to provide the right framework to tackle this kind of problems.

Finance is not the only domain affected by limitedness of information about nodes
interdependencies: biological and ecological systems also exist (e.g., cell metabolic net-
works and ecological webs) whose interaction network is often only partially accessible
due either to experimental limitations or observational constraints2.

Approaching network reconstruction. In order to deal with the problem of missing in-
formation, many different approaches have been attempted so far. Some reconstruction
procedures are based on a measured (or expected) statistical self-similarity of the network
topology [64]. In this case, the observed behavior of a given topological property (e.g.,
the degree distribution) is supposed to be induced by some non-topological property
assigned to nodes (e.g., a node “fitness”[52]) obeying the same behavior.

More often, the fundamental assumption grounding network reconstruction is sta-
tistical homogeneity. This means that the structure of the network observed are repre-
sentative of statistical properties not depending on that specific portion. In the jargon
of statistics, supposing that from similar observations we can infer similar regularities
is equivalent to requiring that the information available is representative of the whole
network structure. This is particularly relevant when only limited information is avail-
able, and constitutes the physical reason to be confident that the efforts to define a
statistically-grounded network reconstruction algorithm can indeed be successful. By
using this “symmetry” it is then possible to provide some likely estimates of the missing

2In these cases, one is often more interested in the reconstruction of individual links from partial local
information, a problem known as “link prediction” [62, 63].
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quantities of the network under analysis. Clearly, while the homogeneity assumption
minimizes the bias introduced by adopting arbitrary assumptions not supported by the
available information (and, in principle, untestable), it also limits the accuracy of the
reconstruction of real networks showing, instead, strong structural heterogeneity.

Given these premises, entropy maximization provides the unifying concept underlying
all the reviewed methods. Entropy maximization is, in fact, an ubiquitous prescription
for obtaining the least biased probability distribution consistent with some imposed con-
straints (i.e., a probability distribution not encoding other information than that repre-
sented by the constraints themselves [65, 66]). This principle has not only found hundreds
of applications in statistical mechanics, information theory and statistics [67], but it has
been also argued to represent an evolutionary drive of out-of-equilibrium systems [68]
(e.g., a relationship has been suggested between the dynamics of intelligent systems and
entropy maximization [69]).

The outline of this report is the following. In section 2, Information theory as a basis
for network reconstruction, we present the tools that can be derived from classical ap-
proaches in statistical physics and information theory, mainly Gibbs’ ensembles theory,
Shannon’s works on entropy and Jaynes’ interpretation of statistical mechanics. Mov-
ing from these theoretical premises, in section 3, Reconstruction methods, we present an
overview of the different reconstruction methods, dividing them into a) dense reconstruc-
tion methods, b) density-tunable reconstruction methods, c) exact-density methods, d)
alternative approaches. In section 4, Testing the network reconstruction, we present in
detail a number of indicators and metrics that can be used to test the accuracy of the
achieved reconstruction; more specifically, we have distinguished three classes of indica-
tors, of statistical, topological and dynamical nature, respectively aiming at testing the
accuracy in reconstructing the microscopic details, the macroscopic topological features
and the dynamical properties of a given network. Concerning dynamical indicators, we
put particular emphasis on the possibility of estimating the resilience of the system to
processes of shocks propagation. In the financial context this is know as systemic risk,
i.e., the likelihood that a consistent part of a given financial network may collapse (go
bankrupt) as a consequence of a local failure. In section 5, Model selection criteria, we
describe some of the existing criteria to compare different models and the correspond-
ing recipes for how to choose the most appropriate one. The report ends with section
6, Conclusions and perspectives, where we describe future possible applications of the
reviewed algorithms.

As a general remark, we would like to stress that almost every paper reviewed here
has its own nomenclature for the (often similar) quantities of interest. Since we wanted
to present the different contributions within a unified framework, our presentation might
not reflect the original derivation of the results.

2. Information theory as a basis for network reconstruction

Information theory provides the theoretical basis of our formalism [70]. The concept
of information plays a fundamental role in network reconstruction, since reconstructing
a network ultimately means making optimal use of the available, partial, information.
Otherwise stated, our task is that of inferring as much as possible about the system under
analysis from the available data, while limiting the number of unsupported assumptions.

9



As stated before, real data are very often partial: thus, any data-driven inference
procedure is bound to consider an enlarged set of plausible configurations, i.e., all con-
figurations that are compatible with the available information. In the language of statis-
tical mechanics, this set is called ensemble. Enlarging the set of allowable configurations
means, in turn, increasing the degree of uncertainty about the actual one; the descrip-
tion, thus, becomes necessarily probabilistic: a probability value must be assigned to
each configuration compatible with the known information, that is, to all configurations
belonging to the ensemble.

The degree of plausibility of a given configuration can be unambiguously quantified by
recalling the concept of surprise. Since a “surprising” event (deemed as highly improba-
ble) is assumed to convey a large amount of information [65]. An operative definition of
surprise should encode a (negative) correlation with the probability of realization of the
event under consideration. The content of information of a given outcome G out of the
set of possible outcomes G can be thus quantified as

I(G) = − lnP (G), (1)

a definition pointing out that the occurrence of an event that is certain (i.e., characterized
by P (G) = 1) brings no information and comes with no surprise, whereas, the occurrence
of an (almost) impossible event (i.e., characterized by P (G) ' 0) conveys an (almost)
infinite amount of information and causes an (almost) “infinite” amount of surprise [65].
The average degree of surprise which accompanies the events belonging to the set G can
be then quantified by averaging over the ensemble itself. Such an operation leads to the
basic concept of the Shannon entropy :

S = 〈I〉 =
∑
G∈G

P (G)I(G) =
∑
G∈G

−P (G) lnP (G). (2)

Another interpretation of eq. (2) comes from information theory [71, 72]. Given an
alphabet of symbols (as a language) to be transmitted across a channel, shorter codes
should be assigned to symbols met with larger frequency, while longer codes should be
employed for symbols met with smaller frequency (see Appendix A). Looking for the
average code length needed to transmit a given message leads to S as well.

From an axiomatic point of view, Shannon entropy is the only functional that satisfies
a number of properties known as the Shannon-Khinchin axioms [66]:

1. Shannon entropy is a continuous functional of all its arguments: this ensures
that small deformations δP (G) of the probability distribution P (G) induce small
changes in S;

2. Shannon entropy attains its maximum in correspondence of the uniform distribu-
tion over the set of possible configurations;

3. Shannon entropy is invariant under the addition of events with zero probability;

4. For a system composed by two independent subsystems A and B, whose ensembles
of possible configurations GA and GB have probability measures WA and WB , the
entropy is additive: S(WA+B) = S(WAWB) = S(WA) + S(WB), i.e.the entropy
of the whole system is the sum of the entropies of the two subsystems3. On the

3In [73] this axiom is replaced by the so-called “composition law”.
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other hand, if the two subsystems are not independent, S(WA+B) = S(WA) +
S(WB|A), with WB|A indicating the probability measure for the configurations of
the subsystem B, conditioned to the realization of subsystem A.

In other words, Shannon entropy is a functional of the probability distribution of an
arbitrary set of random variables (in our case, the configurations G within the aforemen-
tioned ensemble G) and quantifies the (un)evenness of the distribution itself [74]. As an
example, if no information on the system is available, uncertainty about it is maximal
and Shannon entropy prescribes to assign a uniform distribution over G. By converse,
any statistical information gained on the system reduces the uniform character of the
probability distribution, which becomes progressively more peaked in correspondence of
the configurations conveying the given information.

2.1. Setting the problem: constraining Shannon entropy

E. T. Jaynes first pointed out the possibility of using Shannon entropy to define a
novel inference procedure [73], by extending the recipe proposed by Gibbs in the context
of statistical mechanics. Jaynes proposed to carry out a constrained maximization of
Shannon entropy, i.e., to maximize the functional

L [P ] = S − λ0

[∑
G∈G

P (G)− 1

]
−

M∑
m=1

λm

[∑
G∈G

P (G)Cm(G)− 〈Cm〉

]
, (3)

with the M quantities {Cm(G)}Mm=1 that sum up the available knowledge on the system
acting as constraints to be satisfied by the probability distribution P (G) itself. Maxi-
mizing Shannon entropy ensures that our ignorance about the system to be reconstructed
is maximized, except for what is known or, equivalently, that the number of unjustified
assumptions about the system itself is minimized. Indeed, it can be proven that the
probability distribution that maximizes Shannon entropy is maximally non-committal
with respect to the unknown information [73] (see Appendix B).

Since constrained Shannon entropy maximization represents a sort of “guessing” pro-
cess about the unknown information, characterized by the least amount of statistical bias,
it can be viewed as an updated version of the Laplace principle of insufficient reason [73].
The latter states that in absence of any information about the system under analysis,
there is no reason to prefer any particular configuration which, thus, is equiprobable
to any other. This principle is nothing else than a particular case of eq. (3) with no
constraints but the normalization condition—which actually leads to the uniform distri-
bution over the ensemble P (G) = 1

|G| , ∀G ∈ G. As already mentioned, Shannon entropy

attains its maximum in this situation.
The framework sketched above is general enough to allow physical systems as well

as networks to be analyzed. While in the first case the M constraints represent physi-
cal quantities (e.g., the mean energy of the system), in the second case they represent
purely topological quantities as nodes degrees, the network’s reciprocity, and so on. We
would also like to stress that the Gibbs-Jaynes approach has been originally defined
within the realm of equilibrium statistical mechanics, and this is also the spirit that has
guided its application to networks. Generally speaking, however, networks do not satisfy
the equilibrium conditions valid for thermodynamic systems. Consequently, in the net-
works realm the adoption of an entropy-maximization approach for the reconstruction of
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higher-order statistical properties from lower-order constraints is rather justified by the
minimization of arbitrary statistical assumptions on the network structure not supported
by the available information.

Let us now explicitly consider G as the set of all possible network configurations
with N vertices. In most cases we consider networks that are both weighted and di-
rected, which implies that the interlinkages characterizing them can be represented by
an asymmetric N ×N matrix with real entries:

W =



w11 . . . w1i . . . w1N

...
. . .

...
. . .

...
wi1 . . . wii . . . wiN
...

. . .
...

. . .
...

wN1 . . . wNi . . . wNN

 (4)

where wij ≥ 0 represents the weight of the link from node i to node j. Matrix W induces
a second matrix A, known as the adjacency matrix of the network. Formally, the generic
element aij of A is equal to 1 if wij > 0, and 0 otherwise. In other words, the matrix A
simply indicates the presence/absence of connections between node pairs.

The problem of network reconstruction arises whenever the weights ŵij of an empirical

network Ŵ are not directly observable, and instead only aggregate (marginal) informa-
tion on the network is accessible. More precisely, only the sum of the rows and/or the
columns are typically known:

ŝout
i =

∑N
j=1 ŵij (out-strength)

ŝini =
∑N
j=1 ŵji (in-strength)

∀ i. (5)

Note that rows and column sums of Â, namely the out-degree k̂out
i =

∑N
j=1 âij and

in-degree k̂in
i =

∑N
j=1 âji of each node i are typically unknown.

In the financial context, Ŵ typically represents a matrix of interbank exposures, also
named liability matrix. The entries ŵij of this matrix are the loans and borrowings
between banks, protected by privacy issues, while marginals are publicly released in
balance sheets. ŝout

i then quantifies the total interbank assets of node i, and ŝini its
total interbank liabilities (see section 4.3.1). Another classical example is the World
Trade Network (WTN), where these quantities represent the total export and import of
countries.

Generally speaking, any algorithm aimed at reconstructing a weighted directed net-
work outputs two matrices, P = {pij}Ni,j=1 and W = {wij}Ni,j=1: while the generic entry
pij of the first matrix describes the probability that any two nodes i and j are connected,
the generic entry of the second matrix provides an estimate of the weight wij of the
corresponding link. We can say that, in certain conditions, the probabilities and weights
estimates of the methods considered in the present review are functions of the accessible
information and can, in general, be written as pij(ŝ

out
i , ŝinj ) and wij(ŝ

out
i , ŝinj ). As a conse-

quence, the entries aij can be interpreted as Bernoulli variables that are 1 with a certain
probability pij and 0 otherwise.
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Since the number of available data in the cases we consider here is O(N) (2N if only
out- and in-strengths are known), the problem of reconstructing an adjacency matrix of
N2 real numbers is under-determined. In what follows, we shall review methods that
adopt a probabilistic approach to tackle these kinds of problems, making use of tools
and concepts developed within the information-theoretic framework introduced in the
previous subsection.

2.2. Exponential Random Graphs

Exponential Random Graphs (ERG) [55, 59] occupy a central role in most of network
reconstruction algorithms. Indeed, ERG are defined as the ensemble of graphs whose
probability P (G) is obtained by maximizing of the constrained entropy functional of eq.

(3). More specifically, solving the functional differential equation δL [P ]
δP (G) = 0 with respect

to P (G) leads to the following formula:

P (G|~λ) = e−1−λ0−
∑M
m=1 λmCm(G) (6)

that describes an exponential distribution (whence the name of the formalism) over the
set G of all possible network configurations. Notice that the coefficients {λm}Mm=0 are
nothing else than the Lagrange multipliers in eq. (3), whose values are fixed by the set
of equations ∑

G∈G

P (G|~λ)Cm(G) = 〈Cm〉 (7)

∀m = 0 . . .M , where C0(G) = 1 sets the normalization condition

e1+λ0 ≡ Z(~λ) =
∑
G∈G

e−
∑M
m=1 λmCm(G). (8)

Using the above relation, we can eliminate λ0 and obtain the standard expression of
the ERG probability distribution that is analogous to that of the canonical ensemble in
statistical physics:

P (G|~λ) =
e−

∑M
m=1 λmCm(G)

Z(~λ)
. (9)

The quantity H(G|~λ) =
∑M
m=1 λmCm(G) at the exponent is called graph Hamil-

tonian and Z(~λ) =
∑

G∈G e
−

∑M
m=1 λmCm(G) is the partition function, which properly

normalizes the probability distribution. It can be easily shown that eq. (6) not only
makes the first functional derivative of L [P ] vanish, but also makes the second deriva-

tive δ2L [P ]
δP (G)δP (G′) negative definite, so that P (G) is indeed a maximum of L [P ] (see

Appendix C).
The ERG formalism can be fruitfully used to analyze real-world networks by suppos-

ing that a given observed configuration Ĝ has been drawn from G and, as such, can be
consistently assigned the probability coefficient P (Ĝ|~λ). However, we still need a recipe
to set the mean values {〈Cm〉}Mm=1 or, equivalently, the Lagrange multipliers {λm}Mm=1, in
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an optimal way. To this aim, we can invoke the maximum-likelihood principle, prescribing
to maximize P (Ĝ|~λ) as a function of ~λ, or equivalently the log-likelihood function

L(Ĝ|~λ) = lnP (Ĝ|~λ) = −
M∑
m=1

λmCm(Ĝ)− lnZ(~λ). (10)

Using eqs. (7) and (9), it is possible to show that the set of values {λ̂m}Mm=1 satisfying

the set of equations ∂L(Ĝ|~λ)
∂λm

= 0, m = 1 . . .M are those ensuring that

〈Cm〉 = Ĉm (11)

∀m = 1 . . .M , namely that the ensemble averages of constraints match their values
observed in Ĝ. [58]. Remarkably, likelihood maximization consistently prescribes that
the only information usable to make inference is the one we have access to. Moreover,
it is simple to show that the same choice makes the Hessian of L(Ĝ|~λ) negative definite,
implying that the position in eq. (11) corresponds to a maximum of the likelihood.

The whole ERG recipe can be thus summarized as joining two optimization principles:

• entropy maximization, which guarantees that the derived probability distribution
encodes information only from the chosen constraints;

• likelihood maximization, which guarantees that the value of the imposed constraints
matches the observed one, without any statistical bias.

In what follows, we shall dwell into the details of various network reconstruction meth-
ods. Note however that, generally speaking, the ERG formalism can be also fruitfully
used for a second purpose, i.e., analyzing known real-world networks in order to detect
the level of randomness affecting their topological structure. Indeed, suppose to have an
empirical network Ĝ whose structure is completely known. We can then ask whether
this network is a “typical” configuration of a particular ERG derived from imposing an
arbitrary set of network observables {Cm(Ĝ)}Mm=1. In other words, we can check if the

network Ĝ is “maximally random”—the level of randomness being determined by the
chosen constraints, so that the information brought by any other network observable can
be reduced to the information encoded in the constraints. We shall briefly discuss this
approach in subsection 4.2.3. 4

3. Reconstruction methods

The reconstruction methods reviewed in the present work can be classified according
to the link density of the output configurations. Indeed, the reconstructed networks
can be fully connected (or, at least, very dense), with a tunable density, or exactly
reproducing the observed number of links.
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Figure 1: Comparison between the observed adjacency matrix of the eMID network in 2003 (top panels)
and its reconstructed version according to the MaxEnt method described in section 3.1.1 (bottom panels).
Left panels represent binary adjacency matrices with black/white denoting the presence/absence of
connections, whereas, right panels represent weighted adjacency matrices with color intensity denoting
the weight of connections
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3.1. Dense reconstruction methods

3.1.1. The MaxEnt algorithm

The MaxEnt algorithm [76, 77] represents the simplest and, probably, the best known
method for reconstructing networks. It prescribes to maximize the functional

S = −
N∑
i=1

N∑
j=1

wij lnwij (12)

under the constraints represented by eqs. (5). Equation (12) defines a particular kind of
entropy in which the random variables are the matrix entries themselves. However, the
absence of a proper normalization condition prevents eq. (12) from returning a genuine
probability distribution. The solution to the aforementioned constrained maximization
problem is, in fact,

wME

ij =
ŝouti ŝinj

Ŵ
∀i, j, (13)

where Ŵ =
∑N
i=1 ŝ

out
i ≡

∑N
j=1 ŝ

in
j is the total weight of the observed network Ĝ. It is easy

to verify that the constraints are satisfied, since ŝouti =
∑N
j=1 w

ME
ij and ŝini =

∑N
j=1 w

ME
ji

∀i. The summation index, however, has to run over all values j = 1 . . . N , including the
ones corresponding to the diagonal entries. Note that eq. (13) implies that, unless either
ŝout
i = 0 or ŝini = 0 for some nodes, no entries can be zero and the resulting matrix is fully

connected (see fig. 1 where this algorithm has been applied to a snapshot of the Italian
electronic market for interbank deposits eMID [40]). This feature represents the main
limitation of the method, for a twofold reason. The first one is that real-world networks
are often very sparse, and thus MaxEnt cannot possibly reproduce their topology. The
second one is that systemic risk is underestimated in dense networks [78, 79]. Yet, the
MaxEnt prescription provides quite accurate estimates whenever only the magnitude of
weights are considered [80, 81]. The latter is the reason why MaxEnt is widely used in
economics—the simple gravity model (without distance) has the same functional form of
the MaxEnt estimate [82], and in finance—where it takes the same form of the capital
asset pricing model (CAPM) [83, 84]. As a final remark, we stress that the MaxEnt
algorithm generates a unique reconstructed configuration, thus being classifiable as a
deterministic algorithm.

3.1.2. Overcoming the problem of missing connections: the IPF algorithm

A first step in the description of networks which are not fully connected (i.e., char-
acterized by some null entries of the corresponding adjacency matrix) is given by the
iterative proportional fitting (IPF) procedure. It is a simple recipe to obtain a matrix W
that

• lies at the “minimum distance” from the MaxEnt matrix WME defined by eq. (13);

4Entropy-maximization can be also used to assign probabilities to (dynamical) pathways. In such a
context, the principle is known as maximum-caliber [67]. An application of this principle concerns the
so-called origin-destination networks, i.e., graphs defined by an origin node, a destination node and a
set of connections linking them, representing the pathways along which information flows [75].
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• satisfies eqs. (5);

• admits the presence of a set of zero entries—in the typical case, the diagonal ones.

Let us call WIPF the matrix satisfying these conditions. In the case of null diagonal
entries, the method formally defines WIPF as:

min
W


N∑
i=1

N∑
j( 6=i)=1

wij ln

(
wij
wME
ij

) =

N∑
i=1

N∑
j(6=i)=1

wIPF

ij ln

(
wIPF
ij

wME
ij

)
(14)

i.e., the matrix that minimizes the Kullback-Leibler (KL) divergence [85] between a
generic non-negative W with null diagonal entries and WME. The KL divergence is
an asymmetric measure of “distance” between any two probability distributions and
quantifies the amount of information lost when W is approximated by WME.

A numerical recipe guaranteeing that the three requests above are met is provided
by the iterative process whose basic steps at the n-th and (n+ 1)-th iterations are

w
(n+1)
ij = ŝinj

(
w

(n)
ij∑

k(6=j) w
(n)
kj

)
, w

(n)
ij = ŝouti

(
w

(n−1)
ij∑

k(6=i) w
(n−1)
ik

)
, (15)

so that wIPF
ij = limn→∞ w

(n)
ij , and w

(0)
ij represents the matrix used to initialize the al-

gorithm. In a nutshell, the IPF algorithm iteratively distributes the known matrix
marginals across the non-zero entries of the initial matrix. As long as this initial matrix
is irreducible (meaning that it cannot be permuted into a block upper triangular matrix,
or equivalently that the network is represents is strongly connected), eqs. (15) always
yield a unique matrix that satisfies the marginals [86]. As a first consistency check, let

us consider the case in which the initial matrix is defined by w
(0)
ij = wME

ij ∀i, j. Without

restricting the sum to the non-diagonal terms, we would obtain w
(1)
ij = w

(2)
ij = · · · = wME

ij

∀i, j. As a second check, let us consider the case in which the initial matrix is taken to

be w
(0)
ij = 1 ∀i, j, a position that is equivalent to immediately maximizing the functional

in eq. (13). We obtain w
(1)
ij =

ŝout
i

N and w
(2)
ij =

ŝouti ŝinj

Ŵ
∀i, j, hence the MaxEnt estimation

is correctly recovered after just two iterations.

3.1.3. The Directed Weighted Configuration Model

Like MaxEnt, the IPF has the major drawback of generating a single deterministic
configuration, so that it is difficult to statistically evaluate the accuracy of the provided
reconstruction. A more rigorous statistical method to evaluate the probability that nodes
i and j are connected by a link is the ERG-based approach known as Directed Weighted
Configuration Model (DWCM) [58]. The method constrains the out-strength souti and
in-strength sini (defined as in eqs. (5)) of each node i of the network, and the Hamiltonian
takes the form

H(W|~γ, ~δ) =

N∑
i=1

(γis
out

i + δis
in

i ) . (16)

17



Substituting the definitions of sout
i and sini in eq. (16) leads to a probability distribution

P (W|~γ, ~δ) which factorizes into the product of N(N − 1) pair-specific distributions

P (W|~γ, ~δ) =

N∏
i=1

N∏
j(6=i)=1

qDWCM

ij (w). (17)

In the simple case of weights wij taking only non-negative integer values, the proba-
bility distribution governing the behavior of the random variable wij is geometric [58]:

qDWCM

ij (w) = (yout

i yin

j )w(1− yout

i yin

j ) for w ∈ Z+ (18)

where yout
i = e−γi and yin

i = e−δi . From eq. (18), we immediately find that

〈wij〉DWCM =
yout
i yin

j

1− yout
i yin

j

(19)

and, by definition, the probability pij that a directed link from node i to j is present is
pij ≡

∑∞
w=1 qij(w), which in view of eq. (18) becomes:

pDWCM

ij = yout

i yin

j . (20)

Finally, the Lagrange multipliers are found by solving the corresponding 2N equations
deriving from the likelihood-maximization principle: ∀i, ŝouti = 〈souti 〉 ≡

∑
j(6=i)〈wij〉DWCM

and ŝini = 〈sini 〉 ≡
∑
j(6=i)〈wji〉DWCM.

The DWCM falls into the category of dense reconstruction methods because the
observed marginals are usually so large that the induced link probability between any
two nodes i and j becomes very close to 1. However, differently from the MaxEnt and
the IPF, the DWCM algorithm produces a whole ensemble of networks, by treating
link as independent variables and drawing the corresponding weights from the geometric
distributions described by eq. (19).

3.1.4. Combining MaxEnt and ERG frameworks

An approach combining the MaxEnt and the ERG frameworks has been recently
developed, under the name of Maximum Entropy CAPM (MECAPM) [84]. The idea
is to maximize the Shannon entropy constraining not the expected values of the matrix
marginals, but rather the expected value of each link weight. Similarly to the case of the
DWCM, this leads to

qMECAPM

ij (w) = (yij)
w(1− yij) (21)

where yij is the Lagrange multiplier controlling for the weight of the link from i to j. This
framework can be used for network reconstruction provided that the imposed expected
weights depend only on the matrix marginals, which is the only information available on
the system. This is naturally achieved by the MaxEnt recipe, hence:

〈wij〉MECAPM =
yij

1− yij
≡ wME

ij , (22)

a position allowing for the Lagrange multipliers to be readily estimated as the link prob-
abilities:

pMECAPM

ij = yij =
wME
ij

1 + wME
ij

. (23)
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This algorithm falls into the category of dense reconstruction methods, since the
MaxEnt weights are usually sufficiently large to induce pij ' 1 ∀i, j. And as the DWCM,
the MECAPM algorithm produces a whole ensemble of networks.

3.2. Density-tunable reconstruction methods

The MaxEnt, the DWCM and the MECAPM methods suffer from the same limitation:
the predicted configurations are often too dense to faithfully describe real-world networks.
Therefore other reconstruction methods have been proposed. The rationale driving the
algorithms described below is to produce configurations that are sparser than the ones
obtained through the aforementioned algorithms.

3.2.1. The IPF algorithm: generic formulation

As we have seen, the IPF algorithm basically acts by distributing the known marginals
across the positive entries of the matrix. Hence, it requires that the position of the null
entries is known in advance. This limitation is the reason why the method is often used
in combination with other algorithms that estimate the positions of the zeros. Once these
positions are known, the IPF algorithm adjusts the positive entries (typically initialized
as MaxEnt estimates) to match the constraints.

Indeed, the freedom to choose the topological details turns out to be fundamental
whenever an algorithm able to generate realistic configurations is needed. The general
formulation of the IPF algorithm give us this freedom. Indeed, in order to account for
either known or guessed subsets of entries (which do not necessarily need to be zero),
it is enough to i) subtract them from the known marginals {ŝouti }Ni=1 and {ŝini }Ni=1, and
ii) modify eqs. (14) and (15) by using these rescaled marginals and explicitly excluding
known entries from the sums at the denominator [86]. In the most general case, the IPF
estimation can be written as the infinite product

wIPF

ij =

∞∏
n=0

ŝouti
[souti ](2n)

w
(0)
ij

ŝinj
[sinj ](2n+1)

(24)

where [sout
i ](2n) =

∑
j( 6=i) w

(2n)
ij and [sini ](2n+1) =

∑
j(6=i) w

(2n+1)
ji .5

3.2.2. The Drehmann & Tarashev approach

In the absence of a clear recipe to estimate the network density, a number of algo-
rithms exploring the whole range [0, 1] of possible density values have been proposed.
Drehmann & Tarashev devise a simple approach [88] to perturb the MaxEnt matrix and
obtain sparse network, following three steps:

• choosing a random set of off-diagonal entries to be zero, thus manually setting a
desired link density;

5The IPF algorithm is also known with the name of RAS algorithm, because the form of the so-
lution devised in [87] is written as the product of three matrices whose symbols are R, A, S. More
specifically, A(2n+1) = R(n+1)A(2n) and A(2n+2) = A(2n+1)S(n+1), with A(0) being the initial
adjacency matrix and R, S being the two diagonal matrices R, S being the two diagonal matrices
R(n+1) = diag

(
ŝout
i /[sout

i ](2n)
)

and S(n+1) = diag
(
ŝini /[s

in
i ](2n+1)

)
.
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Figure 2: Comparison between the observed adjacency matrix of the eMID network in 2003 (top panels)
and its reconstructed version according to the method by Drehmann & Tarashev described in section
3.2.2 (bottom panels). Left panels represent binary adjacency matrices with black/white denoting the
presence/absence of connections, whereas, right panels represent weighted adjacency matrices with color
intensity denoting the weight of connections.
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• treating the remaining non-zero entries as random variables, uniformly distributed
between zero and twice their MaxEnt estimated value:

wD-T

ij ∼ U(0, 2wME

ij ) (25)

(so that the expected value of weights under this distribution coincides with the
MaxEnt estimates wME

ij = ŝout
i ŝinj /Ŵ );

• running the IPF algorithm to correctly restore the value of the marginals.

The value of the network density can be tuned to generate arbitrarily sparse config-
urations. Yet a drawback of the method lies in the completely random nature of the
obtained topological structure(s) (see fig. 2).

3.2.3. The Mastromatteo, Zarinelli & Marsili approach

Another approach to generate reconstructed networks with an arbitrary density of
links has been formulated in [79]. This method consists in sampling uniformly the set of
network configurations that are compatible with the constraints defined by eqs. (5) and
have a given value of the density. Two additional assumptions are made on the matrix
Ŵ: i) the entries larger than a certain threshold θ (supposed to be at most of order N)
are considered to be known—an hypothesis that in the case of financial networks meets
the recent disclosure policies adopted for some markets [89]); ii) the unknown entries are
rescaled by the threshold θ itself, and thus become bounded in the range [0, 1]. Known
entries can be completely omitted in the description of the method, and the focus can
be kept only on the ensemble generated by the variability of the unknown entries.

The fundamental question the authors tackle is the following: given an arbitrary
value of ρ, how many matrices exist that satisfy eqs. (5) and whose density matches
the chosen one? Clearly, while the maximum density value allowing for (at least) one
configuration to exist is ρmax = 1 (the MaxEnt algorithm always satisfies eqs. (5)),
finding ρmin for a given value of the constraints is non-trivial. The measure introduced
in [79] to fairly sample the space of binary adjacency matrices that are compatible with a
given ρ is P0(A|z) = 1

Z z
L(A), where Z is a normalization constant, L(A) is the number

of links in A and the parameter z sets the average density

〈ρ〉 =
∑
A

P0(A|z)ρ(A) (26)

to a desired value (notice that the sum runs over the compatible configurations only).
However, when 〈ρ〉 < 1 it is hard to analytically evaluate the sampling probability

distribution P0(A|z). Consequently, an approximated probability distribution is intro-
duced:

P (A|z) =
e−βH(A)zL(A)

Z(β, z)
(27)

where H(A) =
∑
i(Θ[sout

i − kout
i ] + Θ[sini − kin

i ]). The parameter z plays the role of the
fugacity in statistical physics and fixes the mean value of the density over the whole set of
adjacency matrices. Since the unknown entries of W range between 0 and 1, the number
of out-going (in-coming) links of each node in any compatible configuration with the
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chosen density value is always larger than its out-strength (in-strength): this brings to
the condition H(A) = 0. Conversely, the probability of any infeasible configuration (i.e.,
with H(A) = 1) to appear is suppressed by a coefficient e−β which vanishes as β →∞.
Since an analytical treatment of the distribution in eq. (27) is also infeasible, the authors
implement a message-passing algorithm [79] to calculate the marginal link probabilities,
which are then independently sampled to build a candidate binary network. And once
the binary topology is obtained, weights are inferred via the IPF algorithm.

As the authors explicitly notice [79], being able to tune the network density implies
being able to consider a whole range of structures characterized by (potentially) different
degrees of robustness to, e.g., financial shocks. However, as a result of the authors’
“compatibility analysis”, no allowable configurations can be found below a certain value
of the network density. And while the MaxEnt method produces configurations believed
to maximize the network robustness, sparser configurations may, on the other hand,
provide lower bounds to it.

3.2.4. The Moussa & Cont approach

Another algorithm that combines the MaxEnt and the ERG frameworks is the one
presented in [90], where the authors propose two different versions of their method—both
similar to the entropy-based approaches described in the previous subsections. The major
difference lies in the amount of available information required, which is now substantially
larger: namely, the out- and in-degree distributions of the network, as well as the out-
and in-strength distributions, all of them supposedly well-described by power-laws (whose
parameters are tuned to reproduce stylized facts of financial networks). In a nutshell, the
method generates a whole ensemble of R different binary network configurations (i.e.,
the prior configurations), whose topological structure is then “adjusted” a posteriori to
match the constraints represented by eqs. (5).

The “exact” approach. The first version of the method is designed to meet the constraints
exactly in each configuration of the ensemble. Prior configurations are characterized by
the same degree distributions but different topological structures (the algorithm used to
generate the ensemble is the generalization of the preferential attachment algorithm to
directed networks [91]). Once a binary configuration is generated, the IPF algorithm is
used to assign weights to the realized links. The problem can thus be formally stated
as that of determining, for each binary configuration in the ensemble, the set of weights
{wM-C

ij } such that

min
W

 ∑
{aij=1}

wij ln

(
wij
wME
ij

) =
∑
{aij=1}

wM-C

ij ln

(
wM-C
ij

wME
ij

)
, (28)

where the sum runs over the set of non-zero entries of any configuration in the ensemble
(for all null entries we trivially have wM-C

ij = 0). Using a normalization condition that
the entries to be estimated satisfy

∑
{aij=1} wij = 1, the solution to the optimization

problem above can be formally written as

wM-C

ij = ŝout

i ŝinj

(
eγi+δj∑

{akl=1} ŝ
out

k ŝink e
γk+δl

)
, (29)
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where {γi}Ni=1 and {δi}Ni=1 are, respectively, the Lagrange multipliers related to the con-
straints on nodes out- and in-strengths, found by solving 〈souti 〉 = ŝouti and 〈sini 〉 = ŝini
∀i.

The “average” approach. However, as the authors explicitly notice, dealing with too
sparse matrices may prevent the IPF algorithm to converge, because a solution of the
IPF algorithm exists and is unique if and only if the matrix is irreducible (i.e., the network
is strongly connected) [86]. Moreover, there is no guarantee that the numerical values of
weights assigned by IPF are distributed according to some empirical observations (e.g.,
following a power law) [90].

For this reason, a second version of the algorithm is proposed. The ensemble of
configurations is now composed by weighted networks for which both degrees and weights
distributions are specified. The probability distribution on this set of configurations,
however, is not uniform: each configuration r = 1, . . . , R is, in fact, characterized by a
statistical weight νr ∈ (0, 1) such that the constraints represented by eqs. (5) are satisfied
on average. The ensemble probability distribution {νr}Rr=1 is derived by minimizing its
KL divergence from the uniform distribution 1/R

R∑
r=1

νr ln

(
νr

1/R

)
(30)

under the constraints ŝout
i =

∑
r νr[s

out
i ](r) and ŝini =

∑
r νr[s

in
i ](r) ∀i (where {[souti ](r)}Ni=1

and {[sini ](r)}Ni=1 are the out- and in-strengths for the rth configuration in the ensemble).
Similar calculations to those used for eq. (29) lead to the analytical expression of the
probability coefficients

νr =
e
∑N
i=1 γi[s

out
i ](r)+

∑N
j=1 δj [s

in
j ](r)

Z(~γ, ~δ)
(31)

with Z(~γ, ~δ) =
∑
r e

∑N
i=1 γi[s

out
i ](r)+

∑N
j=1 δj [s

in
j ](r) . As usual, the numerical value of the

Lagrange multipliers can be found by solving the constraints equations 〈souti 〉 = ŝouti and
〈sini 〉 = ŝini ∀i. The estimation of any quantity of interest is then carried out by computing
the ensemble average of the quantity itself.

3.3. Exact density methods

The reconstruction algorithms described in the previous sections are attempts to
circumvent the lack of information on the actual network density and, most importantly,
to avoid predicting too dense configurations. The methods described below, instead,
explicitly require the knowledge of the observed network density or, at least, the link
density for a subset of nodes. This is because, as shown in [92, 81, 93], adding this piece
of information can dramatically increases the performance of a reconstruction algorithm.
We now introduce a series of algorithms of this kind, all strictly following the ERG
formalism introduced in Section 2.2.
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3.3.1. The density-corrected DWCM

The first example of ERG-based reconstruction method we have met in subsec-
tion 3.1.3 is the DWCM, obtained by constraining the out-strength and in-strength
sequences. As we have seen, the DWCM-induced ensemble is basically characterized
by fully-connected configurations, with a density of links which cannot be tuned inde-
pendently from the distribution of weights (see eq. (20). So the outcome of the DWCM
is very close to that of the MaxEnt method, and indeed the DWCM can be seen a sort of
stochastic generalization of MaxEnt. In order to overcome this limitation, the authors of
[81] propose a density-corrected version of the DWCM, defined by constraining the total
number of links L beside the out-strength and in-strength sequences:

H(W|~γ, ~δ, ζ) =

N∑
i=1

(γis
out

i + δis
in

i ) + ζL. (32)

In analogy with the DWCM, also in this case links turn out to be statistically inde-
pendent. When weights can assume only positive integer values, the weight probability
distribution can be written as

qdcDWCM

ij (w) = pdcDWCM

ij (yout

i yin

j )w−1(1− yout

i yin

j ) (33)

where

pdcDWCM

ij =
zyout
i yin

j

1 + zyout
i yin

j − yout
i yin

j

(34)

in which yout
i and yin

j are defined as in the DWCM and z = e−ζ (thus, for ζ = 0 we
recover the standard DWCM). Notice that eq. (33) defines a composition of a single
Bernoulli trial, controlling for the existence of a link between any two nodes i and j, and
a geometric distribution for its weight, whose mean value reads

〈wij〉dcDWCM =
pdcDWCM
ij

1− yout
i yin

j

. (35)

Finally the Lagrange multipliers are fixed as in the DWCM, while ζ is obtained by
L̂ = 〈L〉 ≡

∑
i 6=j p

dcDWCM
ij .

This method ideally refines the DWCM by explicitly adding to the recipe a piece
of topological information. By doing so, the occurrence probability of a network in the
ensemble still depends on the marginals, but also on the imposed number of links, hence
very dense configurations become highly improbable.

3.3.2. The Directed Enhanced Configuration Model

Beyond the total number of links, also the degree heterogeneity can be explicitly taken
into account. The Directed Enhanced Configuration Model (DECM) [94] is defined by:

H(W|~α, ~β,~γ, ~δ) =

N∑
i=1

(αik
out

i + βik
in

i + γis
out

i + δis
in

i ) (36)
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and encompasses many ERG-based models as special cases (for instance, the degree-
corrected DWCM is obtained when αi = βi = ζ/2, ∀i). The DECM probability distri-
bution can be written as:

P (W|~α, ~β,~γ, ~δ) =

N∏
i=1

N∏
j( 6=i)=1

qDECM

ij (w) (37)

with

qDECM

ij (w) =

{
1− pDECM

ij if w = 0,
pDECM
ij (yout

i yin
j )w−1(1− yout

i yin
j ) if w > 0

(38)

and

pDECM

ij =
xout
i xin

j y
out
i yin

j

1 + xout
i xin

j y
out
i yin

j − yout
i yin

j

(39)

(where xout
i = e−αi , xin

i = e−βi , yout
i = e−γi and yin

i = e−δi). Notice that from eq. (38) it
is simple to evaluate the average value of the generic link weight as

〈wij〉DECM =
pDECM
ij

1− yout
i yin

j

. (40)

Lagrange multipliers are as usual found by solving the corresponding 4N equations de-
rived from the likelihood-maximization principle: ∀i, k̂out

i = 〈kout
i 〉 ≡

∑
j(6=i) p

DECM
ij , k̂in

i =

〈kin
i 〉 ≡

∑
j(6=i) p

DECM
ji , ŝout

i = 〈sout
i 〉 ≡

∑
j(6=i)〈wij〉DECM, ŝini = 〈sini 〉 ≡

∑
j( 6=i)〈wji〉DECM.

As for the density-corrected DWCM, eq. (38) can be interpreted as a combination of
a Bernoulli trial, with probability pDECM

ij , and a drawing from a geometric distribution,
with parameter yout

i yin
j ; in this case, however, the link probability depends also on the

degrees of nodes i and j.
The DECM method has a simple interpretation when a specific economic system

is considered, namely the World Trade Network (WTN). In economic terms, the two
aforementioned processes respectively describe the tendency of a generic country i either
to establish a new export towards country j (with probability pij) or to reinforce an
existing one (with probability yout

i yin
j , by rising the exchanged amount of goods of, so to

say, “one unit” of trade). In order to understand which process is more probable, we can
study the behavior of the ratio pDECM

ij /(yout
i yin

j ). Whenever this quantity is greater than
1, country i would probably establish a new export relation towards j, and at the same
time experience a certain resistance to reinforce it; otherwise, country i would experience
a certain resistance to start exporting to j, but once such relation were established it
would be characterized by a relatively low “friction”, inducing the involved partners to
strengthen it [95]. Note that the case pDECM

ij /(yout
i yin

j ) = 1 implies reducing eq. (38) to
eq. (18) of the DWCM. In other words, the DWCM does not discriminate between the
first link and the subsequent ones, reducing qij(w) to a simple geometric distribution.
As shown in [94], the DWCM fails in reproducing the observed properties of the WTN
precisely because it cannot give the right importance to the very first link, which is
treated as a simple unit of weight. This observation hints at the importance of the
information encoded into nodes degrees, to be considered as a fundamental ingredient
(together with nodes strengths) for a faithful reconstruction of real-world networks.
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3.3.3. Simplifying the DECM: a two-step model

A simplified version of the DECM can be derived by noticing that the estimation of
the topological structure of a network can be, in some circumstances, disentangled from
the estimation of its weighted structure. This observation rests upon the evidence that
the link probabilities of the DECM show a large (positive) correlation with the analogous
probabilities of a much simpler ERG model, namely the Directed Binary Configuration
Model (DBCM) obtained by constraining only the out- and in-degree sequences [95]. The
DBCM is thus defined by the Hamiltonian

H(A|~α, ~β) =

N∑
i=1

(αik
out

i + βik
in

i ) , (41)

which leads to the connection probability

pDBCM

ij =
xout
i xin

j

1 + xout
i xin

j

(42)

with xout
i = e−αi and xin

i = e−βi , determined via the usual 2N equations k̂out
i = 〈kout

i 〉 ≡∑N
j(6=i)=1 p

DBCM
ij and k̂in

i = 〈kin
i 〉 ≡

∑N
j(6=i)=1 p

DBCM
ji , ∀i.

Putting this expression into eqs. (38) and (40) leads to

q2s-DECM

ij (w) = pDBCM

ij (yout

i yin

j )w−1(1− yout

i yin

j ), 〈w2s-DECM

ij 〉 =
pDBCM
ij

1− yout
i yin

j

, (43)

which defines a “two-step” version of the DECM, and whose Lagrange multipliers are
found by imposing, ∀i, k̂out

i = 〈kout
i 〉DBCM and k̂in

i = 〈kin
i 〉DBCM first and then ŝouti =

〈sout
i 〉2s-DECM and ŝini = 〈sini 〉2s-DECM.

3.3.4. Fitness-induced Exponential Random Graphs

Despite the previous findings, we note that it is impossible to use either the DECM
or its two-step version when the degrees of nodes are not known, which is unfortunately
a rather common situation. Nevertheless, these cases can be treated by resorting to the
fitness ansatz, which states that the link probability between any two nodes depends
on non-topological features of the involved nodes, typical of the system under analy-
sis. More precisely, it is assumed that the “activity” of each node i in the network is
summed up by an “intrinsic” quantity, called fitness[52], which is directly related to the
Lagrange multiplier xi controlling the degree of that node through a monotone functional
relation. Note that such relation between fitness values and degrees lies at the basis of
the the so-called good-gets-richer mechanism, according to which “better” nodes (those
characterized by a higher fitness value) have more chances to “attract” connections [52].

For instance, in the case of the (undirected) WTN, where nodes represent countries
and links represent trade relationships between them, a strong linear correlation can be
observed between the Lagrange multipliers of nodes’ degrees and the Gross Domestic
Product (GDP) values of the respective countries: xi '

√
z GDPi ∀i [96, 57]. Conse-

quently, the link probability between nodes i and j can be rewritten as

pUBCM

ij ' zGDPi GDPj
1 + zGDPi GDPj

, (44)
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where UBCM stands for Undirected Binary Configuration Model. Similar fitness ansatzs
have been successfully tested for financial networks, such as interbank markets [97, 98, 92]
and shareholding networks [99, 100],

The validity of the fitness ansatz has profound implications on the kind of information
that is necessary to have in order to accurately reconstruct a network, but in general
leads to face the problem of finding node observables that are correlated with degrees.
Remarkably, strengths often work well as fitnesses [101], a “stylized fact” implying that
the DBCM Lagrange multipliers can be expressed as xout

i = f(ŝouti ) and xin
i = f(ŝini ). As

the many empirical analyses of economic and financial systems mentioned above have
pointed out, the functional form xout

i =
√
z(ŝouti )b and xin

i =
√
z(ŝini )b with exponent b = 1

is often accurate enough for all practical purposes.

Estimating the degrees. The above assumption of linear proportionality allows to esti-
mate the unknown degrees in a straightforward way. Indeed, connection probabilities or
the fitness-induced DBCM assume the form

pf-DBCM

ij =
zŝouti ŝinj

1 + zŝouti ŝinj
, (45)

so that the only variable left is the proportionality constant z.6. The latter can be simply
estimated provided that the total number of links L̂ of the empirical network is known.
Imposing L̂ = 〈L〉 in fact means solving only one equation

L̂ =

N∑
i=1

N∑
j(6=i)=1

zŝouti ŝinj
1 + zŝouti ŝinj

(46)

which has a single solution z > 0 [98, 92]. Once z is found, the degrees of any node i in
the network can be estimated as

〈kout

i 〉f-DBCM =

N∑
j(6=i)=1

pf-DBCM

ij , 〈kin

i 〉f-DBCM =

N∑
j(6=i)=1

pf-DBCM

ij . (47)

An estimate of z can be obtained also using the information on the connectivity of a
subset I of nodes, for instance the total number L̂I of links internal to I, or the degrees
of all nodes belonging to I [102, 80]. In both cases, in fact, the likelihood-maximization
principle leads to an equation similar-in-spirit to eq. (46). In the first case, we have

L̂I =
∑
i∈I

∑
j( 6=i)∈I

zŝouti ŝinj
1 + zŝouti ŝinj

, (48)

while in the second case it is∑
i∈I

(k̂out

i + k̂in

i ) =
∑
i∈I

N∑
j=1
(j 6=i)

(
zŝouti ŝinj

1 + zŝouti ŝinj
+

zŝoutj ŝini
1 + zŝoutj ŝini

)
. (49)

6Note that the MECAPM connection probabilities defined in eq. (23) are recovered here by the

particular choice z = Ŵ−1
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As shown in [103], the way a specific subset of nodes is selected does matter. Whenever
a faithful estimation of the network density is needed, nodes must be sampled according
to a random selection scheme [80], any other procedure being biased towards larger or
smaller density values.

3.3.5. Combining fitness-induced DBCM and IPF

An reconstruction method combining the fitness-induced ERG formalism and the
IPF recipe is proposed in [104]. Here, the authors assume to know only the out- and
in-strengths {ŝout

i , ŝini }Ni=1 and the total number of links L̂. The algorithm then consists
of two steps:

• the presence of a link between any two nodes i and j is estimated as in the fitness-
induced DWCM, i.e., via eq. (45) using as z the solution of eq. (46);

• the weights are placed on each generated binary configuration according to the IPF
algorithm, and hence the constraints of eqs. (5) are always met exactly.

3.3.6. Combining fitness-induced DBCM and DECM

A more rigorous way to assign weights to the fitness-induced ERG formalism consists
in solving “bootstrapped” version of the DECM [92]. More precisely, the system of equa-
tions to be solved to find the Lagrange multipliers {xout

i , xin
i , y

out
i , yin

i }Ni=1 of the DECM
becomes 

〈kout
i 〉f-DBCM =

∑N
j(6=i)=1 p

DECM
ij

〈kin
i 〉f-DBCM =

∑N
j(6=i)=1 p

DECM
ji

ŝout
i =

∑N
j(6=i)=1 p

DECM
ij (1− yout

i yin
j )−1

ŝini =
∑N
j(6=i)=1 p

DECM
ji (1− yout

j yin
i )−1

∀i (50)

where pDECM
ij is defined in eq. (39) and 〈kout

i 〉f-DBCM and 〈kin
i 〉f-DBCM are the fitness-induced

DBCM estimates defined by eqs. (47). The name bootstrapped DECM comes from the
double role played by node out- and in-strengths, which are first used to estimate the
degrees, and then imposed as complementary constraints.

3.3.7. The degree-corrected gravity model

Although the DECM (both in its original and “bootstrapped” versions) represents
a very accurate reconstruction method [94, 92], its numerical resolution can represent
a computationally-demanding task7. Building upon the MaxEnt recipe, economics pro-
vides the main inspiration for a simpler alternative. Indeed, although the MaxEnt method
performs poorly in reproducing the topological structure of many real-world networks,
the observed weights are nicely reproduced by eq. (13) [80, 81]. A straightforward way
to both retain the explanatory power of the gravity model and avoid ending up with
a complete network is provided by the heuristic recipe of the “degree-corrected gravity
model” (dcGM) [98]:

wdcGM

ij =

{
0 with probability 1− pf-DBCM

ij

wME
ij (pf-DBCM

ij )−1 with probability pf-DBCM
ij

∀i 6= j. (51)

7It should, however, be noticed that the estimation procedure leading to eqs. (47) has a regularizing
effect on the values of degrees, which become smooth monotonic functions of the strengths [98]. This,
in turn, may lead to a smaller computational effort to solve eqs. (50).
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Figure 3: Comparison between the observed adjacency matrix of the eMID network in 2003 (top panels)
and its reconstructed version according to the dcGM method described in section 3.3.7 (bottom panels).
Left panels represent binary adjacency matrices with black/white denoting the presence/absence of
connections, whereas, right panels represent weighted adjacency matrices with color intensity denoting
the weight of connections.
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This equation “corrects” the MaxEnt recipe by placing the weight wME
ij only with prob-

ability pf-DBCM
ij (i.e., conditional to the existence of the link), and rescaled in order to

have 〈wdcGM
ij 〉 = wME

ij . In this way, both the network marginals and the link density
are correctly reproduced on average (see fig. 3). However, as for the original MaxEnt,
this happens only if non-zero diagonal entries are considered as well. Otherwise, by re-
stricting the sums over i 6= j, the expected values of the strengths obtained from the
dcGM would require an extra-term to reproduce the observed marginals: ∀i, we would
get 〈sout

i 〉dcGM = ŝout
i − ŝout

i ŝini /Ŵ and 〈sini 〉dcGM = ŝini − ŝouti ŝini /Ŵ , and the missing term

would be precisely the expected diagonal weight 〈wdcGM
ii 〉 = ŝouti ŝini /Ŵ ≡ wME

ii .
The authors in [80] devise a procedure, inspired by the IPF algorithm, to redistribute

the diagonal terms across the non-diagonal entries of the network. Precisely, the correc-

tion term δw
(n)
ij to be added to the second line of eq. (51) at the n-th iteration of the

IPF-like algorithm is defined as

δw
(n+1)
ij =

ŝout
j ŝinj

Ŵ

(
δw

(n)
ij∑

k(6=j) δw
(n)
kj

)
, δw

(n)
ij =

ŝouti ŝini

Ŵ

(
δw

(n−1)
ij∑

k(6=i) δw
(n−1)
ik

)
, (52)

and where the algorithm is initialized at w
(0)
ij = 1− δij . Once the asymptotic corrections

δw
(∞)
ij are determined, the heuristic recipe of eq. (51) is replaced by

wdcGM

ij =

{
0 with probability 1− pf-DBCM

ij

(wME
ij + δw

(∞)
ij )(pf-DBCM

ij )−1 with probability pf-DBCM
ij

∀i 6= j. (53)

For all practical purposes, a small number of iterations is often enough to achieve a
satisfactory degree of accuracy. Here we explicitly report the functional form of the first
three iterations:

w
(1)
ij =

ŝout
i ŝini

Ŵ

(
1

N − 1

)
;

w
(2)
ij =

ŝout
i ŝini

Ŵ

(
ŝoutj ŝinj∑
l(6=j) ŝ

out

l ŝinl

)
; (54)

w
(3)
ij =

ŝout
i ŝini

Ŵ

(
ŝoutj ŝinj∑
l(6=j) ŝ

out

l ŝinl

) 1∑
k( 6=i)

ŝoutk ŝink∑
m(6=k) ŝ

out
m ŝinm

 .

A bipartite degree-corrected gravity model. The degree-corrected gravity model can be
straightforwardly extended to the case of bipartite (undirected) networks [100]. It is in
fact enough to adapt eq. (46) and eq. (51) to the new problem setup. In particular, the
equation to determine the unknown coefficient z relating the known and the expected
total number of links is

L̂ =

N1∑
i=1

N2∑
α=1

zŝ[1]i ŝ
[2]
α

1 + zŝ[1]i ŝ
[2]
α

(55)
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with N1 and N2 denoting the cardinality of the two layers of the network, and {ŝ[1]i }
N1
i=1

and {ŝ[2]α }
N2
α=1 indicating the known strength sequences of nodes belonging to the first and

second layer, respectively. Notably, correction terms as the ones defined by eqs. (54) are
no longer needed, since diagonal terms are now absent by definition.

3.3.8. Reconciling ERG and gravity models

Remarkably, the ERG framework allows the “economic” information defining gravity
models to be translated into opportunely-defined fitnesses. Equation (44) provides a
clear example. Another example is provided by the following definition

pGM

ij =
zGDPi GDPj e

−φf(dij)

1 + zGDPi GDPj e−φf(dij)
(56)

where f(dij) is an increasing function of the geographic distance dij between countries i
and j. The simplest functional form f(dij) = dij comes from considering the Hamiltonian

H(W|z, φ) = −
N∑
i=1

(ki ln GDPi)− L ln z − Fφ (57)

with F (A) =
∑
i

∑
j( 6=i) aijdij . The latter term quantifies to what extent the topological

structure of the network fills the geometric space in which the network itself is embedded
[105]. As usual, the unknown parameters must be estimated by solving the equations
L̂ = 〈L〉 and F̂ = 〈F 〉. In a sense, eq. (56) defines the closest network-based model to
traditional gravity models.

The main difference between the approach proposed here and the traditional economic
one becomes evident upon sketching the derivation of the so-called zero-inflated gravity
models (ZIGM) [106]. In order to prevent this model from predicting a fully-connected
network (the same limitation of the MaxEnt recipe), a probability coefficient reading

pZIGM

ij =
1

1 + e−~φ·~Cij
(58)

is assumed to control for the presence of a link between any two nodes i and j. The vector
~φ of unknowns is estimated by considering the elements aij of the adjacency matrix to be
the dependent variables, and the quantities usually employed to fit a gravity model (as

the countries GDP, their geographic distances, etc.—i.e., a whole vector ~C of quantities
for each pair of nodes) to play the role of explanatory variables. Both are then used to

define the likelihood function for the actual network configuration Ĝ, which is as usual
maximized with respect to ~φ. Once a matrix of probability coefficients is obtained, only
the nodes pairs satisfying the condition pZIGM

ij ≥ ρ̂ (where ρ̂ is the known density of links)
are actually linked [106].

Zero-inflated gravity models and network-based gravity models differ in the amount
of information needed to be fully specified. While the former require the whole adja-
cency matrix of a given (economic) network to be fully specified, the latter only require
the knowledge of global (marginal) information. Remarkably, despite the much smaller
amount of information needed, network-based gravity models perform much better than
zero-inflated gravity models [106].
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3.3.9. A remark on the ensemble methods

One of the reasons of the attractiveness of the “ensemble methods” lies in the possibil-
ity they offer to generate different topological structures that satisfy the same (weighted)
constraints. This feature can be used to disentangle the impact of marginals such as the
balance sheets of a financial system and of network structural details on the outcome of
a dynamical process like the spreading of financial distress [93].

In order to generate realistic scenarios, however, some kind of topological information
must be accessible. In the optimal case, the whole degree sequence of a real network would
be available (and, thus, used as additional constrain beside the weighted marginals, via
the DECM or its two-step version). Otherwise, if a more aggregate knowledge on the
system is available (like the total number of links, or the degrees of a particular subset of
nodes), an additional assumption is needed to make the best use out of such information.
From the many attempts done so far, it seems that a preliminary estimation of the degree
sequence (as in the bootstrapped DECM scheme) enhances the performance of a given
reconstruction method, an evidence that explains the superiority of the algorithm in [98]
with respect to, e.g., the algorithm in [84]—although both are defined by exactly the
same information [81]. From a quantitative point of view, providing a realistic estimate
of the degrees of nodes from aggregate information implies having a good fitness ansatz
and a realistic estimate of the whole network density. The latter requirements ultimately
means having an estimate for the parameter z to be used in eq. (45).

3.4. Shannon-like approaches to reconstruction

The reconstruction algorithms presented in the previous subsections build on the
constrained maximization of Shannon entropy, or closely-related functionals like the KL
divergence. Shannon entropy is however only one out of many possible functionals that
can be taken to extremes under the constraints representing the accessible information.

3.4.1. Spectral entropy

Among Shannon-like functionals, entropic measures exist that are inspired by quan-
tum physics. Spectral entropy, also known as Von Neumann entropy, deserves a special
mention [107]. It is defined as

SVN = Tr[Ξ ln Ξ] =

N∑
m=1

ξm(Ξ) ln ξm(Ξ) (59)

i.e., as the Shannon entropy of a probability distribution induced by the eigenvalues
{ξm}Nm=1 of the matrix Ξ. In quantum physics, the density matrix Ξ describes a system
that can be found in one of a set of pure states with different probabilities (precisely
defined by the eigenvalues of Ξ): in order to employ this concept in network theory, the
density matrix has to be re-expressed in terms of network quantities. A network-based
version of the density matrix satisfying the properties of positive semi-definiteness and
trace unitarity has been defined as [108]8:

Ξ =
e−βL

Z
. (60)

8Other proposals like Ξ = L
Tr[L]

do not satisfy the (sub)additivity property [108].
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where L = D−A is the Laplacian matrix (D is a diagonal matrix of nodes degrees) with
elements Lij = kiδij − aij ∀ i, j and Z = Tr[e−βL].

This approach ultimately boils down to the calculation of the divergence between
the spectral density of an operator associated with the empirical graph and that of the
corresponding operator associated with a graph model [108]. In principle this allows to
optimize the parameters of the model using a sort of quantum analogue of the method
described in section 2.2.

3.4.2. The Cressie-Read family of power divergences

A whole family of functionals to be extremized to reconstruct partially known net-
works, generalizing the usual Shannon entropy or Kullback-Leibler divergence (see sub-
section 3.1.2), is represented by the so-called Cressie-Read power divergences. The latter
can be compactly written as

I(P,Q, γ) =
1

γ(γ + 1)

∑
G∈G

P (G)

[(
P (G)

Q(G)

)γ
− 1

]
(61)

with the real parameter γ indexing the members of the family. Equation (61) generalizes
the KL divergence and provides an alternative measure of “distance” between any two
probability distributions P and Q. Notice that even if I(P,Q, γ) is not a proper metric
distance for all values of γ, the properties it satisfies are nonetheless useful for quantifying
the extent to which any two distributions differ [109]. More specifically,

• I(P,Q, γ) is a continuous function of all its arguments {P (G)}G∈G , {Q(G)}G∈G ;

• I(P,Q, γ) ≥ 0, with equality if and only if P (G) = Q(G), ∀G;

• I(P,Q, γ) is invariant under the addition of events with zero probability;

• I(P,Q, γ) is log-additive9;

• the functionals indexed by values of the parameter γ ∈ (−1, 0) satisfy the triangle
inequality;

• the only functional representing a proper metric distance (related to the Matusita
distance) is the one characterized by γ = −1/2.

Since Q is often intended as summarizing the prior information about the system,
the prescription to search for the probability distribution P which is maximally non-
committal with respect to the missing information can be translated into the request of
minimizing the divergence from Q to P. In the case constraints are present, this (first)
optimization step leads to recover an expression for P which depends on a vector of
unknown Lagrange multipliers:

min
P

{
I(P,Q, γ)− λ0

[∑
G∈G

P (G)− 1

]
−

M∑
m=1

λm

[∑
G∈G

P (G)Cm(G)− 〈Cm〉

]}
; (62)

9The log-additivity property reads ln[1 + θ(θ + 1)I(P,Q, γ)] + ln[1 + θ(θ + 1)I(R,S, γ)] = ln[1 +
θ(θ + 1)I(P×R,Q× S, γ)] with P ×R and Q × S indicating the tensor product of the two involved
probability distributions [110].
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the second step of the whole procedure prescribes to substitute the recovered expression
of P into I itself and optimize I(~λ) with respect to the unknown parameters ~λ [109].

Equation (62) generalizes the two principles lying at the basis of the ERG formalism
introduced in the previous sections. As γ varies, the functional describing the divergence
between P and Q varies as well. Two noteworthy examples are retrieved by solving the
following limits

lim
γ→0

I(P,Q, γ) = DKL(P||Q) =
∑
G∈G

P (G) ln

(
P (G)

Q(G)

)
, (63)

lim
γ→−1

I(P,Q, γ) = DKL(Q||P) =
∑
G∈G

Q(G) ln

(
Q(G)

P (G)

)
(64)

i.e., the KL divergence between P and Q and between Q and P. Whenever the maximally
uninformative prior is adopted, Q(G) = 1

|G| ∀ G ∈ G, the well-known expressions

DKL(P||Q) =
∑
G∈G

P (G) lnP (G) + ln |G|, (65)

DKL(Q||P) = −
∑
G∈G

lnP (G)

|G|
+ ln |G|, (66)

are recovered, respectively defining (up to a sign) the Shannon entropy functional and the
likelihood functional [109]. Notice that, for γ → 0, minimizing I consistently translates
into maximizing Shannon entropy, thus retrieving the procedure described previously.

In order to use the framework described above for reconstruction purposes, the most
general problem of inferring the entries {nij}i=1...I, j=1...J of a rectangular matrix by
using the information provided by marginals ni· =

∑
j nij ∀i and n·j =

∑
i nij ∀j must

be restated in probabilistic terms. As illustrated in table 1, upon introducing the variables
pij = nij/ni· ∀i, j, and further dividing all entries by n (thus inducing the definitions
xi = ni·/n ∀i and yi = n·i/n ∀i), providing a numerical estimate of the table entries
translates into estimating the entries of the matrix P appearing within the set of linear
equations

y = xP. (67)

Indeed the entries of P can be formally interpreted as probability coefficients, defined
as fractions of marginals. This position, in turn, allows a problem formally analogous to
the one stated in eq. 62 to be defined as

min
pjk

I({pjk}, {qjk}, γ)−
∑
j

βj

(∑
k

pjk − 1

)
−
∑
k

αk

∑
j

pjkxj − yk

 (68)

and a solution of the form I({pjk}, {qjk}, γ) = 1
γ(γ+1)

∑
j

∑
k pjk

[(
pjk
qjk

)γ
− 1
]

to be

found. Notice that choosing γ → 0 and a maximally uninformative prior reduces to the
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n11 n12 n1·
n21 n22 n2·
n31 n32 n3·
n·1 n·2 n

−→
p11n1· p12n1· n1·
p21n2· p22n2· n2·
p31n2· p32n2· n3·
n·1 n·2 n

−→
p11x1 p12x1 x1

p21x2 p22x2 x2

p31x3 p32x3 x3

y1 y2 1

Table 1: Pictorial representation of the ill-posed inverse problem concerning the inference of the entries of
a table, using only the information provided by marginals. Upon introducing the variables pij = nij/ni·
and dividing the entries by n (whence the definitions xi = ni·/n, yi = n·i/n) a constrained-optimization
problem naturally emerges [111].

usual exponential form coming from the minimization of the KL divergence10

p
(0)
jk =

eαkxj∑
k′ e

αk′xj
. (69)

Other choices, instead, lead to coefficients described by different functional forms. As an
example, adopting the functional induced by the choice γ → −1 leads to the expression

p
(−1)
jk = − 1

αkxj + βj
. (70)

In general, for an arbitrary choice of the exponent γ, the functional form of the entries
of P induced by the functional I({pjk}, {qjk}, γ) differs substantially from the “usual”
exponential one shown in eq. (69). This, in turn, induces a reconstruction procedure
whose performance is potentially very different from that of the KL-based approach.

3.4.3. Other entropic families

Just like the Cressie-Read functionals provide a generalization of the Kullback-Leibler
divergence, generalizations of the Shannon entropy are provided by Renyi entropies [112]
and Tsallis entropies [113]. These entropies depend on a free parameter and include
Shannon entropy as a limiting case. More specifically, Renyi entropies are defined as

Sα =
ln
[∑

G∈G P (G)α
]

1− α
(71)

(with α being a non-negative parameter, different from 1) and satisfy the additivity
property11.

Tsallis entropies can be axiomatically defined upon generalizing the fourth Shannon-
Khinchin axiom (see section 2). While this axiom unambiguously identifies Shannon
entropy, substituting it with the requirement that Sq(WA+B) = Sq(WA) + Sq(WB|A) +

10This solution is formally equivalent to the MaxEnt one. However, since this approach is typically used
to infer election percentages or estimate the purchases of a basket of commodities (i.e., to reconstruct
tables where zero entries are practically never observed), the evidence that non-zero marginals cannot
induce zero entries does not constitute a problem [75].

11The additivity property reads Sα(P×Q) = Sα(P)+Sα(Q) with P×Q indicating the tensor product
of the two involved probability distributions.
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(1 − q)Sq(WA)Sq(WB|A) leads to the only functional that satisfies such a new set of
axioms12:

Sq =
1−

∑
G∈G P (G)q

q − 1
. (72)

Remarkably, Sq can be employed to define a non-extensive version of the ERG formal-
ism, whose derivation proceeds along similar lines. For example, imposing only the nor-
malization condition leads to the functional Lq[P ] = Sq−λ0

[∑
G∈G P (G)− 1

]
which is

maximized by the uniform distribution P (G) = 1
|G| ∀G. Imposing less trivial constraints,

however, has not been attempted yet: as a consequence, a thorough comparison between
the goodness of the reconstruction performances induced by extensive and non-extensive
entropies is still missing.

3.5. Beyond Shannon entropy: alternative approaches to reconstruction

After having revised the existing Shannon-based and Shannon-like approaches to
reconstruction, we now review algorithms that are not based on the maximization of
Shannon-inspired functionals.

3.5.1. The “copula” approach

The first “alternative” approach to entropy-based reconstruction is, actually, the
closest one to traditional MaxEnt. The “copula” method, in fact, adopts the same
philosophy and uses the entries of a given matrix to define the support of a probability
distribution to be estimated; at the same time, however, it provides a more general
solution to the problem.

The MaxEnt prescription represents the simplest method for estimating a bivari-
ate probability distribution Pxy(X,Y ), given the two marginal distributions Px(X) and
Py(Y ). Indeed, maximizing the Shannon entropy

S = −
∑
i

∑
j

Pxy(Xi, Yj) lnPxy(Xi, Yj) (73)

under the constraints represented by normalization
∑
i

∑
j Pxy(Xi, Yj) = 1 and the two

marginal distributions Px(Xi) =
∑
j Pxy(Xi, Yj) ∀i and Py(Yj) =

∑
i Pxy(Xi, Yj) ∀j

leads precisely to the MaxEnt-like estimation

PMC

xy (Xi, Yj) = Px(Xi)Py(Yj). (74)

The recipe above, however, can be generalized by introducing the so-called copula
functions. The rationale for employing copulas is provided by Sklar’s theorem, which
states that every multivariate cumulative distribution function (CDF) can be expressed
in terms of its marginal CDFs13 (say, Fx(X), Fy(Y ), etc.) and a copula function C which,
as the name suggests, “couples” them:

Fxy...(X,Y . . . ) = C[Fx(X), Fy(Y ) . . . ]. (75)

12The parameter q quantifies the degree of non-extensivity of such a functional.
13Sklar’s theorem requires the marginals to be continuous. Whenever discrete datasets are considered,

the results described here can be thought as being applied to the kernel density estimations of the
corresponding (discrete) CDFs.
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In our case, the marginal CDFs are those of the constraints (defined by eqs. (5)) to
be estimated from data. The choice of the particular copula function, on the other hand,
is completely arbitrary14. The authors in [115] use the Gumbel copula, defined as

CGumbel
ij (θ) = e

−
[
(− lnFx(souti ))

θ
+(− lnFy(sinj ))

θ
] 1
θ

(76)

where the only parameter θ quantifies the dependence between the marginals. Remark-
ably, the parameter estimation can be carried out by maximizing the likelihood-like
function

L(Ĝ|θ) =

N∑
i=1

N∑
j=1

ln C[Fx(ŝouti ), Fy(ŝinj ) . . . ] (77)

with respect to θ. Once the model parameter has been estimated, a matrix whose
entries are (interpreted as) probability coefficients is obtained. Finally, the IPF method
is employed to readjust the sums along rows and columns and recover the observed
marginals.

Note that if the so-called “independent” copula function, defined by C[Fx(X), Fy(Y ) . . . ] =
Fx(X)Fy(Y ) . . . , is used, then the MaxEnt estimation is recovered. And as for MaxEnt,
the copula approach cannot reproduce the topological structure of sparse networks [115].

3.5.2. A Bayesian approach to network reconstruction

The major difference between likelihood-based methods (as those described in the
previous sections) and Bayesian methods lies in the role played by model parameters.
Very broadly speaking, while likelihood-based methods provide a recipe for estimating
the unknown parameters on the basis of the observations, Bayesian approaches treat the
unknown parameters as (additional) random variables, described by properly-defined
prior probability distributions, whose parameters (called meta-parameters) are chosen a
priori.

The first example of this second kind of approach to network modeling is provided
by the fitness model [52], resting upon the same ideas lying at the basis of the ERG
approach:

• each node i is described by a hidden variables xi, representing its “fitness”; generally
speaking, this is a real numbers supposedly quantifying the importance of that node
in the network, and is drawn from a given probability distribution ν(x);

• any two nodes i and j establish a connection according to a coupling function
f(xi, xj) that, for undirected networks, is symmetric in the hidden variables as-
signed to nodes i and j.

The main difference with respect to the ERG approach lies in the a priori choice of
both the functional form of the coupling function f and the distribution ν from which
fitnesses are drawn. The fitness model can be straightforwardly implemented by adapting
the discrete formulas derived within the ERG framework to the continuous case. For

14Notably, a maximum-entropy recipe for estimating copulas has been recently proposed [114].
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instance, in the undirected case, the Bayesian derivation of the nodes degrees and of the
total number of links reads

ki =

N∑
j( 6=i)=1

f(xi, xj) −→ ki(x) = (N − 1)

∫
f(x, y)ν(y)dy, (78)

L =

N∑
i=1

N∑
j(<i)=1

f(xi, xj) −→ L =
N(N − 1)

2

∫ ∫
f(x, y)ν(x)ν(y)dxdy, (79)

where the integrations over the support of the distribution ν are necessary to account
for the fitness variability.

Remarkably, several combinations of f and ν lead to recover power-law degree distri-
butions. In particular, both the intuitive combination

f(x, y) = zxy, ν(x) ∝ x−2 (80)

and the highly non-trivial combination

f(x, y) = Θ(x+ y − z), ν(x) = e−x (81)

lead to P (k) ∝ k−2. This result points out that a number of topological properties
believed to arise only as a consequence of microscopic dynamic processes (as the one
described by the preferential attachment mechanism and its variants) can, instead, be
replicated also via a static model [52]. In other words, whenever preferential attachment
does not represent a plausible mechanism, it is reasonable to imagine that any two
vertices establish a connection when the link creates a mutual benefit, depending on
some intrinsic node property.

The aforementioned approach has been recently extended to account also for weights,
through an algorithm which is not dissimilar in spirit from the DECM. More specifically,
the model introduced in [116] is described by the following probability distribution for
link weights:

qBayes

ij (w) =

{
1− pBayes

ij if w = 0,

pBayes

ij θije
−θijw if w > 0.

(82)

(with θij > 0). Hence, as in the DECM, distinct links are independent, and while
the presence of the link is described by a Bernoulli trial, the value of its weight is set
according to an exponential distribution. Note that the latter is the continuous version
of the geometric distribution, which is obtained by ERG-based models upon assuming
discrete weights. The philosophy of the fitness model is then encoded into the choice of
functional forms reading

pBayes

ij = f(xi + xj), θij = G−1
ζ,η(e−xi) +G−1

ζ,η(e−xj ). (83)

In these expressions, G−1
ζ,η is the quantile function of the Gamma distribution with positive

shape and scale parameters ζ and η, drawn from an a prior distribution π(ζ, η), while
fitnesses are drawn from the distribution ν(x) = e−x and f is defined as in [116] such
that the degree distribution exhibits a power law. An homogeneous version of the model
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has been also introduced, defined by the choices pij = p ∼ Beta(α, β) and θij = θ ∼
Gamma(γ, δ).

Since this model induces an entire ensemble of networks, the expected value of the
quantities of interest can be computed only after introducing a sampling procedure on
the ensemble. The authors of [116] adopt a Gibbs sampler working as follows.

• The sampler is initialized with a matrix W(0). When considering the homogeneous
version, the initial matrix is generated via the Erdős-Rényi model whose only pa-
rameter is required to match the observed average degree. Since the initial configu-
ration is required to satisfy the conditions souti (W(0)) < ŝouti and sini (W(0)) < ŝini ∀i,
the maximum-flow algorithm [117] is employed to obtain a matrix W(1) matching
the constraints exactly.

• The whole ensemble of configurations is obtained by “perturbing” W(1). Such
perturbations generalize the local rewiring algorithm according to the following
rules: 1) the dimension k of the sub-matrices to be updated is chosen and a set κ
of k pairs of indices is selected; 2) the entries of W(1) are updated according to the
rule

W(n+1)
κi = W(n)

κi + (−1)i+1∆ (84)

with κi indicating the i-th pair of indices (e.g., the r-th row and the c-th column)

and ∆ ∈ [−mini, odd W
(n)
κi ,mini, even W

(n)
κi ].

Such a sampling process does not leave unexplored regions of the space of configu-
rations: the existence of a sequence of Gibbs moves allowing for a transition from any
matrix compatible with the given constraints to any other is, in fact, guaranteed [116]).
And although the algorithm allows one to generate networks characterized by different
topological structures, every configuration satisfies the constraints defined by eqs. (5)
exactly.

An “empirical” Bayesian approach to network reconstruction. The same authors of [116]
have recently developed an “adjustable” version of their Bayesian approach [93]. In
this model, the linking probability between any two nodes i and j is assumed to be
pE-Bayes

ij =
zxixj

1+zxixj
, with xi = ŝout

i + ŝini (naturally, this position better models undirected

networks).

3.5.3. A comment on the Bayesian approaches to reconstruction

Although the three aforementioned algorithms have been labeled as Bayesian, they
share features of both likelihood-based and genuinely Bayesian methods. All of them
are, in fact, characterized by the presence of one, or more, free parameters not to be
drawn from a priori distributions, but to be estimated via properly-defined likelihood
conditions.

For what concerns the model in [52], the only free parameter z is fixed by imposing
the condition L̂ = 〈L〉, i.e., by substituting either eq. (80) or eq. (81) into eq. (79) and
solving the resulting equation for z. A main difference with the fitness-induced ERG
formalism [98] remains in the way fitnesses are dealt with. In a sense, the fitness-induced
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ERG formalism represents the likelihood-based analogue of the Bayesian approach dis-
cussed here: there, the information on the fitness distribution is completely ignored and
just a point-estimation is carried out; here, the fitness variability is completely accounted
for.

The model in [116], on the other hand, needs to be calibrated whenever used to recon-
struct real-world networks. After assuming that many of the free parameters coincide, the
authors are able to solve the equation Ŵ = 〈W 〉, which results in θij ≡ θ =

∑
ij p

Bayes

ij /Ŵ .
Similarly, in [93] the free parameter z is “adjusted” in order to ensure that the expected
density matches the observed one.

This discussion highlights the main limitation of using Bayesian approaches as re-
construction methods. Indeed, the freedom coming from treating model parameters as
random variables does not necessarily help in reproducing the features of specific real-
world configurations. As the authors in [116] explicitly recognize, Bayesian models need
to be (at least partially) tuned in order to be used as reconstruction models. Whenever
this step is missing, the arbitrariness in choosing the a priori distributions can be better
employed to generate scenarios—useful, for instance, to obtain confidence intervals for
stress tests outcomes.

3.5.4. The Montagna & Lux approach

Link probability coefficients can be also defined ad hoc, without any explicit derivation
from a given optimization principle. For instance, the authors in [118] consider the
following forms:

pM-L-1

ij = d1(ŝouti )α(ŝoutj )β , (85)

pM-L-2

ij = d2(ŝouti + ŝoutj ), (86)

pM-L-3

ij = d3Θ(ŝouti + ŝoutj − z), (87)

where the parameters d1, d2, d3 are used to adjust the density of the network. This model
thus follows the philosophy of the fitness model, by assuming that any two nodes i and
j are connected with a probability pij(ŝ

out
i , ŝoutj ). An ensemble of network configurations

is then generated according to

aij =

{
0 with probability 1− pM-L-h

ij

1 with probability pM-L-h
ij

(88)

(with h = 1, 2, 3 and with the additional rule of eliminating loops generated when aij =
aji = 1). Once a topological structure has been generated, the weights of the realized
connections are set proportionally to the “size” of involved nodes as

wM-L-h

ij = ŝouti

(
pM-L-h
ij∑

{aij=1} p
M-L-h
ij

)
. (89)

In the original paper [118], this approach is not used for network reconstruction, but
rather to generate a financial interbank network assuming banks’ total interbank assets
to be power-law distributed—a choice that also leads to power-law distributed degrees.
Additionally, in the original paper total assets âi are used instead of total interbank assets
ŝout
i as fitness values for each node i (see section 4.3.1). The formulation we present here

is equivalent though, since a linear proportionality relation âi(1 − θ) = ŝouti is assumed
[119, 118].
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Figure 4: Comparison between the observed adjacency matrix of the eMID network in 2003 (top panels)
and its reconstructed version according to the method by Ha laj & Kok described in section 3.5.5 (bottom
panels). Left panels represent binary adjacency matrices with black/white denoting the presence/absence
of connections, whereas, right panels represent weighted adjacency matrices with color intensity denoting
the weight of connections.
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3.5.5. The probability map of Ha laj & Kok

Ha laj & Kok further define link probabilities assuming the additional information on
nodes’ membership to groups [120]. In the specific model implementation for interbank
networks, each node (bank) belongs to a geographic area (i.e., a country), and link
probability are expressed as fraction of node out-strengths aggregated within countries
(which are assumed to be known):

pH-K

ij =
ŵgi,gj
ŵgi,·

, (90)

where ŵgi,gj =
∑
i∈gi

∑
j∈gj ŵij is the total observed weight from area gi to area gj and

ŵgi,· =
∑
i∈gi

∑
j ŵij is the total weight going out from area gi.

Although this algorithm is similar in spirit to fitness models (and specifically to the
stochastic block-model, see section 4.2.3), its formalism differs from that of ERG. Indeed,
the network structure is determined according to the following steps:

• a pair of nodes is randomly drawn out of the set of possible ones;

• the link is realized according to the corresponding probability pH-K
ij ;

• if the link is retained, a random number rij ∈ [0, 1] is generated, in order to
determine the percentage of out-strength value of node i, and in-strength value of
node j, assigned to the weight wij ;

• the residual magnitude of the out-strength of i and the in-strength of j is updated

accordingly, i.e., [sout
i ](n) = (1 − r(n)

ij )[souti ](n−1) and [sinj ](n) = (1 − r(n)
ij )[sinj ](n−1)

(with n indicating the n-th iteration of the algorithm);

• the steps above are repeated until souti ' souti and ŝini ' sini ∀i (constraints may
be satisfied only approximately, because of the purely numerical nature of the last
step of the algorithm).

Besides requiring a substantial amount of additional information with respect to other
reconstruction method, this approach treats all nodes belonging to the same geographic
area as equivalent (the only variability being provided by the (random) allocation of
fraction of weights): The structure of the sub-network linking any two geographic areas
is random, and may not reflect its observed counterpart (see fig. 4).

3.5.6. The Minimum Density algorithm

As we have already stressed, the main reason for defining reconstruction algorithms
alternative to MaxEnt is the densely-connected nature of the configurations predicted
by eq. (13), which misrepresent the actual network structures (and may lead to under-
estimate the systemic risk). In order to overcome the intrinsic limitations of a complete
network structure, the opposite approach of minimizing the link density while satisfying
the observed constraints has been recently devised [121].

Contrarily to MaxEnt, which evenly shares the marginals across all connections, the
Minimum Density (MD) algorithm allocates the marginals over the minimum possible
number of links (see fig. 5). MD does not rest upon the maximization of Shannon
entropy, but on an optimization principle based on minimizing the cost of maintaining
connections. The algorithm, in fact, works as follows.
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• Define deviations from the marginals to be satisfied

∆
(n)

sout
i

= ŝouti − [souti ](n) = ŝouti −
N∑

j(6=i)=1

w
(n)
ij , (91)

∆
(n)

sini
= ŝini − [sini ](n) = ŝini −

N∑
j( 6=i)=1

w
(n)
ji (92)

where w(n) is the matrix obtained at the n-th iteration of the MD algorithm.

• Choose a pair of nodes according to the probability coefficients

q
(n)
ij ∝ max

∆
(n)

souti

∆
(n)

sinj

,
∆

(n)

sinj

∆
(n)

souti

 (93)

that privilege pairs of nodes where either the “out-strength deficit” of node i is
large with respect to the “in-strength deficit” of node j or vice-versa.

• Link the two selected nodes via a connection weighting

w
(n)
ij = min{∆(n)

souti
,∆

(n)

sinj
}, (94)

hence corresponding to the largest volume that this pair of nodes can exchange.
This step, coupled with the previous one, ensures that each new link is assigned the
maximum possible weight needed to satisfy either the marginal ŝouti or the marginal
ŝinj . Moreover, as the authors explicitly notice, this updating rule also induces a
disassortative topology, in order to reproduce a structural feature observed in many
real-world networks.

• Decide if the proposed update must be retained, by evaluating the objective func-
tion

V (W(n)) = −cL(n) −
N∑
i=1

[
αi

(
∆

(n)

souti

)2

+ βi

(
∆

(n)

sini

)2
]
, (95)

with c quantifying the cost of establishing a link. If ∆
(n)
V = V (W(n) + w

(n)
ij ) >

V (W(n−1)) the link is retained (note that networks with lower densities have larger

values of V ). If instead ∆
(n)
V < 0, the likelihood of observing the resulting configura-

tion is evaluated, i.e., the proposed weight is retained with the Metropolis-Hasting

probability P (W(n) + w
(n)
ij )/P (W(n−1)) ∝ e∆

(n)
V .

• Repeat the aforementioned steps until all marginals have been allocated.
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As the other probabilistic methods discussed so far, the MD method can be employed
to generate a whole ensemble of networks, characterized by a value of link density close
to the minimum possible one (close because of the variability introduced by the last step)
but different topological structures. Note however that real networks with such a low
density values are rarely observed. Thus, the main rationale behind the algorithm is not
network reconstruction. Rather, the algorithm can be very useful to find an upper bound
to systemic risk. As such, it can be successfully employed in conjunction with MaxEnt—
which, instead, provides the lower bound, in order to obtain the interval in which the
true value of systemic risk must lie. Additionally, in order to test for the supposed
dependence of systemic risk on the network density, the authors also provide a more

general rule for updating weights, by replacing eq. (94) with w
(n)
ij = θmin{∆(n)

souti
,∆

(n)

sinj
}:

the parameter θ ∈ [0, 1] is used to allocate percentages of marginals, thus relaxing the
request of creating a network with minimum density. By tuning θ, the whole range of
link density values can be explored.

4. Testing the network reconstruction

Now that we described a number of algorithms aiming at reconstructing a given net-
work structure, we focus on some useful methods to test the effectiveness of the achieved
reconstruction. In particular, three different kinds of indicators will be considered, of
statistical, topological and dynamical nature.

4.1. Statistical indicators

With this name, we refer to the entries of the so-called confusion matrix, the 4×4 table
whose elements are the number of true positives, false negatives, true negatives and false
positives. The use of these indicators is justified upon considering that, from a purely
topological perspective, a reconstruction method acts as a binary classifier “deciding”
if a given pair of nodes should be linked or not, and whose performance can be thus
evaluated in terms of the indices above [122].

To be more explicit, consider the problem of retrieving the position of both present
and missing links of an observed binary matrix Â. Denoting an individual network ob-
tained by a given reconstruction method A, for each node pair four different alternatives
are possible: a) âij = aij = 1: in this case, an observed link has been correctly predicted
(we have a true positive); b) âij = 1 but aij = 0: in this case, an observed link has been
incorrectly predicted as being missing (we have a false negative); c) âij = aij = 0: in this
case, a missing link has been correctly predicted (we have a true negative); d) âij = 0
but aij = 1: in this case, a missing link has been incorrectly predicted as being present
(we have a false positive).

The total number of events within one of these four categories can be straightforwardly
computed as follows:

TP = 1(Â ◦A)1T, (96)

FN = 1(Â ◦ (I−A))1T, (97)
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Figure 5: Comparison between the observed adjacency matrix of the eMID network in 2003 (top panels)
and its reconstructed version according to the Minimum Density method described in section 3.5.6
(bottom panels). Left panels represent binary adjacency matrices with black/white denoting the pres-
ence/absence of connections, whereas, right panels represent weighted adjacency matrices with color
intensity denoting the weight of connections.
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TN = 1((I− Â) ◦ (I−A))1T, (98)

FP = 1((I− Â) ◦A)1T (99)

where the symbol ◦ indicates the element-wise product of two matrices, 1 = (1, 1 . . . 1)
is the N -th dimensional row-vector whose entries are all ones and I is the N ×N matrix
whose generic entry reads Iij = 1− δi,j . For instance, the total number of true positives
reads TP =

∑
i

∑
j( 6=i) âijaij . Note that since these four indices sum up to the total

number of nodes N , only three of them are independent. In particular, the last three
ones can be compactly re-written in terms of TP . We have FN =

∑
i

∑
j(6=i) âij(1 −

aij) = L̂ − TP , TN =
∑
i

∑
j( 6=i)(1 − âij)(1 − aij) = N(N − 1) − L − L̂ + TP and

FP =
∑
i

∑
j(6=i)(1− âij)aij = L− TP , where L̂ and L are the total number of links in

the observed and reconstructed network, respectively.
The four indices above provide absolute numbers which, by themselves, are of limited

usefulness. This is the reason why the information provided by TP , FN , TN and FP is
often combined to define “relative” indices. The first of them is the sensitivity (or true
positive rate) [122], defined as

TPR =
TP

TP + FN
=
TP

L̂
(100)

and quantifying the percentage of observed links that are correctly recovered. Note that
for the performance a reconstruction method to be deemed satisfactory, the condition of a
TPR value close to 1 is necessary, but not sufficient. Indeed, a method that overestimates
the number of links achieves a high TPR value by construction (for a fully connected
reconstructed network, it is TPR = 1 by definition), but also lacks the ability to identify
missing connections. The latter is quantified by the specificity (or true negative rate)
[122], defined as

SPC =
TN

FP + TN
=

TN

N(N − 1)− L̂
(101)

i.e., the percentage of observed missing links that are correctly recovered. The false
positive rate FPR = 1− SPC is the complementary index to SPC [122].

Thus, intuitively, any “good” reconstruction algorithm should be characterized by
a large TPR value and a low FPR value (i.e., the better its performance, the closer
the TPR index to 1 and the FPR index to 0). This observation leads to the classical
“graphical” way to visualize the performance of a classifier, by representing it as a point
of coordinates (FPR, TPR) within the unit square of coordinates (0, 0), (0, 1), (1, 1),
(1, 0). Any perfect classifier is thus to be found on the top-left corner of the square,
whereas, a random classifier (predicting an equal number of present and missing links)
lies on its main diagonal. The performance of a given reconstruction algorithm can then
be quantified as the area under the curve (AUC) [122] identified by the three points of
coordinates (0, 0), (FPR, TPR), (1, 1). A perfect classifier is then characterized by an
AUC of 1, a random classifier by an AUC equal to 1/2, and in general for a non-random
classifier it is 1/2 < AUC ≤ 1.
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An alternative way of evaluating the performance of a reconstruction method is plot-
ting its TPR versus a fourth index, its precision (or positive predicted value) [122]

PPV =
TP

TP + FP
=
TP

L
(102)

which measures the percentage of correctly placed links with respect to the total number
L of predicted links. In other words, the PPV index quantifies the “ability” of a given
classifier to predict only true positives. Thus, and contrarily to the TPR, a large PPV
cannot be trivially obtained by dense reconstruction methods.

Finally we consider an index measure the overall performance of a classifier in cor-
rectly placing both ones and zeros: the accuracy [123], defined as

ACC =
TP + TN

TP + TN + FP + FN
=
TP + TN

N(N − 1)
. (103)

Whenever a reconstruction method defines an entire ensemble of candidate matrices,
the above quantities have to be evaluated as averages over such ensemble. This can be
done using, in eqs. (96-99), the average quantities 〈aij〉 = pij and 〈A〉 = P instead of
those corresponding to a single realization aij and A:

〈TP 〉 = 1(Â ◦P)1T, (104)

〈FN〉 = 1(Â ◦ (I−P))1T, (105)

〈TN〉 = 1((I− Â) ◦ (I−P))1T, (106)

〈FP 〉 = 1((I− Â) ◦P)1T. (107)

Using ensemble averages, the difference between dense and sparse reconstruction
methods can be better discussed quantitatively. MaxEnt, which we take as the rep-
resentative of dense reconstruction algorithms, satisfies a relation of the kind 〈aME

ij 〉 =
pij = p ' 1 ∀ 6= j, leading to

〈TPME〉 ' L̂ and 〈FPME〉 ' N(N − 1)− L̂. (108)

As a consequence, 〈PPV ME〉 ' L̂/N(N − 1), i.e., the power of the method coincides
with the network density. In order to fully understand the importance of this result, we
now consider the Directed Random Graph Model (DRGM), defined by the prescription
pij = p = L̂/N(N − 1) ∀i 6= j. We have 〈TPRDRGM〉 = 〈FPRDRGM〉 = p and, most
importantly, 〈PPV DRGM〉 = p. In other words, a “random” classifier is not necessarily an
algorithm guessing the (binary) value of each entry with probability 1/2: more generally,
it is a reconstruction method defined by the DRGM recipe, and whose PPV represents
a lower bound for any reconstruction algorithm. Notice that the MaxEnt method at-
tains such value, thus confirming the weakness of its performance—unless very dense
configurations are considered, since 〈ACCME〉 = p.

Other indicators that have been extensively used to measure the goodness of a recon-
struction algorithm are the Hamming distance H, the Jaccard similarity J , the cosine
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similarity ϑ, the Jensen-Shannon divergence JS, between Â and A [124]. Remarkably,
whenever dealing with binary matrices, these indices can be rewritten in terms of the
four basic quantities TP , FN , TN , FP :

H = FN + FP, (109)

J =
TP

FN + TN + FP
, (110)

ϑ =
TP

L̂
, (111)

JS =
FN

2L̂
ln(2L̂) +

FP

2L
ln(2L)− TP

(
L̂+ L

2L̂L

)
ln

(
L̂+ L

2L̂L

)
− ln(L̂L)

2
(112)

(whenever a whole ensemble of configurations must be considered, the expressions above
must be averaged accordingly).

Moving further, for testing the effectiveness of a given algorithm in reconstructing
weights, a tempting possibility would be to simply extend some of the measures defined
in the binary case to the weighted one. However, the non-binary nature of the entries
makes it difficult to devise a best choice. Nevertheless, the most popular metric is the
weighted counterpart of the cosine similarity [80, 124], reading

ϑw =
1(Ŵ ◦W)1T

||Ŵ||2 ||W||2
(113)

with || . . . || indicating the L2 entry-wise matrix norm. In other words, these two matrices
are treated as vectors of real numbers, whose overlap is approximated by a fictitious
angle with values ranging from -1 indicating maximum dissimilarity to +1 meaning exact
similarity, and with 0 indicating absence of correlation.

Additional indices are the L1 and the L2 entry-wise matrix distances [93], respectively
defined as

||Ŵ −W||1 =

N∑
i=1

N∑
j(6=i)=1

|ŵij − wij |, (114)

||Ŵ −W||2 =

√√√√ N∑
i=1

N∑
j(6=i)=1

(ŵij − wij)2 (115)

and the so-called “error measure” [115] reading

ε =

∑N
i=1

∑N
j=1 |ŵij − wij |∑N

i=1

∑N
j=1 wij

. (116)

When ensemble methods are considered, eqs (113)-(116) can still be used, upon substi-
tuting W with 〈W〉. Notice, however, that the major drawback of norm-like quantities
lies in the fact that they are unbounded, which makes it difficult to employ them for
comparing different candidate matrices.
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4.2. Topological indicators

The second set of indicators is represented by quantities of topological nature provid-
ing a “coarse-grained” description of the network under consideration, such as degree-
degree correlations and the mesoscale community structure.

4.2.1. Testing weights reconstruction

The most straightforward way to compare observed weights with their corresponding
estimates is to scatter-plot them. However in order to consistently compare only realized
connections, it is preferable to scatter (realized) observed weights versus conditional
weights

〈wij |aij = 1〉 =
〈wij〉
pij

(117)

which to some extent encode the (available) structural information. This prescription
is particularly useful to compare algorithms generating the same expected weights but
predicting different topological structures (e.g., MaxEnt and one of the exact density
methods) [80].

4.2.2. Testing higher-order patterns reconstruction

Besides reconstructing link weights, a good reconstruction method is also expected to
reproduce the higher-order trends characterizing the network Ĝ under observation. To
this aim, the observed value of a generic quantity of interest X(Ĝ) is usually compared
with the corresponding prediction obtained by the reconstruction algorithm. Impor-
tantly, whenever dealing with ensemble methods, the entire set G of configurations must
be accounted for, whence the need to find statistical measures compactly describing all
possible (alternative) outcomes. The most basic and useful choices are the ensemble
average and standard deviation of X [58], namely

〈X〉 =
∑
G∈G

X(G)P (G), (118)

σX =

√∑
G∈G

(X(G)− 〈X〉)2P (G). (119)

The evaluation of eqs. (118) and (119) in principle requires the knowledge of the whole
ensemble G. Since listing all the configurations belonging of the ensemble is simply not
feasible, analytical or numerical techniques can be used to tackle this problem.

In the first case, a simple remedy is provided by the delta method [125], based on the
Taylor expansion of the observed value X(G) around the expected value of the variables
it depends on:

X(G) = X(〈G〉) +

N∑
i=1

N∑
j(6=i)=1

(gij − 〈gij〉)
(
∂X

∂gij

)
G=〈G〉

+ . . . (120)

Equation (120) is a “tensorial” Taylor expansion, since each entry of the adjacency matrix
G is an independent random variable. By taking the expected value of both sides of eq.
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(120), one recovers the delta method prescription to calculate the expected value of the
quantity X, i.e.,

〈X〉 ' X(〈G〉). (121)

The standard deviation σX is then estimated by inserting eqs. (120-121) into eq. (119):

σX '

√√√√ N∑
i=1

N∑
j( 6=i)=1

N∑
t=1

N∑
s( 6=t)=1

Cov[gij , gts]

(
∂X

∂gij

∂X

∂gts

)
G=〈G〉

. (122)

Remarkably, eqs. (121) and (122) are exact in the case of linear constraints repre-
sented by degrees and strengths. Other examples of topological quantities whose ensem-
ble averages and standard deviations can be computed exactly are the so-called dyadic
motifs, defined by the expressions

N↔ =
N∑
i=1

N∑
j(6=i)=1

aijaji, (123)

N→ =

N∑
i=1

N∑
j(6=i)=1

aij(1− aji), (124)

N= =

N∑
i=1

N∑
j(6=i)=1

(1− aij)(1− aji). (125)

Upon considering that distinct dyads are independent, the expected value and standard
deviations of the expressions above become

〈N↔〉 =

N∑
i=1

N∑
j(6=i)=1

pijpji, (126)

〈N→〉 =

N∑
i=1

N∑
j(6=i)=1

pij(1− pji), (127)

〈N=〉 =

N∑
i=1

N∑
j(6=i)=1

(1− pij)(1− pji) (128)

σN↔ =

N∑
i=1

N∑
j( 6=i)=1

2pijpji(1− pijpji), (129)

σN→ =

N∑
i=1

N∑
j( 6=i)=1

pij(1− pji)[1− pij(1− pji)− pji(1− pij)], (130)

σN= =

N∑
i=1

N∑
j( 6=i)=1

2(1− pij)(1− pji)[1− (1− pij)(1− pji)] (131)
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Other quantities, however, can be dealt with far less ease. As last resort, it is possible
to proceed numerically by explicitly sampling G. Once a (properly sampled) subset G̃ has
been obtained, the ensemble average 〈X〉 can be approximated by the arithmetic mean

〈X〉 ' X =
∑
G∈G̃

X(G)F (G), (132)

where P (G) is replaced by the sampling frequency F (G) = NG

|G̃| , and NG is the number of

networks in the sample whose adjacency matrix is equal to G. Analogously, the standard
deviation σX becomes

σX '
√∑

G∈G̃

(X(G)−X)2F (G). (133)

Finally, once an estimate for X (together with some measure about its uncertainty)

has been obtained, the comparison between X(Ĝ) and 〈X〉 can be carried out by checking

whether the observed valueX(Ĝ) lies within the region delimited by the values 〈X〉±zσX ,
with z set to determine a desired level of statistical significance. More compactly, this is
expressed as the z-score15

zX =
X(G)− 〈X〉

σX
(134)

which measures the difference between the observed and the expected value in units
of standard deviation. A z-score whose numerical value is close to zero then indicates
that the chosen reconstruction algorithm generates an expected value of X that is close
enough to the observed one: More generally, whenever |z| ≤ zth (with zth usually being
1, 2 or 3), the discrepancy between the two values cannot be considered significant (with
a confidence interval of 0.683, 0.954 and 0.997 respectively). Whenever dealing with the
models defined within the ERG formalism, this further implies that the structure of the
real network Ĝ, proxied by the quantity X, is completely explained by the (topological
information encoded into the) imposed constraints. By contrast, if |z| > zth the observed

value X(Ĝ) lies outside the chosen confidence interval: the structure of the observed net-
work determining X is not completely explained by the specific constraints imposed, and
further model specifications should be used (i.e., additional or more complex constraints)
[58, 126].

4.2.3. What may and what may not be reconstructed

Even when a given method does not provide a good reconstruction of an observed
network, it is nevertheless useful to understand what kind of information it can provide.
To this end, let us consider the z-score again. Whenever zX is significantly positive, X
is said to be over-represented in Ĝ, meaning that the network under analysis shows a
positive tendency towards it. For instance, chain-like motifs are significantly abundant
(i.e., they are found more often than expected) in food-webs. Analogously, whenever the

15The z-scores assumes a Gaussian distribution for the random variable under consideration. If devi-
ations form this hypothesis are expected, a different statistical test should be employed.
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z-score is significantly negative, X is said to be under-represented. Again in the case of
food webs, loop-like motifs are significantly missing (i.e., they are found less often than
expected).

z-scores (and statistical tests in general) provide information also on ongoing struc-
tural changes of a given network. A particularly interesting issue concerns the detection of
early-warning signals of upcoming critical events. As shown in [127], this can be done by
computing zX for each temporal snapshot of the considered system16 and, then, plotting
zX(t) versus t. As far as the discrepancy between observed and expected values evolves
“smoothly” from out-of-equilibrium to equilibrium states (or vice-versa), early-warning
signals can be possibly detected [128, 129],

An important aspect of a network to be tested for statistical significance is, without
doubts, its mesoscale organization into modules or communities. An approach similar to
what presented in the previous subsection works as follows [130]. Suppose that we know
the community organization of the network, characterized by Λ total intra-community
links and Π intra-community pair of nodes. The probability that a random network
with N nodes and L links has at least these values of Λ and Π derives from an urn
model without reinsertion, and thus is given by the inverse cumulative hyper-geometric
distribution

Σ =

L∑
l=Λ

(
Π
l

)(
N(N−1)−Π

L−l
)(

N(N−1)
L

) . (135)

Hence the smaller the value of Σ, known as surprise, the more significant the mesoscale
organization of the considered network [130].

More refined benchmarks for mesoscale structures are provided by the Stochastic
Block Model (SBM) [131] and its degree-corrected version (dcSBM) [132]. The effective-
ness of these models in reproducing block structures in economic and financial networks
has been investigated in [133]. In particular, these models allow to interpolate between
two alternative kinds of partition structures: core-periphery and bipartite. In the context
of interbank networks, a core-periphery structure indicates the existence of a set of core-
banks acting as intermediaries between periphery-banks, whereas, a bipartite structure
represents an intermediaries-free market, with banks trading (exclusively) according to
their preferences for the counterparties [134].

Network configurations characterized by a structure of m blocks can be represented
by an m×m symmetric matrix—called the affinity matrix, whose entries represent the
density of links within and between modules:

A =


ρg1g1 ρg1g2 . . . ρg1gm
ρg1g2 ρg2g2 . . . ρg2gm
...

...
. . .

...
ρg1gm ρg2gm . . . ρgmgm

 .

Using this representation, the SBM and dcSBM respectively assume that connection
probability between any two nodes i and j assume the form

pSBM

ij = ρgigj , pdcSBM

ij = ρgigjxixj , (136)

16In [127], the monitored quantity is precisely the abundance of dyadic motifs, X = N↔, N→, N=.
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where xi is the parameter controlling for the degree of generic node i. Upon varying the
model parameters, a whole range of different topologies can be generated. In the simple
case of the dcSBM with only two blocks g1 and g2, the authors of [133] impose a “back-
ground” bipartite-like structure with ρg1g2 > ρg1g1 = ρg2g2 , while progressively rising
the degree heterogeneity of nodes belonging to g1 and g2 respectively. Upon running a
belief-propagation (BP) algorithm [135, 136], the likelihood of the network

L(A|~x) = ln

 N∏
i=1

N∏
j(<i)=1

p
aij
ij (1− pij)1−aij

 (137)

highlights the transition from a purely bipartite structure to a purely core-periphery
structure. The consistency check is done by comparing the numerical value of the likeli-
hood function LBP with that of LSBM and LdcSBM.

This transition is not a surprise if the generative model is known. However, some care
must be adopted when studying real-world networks. Indeed for the empirical interbank
networks considered in [133], the kind of emerging mesoscale organization “depends” on
the used benchmark. In particular, while the SBM-induced belief-propagation reveals a
bipartite structure (ρg1g2 > ρg1g1 > ρg2g2) on daily data aggregation scales and a core-
periphery structure (ρg1g1 > ρg1g2 > ρg2g2) on longer time scales, the dcSBM-induced
belief-propagation always reveals a bipartite structure.

As also noticed elsewhere [137], this behavior is likely due to the tendency of SBM to
detect homogeneous modules (e.g., blocks of nodes with large degree and blocks of nodes
with low degree [131]). As a consequence, the dcSBM should be preferred whenever the
degree heterogeneity is strong. In the case of sparse networks, it is 17

pdcSBM

ij ' L̂gigj

(
k̂i

K̂gi

)(
k̂j

K̂gj

)
, (138)

with L̂gigj indicating the (observed) total number of links between blocks gi and gj , and

K̂gi indicating the (observed) total degree of nodes belonging to block gi.
It is also worth mentioning that a block-wise extension of the Configuration Model

can be directly defined by an Hamiltonian constraining the block-specific degree se-
quences [132]. This leads to link probability coefficients depending on the imposed block-
structure. That is, the connection probability between node i belonging to block r and
node j belonging to block s reads

prsij =
xrsi x

rs
j

1 + xrsi x
rs
j

, (139)

where the Lagrange multipliers are now expressed in a tensorial form, and have to be
numerically determined by solving block-specific likelihood conditions.

17This estimation can be obtained by maximizing the sparse-case likelihood function L(Â|~λ) '∑
i

∑
j(<i)(aij ln pij − pij) with pij = ρgigjλiλj [131].
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4.3. Dynamical indicators

The third family of indicators include metrics reflecting the outcome of diffusion
processes over the network. Here in particular we deal with distress propagation across
a financial network and the related issue of systemic risk, i.e., the possibility that a
local event triggers a global instability through a cascading effect. This issue received
a lot of attention especially after the global financial crisis of 2007/2008. Since then, it
was realized that the complex pattern of interconnections between financial institutions
makes the system as a whole inherently fragile: those connections constitute the channels
through which financial distress can spread which, eventually, lead to amplification effects
like default cascades [60, 138, 139, 140, 141, 142, 143, 144].

Indeed, while interconnectedness implies diversification and as such helps reducing
the individual risk, it also makes the system as a whole more vulnerable [145, 146, 147].
As a consequence, both researchers and regulators have started to pay attention to the
structural features of financial systems [148, 119, 40, 149, 150], with the aim of properly
estimating the systemicness (or impact) and the vulnerability of each bank. While the
former represents the total loss induced on the system by the distress of that bank,
the latter is the loss experienced by that bank when the whole system is under distress
[140, 151].

The shortcoming of requiring data on individual exposures to obtain these indicators
represents the very motivation for the use of effective network reconstruction techniques
in finance. In particular, reconstruction methods can generate scenarios that are compat-
ible with the available information and, as such, can be employed to test the resilience of
both single institutions and the system as a whole. Clearly, the operative definition of any
dynamical (financial) indicator depends on the underlying model of shock-propagation
assumed. While the literature on the topic is extensive, here we only outline basic con-
cepts and provide a few illustrative examples that, in our opinion, physicists can easily
become familiar with. For an in-depth analysis of network-based systemic risk models,
we remand to the recent reviews and books [152, 153, 154].

4.3.1. Balance sheets and financial networks

The financial position of a given bank i is summed up by its balance sheet, which
reports total assets ai and liabilities li at a given date. Assets are resources with a
positive economic value (such as loans, derivatives, stocks, bonds, options, real estates,
etc.), whereas liabilities have a negative economic value (obligations, debits, customer
deposits, accrued expenses, etc.). The net difference between assets and liabilities defines
the bank equity

ei = ai − li (140)

and the bank is said to be solvent as long as its equity is positive. Indeed, negative equity
means insolvency, as the bank cannot pay back its liabilities even by selling all its assets.
In the dedicated literature [77, 141, 119], insolvency is usually considered as a proxy for
default, which in turn occurs when the bank actually fails to fulfill a legal obligation.

Let us now consider N banks and Q securities (stocks, bonds, options, etc...). The
detailed composition of the balance sheet of i can be described, schematically, as follows.
On the assets side we find the loans granted to other banks {wij}Nj=1, the securities

54



constituting the investment portfolio {ωiα}Qj=1 and other (i.e., fixed and intangible) assets
aoi :

ai =

N∑
j(6=i)=1

wij +

Q∑
α=1

ωiα + aoi . (141)

On the liabilities side, there are the loans granted from other banks {wji}Nj=1, as well as
debts to outside parties loi :

li =

N∑
j( 6=i)=1

wji + loi . (142)

Hence, financial networks naturally emerge from the interconnections between banks
balance sheets. In particular, an interbank lending market is represented by a monopar-
tite network of loans between banks, whereas an equity market is represented by the bi-
partite network between banks and owned securities. Financial shocks propagate across
these networks according to three main mechanisms that we describe below.

4.3.2. Counterparty risk and credit shocks

Bilateral exposures between banks expose them to what is perhaps the most intu-
itive channel of financial contagion: counterparty risk. Suppose that bank i undergoes
significant losses and defaults, failing to meet its contractual obligations: this results
in actual losses for the creditors of i, commonly labeled as credit shocks [140, 149]. In
particular, bank j undergoes a loss equal to ϕwju, where ϕ indicates the amount of loss
given default18. Bank j can, in turn, default if this loss exceeds its equity ej , originating
a new wave of credit shocks.

Credit shocks have been extensively studied in literature (see, e.g., [155, 156, 157])
Here we briefly describe the DebtRank model [158, 159, 160], whose peculiarity con-
sists in allowing for credit shocks propagation also in absence of defaults, provided that
balance sheets are deteriorated. Indeed, losses suffered by financial institutions from
credit shocks are not only due to the actual default of counterparties, but also to the
mark-to-market revaluation of obligations after the deterioration of counterparties credit-
worthiness (counterparties which are “closer” to default are less likely to pay back their
debts at maturity). In particular, the Debt Rank assumes that relative changes of equity
translate linearly into relative changes of asset values, resulting in an impact of bank
i on bank j equal to ϕwji/ej . Individual banks losses are then obtained by iteratively
spreading the individual banks distress levels weighted by the potential wealth affected.

Formally, the dynamics of the model consists of several rounds of shock propagation,
hereafter index by t. The state of bank i at each t can be compactly described by the
relative change of equity hi(t) = 1 − ei(t)/ei(0), which ranges between 0 and 1. By
definition, hi(t) = 0 when no equity losses occurred for the bank, hi(t) = 1 when the
bank defaults and 0 < hi(t) < 1 for intermediate distress levels. Starting at t = 0 from

18For uncollateralized market (mostly studied in the literature), ϕ = 1. If, instead, any central
counterparty guarantees for interbank loans, ϕ = 0 and, in principle, banks face no losses - and the risk
goes to the counterparty.
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hi(0) = 0, ∀ i, the first-round losses at t = 1 consist of exogenous shocks decreasing the
equity of some banks: 0 ≤ hi(1) ≤ 1, ∀ i. Later-round losses from subsequent credit
shocks are then computed as:

hi(t+ 1) = min

1, hi(t) +
∑
j∈A(t)

ϕwij
ei

[hj(t)− hj(t− 1)]

 (143)

where A(t) = {j : hj(t − 1) < 1} is the set of banks that have not defaulted up to
time t − 1 and, thus, can still spread their financial distress. The dynamics stops at
convergence (say t̃), i.e., when no more banks can propagate their distress and A(t̃) = ∅.
Individual bank indicators are then computed over an appropriate ensemble of initial
conditions of the dynamics. In particular, by denoting as hj(t̃|i) the final relative equity
change of j when the initial condition is the single default of bank i (i.e., hi(1) = 1 and
hj(1) = 0∀j 6= i), whose relative systemic importance is νi = ei(0)/

∑
j ej(0):

• the impact of bank i is the relative equity loss experienced by the system from the
initial default of i

Ii =

∑N
j(6=i)=1 hj(t̃|i)νj

1− νi
; (144)

• the vulnerability of j is the relative equity loss for that bank averaged over the
initial defaults of all other banks

Vi =

∑N
j(6=i)=1 hi(t̃|j)
N − 1

. (145)

In both cases, first-round losses caused by exogenous shocks are explicitly excluded to
account for network effects only.

4.3.3. Rollover risk and liquidity shocks

A more involving channel of financial contagion is related to rollover risk, faced by
banks in need to refinance their debt which is about to mature with new debt [140, 161,
162, 163]. In periods of financial distress, diffuse worries on future losses and counterparty
credit-worthiness can lead banks to adopt a micro-prudential liquidity hoarding policy
by withdrawing liquidity from the market [164, 165, 166]. In this situation, banks which
are short on liquidity may be unable to borrow all the needed money from the market
and be forced to sell their illiquid assets. However, when assets sales are widespread,
the market demand cannot cover for the supply: the market prices of illiquid assets
decreases (a circumstance known as fire sales), resulting in effective losses for banks
labeled as liquidity shocks [140, 149]. Note that fire sales spillovers may also originate by
the leverage targeting policy adopted by banks [104, 151, 167] (that is, banks may respond
to exogenous shocks by selling assets in order to maintain the desired level of debt over
equity) and be exacerbated by indirect exposures between banks due to common assets
holdings (see below). In any event, liquidity shocks do represent an important dimension
of systemic risk, comparable to credit shocks [147] but traveling in the opposite direction.

Suppose that bank i suffers significant losses and defaults, thus stopping its liquidity
provision to the market. Bank j, which would have rolled its debt over j, replenishes a
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fraction (1−ψ) of the lost funding with its liquid assets or from other sources19 and the
remaining fraction ψ by selling its illiquid assets. The latter, however trade at a discount,
so that j must sell assets worth (1 + χ)ψwij in book value terms, corresponding to an
overall loss of χψwij , where the parameter χ sets the change in asset price20. Then,
bank j also defaults if this loss exceeds its equity ej , originating a new wave of liquidity
shocks.

As for credit shocks, liquidity shocks do propagate also in absence of defaults: equity
losses experienced by a bank do imply not only a decreasing value of its obligations, but
also a decreasing ability and willingness to lend money to the market. Thus, liquidity
shocks can be smoothly incorporated into the DebtRank formalism when the network
of interbank exposures is annealed (i.e., when the dynamics of shock propagation is on
the same time scale of contracts duration) [169]. By assuming that the ability of banks
to lend money decreases proportionally to their equities, the impact of bank i on bank
j reads ψχwij/ej , which sums to the term ϕwji/ej in eq. (143) to have a dynamical
equation incorporating both credit and funding shocks. Financial indicators can then be
computed as illustrated in the previous section.

4.3.4. Overlapping portfolios and fire-sales spillovers

Beyond direct exposures, financial contagion can spread among banks through indi-
rect exposures to commonly owned securities, namely portfolio overlap [129, 151, 161,
170, 171, 172]. Indeed, when the occurrence of financial distress triggers fire sales and
prices start to fall, losses by banks with overlapping holdings become self-reinforcing and
trigger further simultaneous sell orders, ultimately leading to downward spirals for asset
prices.

Here we discuss a simple linear model of fire sales spillovers due to target leveraging
by banks and driven by portfolio overlaps [151]. Upon defining Ωi =

∑Q
β=1 ωiβ as the

total portfolio size of bank i and ω̃iα = ωiα/Ωi as the weight of security α within the
portfolio of i, the model dynamics consist of two time steps. At t = 1, each bank i
collects the return of its investments:

Ri(1) =

Q∑
α=1

ω̃iαfα(1) (146)

where fα(1) denotes the net return of security α. In order to simulate exogenous shocks,
fα(1) is taken as a negative number so that Ri(1) < 0. Since the equity of i has now
changed by ΩiRi(1), in order to return to the leverage target bi = ai/ei the bank has to
reallocate biΩiRi(1) assets on its balance sheet. To this end, it is assumed that banks
reallocate assets proportionately to existing holdings, so that the net purchase of bank i
on security α is:

φiα = ω̃iαbiΩiRi(1). (147)

19In periods of severe distress, exceptional monetary policies are usually implemented and central
banks become lenders of last resort, corresponding to the case ψ = 0.

20To compute χ, it is usually assumed that assets fire sales generate a linear impact on prices [119,
151, 168], so that the relative assets price change is proportional the aggregate amount of assets that
need to be liquidated.
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However, asset sales generate price impact (for simplicity, according to a linear
model), so that the return of security α is now:

fα(2) =

Q∑
β=1

Lαβ

N∑
j=1

φjβ , (148)

where Lαβ is a generic entry of the matrix of price impact ratios. Note that if all securities
are perfectly liquid (meaning that all elements of the matrix are zero), then price impact
vanishes. The illiquidity of security α is thus defined as Λα =

∑
β Lαβ . Finally, the

return of bank i at t = 2 becomes:

Ri(2) =

Q∑
α=1

ω̃iαfα(2) (149)

and in principle this process can be iterated multiple times.
Using this framework, individual bank indicators can be computed as follows (see

also [80, 84]):

• the impact (or systemicness) of i is the contribution of that bank to the system
equity wiped out by bank “de-leveraging” due to the initial shock

Ii =

 Q∑
α=1

 N∑
j=1

ωjα

Λαωiα

 biRi(1)∑
j ej

; (150)

• the (indirect) vulnerability of i is the impact of the initial shock on its equity
through the de-leveraging of other banks

Vi =
1 + bi

Ωi

Q∑
α=1

Λαωiα

N∑
j=1

ωjαbjRj(1). (151)

Note that beyond balance sheet quantities and individual positions, the above expres-
sions depend on securities illiquidity parameters, which are difficult to estimate. However,
by assuming that fire sales in one security do not directly affect prices in other securities,
the matrix of price impact ratios becomes diagonal and all illiquidity parameters become
equal. In this special case, the ratios between reconstructed and empirical indicators
assume a particularly simple form as, for instance [80],

〈Ii〉
Îi

=

∑N
j=1

∑Q
α=1〈ωiαωjα〉∑N

j=1

∑Q
α=1 ω̂iαω̂jα

. (152)

5. Model selection criteria

Of course, each indicator described in the previous section can be used to assess only a
specific aspect of the performance of a given reconstruction algorithm. Here we introduce
more general information-based criteria, able to capture the overall performance of a
reconstruction method.
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5.1. The Likelihood Ratio Test

The very basic criterion to compare different reconstruction algorithms consists in
comparing their likelihood functions. Since the likelihood represents the probability that
the observed network is reproduced by the chosen model, the closer its value to 1, the
better the model21.

However, since increasing the number of model parameters causes the likelihood func-
tion to increase as well, this basic criterion completely ignores the over-fitting issue, i.e.,
the risk of introducing unnecessary parameters not providing any relevant information
but weakening the overall predictive power of the model. Indeed, one of the desirable
features of any model lies in the possibility to generalize/apply it on different systems.
By tuning too many parameters over a single specific system may induce a model that
is able to reproduce every detail of the system itself, without capturing more general
and essential features potentially shared by similar systems. For this reason, a more
refined criterion is needed, possibly discounting the number of parameters entering into
the models definition.

The simplest choice is provided by the Likelihood Ratio Test (LRT), designed to
compare pairs of nested models. This means that 1) only two models at a time can
be compared, 2) the space of the parameters of one model must be a subspace of the
parameters of the other model. This second requirement sheds light on the meaning of
the test itself, which is intended to verify the need of enlarging the parameter space, i.e.,
of adopting a more complex model to describe the observations. A concrete example is
provided by the pair DECM and DWCM, defined by the Hamiltonians of eqs. (36) and
(16), respectively. By switching off the DECM Lagrange multipliers controlling for the
degrees (i.e., setting xout

i = xin
i = 1 ∀i), the likelihood function of the DECM reduces to

the likelihood function of the DWCM:

pDECM

ij =
xout
i xin

j y
out
i yin

j

1 + xout
i xin

j y
out
i yin

j − yout
i yin

j

−→ pDWCM

ij = yout

i yin

j , (153)

〈wij〉DECM =
pDECM
ij

1− yout
i yin

j

−→ 〈wij〉DWCM =
yout
i yin

j

1− yout
i yin

j

. (154)

Provided that r1 is the model with the lower number of parameters (i.e., the DWCM)
and r2 is the model with the larger number of parameters (i.e., the DECM), the LRT
compares the quantity

D = 2Lr2(Ĝ|~̂λ(r2))− 2Lr1(Ĝ|~̂λ(r1)) (155)

to some properly-defined threshold value Dth. The latter is determined by the Wilks’
theorem [173], stating that the probability distribution of D is approximately a chi-

squared distribution with a number of degrees of freedom equal to |~λ(r2)| − |~λ(r1)|, i.e.,
to the difference between the number of parameters of model r2 and model r1.

21When considering log-likelihood functions, instead, the best algorithm is characterized by the closest
value to zero.
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5.2. The Akaike Information Criterion

In order to allow for the comparison of more than two models, the more refined Akaike
Information Criterion (AIC) [174, 175, 176] can be used. Among a set of competing
models, the best performing r is characterized by the largest value of

AICr = 2Mr − 2Lr(Ĝ|~̂λ(r)). (156)

AIC is thus a model-specific index that is (proportional to) the difference between the
number of parameters Mr of the model and its maximum log-likelihood. Adding the
number of parameters to the log-likelihood function allows to get rid of the overfitting
issue, and AIC represents an attempt of finding an optimal trade-off between explanatory
power and simplicity.

Equation (156) provides the baseline for other similar criteria that have been sub-
sequently defined. As an example, whenever the number n of empirical observations
becomes too small with respect to the number of parameters (a rule of thumb being
n/Mr < 40 [174, 175]), the modified quantity

AICcr = AICr +
2Mr(Mr + 1)

n−Mr − 1
(157)

should be employed. AICc penalizes models with too many parameters even more
severely than AIC; consistently, whenever n � M2

r , AICc converges to AIC and eq.
(156) is recovered.

5.3. The Bayesian Information Criterion

An alternative criterion to AICc is the Bayesian Information Criterion (BIC) [174,
175, 176]. The difference between the two lies in the functional form of the term to be
added to the maximized likelihood. The BIC discounts not only the number of parameters
but also the number of observations:

BICr = Mr lnn− 2Lr(Ĝ|~̂λ(r)). (158)

The extra term lnn is believed to make BIC more restrictive than AIC, as the former
tends to select models with a lower number of parameters than those selected by the
latter [174, 175]. However, which criterion performs best, and under which conditions,
is still a debated issue.

As a final comment, we would like to stress the general applicability of the afore-
mentioned criteria. In fact, all of them can be extended to quantum-inspired entropic
measures [108]. Additionally, although all these criteria are likelihood-based (i.e., they
can be used to compare only models defined by means of a likelihood function), they can
be also employed to consistently compare probabilistic as well deterministic algorithms
(it is enough to set the likelihood function of these algorithms to zero). In any case,
despite their formal differences, all the described information-based criteria convey the
same message: a “good” reconstruction algorithm is not only required to accurately fit
the observed data but also to avoid over-fitting them, thus encompassing a good trade-off
between accuracy and parsimony.
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5.4. A quick look at multimodel averaging

Beside individuating the best model within a basket of alternatives, AIC, AICc and
BIC also allow to quantify the relative improvement brought by each model. This is
achieved by computing the Akaike (or, equivalently, the Bayesian) weights, reading

wr =
e−∆r/2∑R
s=1 e

−∆s/2
, (159)

where ∆r = AICr −min{AICs}Rs=1 (or, in the BIC case, ∆r = BICr −min{BICs}Rs=1),
with R being the total number of competing models.

The Akaike (or Bayesian) weight of a certain model is usually interpreted as the
probability that the corresponding model is the most appropriate one. In particular,
models with ∆ ≤ 2 have substantial statistical support; models with 4 ≤ ∆ ≤ 7 have less
support and models with ∆ > 10 have essentially no support (remarkably, confidence
intervals can also be also defined) [174, 175, 176]. Finally, in order to quantify how
better a given model r1 is with respect to a competitor model r2, the ratio wr1/wr2 can
be computed.

In table 2 we provide a sample test of this kind for the (undirected) ECM and WCM
on several empirical networks. We see that, apart from the first two social networks,
the ECM is always superior to the WCM, achieving unit probability (within machine
precision). A closer inspection of the networks, for which the opposite result holds,
reveals that these networks are (almost) fully connected. In these cases, the degree
sequence represents a redundant constraint and therefore a model with less parameters is
preferable. These results provide additional evidence that degrees convey an information
which is not reducible to that of strengths in order to reconstruct a network with non-
trivial topology.

Networks wAIC
WCM wAIC

ECM

Office social network 1 0
Research group social network 1 0
Fraternity social network 0 1
Maspalomas Lagoon food 0 1
Chesapeake Bay food web 0 1
Crystal River (control) food web 0 1
Crystal River food web 0 1
Michigan Lake food web 0 1
Mondego Estuary food web 0 1
Everglades Marshes food web 0 1
Italian Interbank network (in 1999) 0 1
World Trade Web (in 2000) 0 1

Table 2: Akaike weights for the WCM and ECM applied to reconstruct the empirical networks listed in
the first column [94]. Except for the first two networks that are basically fully connected, the inclusion
of degrees information is non-redundant, and the ECM drastically outperforms the WCM.

Finally, whenever no winning model emerges from these tests, Akaike (or Bayesian)
weights can still be used to account for several estimates of the same parameter—say, {µ̂}.
A prescription retaining the explanatory power of the models providing these estimates
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reads

µ̂ =
∑
r

wAIC
r µ̂(r), (160)

and consists in averaging the estimates themselves according to the “relevance” of the
model they derive from (quantified by, e.g., the Akaike weights). Equation (160) illus-
trates the concept of multimodel average: the estimation to be employed for reconstruct-
ing the network is, thus, µ̂.

6. Conclusions and perspectives

Networks are increasingly pervasive in our life, hence network models and methods
are becoming and will become more and more important in science and society. And
whatever the development and technological level of this world will become, we shall
always struggle (probably more and more) to get the information necessary to describing
it. Already now, for systems as large as the WWW, it is essentially impossible to collect
anything but partial information. We therefore believe that the knowledge of basic
instruments needed to deal with partial information will be more and more needed in
the future, paving the way for a novel use of ensemble methods in modern Statistical
Physics.

The state of the art so far shows clearly that the performance of a reconstruction
method crucially depends on several factors. In order to detecting the best method for
the problem at hand, a great effort has been recently devoted to compare different algo-
rithms on a large set of empirical networks. Such “horse-races” are intended to quantify
the performance of the various algorithms with respect to the families of indicators intro-
duced in section 4, paying particular attention to the topological ones. Below we briefly
summarize the current state of the art presented above and the perspectives for future
works.

6.1. Comparing different reconstruction algorithms on real-world networks

Although the rationale of the MaxEnt method is rooted into the empirical observa-
tion of financial systems (banks tend to maximize their diversification since, in case of
distress propagation, a complete market is believed to be more robust than an incomplete
market [138]), it is widely recognized that MaxEnt performs very poorly in reproducing
the topological details of a given network. On the other hand, both the MaxEnt and
the “copula” approach are strong performers in reproducing the observed weights, as
indicated by the (weighted) cosine similarity [61].

However, real financial markets are sparse [177]. Thus, MaxEnt method must be com-
plemented by a prescription able to reproduce the topological details of a given network
structure. Although the density-corrected DWCM constraints both the marginals and
the link density (thus reproducing both), it may fail in reproducing higher-order topo-
logical quantities [81]. A better performance is achieved by those algorithms estimating
the topological details independently from the weights (e.g., in a two-step fashion). For
example, the fitness-induced ERG model described by eq. (46) not only reproduces (to a
large extent) the in-degree and out-degree sequences of empirical systems [92], but is also
characterized by a functional form of link probabilities guaranteeing that the observed
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disassortative trends are correctly replicated [81]. Additionally, this method has been
shown to satisfactorily reproduce the structural details of the same networks [80], thus
outperforming other methods taking as input the same kind of information [81].

A more detailed analysis, focusing on statistical indicators, has been carried out in
[61] where the indices defined by eqs. (103), (109), (110) and (111) have been used to rank
different reconstruction algorithms. What emerges is that measures “emphasizing” the
link structure between financial institutions favor methods that produce sparser networks,
whereas measures that “emphasize” the magnitude of bilateral exposures favor methods
that allocate exposures as evenly as possible. More specifically, both the fitness-induced
ERG model and the Minimum-Density algorithm are strong performers according to the
accuracy index, the Hamming distance and the Jaccard distance. The former, however,
is “the clear winner among the ensemble methods [. . . ] across all measures of interest”
[61].

An additional round of comparisons has been carried out in [93], where the perfor-
mance of the Bayesian approach(es) has been compared with the performance of the
fitness-induced ERG model. To this aim, the authors have employed the “empirical”
approach discussed in subsection 3.5.2, where parameters are tuned to match the ac-
tual network density. Both the “empirical” Bayesian approach and the fitness-induced
ERG model are strong performers under the accuracy, the sensitivity and the specificity
indices. This confirms that, as long as the binary network topology is concerned, the
fitness-induced ERG model seems to represent the best algorithm available so far. For
what concerns weights reconstruction, the fitness-induced ERG model achieves the best
score under the L1 and L2 norms, but is outperformed by the Bayesian approach under
the PTS index. The latter quantifies the probability of finding, within a numerically
generated sample of networks, reconstructed weights whose magnitude lies within the
10% of the observed value. As noticed in [93], the reason of the success of the Bayesian
approach lies in the fact that it allows one to generate configurations characterized by a
whole range of different weights, whereas the fitness-induced ERG model assigns weights
via a simple Bernoulli distribution, whence the smaller probability of finding values that
satisfy the requirements above. It should, however, be noticed that the same successful
result is achieved by using the Weighted Random Graph Model (which performs even
better than the Bayesian method), pointing out that any algorithm which is sufficiently
generic seems to be able to achieve a high score under the PTS index. In other words,
the requirement to perform satisfactorily under this index does not seem to pertain to
any algorithm specifically designed for reconstruction. Overall, the versatility of the
Bayesian approach (i.e., its capability of producing a large number of different topolog-
ical structures and weights distributions) make it a good method for designing possible
scenarios over which running stress tests, rather than for reconstructing a particular
network configuration.

In [178], the authors adjust several methods described in the previous sections to
deal with the reconstruction of bipartite bank-firm credit networks. The main difference
between the original and the modified versions of such algorithms lies in the weights al-
location step, realized through the IPF algorithm. Generally speaking, what the authors
observe is that the best performance depends on the specific indicator and the level of
aggregation. However, apart from the trivial result that the MaxEnt and the Minimum-
Density methods achieve, respectively, the highest sensitivity and the highest specificity,
the authors find that the considered variants of ERG models (i.e., the methods inspired
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Name ME Type Category Brief description Sec. Ref.

MaxEnt 3 Dense Deterministic Maximizes Shannon
entropy on network
entries by constrain-
ing marginals

3.1.1 [76, 77]

IPF 3 Tunable Deterministic Minimizes the KL
divergence from
MaxEnt

3.1.2 [86]

MECAPM 3 Dense Probabilistic Constrains matrix
entries to match,
on average, MaxEnt
values

3.1.4 [84]

Drehmann & Tarashev 3 Tunable Probabilistic Randomly perturbs
the MaxEnt recon-
struction

3.2.2 [88]

Mastromatteo et al. 3 Tunable Probabilistic Explores the space
of network struc-
tures with the
message-passing
algorithm

3.2.3 [79]

Moussa & Cont 3 Tunable Probabilistic Implements IPF
on non-trivial
topologies

3.2.4 [90]

Fitness-induced ERG 3 Exact Probabilistic Uses the fitness
ansatz to inform an
exponential random
graph model

3.3.4 [98, 92]

Copula approach 5 Dense Deterministic Generates a network
via a copula func-
tion of the marginals

3.5.1 [115]

Gandy & Veraart 5 Tunable Probabilistic Implements an
adjustable Bayesian
reconstruction

3.5.2 [116]

Montagna & Lux 5 Tunable Probabilistic Assumes ad-hoc
connection proba-
bilities depending
on marginals

3.5.4 [118]

Ha laj & Kok 5 Probabilistic Uses external infor-
mation to define a
(geographical) prob-
ability map

3.5.5 [120]

Minimum-Density 5 Sparse Probabilistic Minimizes the
network density
while satisfying the
marginals

3.5.6 [121]

Table 3: Overview of the reconstruction methods reviewed in the present work.
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by [179] and [104]) “consistently perform best” [178] and “are able to reconstruct adja-
cency matrices and weighted networks relatively well, and they are capable to preserve
the statistical properties of the actual network at all (data) aggregation levels” [178].
Interestingly, the performance of reconstruction methods in reproducing dynamical (fi-
nancial) indicators is also tested. As the authors notice, even null models preserving
degrees fail to accurately reproduce the actual level of systemic risk (defined as the prob-
ability of default of a bank [178]). However, the model inspired by [179] (followed by
the model inspired by [104] and MaxEnt) “has the closest behavior to the actual net-
work overall, while Minimum-Density shows an inconsistent performance across different
aggregation levels” [178].

Generally speaking the fitness-induced ERG model performs well in replicating the
binary topology because it provides a realistic estimate of the degrees in the network.
Some studies have shown that methods that take as input local topological properties
can outperform models that take as input more information of non-topological nature
(e.g., geographical distances in the case of the WTW) [180].

6.2. Is link density really needed?

All aforementioned “horse-races” point out the superior performance of the algorithms
that can be calibrated to reproduce the observed link density over the ones which cannot:
the network link density, in other words, constitutes a piece of information that must be
taken into account, in order to achieve an accurate reconstruction.

However, as stressed by the authors in [93], the network density cannot be deduced
from the marginals alone. As a consequence, it must be known from the beginning. If this
is not the case (as it often happens to be), dealing with the issue of estimating link density
is not always straightforward. Although the knowledge of just a network subgraph, in
fact, often ensures that the actual link density is accurately estimated, such entries must
be selected carefully. As recommended in [103], the random selection scheme should be
employed, in order to avoid possible biases, which may arise when nodes are sampled
according to some criterion. As the authors in [80] show, if (sets of) nodes were selected
according to their total strength, ŝtoti = ŝouti + ŝini , the resulting density estimate would be
strongly dependent on the specific subset value

∑
i∈I ŝ

tot
i . Nodes characterized by large

total strengths, in fact, tend to cluster into densely-connected groups whereas nodes
characterized by small total strengths tend to cluster into loosely-connected groups. The
analysis in [80] thus suggests that a sampling-based reconstruction procedure should rest
upon a “balanced” sampling of the nodes set, biased neither towards “core” nodes nor
towards “peripheral” nodes.

In order to further show how relevant the role played by topological information can
be in providing accurate estimates of structural quantities, let us compare the statistical
fluctuations of weights estimates, output by the (bipartite versions of the) MECAPM and
degree-corrected gravity model (the latter named “Enhanced” CAPM) [100]. Provided
that

(σ2
wiα)MECAPM = wME

iα (1 + wME

iα ) (161)

and

(σ2
wiα)dcGM

wiα = (wME

iα )2

[
1

piα
− 1

]
(162)
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one finds that

(σ2
wiα)dcGM

(σ2
wiα)MECAPM

'
√

1

piα
− 1, (163)

a ratio that is (strictly) smaller than 1 whenever piα > 1/2. In other words, provided
that the MaxEnt method satisfactorily estimates the observed weights, adding topological
information helps reducing the error affecting these estimates by “shrinking” the ensemble
over which higher-order properties must be estimated. As a consequence, the error
accompanying the latter ones is reduced as well.

The example above also helps clarifying the role played by purely weighted infor-
mation in the whole reconstruction process. Loosely speaking, we may say that the
information encoded into nodes strengths is not per se of “lower quality” with respect
to the information encoded into link density (or into nodes degrees). What emerges is
rather that it should not be used to directly reconstruct a given network, but first to
estimate nodes degrees, and only after be enforced as a complementary constraint.

6.3. Policy-making implications: the case of the OTC market

As mentioned in the Introduction, the more information is available about the inter-
connections shaping a given economic or financial network, the more effective a regulatory
intervention can be whenever a systemic event is detected in the system. As a conse-
quence, discovering which kind of information plays a major role in reconstructing a given
economic or financial network is not only interesting from an academic point of view,
but of paramount importance also for regulators and policy-makers, and has profound
societal implications.

A currently debated topic is thus what kind of information should be disclosed by
financial institutions. As an example, consider the case of the OTC market. In order
to improve the transparency of this market, new reporting rules have been introduced
in the aftermath of the crisis [89] establishing that, beside marginals, a certain number
of entries of the adjacency matrix have to be made accessible (i.e., the ones exceeding
a given threshold). This constitutes a challenge that can be approached by employing
(some of) the algorithms reviewed in the present work. For example, constraining single
entries of the adjacency matrix can be easily implemented both within the ERG formalism
and by slightly modifying the IPF algorithm. While, in the second case, it is enough
to subtract the known entries from the marginals and redistribute what remains on the
unconstrained entries, in the first case the additional constraints can be dealt with by
keeping the corresponding Lagrange multipliers in the tensor form (the latter would be
estimated by solving the equation ŵij = 〈wij〉 for each known entry).

In any case, and whatever algorithm is chosen, the adaptation of existing reconstruc-
tion methods to newly-disclosed kinds of information is not only important to determine
the effectiveness of the new reporting rules, but can also lead to the design better data-
sharing agreements.
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Appendix A. A combinatorial derivation of Shannon entropy

Since Shannon entropy is the quantity underlying many of the approaches reviewed
in the present work, in what follows we present a very intuitive derivation of it.

Let us start by considering the set of sequences of binary symbols (0, 1) whose length
is n (i.e., the sequences like 01001001. . . ). We can ask how many bits are needed in
order to transmit any message of this particular kind. Upon considering that there
are |M| = 2n messages satisfying the aforementioned properties, the answer is simply
n = log2 |M|, that is the length of the message itself.

Let us now consider a less trivial situation, by allowing our messages to be composed
by a number of symbols larger than two (e.g., R1, R2 . . . RN ) and to be emitted by a
source sequentially, according to the probability coefficients P1, P2 . . . PN (with the latter
satisfying the normalization condition

∑
i Pi = 1). In this case, the set of admittable

messages has cardinality |M′| = Nn, and its generic element is composed by ni symbols
of the Ri kind. Since each symbol is emitted independently from the others, when n→∞
we can apply the law of large numbers and say that the number of times ni in which
the outcome Ri is observed satisfies the limit ni/n → Pi. As a consequence, when
n becomes sufficiently large, the sequences characterized by an occurrence of symbol
Ri which is exactly Pi become overwhelmingly more likely to occur than the others
(i.e., a negligible amount of information is lost upon discarding sequences not satisfying
ni/n ' Pi). We can thus restrict ourselves to consider the set of messages of length∑
i ni = n characterized by probability coefficients reading

P (Ri1Ri2 . . . Rin) = Pn1
1 Pn2

2 . . . PnNN . (A.1)

The messages above constitute a set of

|M′| = n!

n1!n2! . . . nN !
(A.2)

equiprobable elements: as for the binary case considered at the beginning of this Ap-
pendix, the number of bits needed to transmit one of these messages can be estimated
as I ′ = log2 |M′|, that is

I ′ ' −n
∑
i

Pi log2 Pi (A.3)

(upon using the Stirling approximation ln(x!) ' x lnx − x). As a consequence, one can
define the quantity

S = −
∑
i

Pi log2 Pi '
I ′

n
(A.4)

as the Shannon entropy. In other words, Shannon entropy is proportional to the loga-
rithm of the probability of a typical (long) sequence, divided by the number of symbols
composing the sequence itself. Otherwise stated, S quantifies the (average) number of
bits needed to transmit a typical sequence (i.e., one of those belonging to M′).
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The reasoning leading to eq. (A.4) can be restated more precisely by invoking the
law of large numbers to gain insight into the asymptotic behavior of the i.i.d. variables
describing our symbols R1, R2 . . . RN :

1

n
log2

1

P (Ri1Ri2 . . . Rin)
= − 1

n
log2

∏
i

Pi(Ri) = − 1

n

∑
i

log2 Pi(Ri)→ S. (A.5)

As a consequence, the set of all possible messages is split in two: with high probability,
the observed messages will belong to “a typical” subset, whose members are described
by a coefficient approaching

P (Ri1Ri2 . . . Rin) ' 2−nS (A.6)

and inducing an uniform distribution over this set. This result is known as asymptotic
equipartition property (AEP).

Althought the early derivation of Shannon entropy rested upon the concept of bit,
thus forcing the base of the logarithm to be 2, from a purely numerical viewpoint it is
more convenient to make use of the natural logarithm (adopted in the present review).
This means measuring information in nats (1 nat equals log2 e bits).

Appendix B. Sketching a principled derivation of Shannon entropy

A possible derivation of Shannon entropy from the Shannon-Khinchin axioms is
shown below (alternative proofs can be found in [71, 72, 73]). The fourth axiom im-
plies that whenever a combination of two independent subsystems is considered, Shan-
non entropy reads S(WAWB) = S(WA) + S(WB). Upon deriving it twice, the first
time with respect to WA and the second time with respect to WB , the expression
S′(WAWB) + WAWBS

′′(WAWB) = 0 is obtained. Upon posing WAWB ≡ W , the
expression above can be rearranged as

(WS′(W ))′ = 0, (B.1)

the latter derivative being taken with respect to W . The derived function is, thus, a
constant. Solving this differential equation leads to the celebrated logarithmic functional
form S(W ) = k lnW .

Let us now consider the case of dependent subsets. Upon posing WA+B = W , it
is enough to consider that the requirement S(WA+B) = S(WA) + S(WB|A) induces
the definition of conditional entropy [181], as a (weighted) average of the number of
configurations of subsystem B (say V1, V2. . . ), the weights being provided by the fraction
of configurations of subsystem A inducing them (i.e., w1 = V1

V , w2 = V2

V . . . ):

S(WA+B) = S(WA) + w1S(V1) + w2S(V2). (B.2)

Upon noticing that S(WA+B) = k lnV , we obtain the expression

S(WA) = −k(w1 lnw1)− k(w2 lnw2) . . . (B.3)
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Appendix C. Two relevant properties of Shannon entropy

Some of the models reviewed in this work are defined within the ERG formalism.
These are exponential distributions satisfying the so-called Gibbs property, i.e., that of
being maximally non-committal with respect to the missing information [73]. In fact,
upon substituting

P (G|~λ) =
e−

∑
m λmCm(G)

Z(~λ)
(C.1)

within S = −
∑

G∈G P (G) lnP (G), we obtain

SP =
∑
m

λm〈Cm〉+ lnZ(~λ). (C.2)

Let us now calculate the quantity SP − SQ, that is the difference between the
Shannon entropy of an exponential distribution and the entropy of a generic distribu-
tion Q(G) which satisfies the same constraints as P (G) (i.e.,

∑
G∈G Q(G) = 1 and∑

G∈G Q(G)Cm(G) = 〈Cm〉 ∀m):

SP − SQ =
∑
m

λm〈Cm〉+ lnZ(~λ) +
∑
G∈G

Q(G) lnQ(G) =

=
∑
G∈G

Q(G)

[∑
m

λmCm + lnZ(~λ) + lnQ(G)

]
=

=
∑
G∈G

Q(G) [− lnP (G) + lnQ(G)] =

=
∑
G∈G

Q(G)

[
− ln

(
P (G)

Q(G)

)]
≥
∑
G∈G

Q(G)

[
1− P (G)

Q(G)

]
=

= 1− 1 = 0. (C.3)

The result above shows that the entropy of an exponential distribution is larger than the
entropy of any other distribution satisfying the same constraints (the equality is valid if
and only if the probability coefficients of the two distributions coincide).

Unconstrained Shannon entropy instead attains its maximum in correspondence of
the uniform distribution. In fact,

SU − SP = −
∑
G∈G

1

|G|
ln

1

|G|
+
∑
G∈G

P (G) lnP (G) =

= −
∑
G∈G

P (G) ln
1

|G|
−
∑
G∈G

P (G) ln

(
1

P (G)

)
=

=
∑
G∈G

P (G)

[
− ln

(
1

|G|P (G)

)]
≥
∑
G∈G

P (G)

[
1− 1

|G|P (G)

]
=

= 1− 1 = 0. (C.4)
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This can be also verified by calculating the stationary point and the Hessian matrix
of the functional

L [P ] = S − λ0

[∑
G∈G

P (G)− 1

]
, (C.5)

whose generic entries read, respectively

∂L [P ]

∂P (G)
=

1

|G|
;

∂2L [P ]

∂P (G)∂P (G′)
= − δGG′

P (G) ln 2
, (C.6)

and evaluating the second derivative in correspondence of the uniform distribution P (G) =
1
|G| . Since the Hessian matrix is diagonal and its entries are strictly negative (for those

distributions satisfying P (G) > 0, ∀G), such a matrix is negative-definite: the stationary
point of the Shannon entropy is a maximum.

Appendix D. A notable, continuous case

So far, we have considered distributions obtained by constraining only first moments.
Let us now discuss the case in which the second moment is constrained as well. In order
to do so, let us imagine we have a one-dimensional real variable x ∈ R described by the
probability density function p(x). Upon rewriting our constraints as

1 =

∫ +∞

−∞
p(x) dx, (D.1)

µ =

∫ +∞

−∞
x p(x) dx (D.2)

and

µ2 =

∫ +∞

−∞
x2 p(x) dx (D.3)

we may ask what is the least-biased pdf that contains information on the mean value and
the variance of x. Let us apply the entropy-maximization prescription to the continuous
version of Shannon entropy, by defining the functional

L [p] = −
∫ +∞

−∞
p(x) ln p(x) dx− λ0

[∫ +∞

−∞
p(x) dx− 1

]
− λ1

[∫ +∞

−∞
xp(x) dx− µ

]
−λ2

[∫ +∞

−∞
x2p(x) dx− µ2

]
(D.4)

with λ0, λ1, λ2 being the Lagrange multipliers corresponding to the three conditions
(D.1), (D.2) and (D.3). Maximizing the functional above means looking for the function

p(x) which makes the functional derivative δL [p]
δp(x) vanish, i.e.,

δL [p]

δp(x)
= − ln p(x)− 1− λ0 − λ1x− λ2x

2 = 0. (D.5)

70



The solution is

p(x) = e[−1−λ0−λ1x−λ2x
2] (D.6)

which is of course a Gaussian probability density function. The Lagrange multipliers

can be found using the normalization condition e1+λ0 =
∫ +∞
−∞ e−λ2x

2−λ1x =
√

π
λ2
e
λ21
4λ2

together with eqs. (D.2) and (D.3). Upon identifying σ2 = µ2 − µ2 one gets

p(x) =
e−

(x−µ)2

2σ2

√
2πσ2

. (D.7)

Finally, in order to verify that the Gaussian distribution is actually a maximum of the
constrained entropy, it is sufficient to verify (in analogy with the discrete case presented
above) that the second functional derivative is negative-definite as well. This is indeed

true because δ2L [p]
δp(x)δp(x′) = − δ(x−x

′)
p(x) .
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product space conditions the development of nations, Science 317 (2007) 482–487. doi:10.1126/

science.1144581.
[36] F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, D. R. White, Eco-

nomic networks: The new challenges, Science 325 (5939) (2009) 422–425. doi:10.1126/science.
1173644.

[37] A. Tacchella, M. Cristelli, G. Caldarelli, A. Gabrielli, L. Pietronero, A new metrics for countries’
fitness and products’ complexity, Scientific Reports 2 (2012) 723. doi:10.1038/srep00723.

[38] G. Cimini, A. Gabrielli, F. Sylos Labini, The scientific competitiveness of nations, PLoS ONE
9 (12) (2014) e113470. doi:10.1371/journal.pone.0113470.

[39] E. Pugliese, G. Cimini, A. Patelli, A. Zaccaria, L. Pietronero, A. Gabrielli, Unfolding the innova-
tion system for the development of countries: co-evolution of Science, Technology and Production,
https://arxiv.org/abs/1707.05146 (2017).

[40] G. Iori, G. De Masi, O. V. Precup, G. Gabbi, G. Caldarelli, A network analysis of the Italian
overnight money market, Journal of Economic Dynamics and Control 32 (1) (2008) 259–278.
doi:10.1016/j.jedc.2007.01.032.

[41] J. Glattfelder, S. Battiston, Backbone of complex networks of corporations: The flow of control,
Physical Review E 80 (3) (2009) 036104. doi:10.1103/PhysRevE.80.036104.

[42] I. Bordino, S. Battiston, G. Caldarelli, M. Cristelli, A. Ukkonen, I. Weber, Web search queries
can predict stock market volumes., PLoS ONE 7 (7) (2012) e40014. doi:10.1371/journal.pone.

0040014.
[43] A.-L. Barabási, Scale-free networks: A decade and beyond, Science 325 (5939) (2009) 412–413.

doi:10.1126/science.1173299.
[44] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (5439) (1999)

509–512. doi:10.1126/science.286.5439.509.
[45] D. J. Watts, S. H. Strogatz, Collective dynamics of ’small-world’ networks., Nature 393 (6684)

73

http://dx.doi.org/10.1103/PhysRevE.83.045102
http://dx.doi.org/10.1145/1298306.1298311
http://dx.doi.org/10.1145/1298306.1298311
http://dx.doi.org/10.1126/science.1165821
http://dx.doi.org/10.1145/1772690.1772751
http://dx.doi.org/10.1073/pnas.1517441113
http://dx.doi.org/10.1049/iet-syb:20060038
http://dx.doi.org/10.1093/nar/gku1003
http://dx.doi.org/10.1021/pr201211w
http://dx.doi.org/10.1021/pr201211w
http://dx.doi.org/10.1038/35004572
http://dx.doi.org/10.1073/pnas.192407699
http://dx.doi.org/10.1016/j.tree.2005.04.004
http://dx.doi.org/10.1016/j.physa.2005.02.075
http://dx.doi.org/10.1016/j.physa.2005.02.075
http://dx.doi.org/10.1126/science.1144581
http://dx.doi.org/10.1126/science.1144581
http://dx.doi.org/10.1126/science.1173644
http://dx.doi.org/10.1126/science.1173644
http://dx.doi.org/10.1038/srep00723
http://dx.doi.org/10.1371/journal.pone.0113470
https://arxiv.org/abs/1707.05146
http://dx.doi.org/10.1016/j.jedc.2007.01.032
http://dx.doi.org/10.1103/PhysRevE.80.036104
http://dx.doi.org/10.1371/journal.pone.0040014
http://dx.doi.org/10.1371/journal.pone.0040014
http://dx.doi.org/10.1126/science.1173299
http://dx.doi.org/10.1126/science.286.5439.509


(1998) 440–442. doi:10.1038/30918.
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of modules in sparse networks, Physical Review Letters 107 (6) (2011) 65701. doi:10.1103/

PhysRevLett.107.065701.
[136] X. Zhang, T. Martin, M. Newman, Identification of core-periphery structure in networks, Physical

Review E 91 (2014) 0321803. doi:10.1103/PhysRevE.91.032803.
[137] X. Yan, C. R. Shalizi, J. E. Jnesen, F. Krzakala, C. Moore, L. Zdeborova, P. Zhang, Y. Zhu, Model

selection for degree-corrected block models, Journal of Statistical Mechanics 2014 (2014) P05007.
doi:10.1088/1742-5468/2014/05/P05007.

[138] F. Allen, D. Gale, Financial contagion, Journal of Political Economy 108 (1) (2000) 1–33. doi:

10.1086/262109.
[139] M. K. Brunnermeier, Deciphering the liquidity and credit crunch 2007-2008, Journal of Economic

Perspectives 23 (1) (2009) 77–100. doi:10.1257/jep.23.1.77.
[140] J. A. Chan-Lau, M. Espinosa, K. Giesecke, J. A. Solé, Assessing the systemic implications of
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