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Abstract

Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics
with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral
magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed
relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic
field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral
magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect
(αμ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the
total chirality. The αμ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to
kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the
numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed
two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field
variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the
relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-
neutron stars are discussed.

Key words: early universe – magnetic fields – magnetohydrodynamics (MHD) – relativistic processes – stars:
neutron – turbulence

1. Introduction

Magnetic fields are observed on various spatial scales of the
universe: they are detected in planets and stars (Donati &
Landstreet 2009; Reiners 2012), in the interstellar medium
(Crutcher 2012), and on galactic scales (Beck 2015).
Additionally, observational lower limits on intergalactic
magnetic fields have been reported (Neronov & Vovk 2010;
Dermer et al. 2011). Contrary to the high magnetic field
strengths observed on scales below those of galaxy clusters,
which can be explained by dynamo amplification (see, e.g.,
Brandenburg & Subramanian 2005), intergalactic magnetic
fields, if confirmed, are most likely of primordial origin.
Because of their often large energy densities, magnetic fields
can play an important role in various astrophysical objects, a
prominent example being the aW dynamo in solar-like stars
that explains stellar activity (see, e.g., Parker 1955, 1979;
Moffatt 1978; Krause & Rädler 1980; Zeldovich et al. 1983;
Charbonneau 2014).

While there is no doubt about the significant role of magnetic
fields in the dynamics of the present-day universe, their origin
and evolution over cosmic times remain a mystery (Rees 1987;
Grasso & Rubinstein 2001; Widrow 2002; Kulsrud & Zweibel
2008). Numerous scenarios for the generation of primordial
magnetic fields have been suggested in the literature. The
proposals span from inflation-produced magnetic fields (Turner
& Widrow 1988) to field generation during cosmological phase
transitions (Sigl et al. 1997). Even though strong magnetic fields

could be generated shortly after the Big Bang, their strength
subsequently decreases in cosmic expansion unless they undergo
further amplification. Be this as it may, the presence of primordial
magnetic fields can affect the physics of the early universe. For
example, it has been shown that primordial fields could have
significant effects on the matter power spectrum by suppressing
the formation of small-scale structures (Kahniashvili et al. 2013a;
Pandey et al. 2015). This, in turn, could influence cosmological
structure formation.
The theoretical framework for studying the evolution of

magnetic fields is magnetohydrodynamics (MHD). In classical
plasma physics, the system of equations includes the induction
equation, which is derived from the Maxwell equations and
Ohm’s law and describes the evolution of magnetic fields, the
continuity equation for the fluid density, and the Navier–Stokes
equation governing the evolution of the velocity field.
At high energies, for example, in the quark–gluon plasma of the

early universe, however, an additional quantity needs to be taken
into account, namely the chiral chemical potential. This quantity is
related to an asymmetry between the number densities of
left-handed fermions (spin antiparallel to the momentum) and
right-handed fermions (spin parallel to the momentum). This leads
to an additional contribution to the electric current along the
magnetic field, known as the chiral magnetic effect (CME). This
phenomenon was discovered by Vilenkin (1980) and was later
carefully investigated using different theoretical approaches in a
number of studies (Redlich & Wijewardhana 1985; Tsokos 1985;
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Joyce & Shaposhnikov 1997; Alekseev et al. 1998; Fröhlich &
Pedrini 2000, 2002; Fukushima et al. 2008; Son & Surowka
2009).

The CME causes a small-scale dynamo instability (Joyce &
Shaposhnikov 1997), which has also been revealed from a
kinetic description of chiral plasmas (Akamatsu & Yamamoto
2013). The evolution equation for a nonuniform chiral
chemical potential has been derived in Boyarsky et al. (2012,
2015), who used it to study the inverse magnetic cascade that
results in an increase of the characteristic scale of the magnetic
field. Boyarsky et al. (2012) have shown that the chiral
asymmetry can survive down to energies of the order of
10 MeV, due to coupling to an effective axion field. These
studies triggered various investigations related to chiral MHD
turbulence (Yamamoto 2016; Pavlović et al. 2017) and its role
in the early universe (Tashiro et al. 2012; Dvornikov &
Semikoz 2017), as well as in neutron stars (Dvornikov &
Semikoz 2015a; Sigl & Leite 2016).

Recently, a systematic theoretical analysis of the system of
chiral MHD equations, including the back-reaction of the
magnetic field on the chiral chemical potential, and the coupling
to the plasma velocity field has been performed in Rogachevskii
et al. (2017), referred to here as PaperI. The main findings of
PaperI include a modification of MHD waves by the CME and
different kinds of laminar and turbulent dynamos. Besides the
well-studied laminar chiral dynamo caused by the CME, a
chiral–shear dynamo in the presence of a shearing velocity was
discussed there. In addition, a mean-field theory of chiral MHD
in the presence of small-scale nonhelical turbulence was
developed in PaperI, where a new chiral αμ effect not related
to a kinetic helicity has been found. This effect results from an
interaction of chiral magnetic fluctuations with fluctuations of
the electric current caused by the tangling magnetic fluctuations.

In the present paper, we report on numerical simulations that
confirm and further substantiate the chiral laminar and turbulent
dynamos found in PaperI. To this end, we have implemented
the chiral MHD equations in the PENCIL CODE,10 a high-order
code suitable for compressible MHD turbulence. Different
situations are considered, from laminar dynamos to chiral
magnetically driven turbulence and large-scale dynamos in
externally forced turbulence. With our direct numerical
simulations (DNS), we are able to study the dynamical
evolution of a plasma that includes chiral effects in a large
domain of the parameter space. Given that the detailed
properties of relativistic astrophysical plasmas, in particular
the initial chiral asymmetry and chiral feedback mechanisms,
are not well understood at present, a broad analysis of various
scenarios is essential. The findings from DNS can then be used
to explore the possible evolution of astrophysical plasmas
under different assumptions. These applications should not be
regarded as realistic descriptions of high-energy plasmas; they
aim to find out under what conditions the CME plays a
significant role in the evolution of a plasma of relativistic
charged fermions (electrons) and to test the importance of
chirality flips changing the handedness of the fermions. We are
not pretending that the regimes accessible to our simulations
are truly realistic in the context of the physics of the early
universe or in neutron stars.

The outline of the present paper is as follows. In Section 2
we review the governing equations and the numerical setup,

and we discuss the physics related to the two main nonlinear
effects in chiral MHD, which lead to different scenarios of
the magnetic field evolution. In Section 3 we present
numerical results on laminar chiral dynamos. In Section 4
we show how magnetic fields, amplified by the CME,
produce turbulence (chiral magnetically driven turbulence).
We discuss how this gives rise to the chiral αμ effect. We also
study this effect in Section 5 for a system where external
forcing is employed to produce turbulence. After a discussion
of chiral MHD in astrophysical and cosmological processes
in Section 6, we draw conclusions in Section 7.

2. Chiral MHD in Numerical Simulations

2.1. Equations of Chiral MHD

The system of chiral MHD equations includes the induction
equation for the magnetic field B, the Navier–Stokes equation
for the velocity field U of the plasma, the continuity equation
for the plasma density ρ, and an evolution equation for the
normalized chiral chemical potential μ:

B
U B B B

t
, 1h m ¶

¶
= ´ ´ - ´ -[ ( )] ( )

U
B B f

D

Dt
p 2 , 2Sr nr r  = ´ ´ - + +( ) · ( ) ( )

U
D

Dt
, 3

r
r = - · ( )

B B B
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2
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where B is normalized such that the magnetic energy density is
B 22 (without the 4π factor), and UD Dt t = ¶ ¶ + ·
is the advective derivative. Further, η is the microscopic
magnetic diffusivity, p is the fluid pressure, U Uij i j j i

1

2 , ,S = +( )

Uij
1

3
d - · are the components of the trace-free strain tensor

S (commas denote partial spatial derivatives), ν is the
kinematic viscosity, and f is the turbulent forcing function.
Equation (4) describes the evolution of the chiral chemical

potential L R5m m mº - , with μL and μR being the chemical
potentials of left- and right-handed chiral fermions, which is
normalized such that c4 em 5m a m= ( ) has the dimension of
an inverse length. Here D5 is the diffusion constant of the chiral
chemical potential μ, and the parameter λ, referred to in PaperI
as the chiral feedback parameter, characterizes the strength of
the coupling of the electromagnetic field to μ. The expression
of the feedback term in Equation (4) was derived in PaperI and
is valid for the limit of small magnetic diffusivities. For hot
plasmas, when k T max ,L RB m m (∣ ∣ ∣ ∣), the parameter λ is
given by11

c
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3
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2

l
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where 1 137ema » is the fine structure constant, T is the
temperature, kB is the Boltzmann constant, c is the speed of light,
and ÿ is the reduced Planck constant. We note that 1l- has the

10 http://pencil-code.nordita.org/

11 The definition of λ in the case of a degenerate Fermi gas will be given in
Section 6.2.
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dimension of energy per unit length. The last term in
Equation (4), proportional to fmG , characterizes chirality flipping
processes due to finite fermion masses. This term is included in a
phenomenological way. The detailed dependence of fG on the
plasma parameters in realistic systems is still not fully under-
stood. In most of the runs, the chirality flipping effect is neglected
because we concentrate in this paper on the high-temperature
regime, where the other terms in Equation (4) dominate.
However, we study its effect on the nonlinear evolution of μ in
Section 3.2.6.

We stress that the effects related to the chiral anomaly
cannot be separated from the rest of the equations. This is one
of the essential features of the chiral MHD equations that we
are studying. The equations interconnect the chiral chemical
potential to the electromagnetic field. However, the chiral
anomaly couples the electromagnetic field not directly to the
chiral chemical potential but to the chiral charge density, a
conjugate variable in the sense of statistical mechanics. The
parameter λ is nothing but a susceptibility, that is, a (inverse)
proportionality coefficient quantifying the response of the
axial charge to a change in the chiral chemical potential; see
PaperI.

The system of Equations (1)–(4) and their range of validity
have been discussed in detail in PaperI. Below we present a
short summary of the assumptions made in deriving these
equations. We focus our attention on an isothermal plasma,
T const= . The equilibration rate of the temperature gradients
is related to the shortest timescales of the plasma (of the order
of the plasma frequency or below) and is much shorter than
the timescales that we consider in the present study. For an
isothermal equation of state, the pressure p is related to the
density ρ via p cs

2r= , where cs is the sound speed. We apply
a one-fluid MHD model that follows from a two-fluid plasma
model (Artsimovich & Sagdeev 1985; Biskamp 1997;
Melrose 2013). This implies that we do not consider here
kinetic effects and effects related to the two-fluid plasma
model. We note that the MHD formalism is valid for scales
above the mean free path that can be approximated as
(Arnold et al. 2000)

ℓ
c

k T

1

4 ln 4
. 6mfp

em
2

em
1 2

B



pa pa
»

-( ) (( ) )
( )

Further, we study the nonrelativistic bulk motion of a
highly relativistic plasma. The latter leads to a term in the
Maxwell equations that destabilizes the nonmagnetic equili-
brium and causes an exponential growth of the magnetic
field. Such plasmas arise in the description of certain
astrophysical systems, where, for example, a nonrelativistic
plasma interacts with cosmic rays consisting of relativistic
particles with small number density; see, for example,
Schlickeiser (2002). We study the case of small magnetic
diffusivity typical of many astrophysical systems with large
magnetic Reynolds numbers, so we neglect terms of the order
of O 2h~ ( ) in the electric field; see Paper I.

A key difference in the induction equations of chiral and
classical MHD is the last term Bhmµ ´ ( ) in Equation (1).
This is reminiscent of mean-field dynamo theory, where a mean
magnetic field B is amplified by an α effect due to a term

Baµ ´ ( ) in the mean-field induction equation, which results
in an 2a dynamo. In analogy with mean-field dynamo theory, we

use the name v2
m dynamo, introduced in PaperI, where

v 70hmºm ( )

plays the role of α (see Equation (1)), and μ0 is the initial
value of the normalized chiral chemical potential. These
different notions are motivated by the fact that the vμ effect is
not related to any turbulence effects; that is, it is not
determined by the mean electromotive force, but originates
from the CME; see PaperI for details. We will discuss the
differences between chiral and classical MHD in more detail
in Section 2.5.
The system of Equations (1)–(4) implies a conservation law:

A B F
t 2

0, 8tot
l

m ¶
¶

+ + =⎜ ⎟⎛
⎝

⎞
⎠· · ( )

where

F E A B D
2

9tot 5
l

m= ´ + F -( ) ( )

is the flux of total chirality and B A= ´ , where A is the
vector potential, E U B B Bc 1 h m = - ´ + - ´- { ( )} is
the electric field, Φ is the electrostatic potential, λ is assumed to
be constant, and the chiral flipping term, fm-G , in Equation (4)
is assumed to be negligibly small. This implies that the total
chirality is a conserved quantity:

A B
2

const, 100
l

m má ñ + á ñ = =· ( )

where má ñ is the volume-averaged value of the chiral chemical

potential and A B A BV dV1òá ñ º -· · is the mean magnetic
helicity density over the volume V.

2.2. Chiral MHD Equations in Dimensionless Form

We study the system of chiral MHD Equations (1)–(4) in
numerical simulations to analyze various laminar and
turbulent dynamos, as well as the production of turbulence
by the CME. It is, therefore, useful to rewrite this system of
equations in dimensionless form, where velocity is measured
in units of the sound speed cs, length is measured in units of
ℓ 0

1mºm
- , so time is measured in units of ℓ csm , the magnetic

field is measured in units of csr , fluid density is measured in
units of r, and the chiral chemical potential is measured in
units of ℓ 1

m
- , where r is the volume-averaged density. Thus,

we introduce the following dimensionless functions, indi-
cated by a tilde: B Bcsr= ˜ , U Ucs= ˜ , ℓ 1m m= m

- ˜ , and
r rr= ˜ . The chiral MHD equations in dimensionless form are
given by
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where we introduce the following dimensionless parameters:

Chiral Mach number:

c

v

c
Ma , 150

s s

hm
= ºm

m ( )

Magnetic Prandtl number:

Pr , 16M
n
h

= ( )

Chiral Prandtl number:

D
Pr , 17

5

n
=m ( )

Chiral nonlinearity parameter:

, 182l lh r=m ( )

Chiral flipping parameter:

c
. 19f

f

0 sm
G =

G˜ ( )

Then, D Ma Pr PrM=m m m, MalL =m m m, and Re =m

Ma PrM 1
m

-( ) .

2.3. Physics of Different Regimes of Magnetic Field Evolution

There are two key nonlinear effects that determine the
dynamics of the magnetic field in chiral MHD. The first
nonlinear effect is determined by the conservation law(8) for
the total chirality, which follows from the induction equation
and the equation for the chiral magnetic potential. The second
nonlinear effect is determined by the Lorentz force in the
Navier–Stokes equation.

If the evolution of the magnetic field starts from a very small
force-free magnetic field, the second nonlinear effect, due to
the Lorentz force, vanishes if we assume that the magnetic field
remains force-free. The magnetic field is generated by the
chiral magnetic dynamo instability with a maximum growth
rate v 4max 2g h=m m attained at the wavenumber k 20m=m

(Joyce & Shaposhnikov 1997).
Since the total chirality is conserved, the increase of the

magnetic field in the nonlinear regime results in a decrease of
the chiral chemical potential, so the characteristic scale at
which the growth rate is maximum increases in time. This
nonlinear effect has been interpreted in terms of an inverse
magnetic cascade (Boyarsky et al. 2012). The maximum
saturated level of the magnetic field can be estimated from the
conservation law(8): B ksat 0 M

1 2
0

1 2m l m l~ <( ) . Here,
sat 0m m is the chiral chemical potential at saturation with

the characteristic wavenumber kM 0m< , corresponding to the
maximum of the magnetic energy.

However, the growing force-free magnetic field cannot stay
force-free in the nonlinear regime of the magnetic field
evolution. If the Lorentz force does not vanish, it generates
small-scale velocity fluctuations. This nonlinear stage begins
when the nonlinear term U B´ in Equation (1) is of the order

of the dynamo generating term Bvm , that is, when the velocity
reaches the level ofU v~ m. The effect described here results in
the production of chiral magnetically driven turbulence, with
the level of turbulent kinetic energy being determined by the
balance of the nonlinear term, U U( · ) , in Equation (2) and
the Lorentz force, B B ´ ´( ) , so that the turbulent velocity
can reach the Alfvén speed BvA

2 1 2r= ( ) .
The chiral magnetically driven turbulence causes compli-

cated dynamics: it produces the mean electromotive force that
includes the turbulent magnetic diffusion and the chiral αμ

effect that generates large-scale magnetic fields; see PaperI.
The resulting large-scale magnetic fields are concentrated at the
wavenumber k k2 ln Re 3 ReM M=a m ( ) ( ) for Re 1;M  see
PaperI. The saturated value of the large-scale magnetic field
controlled by the conservation law(8) is B ksat 0

1 2m l~ a( ) .
Here, ReM is the magnetic Reynolds number based on the
integral scale of turbulence and the turbulent velocity at this
scale.
Depending on the chiral nonlinearity parameter lm (see

Equation (18)), there are either two or three stages of magnetic
field evolution. In particular, when lm is very small, there is
sufficient time to produce turbulence and excite the large-scale
dynamo, so the magnetic field evolution includes three stages:

(1) the small-scale chiral dynamo instability,
(2) the production of chiral magnetically driven MHD

turbulence and the excitation of a large-scale dynamo
instability, and

(3) the saturation of magnetic helicity and magnetic field
growth controlled by the conservation law(8).

If lm is not very small, such that the saturated value of the
magnetic field is not large, there is not enough time to excite
the large-scale dynamo instability. In this case, the magnetic
field dynamics includes two stages:

(1) the chiral dynamo instability, and
(2) the saturation of magnetic helicity and magnetic field

growth controlled by the conservation law(8) for the
total chirality.

2.4. Characteristic Scales of Chiral
Magnetically Driven Turbulence

In the nonlinear regime, once turbulence is fully developed,
small-scale magnetic fields can be excited over a broad range of
wavenumbers up to the diffusion cutoff wavenumber. Using
dimensional arguments and numerical simulations, Branden-
burg et al. (2017b) found that, for chiral magnetically driven
turbulence, the magnetic energy spectrum E k t,M ( ) obeys

E k t C k, , 20M 0
3 2 2rm h= m

-( ) ( )

where C 16»m is a chiral magnetic Kolmogorov-type
constant. Here, E k t,M ( ) is normalized such that M =

BE k dk 2M
2ò = á ñ( ) is the mean magnetic energy density.

It was also confirmed numerically in Brandenburg et al.
(2017b) that the magnetic energy spectrum E kM ( ) is bound
from above by C 0m ll , where C 1»l is another empirical
constant. This yields a critical minimum wavenumber,

k
C

C
, 210rl m h=l

m

l
( )

4
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below which the spectrum will no longer be proportional
to k 2- .

The spectrum extends to larger wavenumbers up to a diffusive
cutoff wavenumber kdiff . The diffusion scale for magnetically
produced turbulence is determined by the condition kLu diff =( )
1, where k v k kLu A h=( ) ( ) is the scale-dependent Lundquist
number, Bv k kA

2 1 2r= á ñ( ) ( ) is the scale-dependent Alfvén

speed, and B E k dk2k k

k2
Mòá ñ =

l
( ) . To determine the Alfvén

speed, v kA ( ), we integrate Equation (20) over k and obtain

v k
C

k

k

k

2
1 . 22A 0

0
1 2 1 2
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m

= -m

l

l⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
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The conditions kLu 1diff =( ) and k kdiff l yield
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2 2.8 . 23diff

1 4

0
1 4

0l
m l m= »m l

m
m
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⎛
⎝⎜

⎞
⎠⎟ ( )

Numerical simulations reported in Brandenburg et al. (2017b)
have been performed for k0.75 75diff 0 m . In the present
DNS, we use values in the range from 4.5 to 503.

2.5. Differences between Chiral and Standard MHD

The system of Equations (1)–(4) describing chiral MHD
exhibits the following key differences from standard MHD:

(1) The presence of the term Bh m ´ ( ) in Equation (1)
causes a chiral dynamo instability and results in
production of chiral magnetically driven turbulence.

(2) Because of the finite value of λ, the presence of a helical
magnetic field affects the evolution of μ; see
Equation (4).

(3) For 0fG = , the total chirality, A B dV1

2ò l m+( )· , is

strictly conserved, and not just in the limit 0h  . This
conservation law determines the level of the saturated
magnetic field.

(4) The excitation of a large-scale magnetic field is caused by
(i) the combined action of the chiral dynamo instability
and the inverse magnetic cascade due to the conservation
of total chirality, as well as by (ii) the chiral αμ effect
resulting in chiral magnetically driven turbulence. This
effect is not related to kinetic helicity and becomes
dominant at large fluid and magnetic Reynolds numbers;
see PaperI.

The chiral term in Equation (1) and the evolution of μ
governed by Equation (4) are responsible for different
behaviors in chiral and standard MHD. In particular, in
standard MHD, the following phenomena and a conservation
law are established:

(1) The magnetic helicity A B dVò · is only conserved in the
limit of 0h  .

(2) Turbulence does not have an intrinsic source. Instead, it
can be produced externally by a stirring force, or due to
large-scale shear at large fluid Reynolds numbers, the
Bell instability in the presence of a cosmic-ray current
(Rogachevskii et al. 2012; Beresnyak & Li 2014), the
magnetorotational instability (Brandenburg et al. 1995;
Hawley et al. 1995), or just an initial irregular magnetic
field (Brandenburg et al. 2015).

(3) A large-scale magnetic field can be generated by (i) helical
turbulence with nonzero mean kinetic helicity that is
produced either by external helical forcing or by rotating,
density-stratified, or inhomogeneous turbulence (so-called
mean-field 2a dynamo); (ii) helical turbulence with large-
scale shear, which results in an additional mechanism of
large-scale dynamo action referred to as an aW or 2a W
dynamo (Moffatt 1978; Parker 1979; Krause & Rädler
1980; Zeldovich et al. 1983); (iii) nonhelical turbulence
with large-scale shear, which causes a large-scale shear
dynamo (Vishniac & Brandenburg 1997; Rogachevskii &
Kleeorin 2003, 2004; Sridhar & Singh 2010, 2014); and
(iv) in different nonhelical deterministic flows due to
negative effective magnetic diffusivity (in Roberts flow IV,
see Devlen et al. 2013) or time delay of an effective
pumping velocity of the magnetic field associated with the
off-diagonal components of the α tensor that are either
antisymmetric (known as the γ effect) in Roberts flow III
or symmetric in Roberts flow II; see Rheinhardt et al.
(2014). All effects in items (i)–(iv) can work in chiral
MHD as well. However, which one of these effects is
dominant depends on the flow properties and the
governing parameters.

2.6. DNS with the PENCIL CODE

We solve Equations (11)–(14) numerically using the PENCIL
CODE. This code uses sixth-order explicit finite differences in
space and a third-order accurate time-stepping method (Branden-
burg & Dobler 2002; Brandenburg 2003). The boundary
conditions are periodic in all three directions. All simulations
presented in Sections 3 and 4 are performed without external
forcing of turbulence. In Section 5 we apply a turbulent forcing
function f in the Navier–Stokes equation, which consists of
random plane transverse white-in-time, unpolarized waves. In
the following, when we discuss numerical simulations, all
quantities are considered as dimensionless quantities, and we
drop the “tildes” in Equations (11)–(14) from now on. The
wavenumber k L21 p= is based on the size of the box L 2p= .
In all runs, we set k 11 = , c 1s = , and the mean fluid
density 1r = .

3. Laminar Chiral Dynamos

In this section, we study numerically laminar chiral dynamos
in the absence of any turbulence (externally or chiral
magnetically driven).

3.1. Numerical Setup

Parameters and initial conditions for all laminar dynamo
simulations are listed in Tables 1 and 2. All of these
simulations are two-dimensional and have a resolution of
2562. Runs with names ending with “B” are with the initial
conditions for the magnetic field in the form of a Beltrami
magnetic field: B t 0 10 4= = -( ) (0, sin x, cos x), while runs
with names ending with “G” are initiated with Gaussian noise.
The initial conditions for the velocity field for the laminar v2

m
dynamo are U t 0 0, 0, 0= =( ) ( ), and for the laminar chiral–
shear dynamos (the v2

m–shear or vμ–shear dynamos) are
U t S x0 0, cos , 00= =( ) ( ), with the dimensionless shear rate
S0 given for all runs.
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We set the chiral Prandtl number Pr 1=m in all runs. In many
runs the magnetic Prandtl number Pr 1M = (except in several
runs for the laminar v2

m dynamo, see Table 1). The reference
runs for the laminar v2

m dynamo (La2-15B) and the chiral–shear
dynamos (LaU-4G) are shown in bold in Tables 1 and 2. The
results of numerical simulations are compared with theoretical
predictions.

3.2. Laminar v2
m Dynamo

We start with the situation without an imposed fluid flow,
where the chiral laminar v2

m dynamo can be excited.

3.2.1. Theoretical Aspects

In this section, we outline the theoretical predictions for a
laminar chiral dynamo; for details see PaperI. To determine
the chiral dynamo growth rate, we seek a solution of the
linearized Equation (1) for small perturbations of the following
form: B e et x z B t x z A t x z, , , , , ,y y y= + ´( ) ( ) [ ( ) ], where
ey is the unit vector in the y direction.
We consider the equilibrium configuration: const0m m= =

and U 00 = . The functions B t x z, ,y ( ) and A t x z, ,( ) are
determined by the equations

A t x z

t
v B A

, ,
, 24y h

¶
¶

= + Dm
( ) ( )

B t x z

t
v A B

, ,
, 25

y
yh

¶

¶
= - D + Dm

( )
( )

where v 0h m=m , x z
2 2D =  +  , and the remaining compo-

nents of the magnetic field are given by B Ax z= - and
B Az x=  . We seek a solution to Equations (24) and(25) of the
form A B t i k x k z, expy x zgµ + +[ ( )]. The growth rate of the
dynamo instability is given by

v k k , 262g h= -m∣ ∣ ( )

where k k kx z
2 2 2= + . The dynamo instability is excited (i.e.,

0g > ) for k 0m< ∣ ∣. The maximum growth rate of the dynamo
instability,

v

4
, 27max

2

g
h

=m
m ( )

is attained at

k
1

2
. 280m=m ∣ ∣ ( )

3.2.2. Time Evolution

In Figure 1 we show the time evolution of the rms magnetic
field Brms, the magnetic helicity A Bá ñ· , the chemical potential

rmsm (multiplied by a factor of 2 l), and A B 2 rmsm lá ñ +· for
reference run La2-15B. In simulations, the time is measured in

Table 1
Overview of Runs for the Laminar v2

m Dynamos (Reference Run in Bold)

Simulation PrM lm
Ma

10 3
m

-

k

10 4
0m

l
-

kdiff

0m

La2-1B 1.0 1×10−8 2 4.0 283
La2-2B 0.5 4×10−8 4 8.0 200
La2-3B 0.2 2.5 10 7´ - 10 20 126
La2-4B 2.0 2.5 10 9´ - 1 2.0 400
La2-5B 1.0 1×10−9 1.5 1.3 503
La2-5G 1.0 1×10−8 1.5 4.0 283
La2-6G 1.0 1×10−5 2 130 50
La2-7B 1.0 1×10−9 3 4.0 283
La2-7G 1.0 1×10−9 3 4.0 283
La2-8B 1.0 1×10−9 5 4.0 283
La2-8G 1.0 1×10−9 5 4.0 283
La2-9B 1.0 1×10−9 10 4.0 283
La2-9G 1.0 1×10−9 10 4.0 283
La2-10B 1.0 1×10−5 20 130 50
La2-10Bkmax 1.0 1×10−5 20 130 50
La2-10G 1.0 1×10−5 20 4.0 283
La2-11B 1.0 1×10−9 50 1.3 503
La2-11G 1.0 1×10−8 50 4.0 283
La2-12B 1.0 1×10−9 2 1.3 503
La2-13B 1.0 1×10−7 2 13 159
La2-14B 1.0 3×10−9 2 2.2 382
La2-15B 1.0 1×10−5 2 130 50
La2-16B 1.0 3×10−8 2 6.9 215

Table 2
Overview of Runs for the Chiral–Shear Dynamos (Reference Run in Bold)

Simulation lm
Ma

10 3
m

- uS
k

10 4
0m

l
-

kdiff

0m

LaU-1B 1×10−9 2.0 0.01 1.3 503
LaU-1G 1×10−9 2.0 0.01 1.3 503
LaU-2B 1×10−9 2.0 0.02 1.3 503
LaU-2G 1×10−9 2.0 0.02 1.3 503
LaU-3B 1×10−9 2.0 0.05 1.3 503
LaU-3G 1×10−9 2.0 0.05 1.3 503
LaU-4B 1×10−9 2.0 0.10 1.3 503
LaU-4G 1×10−5 2.0 0.10 126 50
LaU-5B 1×10−9 2.0 0.20 1.3 503
LaU-5G 1×10−9 2.0 0.20 1.3 503
LaU-6B 1×10−9 2.0 0.50 1.3 503
LaU-6G 1×10−9 2.0 0.50 1.3 503
LaU-7G 1×10−8 10 0.01 4.0 283
LaU-8G 1×10−8 10 0.05 4.0 283
LaU-9G 1×10−8 10 0.10 4.0 283
LaU-10G 1×10−8 10 0.50 4.0 283

Figure 1. Laminar v2
m dynamo: time evolution of Brms (solid black line), A Bá ñ·

(dashed gray line), rmsm (multiplied by 2/λ, dotted blue line), and
A B 2 rmsm lá ñ +· (dash-dotted red line) for reference run La2-15B (see
Table 1).
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units of diffusion time t k1
2 1h=h
-( ) . The initial conditions for

the magnetic field are chosen in the form of a Beltrami field
on k k 11= = .

The magnetic field is amplified exponentially over more than
four orders of magnitude until it saturates after roughly eight
diffusive times. Within the same time, the magnetic helicity
A Bá ñ· increases over more than eight orders of magnitude.
Since the sum of magnetic helicity and 2m l is conserved, the
chemical potential μ decreases, in a nonlinear era of evolution,
from the initial value 20m = to 1m = , resulting in a saturation
of the laminar v2

m dynamo.

3.2.3. Dynamo Growth Rate

In Figure 2, we show the growth rate of the magnetic field as
a function of the chiral Mach number, Mam. The black solid
line in this figure shows the theoretical prediction for the
maximum growth rate maxgm that is attained at k 2 1;0m= =m

see Equations (27) and (28). When the initial magnetic field is
distributed over all spatial scales, like in the case of initial
magnetic Gaussian noise, in which there is a nonvanishing
magnetic field at kμ that is inside the computational domain, the
initial magnetic field is excited with the maximum growth rate
as observed in the simulations. Consequently, the runs with
Gaussian initial fields shown as red diamonds in Figure 2 lie on
the theoretical curve maxgm . The dotted line in Figure 2
corresponds to the theoretical prediction for the growth rate γ
at the scale of the box k 1=( ). The excitation of the magnetic
field from an initial Beltrami field on k=1 occurs with growth
rates in agreement with the theoretical dotted curve; see blue
diamonds in Figure 2.

3.2.4. Dependence on Initial Conditions

The initial conditions for the magnetic field are important
mostly at early times. If the magnetic field is initially
concentrated on the box scale, we expect to observe a growth

rate k 1g =( ) as given by Equation (26). At later times, the
spectrum of the magnetic field can, however, be changed, due
to mode coupling, and be amplified with a larger growth rate.
This behavior is observed in Figure 3, where an initial Beltrami
field with k=10 is excited with a maximum growth rate, since
μ0=20. In Figure 3 we also consider another situation where
the dynamo is started from an initial Beltrami field with k=1
(La2-10B). In this case, the dynamo starts with a growth rate
γ=0.019, which is consistent with the theoretical prediction
for γ(k=1). Later, after approximately t0.4 h, the dynamo
growth rate increases up to the value γ=0.07, which is close
to the maximum growth rate 0.1maxg =m .

3.2.5. Saturation

The parameter λ in the evolution Equation (4), or the
corresponding dimensionless parameter lm in Equation (14),
for the chiral chemical potential determines the nonlinear
saturation of the chiral dynamo. We determine the saturation
value of the magnetic field Bsat numerically for different values
of ;lm see Figure 4. We find that the saturation value of the
magnetic field increases with decreasing lm. This can be
expected from the conservation law (8). If the initial magnetic
energy is very small, we find from Equation (8) the following
estimate for the saturated magnetic field during laminar chiral
dynamo action:

B , 29sat
0 0 sat

1 2m m m
l

~
-⎡

⎣⎢
⎤
⎦⎥

( )
( )

where satm is the chiral chemical potential at saturation, and we
use the estimate A by B2 0m . Inspection of Figure 4
demonstrates a good agreement between theoretical (solid line)
and numerical results (blue diamonds).

3.2.6. Effect of a Nonvanishing Flipping Rate

In this section, we consider the influence of a nonvanishing
chiral flipping rate on the v2

m dynamo. A large flipping rate fG
decreases the chiral chemical potential μ; see Equation (4). It

Figure 2. Laminar v2
m dynamo: growth rates as a function of Mam for

simulations with μ0=2. The black line is the theoretical prediction for the
maximum growth rate maxgm (see Equation (27)) that is attained at kμ=
μ0/2=1 (see Equation (28)). The runs with Gaussian initial fields, shown as
red diamonds, lie on the theoretically predicted maxgm . The dotted line
corresponds to the theoretical prediction for the growth rate γ(k=1) at the
scale of the box. The runs with an initial magnetic Beltrami field on k=1,
shown as blue diamonds, lie on the theoretically predicted dotted curve
γ(k=1).

Figure 3. Laminar v2
m dynamo: time evolution of Brms for two different initial

conditions. The black line is for the dynamo instability started from an
initial Beltrami field at k=1 (run La2-10B), while the blue line is for an initial
Beltrami field with k=10 (run La2-10Bkmax). Fits in different regimes are
indicated by thin lines. Both runs are for the initial value μ0=20 so that
kμ=10, and 0.1maxg =m (see Equation (27)).
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can stop the growth of the magnetic field caused by the chiral
dynamo instability.

Quantitatively, the influence of the flipping term can be
estimated by comparing the last two terms of Equation (4). The
ratio of these terms is

f
B

, 30f 0

0 sat
2

f

0
2

m
lhm hm

º
G

=
G

m ( )

where we have used Equation (29) with sat 0m m for the
saturation value of the magnetic field strength. In Figure 5 we
present the time evolution of Brms and rmsm for different values
of fμ. The reference run La2-15B, with zero flipping rate
( fμ=0), has been repeated with a finite flipping term. As a
result, the magnetic field grows more slowly in the nonlinear
era, due to the flipping effect, and it decreases the saturation
level of the magnetic field; see Figure 5. For larger values of fμ,
the chiral chemical potential μ decreases quickly, leading to
strong quenching of the v2

m dynamo; see the blue lines in
Figure 5.

3.3. Laminar Chiral–Shear Dynamos

In this section, we consider laminar chiral dynamos in the
presence of an imposed shearing velocity. Such a nonuniform
velocity profile can be created in different astrophysical flows.

3.3.1. Theoretical Aspects

We start by outlining the theoretical predictions for laminar
chiral dynamos in the presence of an imposed shearing velocity;
for details see PaperI. We consider the equilibrium configura-
tion specified by the shear velocity U S x0, , 0eq = ( ), and
μ=μ0= const. This implies that the fluid has nonzero vorticity
W S0, 0,= ( ) similar to differential (nonuniform) rotation. The
functions B t x z, ,y ( ) and A t x z, ,( ) are determined by

A t x z

t
v B A

, ,
, 31y h

¶
¶

= + Dm
( ) ( )

B t x z

t
S A v A B

, ,
. 32

y
z yh

¶

¶
= -  - D + Dm

( )
( )

We look for a solution to Equations (31) and(32) of the form
A B t i k x k z t, expy x zg wµ + + -[ ( )]. The growth rate of the
dynamo instability and the frequency of the dynamo waves are
given by

v k Sk

v k
k

2
1 1 33z

2

2

2

1
2

1
2

g h= + + -m

m

⎧
⎨⎪
⎩⎪

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬⎪
⎭⎪

∣ ∣
( )

and

k
Sk

k

Sk

v k
sgn

2
1 1 , 34z

z z
0 2

2
1
2

1
2

w m= + +
m

-⎧
⎨⎪
⎩⎪

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬⎪
⎭⎪

( ) ( )

respectively. This solution describes a laminar v2
m–shear

dynamo for arbitrary values of the shear rate S.
Next, we consider a situation where the shear term on the

right side of Equation (32) dominates, that is, where
S A v Az Dm∣ ∣ ∣ ∣. The growth rate of the dynamo instability
and the frequency of the dynamo waves are then given by

v Sk
k

2
, 35

z
1 2

2g h= -m⎛
⎝⎜

⎞
⎠⎟

∣ ∣
( )

k
v Sk

sgn
2

. 36z
z

0

1 2

w m= m⎛
⎝⎜

⎞
⎠⎟( )

∣ ∣
( )

The dynamo is excited for k v Sk 2z
2 1 4h< m∣ ∣ . The maximum

growth rate of the dynamo instability and the frequency
k kzw w= = m( ) of the dynamo waves are attained at

k
S v1

4

2
37z 2

1 3

h
=m m⎛

⎝⎜
⎞
⎠⎟

∣ ∣
( )

Figure 4. Laminar v2
m dynamo: the saturation magnetic field strength for

simulations with different lm. Details for the different runs, given by labeled
blue diamonds, can be found in Table 1.

Figure 5. Laminar v2
m dynamo: time evolution of the chiral chemical potential

rmsm (black lines) and the magnetic field Brms (blue lines) for fμ=0 (solid),
fμ=0.0025 (dashed), and fμ=0.01 (dotted).
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and are given by

S v
k

3

8 2
, 38x

max
2 2 1 3

2g
h

h= -m
m

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

k k
v k S vsgn

2 2
. 39z

z
2 2 1 3

w
h h

= =m m m
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )
( )

This solution describes the laminar vμ–shear dynamo.

3.3.2. Simulations of the Laminar vm–Shear Dynamo

Since our simulations have periodic boundary conditions, we
model shear velocities asU u x0, cos , 0S S= ( ). The mean shear
velocity uS over half the box is u u2S Sp= ( ) . In Figure 6 we
show the time evolution of the magnetic field (which starts to
be excited from a Gaussian initial field), the velocity urms, the
magnetic helicity A Bá ñ· , the chemical potential rmsm (multi-
plied by a factor of 2 l), and A B 2 rmsm lá ñ +· for run LaU-
4G. The growth rate for the chiral–shear dynamo (the v2

m–shear
dynamo) is larger than that for the laminar chiral dynamo (the
v2
m–dynamo). After a time of roughly t0.03 h, the system enters
a nonlinear phase, in which the velocity field is affected by the
magnetic field, but the magnetic field can still increase slowly.
Saturation of the dynamo occurs after approximately t0.1 h.

For Gaussian initial fields, we have observed a short delay in
the growth of the magnetic field. In both cases, the dynamo
growth rate increases with increasing shear. As for the chiral v2

m
dynamo, we observe perfect conservation of the quantity
A B 2 rmsm lá ñ +· in the simulations of the laminar vμ–shear
dynamo.

In Figure 7 we show the theoretical dependence of the
growth rate γ and the dynamo frequency ω on the shear
velocity uS for Beltrami initial conditions at different
wavenumbers; see Equations (35) and(38). The dynamo
growth rate is estimated from an exponential fit. The result of
the fit depends slightly on the fitting regime, leading to an error
of the order of 10%. The dynamo frequency is determined
afterward by dividing the magnetic field strength by texp g( )
and fitting a sine function. Due to the small amplitude and a
limited number of periods of dynamo waves, the result is
sensitive to the fit regime considered. Hence we assume a

conservative error of 50% for the dynamo frequency. The blue
diamonds correspond to the numerical results. Within the error
bars, the theoretical and numerical results are in agreement.

3.3.3. Simulations of the Laminar v2
m–Shear Dynamo

The growth rate of chiral–shear dynamos versus mean shear
in the range between uS=0.01 and 0.5 is shown in Figure 8.
We choose a large initial value of the chemical potential,
μ0=10, to ensure that kmax is inside the box for all values of
uS. We overplot the growth rates found from the simulations
with the maximum growth rate given by Equation (33). In
addition, we show the theoretical predictions for the limiting
cases of the v2

m and vμ–shear dynamos; see Equations (27) and
(38). Inspection of Figure 8 shows that the results obtained
from the simulations agree with theoretical predictions.

4. Chiral Magnetically Driven Turbulence

In this section we show that the CME can drive turbulence
via the Lorentz force in the Navier–Stokes equation. When the
magnetic field increases exponentially, due to the small-scale
chiral magnetic dynamo with growth rate γ, the Lorentz force,

B B ´ ´( ) , increases at the rate 2γ. The laminar dynamo
occurs only up to the first nonlinear phase, when the Lorentz
force starts to produce turbulence (referred to as chiral
magnetically driven turbulence). We will also demonstrate
here that, during the second nonlinear phase, a large-scale
dynamo is excited by the chiral αμ effect arising in chiral
magnetically driven turbulence. The chiral αμ effect was
studied using different analytical approaches in PaperI. This
effect is caused by an interaction of the CME and fluctuations
of the small-scale current produced by tangling magnetic
fluctuations. These fluctuations are generated by tangling of the
large-scale magnetic field through sheared velocity fluctua-
tions. Once the large-scale magnetic field becomes strong
enough, the chiral chemical potential decreases, resulting in the
saturation of the large-scale dynamo instability.
This situation is similar to that of driving small-scale

turbulence via the Bell instability in a system with an external
cosmic-ray current (Bell 2004; Beresnyak & Li 2014) and the
generation of a large-scale magnetic field by the Bell
turbulence; see Rogachevskii et al. (2012) for details.

4.1. Mean-field Theory for Large-scale Dynamos

In this section, we outline the theoretical predictions for
large-scale dynamos based on mean-field theory; see PaperI
for details. The mean induction equation is given by

B
U B B B

t
v ,

40

T
a h h ¶

¶
= ´ ´ + + - + ´m m[ ( ) ( ) ]

( )

where v 0hm=m , and we consider the following equilibrium
state: consteq 0m m= = and U 0eq = . This mean-field equation
contains additional terms that are related to the chiral αμ effect
and the turbulent magnetic diffusivity

T
h . In the mean-field

equation, the chiral vμ effect is replaced by the mean chiral vm
effect. Note, however, that at large fluid and magnetic
Reynolds numbers, the αμ effect dominates the vm effect.
To study the large-scale dynamo, we seek a solution to

Equation (40) for small perturbations in the form
B e et x z B t x z A t x z, , , , , ,y y y= + ´( ) ( ) [ ( ) ], where ey is

Figure 6. Laminar vμ–shear dynamo: time evolution of the magnetic field Brms,
the velocity urms, the magnetic helicity A Bá ñ· , the chemical potential rmsm
(multiplied by a factor of 2 l), and A B 2 rmsm lá ñ +· (run LaU-4G).
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the unit vector directed along the y axis. The functions
B t x z, ,y ( ) and A t x z, ,( ) are determined by

A t x z

t
v B A

, ,
, 41y T

a h h
¶

¶
= + + + Dm m

( ) ( ) ( ) ( )

B t x z

t
v A B

, ,
, 42

y
yT

a h h
¶

¶
= - + D + + Dm m

( )
( ) ( ) ( )

where x z
2 2D =  +  , and the other components of the

magnetic field are B Ax z= - and B Az x=  .
We look for a solution of the mean-field Equations (41)

and(42) in the form

A B t i k x k z, exp , 43y x zgµ + +[ ( )] ( )

where the growth rate of the large-scale dynamo instability is
given by

v k k , 442
T

g a h h= + - +m m∣( ) ∣ ( ) ( )

with k k kx z
2 2 2= + . The maximum growth rate of the large-

scale dynamo instability, attained at the wavenumber

k k
v

2
, 45

T

a
h h

º =
+

+
a

m m∣ ∣
( )

( )

is given by

v v

4 4 1 Re 3
. 46max

2 2

T M

g
a

h h
a

h
=

+

+
=

+

+a
m m m m( )
( )

( )
( )

( )

For small magnetic Reynolds numbers, u ℓRe 0 0M h= =
3

T
h h, this equation yields the correct result for the laminar

v2
m dynamo; see Equation (27).
As was shown in PaperI, the CME in the presence of

turbulence gives rise to the chiral αμ effect. The expression for
αμ found for large Reynolds numbers and a weak mean
magnetic field is

v
2

3
lnRe . 47Ma = -m m ( )

Since the αμ effect in homogeneous turbulence is always
negative, while the vm effect is positive, the chiral αμ effect
decreases the vm effect. Both effects compensate each other at
Re 4.5M = (see PaperI). However, for large fluid and magnetic
Reynolds numbers, v am m ∣ ∣, and we can neglect vm in these

equations. This regime corresponds to the large-scale 2am
dynamo.

4.2. DNS of Chiral Magnetically Driven Turbulence

We have performed a higher resolution 5763( ) three-
dimensional numerical simulation to study chiral magnetically
driven turbulence. The chiral Mach number of this simulation
is Ma 2 10 3= ´m

- , the chiral nonlinearity parameter is l =m
2 10 7´ - , and the magnetic and chiral Prandtl numbers are
unity. The velocity field is initially zero, and the magnetic field
is Gaussian noise, with B 10 6= - .
The time evolution of Brms, urms, A Bá ñ· , rmsm (multiplied by

2 l), and A B 2 rmsm lá ñ +· of chiral magnetically driven
turbulence is shown in the top panel of Figure 9. Four phases
can be distinguished:

(1) The kinematic phase of small-scale chiral dynamo instability
resulting in exponential growth of a small-scale magnetic

Figure 7. Laminar vμ–shear dynamo: growth rate (top panel) and dynamo
frequency (bottom panel) as a function of the mean shear uS for the Beltrami
initial field (runs LaU-nB with n=1–6; see Table 2).

Figure 8. Laminar v2
m–shear dynamo: growth rate γ as a function of mean shear

uS. For comparison, we plot the maximum growth rate of v2
m dynamo (27) and

of the vμ–shear dynamo (38). The solid black line is the theoretically predicted
maximum growth rate (see Equation (33)).
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field due to the CME. This phase ends approximately at
t t0.05= h.

(2) The first nonlinear phase resulting in production of chiral
magnetically driven turbulence. In this phase, urms grows
from very weak noise over seven orders of magnitude up
to nearly the equipartition value between turbulent kinetic
and magnetic energies, due to the Lorentz force in the
Navier–Stokes equation.

(3) The second nonlinear phase resulting in large-scale
dynamos. In particular, the evolution of Brms for
t t0.12> h is affected by the velocity field. During this
phase, the velocity stays approximately constant, while
the magnetic field continues to increase at a reduced
growth rate in comparison with that of the small-scale
chiral dynamo instability. In this phase, we also observe

the formation of inverse energy transfer with a k 2-

magnetic energy spectrum that was previously found and
comprehensively analyzed by Brandenburg et al. (2017b)
in DNS of chiral MHD with different parameters.

(4) The third nonlinear phase resulting in saturation of the
large-scale dynamos, which ends at t0.45» h when the
large-scale magnetic field reaches the maximum value.
The conserved quantity A B 2 rmsm lá ñ +· stays con-
stant over all four phases. Saturation is caused by the λ
term in the evolution equation of the chiral chemical
potential, which leads to a decrease of μ from its initial
value to 1.

The middle panel of Figure 9 shows the measured growth
rate of Brms as a function of time. In the kinematic phase,
γ agrees with the theoretical prediction for the laminar chiral
dynamo instability; see Equation (27), which is indicated by the
dashed red horizontal line in the middle panel of Figure 9.
During this phase, the growth rate of the velocity field, given
by the dotted gray line in Figure 9, is larger by roughly a factor
of two than that of the magnetic field. This is expected when
turbulence is driven via the Lorentz force, which is quadratic in
the magnetic field.
Once the kinetic energy is of the same order as the magnetic

energy, the growth rate of the magnetic field decreases abruptly
by a factor of more than five. This is expected in the presence
of turbulence, because the energy dissipation of the magnetic
field is increased by turbulence due to turbulent magnetic
diffusion. Additionally, however, a positive contribution to the
growth rate comes from the chiral αμ effect that causes large-
scale dynamo instability.
The time evolution of the ratio of the mean magnetic field to

the total field, B Brms, is presented in the bottom panel of
Figure 9. The mean magnetic field grows faster than the rms of
the total magnetic field in the time interval between 0.14 and
0.2 tη. During this time, the large-scale (mean-field) dynamo
operates, so magnetic energy is transferred to larger spatial
scales. We now determine, directly from DNS, the growth rate
of the large-scale dynamo using Equation (44). To this end, we
determine the Reynolds number and the strength of the αμ

effect using the data from our DNS. Whereas the rms velocity
is a direct output of the simulation, the turbulent forcing scale
can be found from analysis of the energy spectra. The
theoretical value based on these estimates at the time t0.2 h is
indicated as the solid red horizontal line in the middle panel of
Figure 9.
The evolution of kinetic and magnetic energy spectra is

shown in Figure 10. We use equal time steps between the
different spectra, covering the whole simulation time. The
magnetic energy, indicated by blue lines, increases initially at
k 2 100m= = , which agrees with the theoretical prediction
for the chiral laminar dynamo. The magnetic field drives a
turbulent spectrum of the kinetic energy, as can clearly be seen
in Figure 10 (indicated by black lines in Figure 10). The final
spectral slope of the kinetic energy is roughly 5 3- . The
magnetic field continues to grow at small wavenumbers,
producing a peak at k=1 in the final stage of the time
evolution.
We determine the correlation length of the magnetic field

from the magnetic energy spectrum via

t k t
t

k E k t dk
1

, . 48M M
1

M

1
M

 òx º =- -( ) ( )
( )

( ) ( )

Figure 9. Chiral magnetically driven turbulence. Time evolution for different
quantities.
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The wavenumber kM so defined coincides (up to a numerical
factor of order unity) with the so-called tracking solution, trmD
in Boyarsky et al. (2012). There it was demonstrated that, in the
course of evolution, the chiral chemical potential follows k tM ( ).
And, indeed, the evolution of kM, shown in Figure 11, starts at
around 10 (the value of 20m in this simulation) and then
decreases to k kM 1= (corresponding to the simulation box size)
at t t0.18» h. Interestingly, the chemical potential is affected
by magnetic helicity only at much later times, as can be seen in
Figure 11. Based on the wavenumber, kM, we estimate the
Reynolds numbers as

u

k
Re Re . 49rms

M
M n
= = ( )

Figure 11 shows that the Reynolds number increases
exponentially, mostly due to the fast increase of urms, and
saturates later at Re 102

M » . Similarly, the turbulent diffusivity
can be estimated as

u

k3
. 50rms

M
T

h = ( )

During the operation of the mean-field large-scale dynamo, we
find that 2.4 10 3

T
h » ´ - , which is about 24 times larger than

the molecular diffusivity η. Using these estimates, we
determine the chiral magnetic αμ effect from Equation (47).
The large-scale dynamo growth rate (44) is shown as the solid
red horizontal line in the middle panel of Figure 9 and is in
agreement with the DNS results shown as the black solid line.

Further analysis of the evolution of the magnetic field at
different wavenumbers is presented in Figure 12. In the top
panel, we display the magnetic energy at various wavenumbers
as a function of time. In the kinematic phase, for t t0.1< h, the
fastest amplification occurs at k=10, as can also be seen in the
energy spectra. At wavenumbers k k< m, there is an initial
phase of magnetic dissipation, followed by an exponential
increase of the field. The rapid transition between the two
phases, which occurs at t t0.05= h for k=30 in our example,
may lead to the impression of an interpolation between long
time steps. In reality, however, the range t=0–0.1 tη is

resolved by approximately 500 time steps. At t t0.18» h, the
magnetic field grows only at k=1. This confirms the idea that
a large-scale (mean-field) dynamo operates. In the next two
panels, we compare the observed growth rates as a function of
wavenumber at different time intervals. The middle panel of
Figure 12 shows the growth rate in the laminar phase, where
we find good agreement with the theoretical predictions below
k 20» . The resulting value for the growth rate depends on the
accuracy of the fitting, and a typical error of 10% is shown by a
gray uncertainty band in the middle panel of Figure 12. Also,
the observed growth rate of the mean-field dynamo, which we
find from fitting growth rates in the time interval 0.17– t0.24 h,
is comparable to the prediction from mean-field theory, using
our estimates for the Reynolds number (49) and the turbulent
diffusivity (50). As the mean-field dynamo phase is followed
by the nonlinear phase, the growth rate is more sensitive to the
fitting regime. Hence we indicate a 30% uncertainty band in
this phase. The time intervals for the two different fitting
regimes are indicated by gray arrows in the top panel.

4.3. The Effect of a Strong Initial Magnetic Field

The effect of changing the chiral nonlinearity parameterlm is
explored in Brandenburg et al. (2017b), who considered values
between 2×10−6 and 200. Using dimensional analysis and
simulations, they showed that the extension of the inertial range
of the turbulence is approximately 41 2lm

- . The ratio km l is
approximately 660 in our reference run for chiral magnetically
driven turbulence, which was presented in the last section.
Brandenburg et al. (2017b) found that E k t,M ( ) is bound

from above by the value of m l. It is interesting to note
that this also applies when the initial magnetic field strength
exceeds this limit. To demonstrate this, we now present a
simulation with an initial magnetic energy spectrum ∝k4

for k k 601 < and exponential decrease for larger k
with v c 0.089A s = . We use 400m = , 5 10 5h = ´ - , rl =
8 108´ , Ma 0.0014=m , and 2l =m . The result is shown in
Figure 13.
At early times, EM

2
0h m( ) overshoots the value of

12
0m l h m l= m( ) ( ) , but after a short time it follows this

Figure 10. Chiral magnetically driven turbulence. Magnetic (blue lines) and
kinetic (black lines) energy spectra are calculated at equal time differences, and
the very last spectra are shown as solid lines.

Figure 11. Chiral magnetically driven turbulence. The black solid line shows
the inverse correlation length, kM, of the magnetic energy, defined by
Equation (48), as a function of time t. Using this wavenumber and the rms
velocity, the fluid and magnetic Reynolds numbers are estimated (see
Equation (49)), shown by the dashed blue line.
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limit almost precisely. This shows that the bound on E k t,M ( ) is
obeyed even when the initial field strength exceeds this value.

4.4. Stages of Chiral Magnetically Driven Turbulence

This DNS demonstrates that the magnetic field evolution
proceeds in the following distinct stages:

(1) Small-scale chiral dynamo instability.

(2) First nonlinear stage when the Lorentz force drives small-
scale turbulence.

(3) Formation of inverse energy transfer with a k 2- magnetic
energy spectrum; see Brandenburg et al. (2017b) for
details.

(4) Generation of large-scale magnetic fields by chiral
magnetically driven turbulence.

(5) Decrease of the chemical potential and saturation of the
large-scale chiral dynamo.

Although the magnetic field cannot grow any further, the
spectrum continues to move to smaller wavenumbers in a
shape-invariant fashion (see Brandenburg & Kahniash-
vili 2017). This implies that the magnetic integral scale

kM M
1x º - continues to grow and the magnetic energy continues

to decrease proportional to t 2 3- with B const2
Mxá ñ » .

5. DNS of Large-scale Dynamos in Forced, Nonhelical, and
Homogeneous Turbulence

In this section, we study the evolution of the magnetic field
in the presence of forced, nonhelical, and homogeneous
turbulence in order to control the turbulence parameters in
the chiral MHD simulations. Chiral dynamos in forced
turbulence can be described by the mean-field chiral MHD
equations. The theoretical results related to the mean-field
chiral dynamos obtained in PaperI have been outlined in
Section 4.1.

5.1. DNS Setup for Externally Forced Turbulence

To study chiral large-scale dynamos, we perform three-
dimensional DNS with externally forced turbulence and a
spatial resolution of 2003. In run Ta2-10, the resolution is 2803

(see Table 3). Turbulence is driven via the forcing term f x t,( )
in Equation (2). The forcing function is nonhelical and
localized around the wavenumber kf; see Haugen et al.
(2004) for details. For the runs presented in the following,

Figure 12. Chiral magnetically driven turbulence. The evolution of the
magnetic energy EM on different wavenumbers k (top panel). The growth rate
as a function of k in different time intervals is given in the plot legend. The
black line corresponds to a fit, while the theoretical expectations are given as a
red line.

Figure 13. Chiral magnetically driven turbulence. Evolution of the magnetic
(blue lines) and kinetic (black lines) energy spectrum for a run with large initial
magnetic field on a small spatial scale. The initial spectra are shown as thick
solid lines; later spectra have equal time intervals up to 0.025 tη (shown in thick
dashed lines). Above t=0.025 tη, the time intervals increase by a factor of
two, until the final spectra are reached, presented here as thin solid lines. The
horizontal dashed gray line shows 1 lm, the upper limit predicted by the chiral
conservation law, and the vertical gray line shows the scale where the growth
rate of the small-scale chiral instability reaches its maximum.
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we choose k 4f = and 10. These values are small enough for
the fluid and magnetic Reynolds numbers, u kRe rms fn= ( )
and u kRe rms fM h= ( ), respectively, to be sufficiently large for
turbulence to develop. At the same time, kf is large enough for a
clear separation between the box scale and the forcing scale,
allowing study of mean-field (large-scale) dynamos. In the
numerical simulations, we vary Mam, lm, and Re (see Table 3).

For comparison with the results from mean-field theory, the
simulations need to fulfill the following criteria:

1. To capture the maximum amplification inside the
numerical domain with k L2 1box boxp= = , the condi-
tion k 1max > needs to be fulfilled. As shown in
Equation (45), kmax is proportional to

T
h h , which is

inversely proportional to the magnetic Reynolds number
ReM. As a result, the chemical potential needs to be
sufficiently large for k 1max > .

2. Due to nonlocal effects, the turbulent diffusivity
T

h is
generally scale-dependent and decreases above kf (Bran-
denburg et al. 2008). For comparison with mean-field
theory, the chiral dynamo instability has to occur on
scales k kf< , where u k3rms fT

h » ( ). Note, however,
that the presence of a mean kinetic helicity in the system
caused by the CME (see PaperI) can increase the
turbulent diffusivity

T
h for moderate magnetic Reynolds

numbers by up to 50% (Brandenburg et al. 2017a).
3. To simplify the system, we avoid classical small-scale

dynamo action, which occurs at magnetic Reynolds
numbers larger than Re 50M,crit » .

5.2. DNS of Chiral Dynamos in Forced Turbulence

The time evolution of different quantities in our reference
run is presented in Figure 14. The magnetic field first increases
exponentially, with a growth rate t60 1g » h

- , which is about a
factor of 1.6 lower than that expected for the laminar v2

m
dynamo; see the middle panel of Figure 14. This difference
seems to be caused by the presence of random forcing;
see discussion below. At approximately 0.2 tη, the growth rate
decreases to a value of t15 1g » h

- , consistent with that of the
mean-field chiral 2am dynamo, before saturation occurs at t0.4 h.
The evolution of Brms is comparable qualitatively in chiral
magnetically produced turbulence; see Figure 9. An additional
difference from the latter is the value of u 0.1rms » for
externally forced turbulence, which is controlled by the

intensity of the forcing function. An indication of the presence
of a mean-field dynamo is the evolution of B Brms in the
bottom panel of Figure 14, which reaches a value of unity
at t0.3 h.
The energy spectra presented in Figure 15 support the large-

scale dynamo scenario. First, the magnetic energy increases at
all scales, and, at later times, the maximum of the magnetic
energy is shifted to smaller wavenumbers, finally producing a
peak at k=1, the smallest possible wavenumber in our
periodic domain.

Table 3
Overview of Runs with Externally Forced Turbulence (Reference Run in Bold)

μ0
Ma

10 3
m

- 10 6

lm
-

k

10 3
0m

l
-( )

kdiff

0m kf Re M
(early→late)

Ta2-1 20 8 16 160 4.5 10 24→19
Ta2-2 20 4 4.0 80 63 10 36→28
Ta2-3 20 8 16 160 45 10 16→14
Ta2-4 20 4 4.0 80 63 10 4→13
Ta2-5 20 8 160 51 80 10 24→18
Ta2-6 20 8 1.6 51 80 10 16→14
Ta2-7 30 12 32 230 38 4 42→58
Ta2-8 30 9 18 160 43 4 58→65
Ta2-9 30 9 13.5 150 47 4 82→74
Ta2-10 40 8 16 160 45 4 119→107

Figure 14. Externally forced turbulence. Time evolution of the magnetic field,
the velocity field, and the chemical potential, as well as the mean value of the
magnetic helicity (top panel). The middle panel shows the growth rate of Brms

as a function of time (solid black line). The red lines are theoretical
expectations in different dynamo phases. In the bottom panel, the ratio of the
mean magnetic field to the total field Brms is presented.
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A detailed analysis of the growth of magnetic energy is
presented in Figure 16. In the first phase, the growth rate of the
magnetic field is independent of the wavenumber k (see top
panel), due to a coupling between different modes. The growth
rate measured in this phase is less than that in the laminar case
(see middle panel), due to a scale-dependent turbulent diffusion
caused by the random forcing.

Within the time interval 0.22( – t0.28 h) , only the magnetic
field at k=1 increases. This is clearly seen in the bottom panel
of Figure 16, where we show the evolution of the magnetic
energy at different wavenumbers k. The growth rate of the
mean-field dynamo, which is determined at k=1, agrees with
the result from mean-field theory, given by Equation (51).
There is a small dependence of the resulting mean-field growth
rate on the exact fitting regime. If the phase of the mean-field
dynamo is very short, changing the fitting range can affect the
result by a factor up to 30%. We use the latter value as an
estimate of the uncertainty in the growth rate, and, in addition,
indicate an error of 20% in determining the Reynolds number,
which is caused by the temporal variations of urms.

5.3. Dependence on the Magnetic Reynolds Number

Based on the mean-field theory developed in PaperI, we
expect the following. Using the expression for the αμ effect
given by Equation (47), the maximum growth rate (46) for the
mean-field dynamo can be rewritten as a function of the
magnetic Reynolds number:

v
Re

1 2 3 lnRe

4 1 Re 3
, 51max

2 2

M

M

M

g
h

=
-

+
m( )

( )
( )

( )

where the ratio Re 3
T Mh h = .

We perform DNS with different Reynolds numbers to test
the scaling of Remax Mg ( ) given by Equation (51). The
parameters of the runs with externally forced turbulence are
summarized in Table 3. We vary n h=( ), the forcing
wavenumber kf, as well as the amplitude of the forcing, to
determine the function Remax Mg ( ). In the initial phase, urms is
constant in time. Once large-scale turbulent dynamo action
occurs, there are additional minor variations in urms, because
the system is already in the nonlinear phase. The nonlinear
terms in the Navier–Stokes equation lead to a modification of

the velocity field at small spatial scales, which affects the value
of urms and results in the small difference between the initial
and final values of the Reynolds numbers (see Table 3).
According to Equation (45), the wavenumber associated

with the maximum growth rate of the large-scale turbulent
dynamo instability decreases with increasing ReM. In order to
keep this mode inside the computational domain and hence to
compare the measured growth rate with the maximum one
given by Equation (51), we vary the value of μ0 in our
simulations. The variation of μ0, and the additional variation of

Figure 15. Externally forced turbulence. Evolution of kinetic (black lines) and
magnetic energy spectra (blue lines) for the reference run Ta2-5. The ratio

0m l is indicated by the horizontal dashed line.

Figure 16. Externally forced turbulence. Time evolution of the magnetic
energy at different wavenumbers k (top panel). The remaining panels show the
growth rates as a function of scale in different fit intervals.
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η for scanning through the ReM parameter space, implies that
Mam changes correspondingly.

The values of the nonlinear parameter λ should be within a
certain range. Indeed, the saturation value of the magnetic field,
given by Equation (29), is proportional to 1 2l- . In order for the
Alfvén velocity not to exceed the sound speed, which would
result in a very small time step in DNS, λ should not be below
a certain value. On the other hand, λ should not be too large, as
in this case the dynamo would saturate quickly, and there is
only a very short time interval of the large-scale dynamo. In
this case, determining the growth rate of the mean-field
dynamo, and hence comparing with the mean-field theory, is
difficult.

In Figure 17 we show the normalized growth rate v2g h m of
the magnetic field as a function of the magnetic Reynolds
number ReM. The gray data points show the growth rate in the
initial, purely kinematic phase of the simulations. The blue data
points show the measured growth rate of the magnetic field on
k=1, when the large-scale dynamo occurs. For comparison of
the results with externally forced turbulence (indicated as
diamond-shaped data points), we show in Figure 17 also the
results obtained for the dynamo in chiral magnetically driven
turbulence, which are indicated as dots.

In DNS with externally forced turbulence, we see in all cases
a reduced growth rate due to mode coupling. Contrary to the
case with externally forced turbulence, in DNS with the chiral
magnetically driven turbulence, we do initially observe the
purely laminar dynamo with the growth rate given by
Equation (27), because there is no mode coupling in the initial
phase of the magnetic field evolution in this case. On the other
hand, the measured growth rates of the mean-field dynamo in
both cases agree (within the error bars) with the growth rates
obtained from the mean-field theory.

6. Chiral MHD Dynamos in Astrophysical
Relativistic Plasmas

In this section, the results for the nonlinear evolution of the
chiral chemical potential, the magnetic field, and the turbulent
state of the plasma found in this paper are applied to astrophysical
relativistic plasmas. We begin by discussing the role of chiral
dynamos in the early universe and identify conditions under
which the CME affects the generation and evolution of cosmic
magnetic fields. Finally, in Section 6.2, we examine the
importance of the CME in proto-neutron stars (PNSs).

6.1. Early Universe

In spite of many possible mechanisms that can produce
magnetic fields in the early universe (see, e.g., Widrow 2002;
Giovannini 2004; Widrow et al. 2012; Durrer & Neronov 2013;
Subramanian 2016, for reviews), understanding the origin of
cosmic magnetic fields remains an open problem. Their
generation is often associated with nonequilibrium events in
the universe (e.g., inflation or phase transitions). A period of
particular interest is the electroweak (EW) epoch, characterized
by temperatures of 1015 K (k T 100 GeVB ~ ). Several impor-
tant events take place around this time: the electroweak
symmetry gets broken, photons appear while intermediate
vector bosons become massive, and the asymmetry between
matter and antimatter appears in the electroweak baryogenesis
scenario (Kuzmin et al. 1985); see, for example, the review by
Morrissey & Ramsey-Musolf (2012). Magnetic fields of
appreciable strength can be generated as a consequence of
these events (Vachaspati 1991; Olesen 1992; Enqvist &
Olesen 1993; Enqvist 1994; Vachaspati & Field 1994;
Gasperini et al. 1995; Baym et al. 1996; Davidson 1996;
Vachaspati 2001; Semikoz 2010). Their typical correlation
length TM

ew
em

1x a~ -( )( ) corresponds to only a few centimeters
today—much less than the observed correlation scales of
magnetic fields in galaxies or galaxy clusters. Therefore, in the
absence of mechanisms that can increase the comoving scale of
the magnetic field beyond M

ewx( ), such fields were deemed to be
irrelevant to the problem of cosmic magnetic fields (for
discussion, see, e.g., Durrer & Caprini 2003; Caprini
et al. 2009; Saveliev et al. 2012; Kahniashvili et al. 2013b).
The situation may change if (i) the magnetic fields are helical

and (ii) the plasma is turbulent. In this case, an inverse transfer
of magnetic energy may develop, which leads to a shift of the
typical scale of the magnetic field to progressively larger scales
(Brandenburg et al. 1996; Christensson et al. 2001; Banerjee &
Jedamzik 2004; Kahniashvili et al. 2013b). The origin of such
turbulence has been unknown. An often considered paradigm is
that a random magnetic field, generated at small scales,
produces turbulent motions via the Lorentz force. However,
continuous energy input is required. If this is not the case, the
magnetic field decays: B t2 2 3á ñ ~ - as the correlation scale
grows (Biskamp & Müller 1999; Kahniashvili et al. 2013b),
so B const2

Mxá ñ = .
In the present work, we demonstrated that the presence of a

finite chiral charge in the plasma at the EW epoch is sufficient
to satisfy the above requirements (i) and (ii). As a result,

(1) helical magnetic fields are excited,
(2) turbulence with large ReM is produced, and
(3) the comoving correlation scale increases.

We discuss each of these phases in detail below.

Figure 17. Externally forced turbulence and chiral magnetically driven
turbulence. The normalized growth rate v2g h m of the magnetic field as a
function of the magnetic Reynolds number Re M. The gray data points show the
growth rate in the initial, purely kinematic phase of the simulations. The blue
data points show the measured growth rate of the magnetic field on k=1,
when the large-scale dynamo occurs. The diamond-shaped data points
represent simulations of forced turbulence, while the dot-shaped data points
refer to the case of chiral magnetically driven turbulence. The growth rate
observed in the initial laminar phase for the case of chiral magnetically driven
turbulence is shown at Re 2M = , with the left arrow indicating that the actual
Re M is much lower and out of the plot range at this time; see Figure 11.
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6.1.1. Generation and Evolution of Cosmic Magnetic Fields in the
Presence of a Chiral Chemical Potential

Although it is not possible to perform numerical simulations
with parameters matching those of the early universe, the
results of the present paper allow us to make qualitative
predictions about the fate of cosmological magnetic fields
generated at the EW epoch in the presence of a chiral chemical
potential.

All of the main stages of the magnetic field evolution,
summarized in Section 4.4, can occur in the early universe (a
sketch of the main phases is provided in Figure 18).

Phase 1. At this initial stage, the small-scale chiral dynamo
instability develops at scales around ξμ, where

2
, 52

0

x
m

ºm ∣ ∣
( )

and

c
4 1.5 10 cm

100 GeV
. 530 em

5 14 1 5


m a

m m
» » ´ - ( )

The chemical potential μ5 can be approximated by the
thermal energy k TB for order-of-magnitude estimates. In
what follows, we provide numerical estimates for 5m =
100 GeV, which corresponds to the typical thermal energy of
relativistic particles at the EW epoch. The characteristic
energy at the quantum chromodynamics phase transition is

100 MeV» , where the quark–gluon plasma turns into
hadrons. We stress, however, that the MHD formalism is
only valid if the scales considered are larger than the mean
free path given by Equation (6). Comparing the chiral
instability scale k 1

m
- with ℓmfp results in the condition 5m 

k T 4 ln 4B
2

em em
1 2p a pa -(( ) ). Strictly speaking, modeling a

system that does not fulfill this condition requires full kinetic
theory as described, for example, in Chen et al. (2013) or in
Akamatsu & Yamamoto (2013).

The growth rate of an initially weak magnetic field in the
linear stage of the chiral dynamo instability is given by

Equation (27):

T
4

2.4 10 s . 54max 0
2

19
100

1 1g
m h

= » ´m
- - ( )

For the value of the magnetic diffusivity c 42h ps= ( ) in
the early universe, we adopted the conductivity σ from
Equation (1.11) of Arnold et al. (2000). Numerically,

T
c

k T
T7.3 10 4.3 10 cm s , 554

2

B

9
100

1 2 1
h = ´ » ´- - - -( ) ( )

where T 1.2 10 K100
15= ´ (so that k T 100 GeVB 100 = ). As a

result, the number of e-foldings over one Hubble time tH is

t 1,max
Hgm 

where

t H T g T4.8 10 s 56H
1 11

100
1 2

100
2= » ´- - - -( ) ( )

(here g* is the number of relativistic degrees of freedom and
g g 100100 *

= ). We should stress that this picture has been
known before and was described in many previous works
(Joyce & Shaposhnikov 1997; Fröhlich & Pedrini 2000, 2002;
Boyarsky et al. 2012).
We note that a nonzero chiral flipping rate fG has been

discussed in the literature (Campbell et al. 1992; Boyarsky
et al. 2012, 2015; Dvornikov & Semikoz 2015c; Sigl &
Leite 2016). In Section 3.2.6, we have found in numerical
simulations that the flipping term affects the evolution of the
magnetic field only for large values of fμ, when the flipping
term is of the order of or larger than the lm term in
Equation (14); see also Equation (30) and Figure 5. When
adopting the estimate in Brandenburg et al. (2017b) of
fμ≈1.6×10−7, chirality flipping is not likely to play a
significant role for the laminar v2

m dynamo in the early universe
at very high temperatures of the order of100 GeV. However, fG
depends on the ratio m c k Te

2
B( ) and thus suppresses all chiral

effects once the universe has cooled down to k T m ceB
2»

(Boyarsky et al. 2012). At this point, we stress again that the
true value of μ0 is unknown and has here been set to the
thermal energy in Equation (53). If it turns out that the initial
value of the chiral chemical potential is much smaller than the
thermal energy, fμ becomes larger, and the flipping rate can
play a more important role already during the initial phases of
the chiral instability in the early universe. This scenario is not
considered in the following discussion.
In the regime of the laminar v2

m dynamo, one could reach
109( ) e-folds over the Hubble time tH; see lower panel of

Figure 19. However, as shown in this work, already after a few
hundred e-foldings, the magnetic field starts to excite
turbulence via the Lorentz force. This happens once the
magnetic field is no longer force-free. Once the flow velocities
reach the level v 0m h=m , nonlinear terms are no longer small,
small-scale turbulence is produced, and the next phase begins.
Phase 2. The subsequent evolution of the magnetic field

depends on the strength of the chiral magnetically excited
turbulence. This has been shown in the mean-field analysis of
Rogachevskii et al. (2017) and is confirmed by the present
work; see, for example, Figure 17. The growth rate and
instability scale depend on the magnetic Reynolds number; see
Equations (44)–(46). The maximum growth rate for Re 1M is

Figure 18. Chiral MHD dynamos in the early universe. Sketch of the different
phases of the chiral mean-field dynamo. From left to right: small-scale chiral
dynamo (phase 1), large-scale turbulent dynamo (phase 2), and saturation
(phase 3). After saturation of the dynamo, the magnetic field dissipates. The
upper horizontal dotted line shows the initial value of μ and the lower one the
“saturation limit,” given by Equation (60).
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given by

4

3

lnRe

Re
, 57max max

2
M

M

g g=a m
( ) ( )

where maxgm is given by Equation (54). For the early universe, it
is impossible to determine the exact value of the magnetic
Reynolds number from the numerical simulations, but one
expects Re 1M  , and we show in Figure 19 that, in a wide
range of magnetic Reynolds numbers, 1 Re 6 1012

M ´  ,
the number of e-foldings during one Hubble time is much
larger than 1. The turbulence efficiently excites magnetic fields
at scales much larger than ξμ (Figure 19, top panel).

Using dimensional analysis and DNS, Brandenburg et al.
(2017b) demonstrated that the resulting spectrum of the
magnetic fields behaves as E kM

2µ - between kμ and kλ,
given by Equation (21). The wavenumber kλ depends on the
nonlinearity parameter λ, defined by Equation (5), which, in
the early universe, is given by

c
k T

T3
8

1.3 10 cm erg . 58em

B

2
17

100
2 1l

a
= » ´ - - -

⎛
⎝⎜

⎞
⎠⎟ ( )

We note that this expression is, strictly speaking, only valid
when k T max ,L RB m m (∣ ∣ ∣ ∣), and modifications might be
expected outside of this regime. Further, the mean density of
the plasma

g
k T

c
g T

30
7.6 10 g cm . 59

2
B

4

3 5
26

100 100
4 3

* 
r

p
= » ´ -( ) ( )

The ratio ξλ/ξμ=kμ/kλ is presented in the top panel of
Figure 19, but we note that the exact numerical coefficient in
the condition k k 1m l  might depend on ReM.
Phase 3. The stage of large-scale turbulent dynamo action

ends with the saturation phase (see Section 4.4 and Figure 18).
At this stage, the total chiral charge (determined by the initial
conditions) gets transferred to magnetic helicity. As shown in
Boyarsky et al. (2012; see also Joyce & Shaposhnikov 1997 for
earlier work, as well as Tashiro et al. 2012 and Hirono et al.
2015 for more discussion), and confirmed by numerical
simulations in Brandenburg et al. (2017b) and in the present
work, the chiral chemical potential μ follows kM at this stage
and thus decreases with time. Therefore, most of the chiral
charge will be transferred with time into magnetic helicity,

A B B
2

, 60M
2 0x

m
l

á ñ á ñ · ( )

switching off the CME (the end of Phase 3 in Figure 18).

6.1.2. Chiral MHD and Cosmic Magnetic Fields

Magnetic fields produced by chiral dynamos are fully
helical. Once the CME has become negligible, the subsequent
phase of decaying helical turbulence begins and the magnetic
energy decreases, while the magnetic correlation length
increases in such a way that the magnetic helicity (60) is
conserved for very small magnetic diffusivity (Biskamp &
Müller 1999; Kahniashvili et al. 2013b).
Based on Equation (60), one can estimate the magnetic

helicity today; see also Brandenburg et al. (2017b). Taking as
an estimate for the chiral chemical potential k T5 Bm ~ (this
means that the density of the chiral charge is of the order of the
number density of photons), one finds

B
c g

g
n

4
6 10 G Mpc. 612

M
em

0 0 38 2

*


x

a
á ñ ´g

-  ( )( )

Here, the present number density of photons is n 0 =g
( )

411 cm 3- , and the ratio g g 3.36 106.750 *
» of the effective

relativistic degrees of freedom today and at the EW epoch
appears, because the photon number density dilutes as T3 while
the magnetic helicity dilutes as a 3- . We recall that, to arrive at
the numerical value in G Mpc2 given in Equation (61), an
additional 4π factor was applied to convert to Gaussian units.
Under the assumption that the spectrum of the cosmic

magnetic field is sharply peaked at some scale ξ0 (as is the
case in all of the simulations presented here), the lower
bounds on magnetic fields, inferred from the nonobservation
of gigaelectronvolt cascades from teraelectronvolt sources
(Neronov & Vovk 2010; Tavecchio et al. 2010; Dolag
et al. 2011), can be directly translated into a bound on
magnetic helicity today. The observational bound scales as
B 0

1 2xµ -∣ ∣ for ξ0<1 Mpc (Neronov & Vovk 2010), and
therefore B const 8 10 G Mpc2

0
38 2xá ñ = > ´ - . The numerical

value is obtained using the most conservative bound

Figure 19. Chiral MHD dynamos in the early universe. The ratios between ξα
of the turbulence-driven dynamo (Equation (45)) and scale ξμ (Equation (52)),
as well as the ratio between ξμ and the Hubble radius at different temperatures.
In the top panel, furthermore, the ratio ξμ/ξλ is presented. Maximum growth
rates over the Hubble time for laminar ( maxgm ) and turbulent ( maxga ) regimes are
shown in the bottom panel.
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B 10 G18 -∣ ∣ at 1 Mpc (Dermer et al. 2011; see also Durrer
& Neronov 2013). These observational constraints for
intergalactic magnetic fields are compared to the magnetic
field produced in chiral MHD for different values of the
initial chiral chemical potential in Figure 20.

The limit given by Equation (61) is quite general. It does not
rely on chiral MHD or the CME, but simply reinterprets the
bounds of Neronov & Vovk (2010), Tavecchio et al. (2010),
Dolag et al. (2011), and Dermer et al. (2011) as bounds on
magnetic helicity. Given such an interpretation, we conclude that
if cosmic magnetic fields are helical and have a cosmological
origin, then at some moment in the history of the universe the
density of chiral charge was much larger than nγ(T). This chiral
charge can be, for example, in the form of magnetic helicity or of
chiral asymmetry of fermions, or both. To generate such a charge
density, some new physics beyond the Standard Model of
elementary particles is required. Below we list several possible
mechanisms that can generate large initial chiral charge density:

(1) The upper bound in Equation (61) assumes that only one
fermion of the Standard Model developed a chiral
asymmetry n~ g. Many fermionic species are present in
the plasma at the electroweak epoch. They all can have a
left–right asymmetric population of comparable size,
increasing the total chirality by a factor 10( ), which
makes the estimate(61) consistent with the lower bound
from Dermer et al. (2011). One should check, of course,
whether for more massive fermions the chirality flipping
rate is much slower than the dynamo growth rate
determined by Equation (54).

(2) The estimate(61) assumed that left–right asymmetry was
created via thermal processes. Of course, new physics at the
EW epoch can result in nonthermal production of chiral

asymmetry (e.g., via decays of some long-lived particles),
thus leading to n n5 g and so increasing the limit (61).

(3) The left–right asymmetry may be produced as a conse-
quence of the decay of helical hypermagnetic fields prior to
the EW epoch. Such a scenario, relating hypermagnetic
helicity to the chiral asymmetry, has been discussed
previously, such as in Giovannini & Shaposhnikov (1998)
and Semikoz et al. (2012). A conservation law similar to
that of(10) exists also for hypermagnetic fields, and the
decay of the latter may cause asymmetric populations of left
and right states.

(4) In our analysis, we have not taken into account the chiral
vortical effect (Vilenkin 1979). For nonvanishing chemi-
cal potential, it leads to an additional current along the
direction of vorticity (see, e.g., Tashiro et al. 2012).

From the point of view of chiral MHD, the value of μ0 (to
which this bound is proportional) is just an initial condition and
therefore can take arbitrary values. Once an initial condition with a
large value of μ0 has been generated, the subsequent evolution (as
described above) does not require any new physics.
Moreover, the coupled evolution of magnetic helicity and

chiral chemical potential is unavoidable in the relativistic
plasma and should be an integral part of relativistic MHD (as
was discussed in PaperI).

6.2. PNSs and the CME

In this section, we explore whether the CME and chiral
dynamos can play a role in the development of strong magnetic
fields in neutron stars. A PNS is a stage of stellar evolution
after the supernova core collapse and before the cold and
dense neutron star is formed (see, e.g., Pons et al. 1999).
PNSs are characterized by high temperatures (typically k TB ~

m c10 MeV e
2 ( ) ), large lepton number density (electron

Fermi energy em~ a few hundreds of megaelectronvolts), the
presence of turbulent flows in the interior, and quickly
changing environments. Once the formation of a neutron star
is completed, its magnetic field can be extremely large. Neutron
stars that exceed the quantum electrodynamic limit
B m c e 4.4 10 GeQED

2 3 13º » ´( ) are known as “mag-
netars” (see, e.g., Mereghetti et al. 2015; Turolla et al. 2015;
Kaspi & Beloborodov 2017, for recent reviews). The origin of
such strong magnetic fields remains unknown, although many
explanations have been proposed; see, for example, Duncan &
Thompson (1992), Akiyama et al. (2003), and Ferrario &
Wickramasinghe (2006).
The role of the CME in the physics of (proto)neutron stars

and their contribution to the generation of strong magnetic
fields have been discussed in a number of works (Charbonneau
& Zhitnitsky 2010; Ohnishi & Yamamoto 2014; Dvornikov &
Semikoz 2015b, 2015c; Grabowska et al. 2015; Dvornikov
2018; Sigl & Leite 2016; Yamamoto 2016).

6.2.1. Chiral MHD in PNSs

During the formation of a PNS, electrons and protons are
converted into neutrons, leaving behind left-handed neutrinos.
This is known as the Urca process (e p n en+  + ; Haensel
1995). If the chirality-flipping timescale, determined by the
electron’s mass, is longer than the instability scale, the net chiral
asymmetry in the PNS can lead to the generation of magnetic
fields. This scenario has been discussed previously (Ohnishi &
Yamamoto 2014; Grabowska et al. 2015; Sigl & Leite 2016). The

Figure 20. Chiral MHD dynamos in the early universe. The magnetic field
strength resulting from a chiral dynamo as a function of correlation length in
comoving units and comparison with observational constraints. The differently
colored lines show the chiral magnetically produced magnetic field strength in
the range between the injection length 1m- and the saturation length k ;1

l
- see

Equations (52) and (21), respectively. The colors indicate different values of
the chiral chemical potential: red refers to the value of μ0 given in
Equation (53), blue to 10 2

0m- , and purple to 102
0m . The dashed gray line is

an upper limit on the intergalactic magnetic field from Zeeman splitting. Solid
gray lines refer to the lower limits reported by Neronov & Vovk (2010; NV10)
and Dermer et al. (2011; D+11). The vertical dotted gray lines show the
horizon at k T 100 GeVB = and 100 MeV correspondingly. The thin colored
arrows refer to the nonlinear evolution of magnetic fields in an inverse cascade
in helical turbulence up to the final value as given in Banerjee & Jedamzik
(2004; line BJ04).
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chiral turbulent dynamos discussed in this work can be relevant
for the physics of PNSs and can affect our conclusions about the
importance of the CME. However, to make a detailed quantitative
analysis, a number of factors should be taken into account:

(1) The rate of the Urca process is strongly temperature
dependent (Lattimer et al. 1991; Haensel 1995). The
temperatures inside PNSs are only known with large
uncertainties, and the cooling occurs on a scale of
seconds (see, e.g., Pons et al. 1999), making estimates of
the Urca rates uncertain by orders of magnitude.

(2) The chirality flipping rate that aims to restore the depleted
population of left-chiral electrons is also expected to be
temperature dependent (see, e.g., Grabowska et al. 2015;
Sigl & Leite 2016).

(3) The neutrinos produced via the Urca process are trapped
in the interior of a PNS and can release the chiral
asymmetry back into the plasma via the n e pen+  +
process. Therefore, only when the star becomes trans-
parent to neutrinos (as the temperature drops to a few
megaelectronvolts) does the creation of chiral asymmetry
become significant.

Modeling the details of PNS cooling and neutrino propaga-
tion is beyond the scope of this paper. Below we perform the
estimates that demonstrate that chiral MHD can significantly
change the picture of the evolution of a PNS.

6.2.2. Estimates of the Relevant Parameters

An upper limit of the chiral chemical potential can be
estimated by assuming that nL=0 and nR=ne (all left-chiral
electrons have been converted into neutrinos, and the rate of
chirality flipping is much slower than other relevant processes).
This leads to the estimate e5m m and correspondingly

c
4 4 10 cm

250 MeV
, 62e e

max em
11 1


m a

m m
= » ´ - ⎜ ⎟⎛

⎝
⎞
⎠ ( )

where we have used a typical value of the electron’s Fermi
energy μe (Pons et al. 1999). For an ultrarelativistic degenerate
electron gas (i.e., when k T m ce eB

2m   ), the relation
between the number density of electrons, ne, and their Fermi
energy, μe, is

c n
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The interior of neutron stars is a conducting medium whose
conductivity is estimated to be (Baym et al. 1969; Kelly 1973)
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(there is actually a difference in the numerical coefficient 1( )
between the results of Baym et al. 1969 and Kelly 1973). Using
Equation (65), we find the magnetic diffusion coefficient to be
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Therefore, we can determine the the maximum growth rate of
the small-scale chiral instability (27) as

k T
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We see that over a characteristic time 1 scoolt ~ (the typical
cooling time), the magnetic field would increase by many
e-foldings. In fact, using a flipping rate of 10 sf

14G = , as
suggested in Grabowska et al. (2015) for 100 MeVem = and
k T 30 MeVB = , we find that fμ ranges from 9 10 3» ´ - down
to 9 10 7» ´ - for the range between k T 1 MeVB = and
k T 100 MeVB = . Hence the evolution of the chemical potential
and the chiral dynamo is weakly affected by flipping reactions.
As in Section 6.1.1, the phase of the small-scale instability

ends when turbulence is excited. It should be stressed,
however, that unlike the early universe, the interiors of PNSs
are expected to be turbulent with high ReM even in the absence
of chiral effects (with ReM as large as 1017); see Thompson &
Duncan (1993). Therefore, the system may find itself in the
forced turbulence regime of Section 5.2. Figure 21 shows that
in a wide range of magnetic Reynolds numbers, one can have

Figure 21. Chiral MHD dynamos in PNSs. Laminar and turbulent growth rate
multiplied by the cooling timescale (top panel) and the characteristic scales of
chiral MHD normalized by the typical radius of the PNS r 10 kmNS ~ (bottom
panel). The estimates are presented as a function of Re M. The initial value of
the chiral chemical potential is assumed at the level(62), and we use
μe=250 MeV. Since the conductivity is temperature dependent, the ratios
including η are presented for both k T 1 MeVB = and k T 10 MeVB = .
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many e-foldings over a typical timescale of the PNS and that
the scale of the magnetic field can reach macroscopic size.

6.2.3. Estimate of Magnetic Field Strengths

A dedicated analysis, taking into account temperature and
density evolution of the PNS as well as its turbulent regimes, is
needed to make detailed predictions. Here we will make the
estimates of the strength of the magnetic field, similar to
Section 6.1. To this end, we use the conservation law(10),
assuming 0 maxm m= . In the PNS case, the plasma is
degenerate, and therefore the relation between n5 and μ5 is
given by

n T
3

3 68e5
5
2

2 2 2m
p

m p= +( ) ( )

(in the limit T5m  ). As a result, the chiral feedback
parameter λ is
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which determines the wavenumber kλ; see Equation (21). The
corresponding length scale k 1x =l l

- is presented in the top
panel of Figure 21, where we assume a mean density of the
PNS of 2.8 10 gcmPNS

14 3r = ´ - .
Using Equations (62) and (69), we find
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Assuming for the maximum correlation scale ξPNS∼1 cm (see
Figure 21), we find that magnetic field strength is of the order of
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Notice that the estimate(70) is independent of T (but depends
strongly on the assumed value of μe).

Our estimates have demonstrated that the chiral MHD could
be capable of generating strong small-scale magnetic fields.
Therefore, chiral effects should be included in the modeling of
evolution of PNSs.

7. Conclusions

In this work, we have presented results from numerical
simulations of chiral MHD that include the temporal and spatial
evolution of magnetic fields, plasma motions, and the chiral
chemical potential. The latter, characterizing the asymmetry
between left- and right-handed fermions, gives rise to the CME,
which results in the excitation of a small-scale chiral dynamo
instability.

Our numerical simulations are performed for the system of
chiral MHD Equations (1)–(4) that was derived in PaperI. This
system of equations is valid for plasmas with high electric
conductivity, that is, in the limit of high and moderately high
Reynolds numbers. Chiral flipping reactions are neglected in
most of the simulations. In the majority of the runs, the initial
conditions are a very weak magnetic seed field and a high

chiral chemical potential. Both initially force-free systems and
systems with external forcing of turbulence are considered.
With our numerical simulations, we confirm various theoretical
predictions of the chiral laminar and turbulent large-scale
dynamos discussed in PaperI.
Our findings from DNS can be summarized as follows:

(A) The evolution of magnetic fields studied here in DNS
agrees with the predictions made in PaperI for all types
of laminar dynamos. In particular, the scalings of the
maximum growth rate of the chiral dynamo instability

v2g µm m for the v2
m dynamo (see Figure 2) and g µm

Sv 2 3
m( ) for the vμ–shear dynamo (see Figure 7) have been

confirmed. Additionally, the transitional regime of a v2
m–

shear dynamo, where the contributions from the v2
m and

shear terms are comparable, agrees with theoretical
predictions, as can be seen in Figure 8. In our DNS, the
scale-dependent amplification of the magnetic field in the
laminar chiral dynamo is observed in the energy spectra;
see, for example, Figure 10, where the maximum growth
rate of the v2

m dynamo instability is attained at
wavenumber k 20m=m .

(B) The conservation law(8) for total chirality implies a
maximum magnetic field strength of the order of
Bsat 0 M

1 2m x l» ( ) . This dependence of Bsat on the
chiral nonlinearity parameter λ has been confirmed
numerically and is presented in Figure 4.

(C) The CME can drive turbulence efficiently via the Lorentz
force, which has been demonstrated in our numerical
simulations through the measured growth rate of the
turbulent velocity, which is larger by approximately a
factor of two than that of the magnetic field; see, for
example, the middle panel of Figure 9.

(D) In the presence of small-scale turbulence, the large-scale
dynamo operates due to the chiral αμ effect, which is not
related to the kinetic helicity; see Equation (47). In the
limit of large magnetic Reynolds numbers, the maximum
growth rate of the large-scale dynamo instability is
reduced by a factor of 4 3 ln Re Re2

M M( )( ) as compared
to the laminar case; see Equation (51). The dynamo
growth rate is close to this prediction of mean-field chiral
MHD for both chiral magnetically produced turbulence
and for externally driven turbulence; see Figure 17.

(E) Using DNS, we found a new scenario of the magnetic
field evolution consisting of three phases (see also the
schematic overview in Figure 18):
(1) small-scale chiral dynamo instability;
(2) production of small-scale turbulence, inverse transfer

of magnetic energy, and generation of a large-scale
magnetic field by the chiral αμ effect;

(3) saturation of the large-scale chiral dynamo by a
decrease of the CME controlled by the conservation
law for the total chirality: A B 2 0l m má ñ + á ñ =· .

The previously discussed scenario of magnetic field evolution
caused by the CME (Boyarsky et al. 2012) did not include the
second phase.

While the results summarized above have been obtained in
simulations of well-resolved periodic domains, astrophysical
parameters are beyond the regime accessible to DNS. Hence
we can only estimate the effects of the chiral anomaly in
relativistic astrophysical plasmas, like in the early universe or
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in neutron stars. The main conclusions from the astrophysical
applications are the following:

(1) The chiral MHD scenario found in DNS may help to
explain the origin of the magnetic field observed in the
interstellar medium. The chiral dynamo instability
produces helical magnetic fields initially at small spatial
scales and simultaneously drives turbulence, which
generates a magnetic field on large scales. After the
chiral chemical potential has been transformed into
magnetic helicity during the dynamo saturation phase,
the magnetic field cascades to larger spatial scales
according to the phenomenology of decaying MHD
turbulence. We have estimated the values of μ0 and λ for
the early universe. These parameters determine the time
and spatial scales associated with the chiral dynamo
instability (see Figure 19) and the maximum magnetic
helicity (see Equation (61)). Our estimates for magnetic
fields produced by chiral dynamos in the early universe
are consistent with the observational lower limits found
by Dermer et al. (2011; see Figure 20) if we assume that
the initial chiral chemical potential is of the order of the
thermal energy density.

(2) In PNSs, chiral dynamos operating in the first tens of
seconds after the supernova explosion can produce
magnetic fields of approximately 10 G12 at a magnetic
correlation length of 1 cm; see Equation (72). However,
we stress that many questions remain open, especially
regarding the generation of a chiral asymmetry and the
role of the chiral flipping term in PNSs.

Finally, we stress again that the parameters and the initial
conditions, including the initial chiral asymmetry, are unknown
in the astrophysical systems discussed in this paper. Hence, the
purpose of our applications should be classified as a study of
the conditions under which the CME plays a significant role
in the evolution of a plasma of relativistic charged fermions.
With the regimes accessible to our simulations not being truly
realistic in the context of the physics of the early universe and
in neutron stars, our applications have a rather exploratory
nature. In this sense, our results from DNS can be used to
answer the question in which area of plasma physics—the
physics of the early universe, the physics of neutron stars, or
the physics of heavy ion collisions—the CME is important and
can modify the evolution of magnetic fields.
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