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Invited Discussion

Peter Grünwald∗ and Rianne de Heide†

Yao et al. (2018) aim to improve Bayesian model averaging (BMA) in the M-open
(misspecified) case by replacing it with stacking, which is extended to combine predictive
distributions rather than point estimates. We generally applaud the program to adjust
Bayesian methods to better deal with M-open cases and we can definitely see merit
in stacking-based approaches. Yet, we feel that the main method advocated by Yao
et al. (2018), which stacks based on the log score, while often outperforming BMA,
fails to address a crucial problem of the M-open-BMA setting. This is the problem of
hypercompression as identified by Grünwald and Van Ommen (2017), and shown also
to occur with real-world data by De Heide (2016). We explore this issue in Section 2;
first, we very briefly compare stacking to a related method called switching.

1 Stacking and Switching

Standard BMA can already be viewed in terms of minimizing a sum of log score pre-
diction errors via Dawid’s (1984) prequential interpretation of BMA. Based on this
interpretation, Van Erven et al. (2012) designed the switch distribution as a method for
combining Bayes predictive densities with asymptotics that coincide, up to a log log n
factor, with those of the Akaike Information Criterion (AIC) and leave-one-out cross
validation (LOO). It can vastly outperform standard BMA (see Figure 1 from their
paper), yet is designed in a manner that stays closer to the Bayesian ideal than stack-
ing. It has the additional benefit that if one happens to be so lucky to unknowingly
reside in the M-closed (correctly specified) case after all, the procedure becomes sta-
tistically consistent, selecting asymptotically the smallest model Mk that contains the
data generating distribution P ∗. We suspect that in this M-closed case, stacking will
behave like AIC, which, in the case of nested models, even asymptotically will select
an overly large model with positive probability (for theoretical rate-of-convergence and
consistency results for switching see Van der Pas and Grünwald (2018)). Moreover, by
its very construction, switching, like stacking, should resolve another central problem
of BMA identified by (Yao et al., 2018, Section 2), namely its sensitivity to the prior
chosen within the models Mk. On the other hand, in the M-open case, switching will
asymptotically concentrate on the single, smallest Mk that contains the distribution P̃
closest to P ∗ in KL-divergence; stacking will provide a weighted predictive distribution
that may come significantly closer to P ∗, as indicated by (Yao et al., 2018, Section 3.2).
To give a very rough idea of ‘switching’: in the case of just two models M = {M1,M2},
switching can be interpreted as BMA applied to a modified set of models {M〈j〉 : j ∈ N}
where M〈j〉 represents a model that follows the Bayes predictive density of model M1

until time j and then switches to the Bayes predictive density corresponding to model
M2; dynamic programming allows for efficient implementation even when the number
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of models K is larger than 2. It would be of interest to compare stacking to switching,
and compile a list of the pros and cons of each.

2 Standard BMA, Stacking and SafeBMA

Grünwald and Van Ommen (2017) give a simple example of BMA misbehaving in an
M-open regression context. We start with a set of K + 1 models M = {M1, . . . ,MK}
to model data (Z1, Y1), (Z2, Y2), . . .. Each model Mk = {pβ,σ2 : β ∈ R

k+1, σ2 > 0} is
a standard linear regression model, i.e. a set of conditional densities expressing that
Yi =

∑k
j=0 βjXij + ξi. Here Xij is the j-th degree Legendre polynomial applied to one-

dimensional random variable Zi with support [−1, 1] (i.e. Xi1 = Zi, Xi2 = (3Z2
i − 1)/2,

and so on), and the ξi are i.i.d. N(0, σ2) noise variables. We equip each model with
standard priors, for example, aN(0, σ2) prior on the β’s conditional on σ2 and an inverse
Gamma on σ2. We put a uniform or a decreasing prior on the models Mk themselves.
The actual data Zi, Yi are i.i.d. ∼ P ∗. Here P ∗ is defined as follows: at each i, a fair
coin is tossed. If the coin lands heads, then Zi is sampled uniformly from [−1, 1], and
Yi is sampled from N(0, 1). If it lands tails, then (Zi, Yi) is simply set to (0, 0). Thus,
M1, the simplest model on the list, already contains the density in

⋃
k=1..K Mk that is

closest to P ∗(Y | X) in KL divergence. This is the density pβ̃,1/2 with β̃ = 0, which is
incorrect in that it assumes homoskedastic noise while in reality noise is heteroskedastic;
yet pβ̃,1/2 does give the correct regression function E[Y | X] ≡ 0. M1 is thus ‘wrong
but highly useful’. Still, while M1 receives the highest prior mass, until a sample size
of about 2K is reached, BMA puts nearly all of its weight on models Mk′ with k′

close to the maximum K, leading to rather dreadful predictions of E[Y | X]. Figure 1
(green) shows E[Y | X] where the expectation is under the Bayes predictive distribution
arrived at by BMA at sample size 50, for K = 30. On the other hand, SafeBayesian
model averaging, a simple modification of BMA that employs likelihoods raised to an
empirically determined power η < 1, performs excellently in this experiment; for details
we refer to Grünwald and Van Ommen (2017). We also note that other common choices
for priors on (β, σ2) lead to the same results; also, we can take the Xi0, Xi1, . . . , XiK to
be trigonometric basis functions or i.i.d. Gaussians rather than polynomials of Zi, still
getting essentially the same results. De Heide (2016) presents various real-world data
sets in which a similar phenomenon occurs.

Given these problematic results for BMA in an M-open scenario, it is natural to
check how Yao et al. (2018)’s stacking approach (based on log score) fares on this
example. We tried (implementation details at the end of this section, and obtained
the red line in Figure 1. While the behaviour is definitely better than that of BMA,
we do see a milder variation of the same overfitting phenomenon. We still regard this
as undesirable, especially because another method (SafeBMA) behaves substantially
better. To be fair, we should add that (Yao et al., 2018, Section 3.3.) advise that for
extremely small n, their current method can be unstable. The figure reports the result
on a simulated data sequence, for which, according to the diagnostics in their software,
their method should be reasonably accurate (details at the end of this section). Since,
moreover, results (not shown) based on the closely related LOO model selection with log



P. Grünwald and R. de Heide 959

Figure 1: The conditional expectation E[Y |X] according to the predictive distribution
found by stacking (red), standard BMA (green) and SafeBayesian regression (blue),
based on models M1, . . . ,M30 with polynomial basis functions, given 50 data points
sampled i.i.d. ∼ P ∗, of which approximately half are placed in (0, 0). The true regres-
sion function is depicted in black. Behaviour of stacking and standard BMA slowly
improves as sample size increases and becomes comparable to SafeBMA around n = 80
for stacking and n = 120 for BMA. Implementation details are given at the end of the
section.

score yield very similar results, we do think that there is an issue here – stacking in itself
is not sufficient to get useful weighted combinations of Bayes predictive distributions in
some small sample situations where such combinations do exist.

Hypercompression The underlying problem is best explained in a simplified setting
without random covariates: let Y1, Y2, . . . i.i.d.∼ P ∗ and each modelMk a set of densities
for the Yi. Denote by p̃ the density in

⋃
k=1..K Mk that minimizes KL divergence to P ∗.

Then, under misspecification, we can have for some k = 1..K that

EY n∼P∗ [− log p(y1, . . . , yn | Mk)] � EY n∼P∗ [− log p̃(y1, . . . , yn)] . (1)

This can happen even for a k such that p̃ 
∈ Mk. (1) is possible because p(y1, . . . , yn | Mk)
is a mixture of distributions in Mk, and may thus be closer to P ∗ than any single
element of Mk. This phenomenon, dubbed hypercompression and extensively studied
and explained by Grünwald and Van Ommen (2017), has the following effect: if Mj

for some j 
= k contains p̃ and, at the given sample size, has its predictive distribution
p(yn | yn−1,Mj) already indistinguishable from p̃, yet the posterior based on Mk has
not concentrated on anything near p̃ (or Mk does not even contain p̃), then Mk might
still be preferred in terms of log score and hence chosen by BMA. The crucial point
for the present discussion is that with stacking based on the log score, the preferred
method of Yao et al. (2018) (see Section 3.1.), the same can happen: (1) implies that
for a substantial fraction of outcomes yi in y1, . . . , yn, one will tend to have, with
y−i := (y1, . . . , yi−1, yi+1, . . . , yn), that

− log p(yi | y−i,Mk) � − log p̃(yi), (2)

hence also giving an advantage to Mk compared to the KL-best p̃ and Mk′ .
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But why would this be undesirable? It turns out that the predictive distribution p(· |
y−i,Mk) in (2) achieves being significantly closer to P ∗ in terms of KL divergence than
any of the elements inside Mk, by being a mixture of elements of Mk which themselves
are all very ‘bad’, i.e. very far from P ∗ in terms of KL divergence (see in particular
Figure 7 and 8 of Grünwald and Van Ommen (2017)). As a result, using a log score
oriented averaging procedure, whether it be BMA or stacking, one can select an Mk

whose predictive is good, at sample size i, in log score, but quite bad in terms of
just about any other measure. For example, consider a linear model Mk as above.
For such models, for fixed σ2, as a function of β, the KL divergence D(P ∗‖pβ,σ2) :=
EX∼P∗EY∼P∗|X [log p∗(Y | X)/pβ,σ2(Y | X) is linearly increasing in the mean squared
error EX,Y∼P∗(Y −βTX)2. Therefore, one commonly associates a predictive distribution
p(yi | xi) that behaves well in terms of log score (close in KL divergence to P ∗) to be
also good in predicting yi as a function of the newly observed xi in terms of the squared
prediction error. Yet, this is true only if p is actually of the form pβ,σ2 ∈ Mk; the Bayes
predictive distribution, being a mixture, is simply not of this form and can be good at
the log score yet very bad at squared error predictions.

Now it might of course be argued that none of this matters: stacking for the log
score was designed to come up with a predictive that is good in terms of log score. . .
and it does! Indeed, if one really deals with a practical prediction problem in which
one’s prediction quality will be directly measured by log score, then stacking with the
log score should work great. But to our knowledge, the only such problems are data
compression problems in which log score represents codelength. In most applications
in which log score is used, it is rather used for its generic properties, and then the
resulting predictive distributions may be used in other ways (they may be plotted to
give insight in the data, or they may be used to make predictions against other loss
functions, which may not have been specified in advance). For example (Yao et al.,
2018, end of Section 3.1) cite the generic properties that log score is local and proper
as a reason for adopting it. Our example indicates that in the M-open case, such use of
log score for its generic properties only can give misleading results. The SafeBayesian
method overcomes this problem by exponentiating the likelihood to the power η that
minimizes a variation of log-score for predictive densities (the R-log loss, Eq. (23) in
Grünwald and Van Ommen (2017)) in which loss cannot be made smaller by mixing
together bad densities.

Some Details Concerning Figure 1 The conditional expectations E[Y | X] in Figure 1
are based on a simulation in which the models are trained with 30 Legendre polynomial
basis functions on 50 data points, as described in Section 2. The green curve represents
E[Y | X] according to the predictive distribution resulting from BMA with a uniform
prior on the models, where we used the function bms of the R-package BMS. The red curve
is based on stacking of predictive distributions, where we used the implementation with
Stan and R exactly as described in the appendix of Yao et al. (2018). The black line
depicts the true regression function Y = 0. The blue curve is SBRidgeIlog, which is an
implementation of I-log-SafeBayesian Ridge Regression (see Grünwald and Van Ommen
(2017) for details) from the R-package SafeBayes (De Heide, 2016), based on the largest
model MK . The regression functions based on Mk for all k < K are even closer to Y = 0
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(not shown). The regression function according to the Safe BMA predictive distribution
is a mixture of all these Ridge-based regression functions hence also close to 0.

As Yao et al. (2018) note, the implementation of their method can be unstable when
the ratio of relative sample size to the effective number of parameters is small. We
encountered this unstable behaviour for a large proportion of the simulations when the
sample size was relatively small, and the Pareto-k-diagnostic (indicating stability) was
above 0.5, though mostly below 0.7, for some data points. In those cases the method
did not give sensible outputs, irrespective of the true regression function (which we set
to, among others, Yi = 0.5Xi + ξi and Yi = X2

i + ξi, and we also experimented with a
Fourier basis). Thus, we re-generated the whole sample of size n = 50 many times and
only considered the runs in which the k-diagnostic was below 0.5 for all data points.
In all those cases, we observed the overfitting behaviour depicted in Figure 1. This
‘sampling towards stable behaviour’ may of course induce bias. Nevertheless, the fact
that we get very similar results for model selection rather than stacking (mixing) based
on LOO with log-score indicates that the stacking curve in Figure 1 is representative.
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