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ABSTRACT

The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis
challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images
that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation
of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to
the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge
is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects
that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a
community challenge before. These effects include many novel aspects including realistically complex galaxy
models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel;
and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a
diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for
the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided.
See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.

Key words: gravitational lensing: weak – methods: data analysis – methods: statistical –
techniques: image processing
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1. INTRODUCTION

In our currently accepted cosmological model, the baryonic
matter from which stars and planets are made accounts for
only 4% of the energy density of the universe. In order to
explain many cosmological observations, we have been forced
to posit the existence of dark matter (which we detect through
its gravitational attraction) and dark energy (which causes
a repulsion that is driving the accelerated expansion of the
universe, the discovery of which led to the 2011 Nobel Prize in
Physics). While we infer the existence of these dark components,
the question of what they actually are remains a mystery.

Gravitational lensing is the deflection of light from distant
objects by all matter along its path, including dark matter

(Figure 1). Lensing measurements are thus directly sensitive
to dark matter. They also permit us to infer the properties
of dark energy (Hu 2002), because the accelerated expansion
of the universe that it causes directly opposes the effects of
gravity (which tends to cause matter to clump into ever larger
structures) and influences light propagation through its impact
on the geometry of the universe.

This measurement entails detecting small but spatially coher-
ent distortions (known as weak shears) in the shapes of distant
galaxies, which provide a statistical map of large-scale cos-
mological structures. Weak lensing measurements have already
placed some constraint on the growth of structure, typically
with 10% statistical errors, or as small as 5% for the most re-
cent analyses (Heymans et al. 2013; Jee et al. 2013). Because
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Figure 1. Illustration of the process of gravitational lensing and other effects that change the apparent shapes of galaxies in the astronomical imaging process. (Based
on Figure 8 from Kitching et al. 2011).

(A color version of this figure is available in the online journal.)

of the sensitivity of weak lensing to the dark components of the
universe, the astronomical community has designed upcoming
surveys to measure it very precisely, and thereby constrain cos-
mological parameters. In addition to several experiments begin-
ning in 2013, there are even larger experiments that are planned
to start at the end of this decade. In the Astro2010 Decadal
Survey of US astronomy (Blandford et al. 2010), the most highly
endorsed large experiments both from the ground (the Large
Synoptic Survey Telescope, or LSST) and space (the Wide-
Field Infrared Survey Telescope, or WFIRST-AFTA) are ones
with a significant emphasis on weak lensing cosmology. The
European Space Agency recently decided that of several possi-
ble large space-based astronomical surveys, they will proceed
with the Euclid mission, which likewise has a major emphasis
on lensing.

However, the increasing size of these experiments, and
the decreasing statistical errors, comes with a price: to fully
realize their promise, we must understand systematic errors
increasingly well. The coherent lensing distortions of galaxy
shapes are typically ∼1% in size, far smaller than galaxy
intrinsic ellipticities (∼0.3) and, more problematically, smaller
than the coherent distortions due to light propagation through
the atmosphere and telescope optics (the point-spread function,
or PSF). Removing the effects of the PSF and measuring lensing
shears for galaxies that are only moderately resolved and have
limited signal to noise is a demanding statistical problem that has
not been solved adequately for upcoming surveys. Systematic
errors related to shape measurement must be reduced by factors
of 5–10 in the next decade. The weak lensing community
has gained substantially from a practice of carrying out blind
challenges in order to test shear measurement methods. By using
simulated data in which the ground truth is known, but with
realistically complicated galaxies and PSFs, we can estimate
the systematic errors associated with current methods, and
use our new knowledge of their failure modes to spur further
development in the field.

1.1. Previous Challenges and the Context for GREAT3

The current and past GREAT challenges have all been sup-
ported by the PASCAL network. The GREAT08 Challenge
(Bridle et al. 2009, 2010) set a highly simplified version of the

problem, using known PSFs, simple galaxy models, and a
constant applied gravitational shear. The GREAT10 Challenge
(Kitching et al. 2011, 2012, 2013) increased the realism and
complexity of its simulations over GREAT08 by using cos-
mologically varying shear fields and greater variation in galaxy
model parameters and telescope observing conditions. Since im-
perfect knowledge of the PSF can also bias shear measurements,
GREAT10 tested PSF modeling in a standalone Star Challenge.
GREAT08 and GREAT10 were preceded by a number of in-
ternal challenges within the astrophysics community, known as
the Shear Testing Programme, or STEP (Heymans et al. 2006;
Massey et al. 2007a), which demonstrated the highly non-trivial
nature of the shear measurement problem. Both GREAT08 and
GREAT10 generated significant (factors of 2–3) improvement
in the accuracy of weak lensing shape measurement, while also
providing a greater understanding of the major limitations of
existing methods.

The key goals of the GREAT3 challenge are to facilitate fur-
ther work in understanding existing methods of PSF correction,
to suggest ways that they can be developed and improved in the
future, and to spur the creation of new methods that solve the
limitations of existing ones. We aim to address the challenges in
this field in two ways: (1) We provide a suite of simulated galaxy
images for making controlled tests of outstanding issues in lens-
ing shear measurement, focusing on crucial issues not addressed
in previous challenges and adding new levels of realism; and
(2) we provide the simulation code, GalSim (B. Rowe et al., in
preparation), as a fully documented, open source (licensed under
the GNU General Public License, or GPL) development toolkit
in a modern language framework (object-oriented Python wrap-
ping around C++, Section 5). GalSim is already public,23 but
the exact challenge input parameters are blinded. We anticipate
that the open source status of this simulation code will facilitate
more rapid improvement of existing methods and development
of new ones. Using real galaxy images (from the Hubble Space
Telescope, HST) and detailed, physically motivated PSF models
as inputs will ensure that the space of possible simulations is
overwhelmingly large, as in reality. This development will be
crucial for weak lensing to achieve its unique potential for under-
standing the nature of dark energy and matter in the universe.

23 https://github.com/GalSim-developers/GalSim
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In this way we accurately reflect the real problem of galaxy
shape measurement, which combines well understood gravi-
tational physics with input galaxies and observing conditions
about which we have significantly less information.

As for previous lensing challenges, the simulations are
statistically matched to the size of the largest upcoming weak
lensing surveys such as Euclid24 (Laureijs et al. 2011), LSST25

(LSST Science Collaborations & LSST Project 2009), and
WFIRST-AFTA26 (Spergel et al. 2013). The goal of participants
is to measure gravitational shears sufficiently precisely that
systematic errors in the measurements are below the statistical
errors, so that the error budget is not dominated by systematics.
The challenge is split into branches that reflect different issues
in the field and types of observations; participants may enter as
many or as few branches as they wish. The simulation design
includes many new aspects relative to previous challenges, as is
required in order for us to carry out tests of several important
issues in the field outlined in Section 3.

An overview of how to use this handbook for the GREAT3
Challenge is as follows. Section 2 presents an overview of the
physics behind gravitational lensing and astronomical imaging,
to motivate the major issues in shear estimation. To estimate the
gravitational shear in the galaxy image, the standard procedure
is to measure each galaxy shape and infer the overall shear from
these; an overview of existing approaches to shape measurement
is in Appendix A. Section 3 contains a summary of the specific
issues that the GREAT3 Challenge is designed to address. The
structure of the Challenge and how it is run is detailed in
Section 4. In Section 5, we describe the simulation generation
and design, and relate it to the issues from Section 3. Finally,
we summarize the simplifications of the GREAT3 challenge in
Section 6.

2. PHYSICS BACKGROUND

Here we describe the basic physics behind gravitational
lensing and astronomical imaging. The processes described in
this section are shown in Figure 1.

2.1. Lensing Shear

Gravitational lensing distorts observed images of distant
galaxies, in a way that depends on the distribution of mass
around the line of sight. This distortion can be described as
a general coordinate transformation, but for the overwhelming
majority of distant galaxy light sources, the transformation is
well approximated as being locally linear. This limit is known
as weak gravitational lensing.

Weak gravitational lensing can be described as a linear
transformation between unlensed coordinates (xu, yu; with the
origin at the center of the distant light source) and the lensed
coordinates in which we observe galaxies (xl, yl; with the origin
at the center of the observed image),(

xu

yu

)
=

(
1 − γ1 − κ −γ2

−γ2 1 + γ1 − κ

) (
xl

yl

)
. (1)

Here we have introduced the two components of the complex-
valued lensing shear γ = γ1 + iγ2, and the lensing convergence
κ . The shear describes the stretching of galaxy images due
to lensing. The convention is such that a positive (negative) γ1

24 http://sci.esa.int/euclid
25 http://www.lsst.org/lsst/
26 http://wfirst.gsfc.nasa.gov

results in an image being stretched along the x (y) axis direction.
Likewise a positive (negative) γ2 results in an image being
stretched along the line y = x (y = −x). The convergence
κ describes a change in apparent size for lensed objects: areas
of the sky for which κ is positive have apparent changes in area
(at fixed surface brightness) that make lensed images appear
larger and brighter than if they were unlensed, and a modified
galaxy density.

Often, as we do not know the distribution of sizes of distant
galaxies well, it is common to recast the transformation (1) as(

xu

yu

)
= (1 − κ)

(
1 − g1 −g2
−g2 1 + g1

) (
xl

yl

)
, (2)

in terms of the reduced shear, g1 = γ1/(1 − κ) and g2 =
γ2/(1−κ). In many applications the (1−κ) term is not estimated
from the data (although see, e.g., Casaponsa et al. 2013), and
so it is the image stretching described by the reduced shear that
is in fact observed in galaxies (hence the use of this notation
in Bridle et al. 2009). We often encode the two components
of shear and reduced shear into a single complex number, e.g.,
γ = γ1 + iγ2, g = g1 + ig2. In most cosmological applications
g � γ is a reasonable approximation; however, the GREAT3
simulations with cosmologically varying shear fields do also
contain a corresponding κ variation.

The lensing shear causes a change in estimates of the ellip-
ticity of distant galaxies. If sources with intrinsically circular
isophotes (contours of equal brightness) could be identified, the
observed sources (post-lensing) would have elliptical isophotes
that we can characterize by their minor-to-major axis ratio b/a
and the orientation of the major axis φ. For |g| < 1, these
directly yield a value of the reduced shear

|g| = 1 − b/a

1 + b/a
(3)

which, combined with the orientation φ, gives the two orthogo-
nal components of shear g1 = |g| cos 2φ, g2 = |g| sin 2φ.

In practice, we cannot identify distant galaxy sources that are
circular prior to lensing, nor do distant galaxies have elliptical
isophotes. However, it is possible to estimate properties that
transform in similar ways to the simplified case presented
above, and from which we can extract statistical estimates of
shear. One method is to model the light from galaxies using a
profile that does have a well-defined ellipticity. We can write this
ellipticity as a complex number ε = ε1 + iε2, with magnitude
|ε| = (1 − b/a)/(1 + b/a) and orientation angle determined by
the direction of the major elliptical axis. Under an applied shear
with |g| � 1, this definition of ellipticity transforms as

ε = ε(s) + g

1 + g∗ε(s)
(4)

(see Bartelmann & Schneider 2001 for the strong shear |g| > 1
result). Here we have labeled the ellipticity of the source prior to
lensing as ε(s). For g � 1, Equation (4) becomes ε � ε(s)+g. For
a population of source ellipticities that are randomly oriented
so that 〈ε(s)〉 = 0, the ensemble average ellipticity after lensing
gives an unbiased estimate of the shear: 〈ε〉 � g.

Another common choice of shape parameterization is based
on second brightness moments across the galaxy image,

Qij =
∫

d2xI (x)W (x)xixj∫
d2xI (x)W (x)

, (5)
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where the coordinates x1 and x2 correspond to the x and y
directions, respectively, I (x) denotes the galaxy image light
profile, W (x) is an optional27 weighting function (see Schneider
2006), and where the coordinate origin x = 0 is placed at the
galaxy image center (commonly called the centroid). A second
definition of ellipticity, sometimes referred to as the distortion
to distinguish it from the ellipticity that satisfies Equation (4),
can then be written as

e = e1 + ie2 = Q11 − Q22 + 2iQ12

Q11 + Q22
. (6)

The ellipticity ε can also be related to the moments, like the
distortion, but replacing the denominator in Equation (6) with
Q11 + Q22 + 2(Q11Q22 − Q2

12)1/2.
If the weighting function W = 1 (unweighted moments) or

W = W [I (x)] (a brightness-dependent weight function) then
an image with elliptical isophotes of axis ratio b/a has

|e| = 1 − b2/a2

1 + b2/a2
. (7)

Under a shear, e transforms from a source (pre-lensing) distor-
tion e(s) as

e = e(s) + 2g + g2e(s)∗

1 + |g|2 + 2	[ge(s)∗]
, (8)

so that in the weak shear limit, e � e(s) + 2[1 − (e(s))2]g. For a
population of source distortions that are randomly oriented so
that 〈e(s)〉 = 0, the ensemble average e after lensing gives an
unbiased estimate of approximately twice the shear that depends
on the population rms ellipticity, 〈e〉 � 2[1 − 〈(e(s))2〉]g.

2.2. Shear Fields

Although gravitational lensing distortions at the locations of
individual galaxies can typically be approximated as linear,
the shear and convergence vary with position across the sky.
This variation is due to the non-uniform distribution of massive
structures in the universe. Estimates of this variation, which
are discrete estimates of the underlying shear field, are used
in various ways to improve our models of the universe. In the
following section, we will primarily focus on shear fields.28

One well-motivated place to look for shears is around struc-
tures that can be directly observed, for example around galax-
ies likely to lie in dark matter-rich regions (a study known as
galaxy–galaxy lensing), or around foreground galaxy clusters.
Around a central lens object, the tangential shear induced by
gravitational lensing is approximately constant at fixed radius;
thus measuring constant shear is a goal of galaxy–galaxy and
cluster–galaxy lensing measurements. Estimates of the shear
around such objects have been compared to parametric models
of the matter content to provide great insight into the way that
visible matter is traced by underlying mass.

The statistics of lensing shear, and its spatial correlation as a
function of angular scale on the sky, is another key prediction
of many models of the universe, and this is therefore the
other goal of our measurement. Comparison of these models to
observations is expected to greatly improve our understanding of

27 Optional for the purpose of this definition; but in practice, for images with
noise, some weight function that reduces the contribution from the wings of
the galaxy is necessary to avoid moments being dominated by noise.
28 See, e.g., Huff & Graves (2014), Schmidt et al. (2012), and Casaponsa et al.
(2013 and references therein) for recent developments in lensing magnification.

Figure 2. Example of a cosmological shear field in a 10 × 10 deg2 region of
sky, with the same statistical properties as realistic cosmological shear fields.
At each point on the grid, the size of the arrow shows the magnitude of the
shear (for reference, the plot title gives the median shear value), the orientation
shows the shear direction at that location, and the color shows the convergence
κ . As shown, the shear field exhibits coherent alignments over large scales, with
tangential orientation around mass overdensities.

(A color version of this figure is available in the online journal.)

dark matter and dark energy, and to constrain models of modified
gravity that have been posed as another way to explain the
accelerated expansion of the universe (e.g., Peacock et al. 2006;
Albrecht et al. 2009). Figure 2 shows a typical cosmological
shear field in a 10×10 deg2 region (the size of GREAT3 images).

A map of galaxy shears is a spin-2 (headless vector) field.
As such, it can be decomposed into two components, called the
E-mode and B-mode by analogy with electric and magnetic
fields. The E-mode can be represented as the gradient of a scalar
field, and has no curl; the B-mode can be represented as the curl
of a vector field, and has no divergence.

Cosmological shear fields include almost exclusively
E mode signals—with tangential shears induced around density
peaks—and only negligible B modes,29 a fact that is often ex-
ploited in reality to test for systematic errors (observed B modes
are taken as a sign of systematic error).

2.3. Measuring Shear Fields

The shear fields around galaxies and galaxy clusters are
generally used to constrain either parametric models of the
unseen mass distribution around these objects (e.g., Leauthaud
et al. 2012; Velander et al. 2014), or a non-parametric map
of the same (e.g., Dietrich et al. 2012; Van Waerbeke et al.
2013). When estimating shears around astrophysical objects
for the purpose of fitting a parametric model, it is common
to estimate the average shear in annuli of separation from the
center of the foreground object. For more general map making,
shear estimates from individual galaxies are typically averaged
in cells across the sky, and the smoothed shears are then used to
estimate the projected density.

However, another important application of weak lensing shear
estimates is to probe the statistical properties of the shear

29 Some B-mode contributions can occur due to multiple lens planes, source
clustering, and other effects, all of which are quite small (e.g., Schneider et al.
2002; Hirata & Seljak 2004; Vale et al. 2004).
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field, as a function of angular separation on the sky. Different
models of the universe predict differing statistical distributions
of shear as a function of angular scale. Recent estimates of the
spatial correlations between shears, and the evolution of these
correlations over cosmic time (Jee et al. 2013; Heymans et al.
2013), used catalogs of shear estimates across a whole survey
area as a probe of the growth of matter structure. In these “cosmic
shear” analyses, the shear correlation function estimated from
catalogs of shears (see Appendix B) is the data vector for the
estimation of cosmological parameters.

The shear power spectrum, related to the correlation function
by a Fourier transform, is also a quantity of interest for
describing the statistics of cosmic shear. In the GREAT10
challenge, the goal was to estimate the power spectrum directly
from the shear using the discrete Fourier transform due to the
galaxies being positioned at fixed grid locations. However, in
practice, the use of power spectra presents challenges because
of the non-regular spacing of galaxies on the sky, and the
presence of holes in coverage due to bright foreground objects
or camera defects. In GREAT3, we adopt a correlation-function
based metric for the simulations containing variable shear. As
a useful side product, this also allows us to sensitively probe
contamination of the shear field due to both variable and constant
point-spread functions (PSFs). In the following section, we
discuss the importance of the PSF in weak lensing science.

2.4. Variable PSF

After the light from distant galaxies is sheared, it passes
through the turbulent atmosphere (when observing with a
ground-based telescope), and through telescope optics and a
detector. While the initial shear is the desired signal, these
later effects (which can typically be modeled as convolution
with a blurring kernel called the PSF) systematically modify the
images. The blurring due to the atmosphere is typically larger
than that due to optics, and varies relatively rapidly in time
compared to typical exposure times for astronomical imaging
(e.g., Heymans et al. 2012; Hamana et al. 2013). In contrast,
the PSF due to the optics varies relatively slowly with time.
The optical PSF is commonly described as a combination of
diffraction plus aberrations (possibly up to quite high order).
Both the atmospheric and optical PSF have some spatial
coherence, qualitatively like lensing shear, though the scaling
with separation is not identical.

The effect of the PSF on the galaxy shapes that we wish to
measure is twofold: first, applying a roughly circular blurring
kernel tends to dilute the galaxy shapes, making them appear
rounder by an amount that depends on the ratio of galaxy and
PSF sizes. Correction for this dilution can easily be a factor of
two for typical galaxies, for which we wish to measure shears
to 1%. Second, the small but coherent PSF anisotropies can
leak into the galaxy shapes if not removed, mimicking a lensing
signal.

Stars in the images are effectively point sources before
blurring by the PSF, and hence are measures of the PSF.
However, the PSF must be estimated from them and then
interpolated to the positions of galaxies. For a summary of
some common methods of PSF estimation and interpolation,
see Kitching et al. (2013).

2.5. Summary of Effects

Figure 1 summarizes the main effects that go into a weak
lensing observation. The galaxy image is distorted as it is

deflected by mass along the line of sight from the galaxy to
us. This is the desired signal. It is then further distorted by the
atmosphere (for a ground-based telescope), telescope optics,
and pixelation on the detector; these effects collectively form the
PSF and are equivalent to convolution30 with a blurring kernel.
The images have noise, which can cause a bias when solving
the nonlinear problem of estimating the original shear, and there
are also detector effects (not shown here). Given that upcoming
data sets will have hundreds of million or billions of galaxies,
removing these nuisance effects to sub-percent precision is a
necessary but formidable challenge.

3. IMPORTANT ISSUES IN THE FIELD

The goal of this challenge is to address three major open
issues in the field of weak lensing, as determined by a consensus
among the community. These could conceivably be limiting
systematic errors for weak lensing surveys beginning this year,
but their importance has not been systematically quantified in
a community challenge. In the interest of making a fair test of
these issues, we exclude other issues that were deemed to be of
lesser importance for now (Section 6). The GREAT3 challenge
consists of experiments that can test each of the issues below
separately, so that people who are interested in only certain
issues can still participate.

3.1. Realistic Galaxy Morphologies

Multiple studies have shown that no method of shape mea-
surement based on second moments can be completely indepen-
dent of the details of the galaxy population (e.g., morphology
and substructure), because the shear couples the second mo-
ments to the higher-order moments (Massey et al. 2007b; Bern-
stein 2010; Zhang & Komatsu 2011). This issue is particularly
pressing given that several state-of-the-art shape measurement
methods (see Appendix A) are based on fitting relatively sim-
ple galaxy models or are based on a decomposition into basis
functions that cannot necessarily describe galaxy profiles in de-
tail (Voigt & Bridle 2010; Melchior et al. 2010). More complex
decompositions into basis functions often can describe more
complex galaxies, but at the expense of introducing many tens
or >100 parameters, making them impractical for typical im-
ages with typical signal-to-noise ratios (S/N) ∼ 10–20 (see
Section 5.3 for the formal definition of this quantity). In addi-
tion, methods that measure galaxy distortions (Section 2.1) re-
quire an estimate of the intrinsic rms galaxy distortion to convert
to an ensemble shear, resulting in another type of dependency
on the underlying nature of the galaxy population.

As an illustration of this problem, Figure 3 shows several
typical galaxies in high-resolution data from the HST. Only a
few tens of percent (∼20%) of galaxies can be perfectly fit
by simple galaxy models such as those commonly used by
model-fitting methods today (e.g., top left); nearly half can be
fit by them, but with additional substructure clearly evident
(e.g., bottom left); and a few tens of percent (∼30%) are
true “irregulars” that cannot be fit by simple models at all
(right panel). The GREAT08 and GREAT10 challenges used
simple galaxy models, which motivates us to explore the impact
of realistic galaxy morphology on shape measurement in the

30 This equivalence is valid in the limit that these functions are continuous.
For data that are discretely sampled, it is important to ensure that they are
Nyquist sampled, otherwise the statement that pixelation can be treated as a
convolution is false.
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Figure 3. Real galaxies from the HST as observed by the Advanced Camera
for Surveys (ACS) in the COSMOS survey (Koekemoer et al. 2007; Scoville
et al. 2007a, 2007b). The top left shows a galaxy that is well-fit by a simple
parametric model from Lackner & Gunn (2012). The bottom left shows a galaxy
that is reasonably well-fit but with additional substructure evident. The right side
shows a true “irregular” galaxy that is not well-fit by simple parametric models
with ∼10 parameters.

(A color version of this figure is available in the online journal.)

GREAT3 challenge, thus constraining “underfitting biases.”31

Nearly all lensing data is lower resolution than what is shown
in Figure 3; however, for this particular scientific application,
we have reasons to believe that what we do not know (the
unresolved, detailed galaxy morphology) does hurt us at some
unknown level. One goal of the GREAT3 challenge is to quantify
the extent to which that statement is true.

The galaxies used for these simulations therefore come from
HST. The technique for rendering the appearance of these
galaxies with an added lensing shear is in Mandelbaum et al.
(2012) and Section 5.1 of this handbook.

3.2. Variable PSFs

As discussed in Section 2.4, realistic PSFs have complex
profiles and spatial variation due to the turbulent atmosphere (in
ground-based measurements) and the instrument (the telescope
and the camera). Different approaches have been used to study
these PSF characteristics using data and simulations (e.g.,
Jarvis et al. 2008; Heymans et al. 2012; Chang et al. 2013;
Hamana et al. 2013). We would like to test the impact of
realistic PSFs on weak lensing measurement, both for the case
of (a) a realistically complex PSF profile that is provided for
participants, and (b) the case where the PSF has spatial variation
that the participants must infer from a provided star field. The
latter test is complicated by the low density of high-S/N stars
that can be used to infer the PSF, making it hard to track high-
frequency modes.

Case (a) can be motivated by Figure 4, which shows a
realistically complex PSF due to telescope optics and a simple
model that is commonly used to represent it. As shown, the
former is more complicated than the latter, and it is plausible
that shape measurement methods could behave differently for
the two cases. For simulated data from ground-based telescopes,
there is also a convolution by the far broader atmospheric PSF.32

Case (b), where the participants are required to infer the PSF,
is similar to the GREAT10 Star Challenge. However, in that

31 These are biases in an M-parameter fit that arise when the true image has
N > M parameters, and some of the N−M additional parameters correlate
with the shear; e.g., Bernstein 2010.
32 In the long-exposure limit, the PSF can simply be treated as the convolution
of the optical and atmospheric PSF contributions.

case, the participants were judged on the accuracy of their PSF
reconstruction. In GREAT3, the metric is the accuracy of shear
field reconstruction, i.e., we test how PSF determination errors
propagate into the recovered shear field. The value of this test is
that different PSF reconstructions at a particular rms accuracy
could actually involve different spatial patterns in the residuals
that affect shear field recovery in different ways, so ultimately
we must quantify the performance of PSF estimation in terms
of its impact on shear measurement.

3.3. Combination of Multiple Exposures

Most data sets used for weak lensing measurement are
not single images, but rather multiple short exposures that
are slightly offset from each other (“multi-epoch” data). Part
of the data reduction procedure involves combining them to
estimate the galaxy shapes—either via “co-addition” to form
a stacked image (e.g., Lin et al. 2012; Jee et al. 2013), or
by applying some simultaneous fit procedure that treats each
exposure separately (e.g., Miyatake et al. 2013; Miller et al.
2013). Previous challenges have included a single deep image.
In GREAT3, we include a test of how methods handle multiple
images.

If the individual exposures are all Nyquist sampled and there
are no major distortions or holes in the data (due to defects,
cosmic rays, etc.), the combination of multi-exposure data is in
principle straightforward, making this test less interesting. How-
ever, for a fraction of the data from ground-based telescopes,
and all data from upcoming space missions, the data in individ-
ual exposures is not Nyquist sampled, which means that it is
only possible to create a critically sampled image by combining
the multiple dithered (offset by sub-pixel amounts) images (e.g.,
Rowe et al. 2011). This is a more complicated algorithmic issue,
and while our challenge does not address all aspects of it (e.g.,
it is even more complicated when there are holes in the data) we
make a basic test of image combination.

When the PSF is very different in some exposures than others,
it is possible to imagine gaining an advantage by up-weighting
higher-resolution data. Hence it is possible that a method that
does the most basic, fundamentally correct image combination
could do worse than a method that is more clever in how the
exposures are combined.

3.4. Challenge Philosophy

The GREAT3 challenge is structured as a series of experi-
ments to evaluate three key issues separately before combining
them. Since our goal is to address how important these issues
are for extant shape measurement methods (and encourage the
development of new methods that might address these issues
better), we deliberately omit some complications that were not
chosen by the GREAT3 collaboration as top priorities. For a list
of omitted issues, see Section 6, and note that the simulation
software is capable of generating simulations that can address
most of them.

One important note is the increased complexity compared
to GREAT08 and GREAT10, for which the simpler questions
being asked demanded simulations with (typically) δ-function
distributions in galaxy and/or PSF parameters. If a GREAT3
participant needs simulations at that level of simplicity to
test their code, they can either download the GREAT08 or
GREAT10 simulations, or generate new (simple) simulations
with public simulation software. Thus we are deliberately
including more realistic distributions of galaxy parameters,
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Figure 4. Examples showing the simplicity of common approximations to optical PSFs, i.e., without an atmospheric contribution. Left panel: a realistic PSF, generated
using lowest-order aberration theory with values that are typical for a well-aligned ground-based telescope, or for a (perhaps temporarily) misaligned space-based
instrument. Right panel: the best-fitting (least-squares) approximation to this PSF using an elliptical Airy disk, a parameterized PSF model used in the GREAT10
galaxy and star challenges. The images are normalized to the same linear scale.

(A color version of this figure is available in the online journal.)

but still in a format that allows for controlled experiments
of the impact of realistic galaxy morphology, real PSFs and
their variation, and combination of multiple exposure data. The
challenge structure described below (Section 4.1) reflects this
goal.

Like previous GREAT challenges, GREAT3 is meant to be
inclusive of different data types. In that spirit, it includes both
ground- and space-based data (of which participants may choose
to analyze either or both); within those data sets, the images have
some variations of key parameters so that they do not appear to
come from the same instrument. Likewise, it has both constant-
and variable-shear data, as some methods have assumptions that
favor one or the other, and both are scientifically useful.

4. THE CHALLENGE

4.1. Branch Structure

To achieve the goals outlined in Section 3, the GREAT3
challenge consists of five experiments.

1. The control, which includes none of the three effects in
Section 3 (but is a non-trivial test of how shear estimation
methods cope with a galaxy sample that has a continuous
distribution in size and S/N).

2. Three experiments that each include only one of the effects
of interest.

3. One experiment that includes all three effects together.

For each experiment, there are branches with four data types:
two shear types (constant and variable) and two observation
types (ground and space). With four data types and five experi-
ments, we have 20 branches (Figure 5).

Within each branch, the physical setup is similar to that in
previous challenges: there are 200 images per branch, each with
a grid of 100×100 galaxies, and the goal of the participants is to
infer some statistic of the shear field for each image. The images
represent 10×10 degree fields. These images are not completely
independent: each branch of the 14 branches with variable shear
and/or PSF has 10 fields representing distinct regions of the sky,
but each field contains 20 slightly offset subfields with different
galaxies that sample the same shear field (in the case of variable

shear). See Figure 6 for an illustration of how subfields and
fields are related. Thus participants must estimate the shear
correlation function for each of the 10 fields for the variable
shear experiment, combining all galaxies in all subfields when
estimating the correlation function, which can be done using
software supplied with the data (see Section 4.2). The subfields
within a field sample the same PSF pattern (see Section 5.6).
For the six branches that have constant shear and constant PSF,
the branch contains 200 fields, each with a single subfield per
field. Thus these six constant shear and constant PSF branches
have 200 separate shear values. For the multi-epoch simulations,
each epoch of a given subfield has a different PSF; however, a
particular epoch has the same PSF for all subfields in the field.
The branches are meant to represent the same underlying galaxy
population, modulo issues that arise when the PSF size varies
(which means that galaxies that are smaller might be simulated
in one image but not another, see Section 5.1).

4.2. Overall Information

Given the challenge branch structure in Figure 5, we estimate
a total zipped data volume of 3.2 TB. This figure is dominated
by the branches with variable PSFs, due to the size of the star
fields that are provided for PSF estimation. Participants may
choose to submit results to any or all of those branches at their
own discretion, and likewise can download any subset of the
data that they wish. The preferred method of getting the data is
via download from our server or its US mirror, however, for a
limited number of people for whom this is not feasible, we can
supply a hard drive with the simulations.

The challenge is carried out as a competition, with a separate
leader board for each branch evaluated according to metrics
described in Section 4.4, and an overall leader board with
rankings determined based on a combination of results from
the individual leader boards as described in Appendix C.2.
There are prizes for the first and second place winning teams
(Appendix C.1) of the overall challenge leader board.

Detailed rules for the challenge are listed in Appendix C.
Here, we summarize the online resources related to the
challenge.
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Figure 5. Schematic of the GREAT3 branch structure.

(A color version of this figure is available in the online journal.)

Figure 6. Illustration of how subfields relate to fields, for a simple case with three
subfields per field, each containing a 4 × 4 grid of galaxies. The image shows
galaxies that are all part of the same field (a region of sky containing a particular
cosmological shear field and PSF). Purely for the sake of convenience, rather
than due to any real difference between these sets of galaxies, we distribute
the images in subfields that consist of regular grids shown as dashed lines of
different colors. In our actual case of 20 subfields per field (for variable shear
and/or PSF) and 100 × 100 galaxies, we have randomly chosen different sets
of 20 offset subfield positions for each field.

(A color version of this figure is available in the online journal.)

1. Web page with leader boards, information on downloading
the simulated data, basic information about shear conven-
tions, submission format, and simulation file formats: http://
great3.projects.phys.ucl.ac.uk/leaderboard/

2. GREAT3 web page with basic information, announcements
of meetings: http://great3challenge.info

3. GREAT3 public code repository, which includes code
that participants can use to automatically calculate shear
correlation functions in a format needed for submission, a
FAQ, a detailed description of the data format, and an issue
page that participants can use to ask questions about the
challenge: https://github.com/barnabytprowe/great3-public
Eventually this will also include example scripts that can
analyze all of the challenge data with some simple, existing
method.

Participants may optionally sign up for a mailing list for
announcements related to the challenge data; information about
this is available on the leader board website. Questions about
the challenge can be sent to challenge@great3challenge.info.

4.3. Timeline

A beta release of the simulations for 12 of 20 branches
was released in 2013 October, which marked the beginning
of the six month challenge period. The beta period ended in late
November, and the remainder of the simulations were released
in early December. The challenge will run until 2014 April 30,
with a final meeting at the end of 2014 May.

4.4. Evaluation of Submissions

Evaluation of submissions within each branch uses metrics
described here, where the metric depends on whether the branch
has constant or variable shear. The choice of metrics to use was
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based on experiments using simulated submissions with a grid
of values for the multiplicative and additive shear biases. We
tested the sensitivity of the metric to these two types of shear
systematic errors, and adopted metrics with maximal sensitivity
to both.

4.4.1. Constant Shear

For simulations with constant shear, each field has a particular
value of constant shear applied to all galaxies. Participants must
submit an estimated shear for each subfield in the branch, and
the metric calculation uses those estimated shears as follows.

Following a parameterization used in the STEP challenges
and elsewhere (Heymans et al. 2006; Huterer et al. 2006; Massey
et al. 2007a), we can relate biases in observed shears gobs to an
input true shear gtrue using a linear model in each component:

gobs
i − gtrue

i = mig
true
i + ci, (9)

where i = 1, 2 denotes the component of shear, and mi and ci are
referred to as the multiplicative and additive bias, respectively.
From the user-submitted estimates of the mean gobs

i for each of
200 subfields in a branch, the metric calculation begins with
a linear regression to provide estimates of mi, ci given the
known true shears. This is done in a coordinate frame rotated
to be aligned with the mean PSF ellipticity in the field, since
otherwise (with randomly oriented PSF ellipticities) the c values
will not properly reflect contamination of galaxy shapes by the
PSF anisotropy. There is a subtlety in this calculation, which
is that methods that apply weights to the galaxies will not in
general give the same weight to a galaxy and its 90◦ rotated pair
(Section 5.3), resulting in imperfect shape noise cancellation.
At some level, the weights will typically correlate with the PSF
ellipticity, thus giving rise to a spurious “c” value that is due
to selection bias rather than due to failure to correct for the
PSF anisotropy properly (e.g., Miller et al. 2013). Methods with
aggressive weighting schemes may be more susceptible to this
issue. However, as this issue should arise in real data as well, it
seems like a true issue rather than one that occurs in simulations
alone, so we do not attempt to correct for it.

Note that for variable PSF branches with constant lensing
shear, we are somewhat less sensitive to additive systematics,
because if the average PSF ellipticity is zero then even in
the presence of huge additive systematics, there is no well-
defined PSF direction for the field and the additive systematics
cancel out.33

Having estimated these bias parameters mi, ci, we then
construct the metric for constant shear branches, which we call
Qc. This is done by comparison of mi, ci to “target” values
mtarget, ctarget. The values of these targets are imposed by the
statistical uncertainties for upcoming weak gravitational lensing
experiments: in GREAT3 we adopt mtarget = 2 × 10−3 and
ctarget = 2 × 10−4, motivated by the most recent estimate of
requirements for the ESA Euclid space mission (Massey et al.
2013). We add the m and c values in quadrature with a noise
term that is designed to ensure that the scores for methods with
very low m and c are not dominated by noise, which can give
spurious fluctuations to very high Qc. The constant shear branch
metric is then defined as

Qc = 2000 × ηc√
σ 2

min,c +
∑

i=+,×
(

mi

mtarget

)2
+

(
ci

ctarget

)2
. (10)

33 This is not the case for variable shear branches, given our use of a
correlation function-based metric.

Table 1
Approximate Response of Constant Shear Metric to Systematics

Space Simulations Ground Simulations

Input c+ Qc Input m+, m× Qc Input c+ Qc Input m+, m× Qc

0.0002 1000 0.002 1000 0.0002 700 0.002 700
0.000632 600 0.00632 540 0.000632 520 0.00632 490
0.002 240 0.02 170 0.002 230 0.02 170
0.00632 80 0.0632 55 0.00632 80 0.0632 55
0.02 25 0.2 17 0.002 25 0.2 17

Notes. Approximate average response of the constant shear metric Qc, defined
in Equation (10), to isotropic multiplicative shear bias (m+ = m×) and additive
shear bias aligned with the PSF (c+) where not otherwise specified, c+ = ctarget

and m+ = m× = mtarget. These figures were estimated from simulations of
linearly biased GREAT3 submissions, each consisting of 1000 independent
realizations per combination of m+, m×, and c+.

The indices + , × refer to the first and second components
of the shear in the reference frame rotated to be aligned with
the mean ellipticity of the simulated PSF in each GREAT3
image. We adopt values of σ 2

min,c = 1(4) for space (ground)
branches: these correspond to the typical dispersion in the
quadrature sum of mi/mtarget and ci/ctarget due to pixel noise,
estimated from the results of trial submissions to GREAT3
using the re-Gaussianization34 and im3shape35 shear estimation
methods (Hirata & Seljak 2003; Zuntz et al. 2013). For methods
displaying an |mi | or |ci | significantly greater than target values,
the σ 2

min,c term is essentially irrelevant. This metric is normalized
such that we expect a value Qc � 1000 for methods that meet
our chosen targets on mi and ci. This is achieved for space
branches by setting ηc = 1.232, based on average scores from
a suite of 1000 simulated submissions. In the ground branches,
Qc will be slightly lower for submissions reaching target bias
levels, reflecting their larger σ 2

min,c due to greater uncertainty in
individual shear estimates for ground data. However, Qc scores
will be consistent between space and ground branches where
biases are significant. The response of the metric to m and c
larger than the fiducial values is shown in Table 1.

4.4.2. Variable Shear

For simulations with variable shear, the key test is the
reconstruction of the shear correlation function. This differs
from GREAT10, which used a metric based on reconstruction
of the power spectrum. We adopt a correlation function-based
metric because the power spectrum-based metric requires the
subtraction of shot noise (Section 5.3) that contributes at
all values of k and depends on the details of the shape
measurement method (Kitching et al. 2012). Subtraction of
the shot noise term has some associated uncertainty, and the
real-space correlation function is a cleaner quantity since that
shot noise only contributes at zero angular separation. Also, the
correlation function-based metric is more sensitive to additive
shear systematics in the case of a constant PSF. The correlation
function has other complications, particularly the fact that
the simplest correlation functions to calculate do not cleanly
separate into E and B modes, which is necessary to separate
lensing shear signals from our input B-mode shape noise (see
Appendix H). However, there is a straightforward prescription

34 In particular, we use the publicly available implementation in GalSim that
was incorporated into an example script at https://github.com/barnabytprowe/
great3-public.
35 https://bitbucket.org/joezuntz/im3shape
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for E versus B mode separation from correlation functions that
does not depend on the shape measurement method, making it
a good candidate for use in a variable shear field metric, which
we now describe.

Submission of results for variable shear branches begins with
calculation of correlation functions (Appendix B), this being
done by the participant. Software to calculate the correlation
function in the proper format for submission is distributed in the
GREAT3 code repository,36 though participants may use their
own software if they wish. The submission consists of estimates
of a quantity called the aperture mass dispersion (e.g., Schneider
2006; Schneider et al. 1998), which can be constructed from
simple ξ+ and ξ− correlation function estimators, and allows
a separation into contributions from E and B modes (see
Appendix B for details). We label these E and B mode aperture
mass dispersions ME and MB in the discussion that follows.

The submissions take the form of an estimate of ME,j for
each of 10 fields labeled by index j: this estimate is therefore
constructed using all 20 subfields in a given field. This choice
is to provide a large dynamic range of spatial scales in the
correlation function, which helps the metric probe a greater
range of shear signals. The ME,j can be estimated by the
provided software in Nbins logarithmically spaced annular bins
of galaxy pair separation θk , where k = 1, . . . , Nbins, from the
smallest available angular scales in the field to the largest.

These ME,j (θk) are to be submitted for each field j =
1., . . . , Nfields, where Nfields is the total number of fields in
the branch. The metric Qv for the variable shear branches is
then constructed by comparison to the known, true value of the
aperture mass dispersion for the realization of E-mode shears
in each field. These we label ME,true,j (θk). The variable shear
branch metric is then calculated as

Qv = 1000 × ηv

σ 2
min,v + 1

Nnorm

∑Nbins
k=1

∣∣ ∑Nfields
j=1 [ME,j (θk) − ME,true,j (θk)]

∣∣ ,
(11)

where Nnorm = NfieldsNbins, and ηv is a normalization factor
designed to yield Qv � 1000 for a method achieving m1 =
m2 = mtarget and c1 = c2 = ctarget (similar to the normalization
for the constant shear metric). As for the constant shear metric,
we have added a σ 2

min,v term to ensure that methods that
perform extremely well do not get arbitrarily high Qv due
to noise, but rather asymptotically approach a maximum Qv
value. The order of operations (summing differences over fields,
then taking the absolute value) is also intended to reduce the
influence of noise. We performed suites of simulations using
the estimates of measurement noise from re-Gaussianization
and im3shape runs on variable shear branches in GREAT3 (see
Section 4.4.1), and from the results of these simulations we
choose σ 2

min,v = 4×10−8 (9×10−8) for space (ground) branches,
and ηv � 1.837 × 10−7 as the normalization parameter, for Qv.

For these parameter choices, Table 2 shows the response of
Qv to multiplicative and additive shear systematics. Qv is less
sensitive than Qc, particularly to multiplicative biases. This is
in part due to the fact that shears in the variable shear branch
are typically several times smaller than those in the constant
shear branch, being drawn from a quasi-cosmological field (see
Section 5.5). It is also a fact that while the mi and ci terms used
in Qc can be constructed from a linear combination of (noisy)
shear estimates, any variable shear metric can only be estimated

36 https://github.com/barnabytprowe/great3-public

Table 2
Approximate Response of Variable Shear Metric to Systematics

Space Simulations Ground Simulations

Input c1, c2 Qv Input m1, m2 Qv Input c1, c2 Qv Input m1, m2 Qv

0.0002 1000 0.002 1000 0.0002 580 0.002 580
0.002 800 0.02 900 0.002 550 0.02 560
0.00632 300 0.0632 500 0.00632 310 0.0632 380
0.02 40 0.2 150 0.002 40 0.2 125

Notes. Approximate average response of the variable shear metric Qv, defined
in Equation (11), to multiplicative shear bias (m1 = m2) and constant additive
shear bias (c1 = c2) where not otherwise specified, c1 = c2 = ctarget and
m1 = m2 = mtarget. These figures were estimated from simulations of linearly
biased GREAT3 submissions, each consisting of 300 independent realizations
per combination of m1, m2 and c1, c2. Average results for Qv at ci (mi) =
0.000632 (0.00632) were found to be practically indistinguishable from those
at ci (mi) = 0.0002 (0.002) within uncertainties.

from second (or higher) order combinations of shear estimates in
which the underlying signal is necessarily diminished relative to
noise. This feature of variable shear fields limits experimental
sensitivity to shear biases for the same volume of simulation
data.

One could imagine other metrics, such as one that uses
relative differences rather than absolute differences, or one
that incorporates inverse variance weighting. We tested these
options, along with several others, in large sets of simulations of
synthetic submissions: it was found that they were less sensitive
than the Qv metric of Equation (11) to multiplicative biases mi
and additive systematics ci in simulated submissions.

5. SIMULATIONS

The simulations for this challenge were all produced using
GalSim, a publicly available37 image simulation tool that has
been developed as a community project in part for GREAT3,
but with additional capabilities. The software package is fast,
modular, and written in C++ and Python. Since it is described
in detail in the documentation on the Web site and an upcoming
paper (B. Rowe et al., in preparation), here we simply present
evidence that GalSim can accurately simulate galaxies with an
applied shear—see Appendix D for details.

The simulations are designed to provide a clean test of
the issues raised in Section 3, providing a significant level
of realism in galaxy populations and PSF properties. While
the inclusion of realistically varying cosmological shear fields
in lensing challenges is well-established (e.g., they were used
for the GREAT10 challenge), the galaxy populations and PSF
properties that were used for GREAT3 represent a significant
step forward in the context of a community challenge.38 Below
we describe the ingredients that go into the simulations.

5.1. Galaxies

The galaxy population in the GREAT3 simulations is meant
to represent a realistic galaxy population in its distribution
of size, magnitude, and morphology. This representation of

37 https://github.com/GalSim-developers/GalSim
38 Several surveys have image simulators that include some of these
ingredients with comparable complexity—e.g., the LSST project has
substantially more complex PSF models including effects not considered
here—but we consider the inclusion of the level of realism described here in
the context of a community challenge to have a different importance, given
that it allows for a fair comparison of methods being adopted by any group
rather than just those within a particular project.
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the galaxy population represents a significant step forward
for the GREAT challenges,39 bringing us closer to the galaxy
population observed in real surveys. Here we describe how we
achieve this goal.

We use data from the HST to ensure the realism of the size
and magnitude (and thus S/N) distribution, as it provides the
highest resolution images available with a uniform coverage
over a reasonable area. The way this is done depends on whether
the branch in question tests the question of realistic galaxy
morphology. If it is, then we use actual images of galaxies
from the training sample, with a modification of the procedure
described in Mandelbaum et al. (2012) to remove the HST PSF
(unlike in that work, fully rather than partially) in Fourier space,
apply the lensing shear and magnification, convolve with the
target PSF, then return to real space and resample to the target
pixel scale. This method generates an image of what the galaxy
would have looked like at lower resolution, provided that the
target band limit klim,targ relates to the original HST band limit
klim,HST via

klim,targ < (1 −
√

κ2 + γ 2)klim,HST. (12)

For weak shears and convergences, the above condition is easily
satisfied by all upcoming lensing surveys, even those from space.

For the simulations that are not meant to test the effects
of realistic galaxy morphologies, we still use the HST data to
determine a distribution of galaxy properties, based on simple
parametric fits (Sérsic) to the HST images. We then use the best-
fitting models rather than the images themselves. This means
that a comparison with the simulations that use real galaxy
images will directly test the importance of underfitting bias.

To limit the volume of simulations needed to constrain biases
in shear estimation to levels needed for upcoming lensing sur-
veys, we must cancel out the dominant form of noise in lensing
observations, the intrinsic shape noise (see Section 5.3). Can-
cellation of shape noise requires that each measurement use all
simulated galaxies without any exclusions, which drives a min-
imum signal-to-noise cut above which there is a realistic S/N
distribution as described in Section 5.3. Even then, noise will re-
sult in imperfect shape noise cancellation due to chance failures
to measure galaxies or differently assigned per-galaxy weights;
for more details, see Section 5.3. For multi-epoch branches,
the S/N values are such that the total S/N over all epochs is
comparable to that in the single-epoch branches. Likewise, we
exclude galaxies that are so small as to be nearly unresolved in
the simulations, since many methods will have difficulty mea-
suring their shapes. The exclusion is done on a per-subfield
basis, so the galaxy populations used to simulate a subfield with
a large PSF (e.g., from the ground) will be a subset of the popu-
lation used to simulate a subfield with a smaller PSF (e.g., from
space). The resolution cuts do not use the pre-seeing galaxy
models described in Appendix E. Instead, they use the adap-
tive second moment-based resolution factor defined in Hirata &
Seljak (2003) and precomputed using simulations with isotropic
PSFs and no added shear, so as to ensure that the cuts applied

39 The earlier STEP challenges did in fact use more realistic galaxy
populations like those of GREAT3, rendering these galaxies first as simple
parametric models (STEP1; Heymans et al. 2006) and then shapelets (STEP2;
Massey et al. 2007a, although it should be noted that these training models did
not include a correction for the HST PSF already present in the original
observations). Our control experiment shares some characteristics of the
STEP1 simulations though the parameter distributions are drawn directly from
HST data, and our real galaxy experiment is a truly novel use of actual galaxy
images in a community challenge for the first time.

on the GREAT3 simulations do not induce a selection bias that
correlates with the PSF ellipticity or cosmological shear field.

Galaxy populations evolve with redshift, including an increas-
ing abundance of irregular-type morphologies and decrease in
the number of elliptical galaxies at high redshift, where there
are more young, star-forming galaxies and recent mergers (e.g.,
Bundy et al. 2005). This redshift evolution of the galaxy popu-
lation translates into a depth-dependence; for deeper data, there
are more high-redshift galaxies and therefore more irregulars.
Thus it is relevant to ask what is the effective depth of the sim-
ulated data set. Here we are limited by the HST data set that
we use. If we use real images as the basis for simulations, then
the noise in those images also undergoes the same steps as the
galaxy (deconvolution, shearing and magnification, convolution
with the target PSF, and resampling to the target pixel scale).
The noise in the result can be predicted from the original one
(since the aforementioned processes do well-defined things to
the noise) and has a direction that correlates with both the input
shear and the target PSF. Moreover there are generally non-
negligible pixel-to-pixel correlations. While we can add noise
that is anti-correlated and anisotropic to achieve isotropic, un-
correlated noise in the simulations (a process that we call “noise
whitening,” see B. Rowe et al., in preparation for more details),
this also imposes a further limitation on the depth of the simu-
lated images.40 A simple calculation for reasonable PSFs is that
the effective limiting magnitude for simulated space-based data
is actually 0.6 magnitudes brighter than that in the HST train-
ing sample given the need to whiten the substantial correlated
noise41 that is already present, whereas for simulated ground-
based data it is 0.15 mag brighter than the limiting magnitude in
HST (because the correlated noise gets more washed out in the
simulation process due to the larger PSF). However, we defer
the final answer to this question of the depth of the simulated
galaxy population to Section 5.8.

Details of the HST training sample and the fits to parameter-
ized models can be found in Appendix E.

5.2. Point-spread Functions (PSFs)

Here we describe the PSF model used in the challenge, several
aspects of which are truly novel steps forward in complexity and
realism compared to previous GREAT challenges, as described
below. In all simulated images, there is an optical PSF; the
simulations of ground-based data also have an atmospheric PSF.
The two main aspects to consider for all simulated PSFs are
(1) the profile of the PSF and (2) the spatial variation of the
PSF profiles across the focal plane. Both of these factors are
determined by the physical mechanisms that give rise to the
PSF. In Sections 5.2.1 and 5.2.2, we describe the physical basis
for the optical and atmospheric PSFs in the “variable PSF”
experiment in this challenge.

The simulated 10 × 10 deg2 images are much larger than
the field-of-view (FOV) of typical telescopes. Thus, we do not
simulate a variable PSF model for an image that size. Instead,
for the branch with variable PSFs, we divide each image into
square tiles, and simulate a PSF model in each one of them;

40 Technically the noise whitening procedure means that we treat the noise in
the original images as part of the galaxy. This motivates us to use data for
which the added (simulated) noise dominates over the existing noise in the
images.
41 Correlated noise is present in these images for several reasons, including
the correction for charge-transfer inefficiency and the resampling from the
instrument pixel scale to a smaller pixel scale when combining multiple
exposures.
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Figure 7. Left: the optical PSF (no atmospheric contribution) for the ground-based “variable PSF” branch at 5 × 5 grid positions across a simulated FOV, going all the
way to the edge where aberrations are large. Right: same as left, for the space-based model. Both are shown on a logarithmic scale. These include some (stochastic)
added aberrations at a level used for the challenge. The space-based optical PSF model is more constant across the field than the ground-based model because of
different assumed field-dependent aberrations.

this underlying PSF model is the same for all subfields within
the same field, modulo a position shift (which is provided;
participants do not have to estimate it). For the experiments
with a constant PSF, we use a simplified version of our variable
PSF models, selecting a single PSF for each 10 × 10 deg2

subfield. For the single epoch experiments, we make simulated
images corresponding to a single deep exposure rather than to an
idealized co-added image, because co-added PSF profiles can
have complicated features that would make comparison between
the experiments difficult.

5.2.1. Optical PSFs

All telescopes effectively convolve the images they observe
with a PSF of finite size, due to diffraction and optical aber-
rations. We refer to this contribution as the “Optical PSF.” In
GREAT3, the first community challenge to incorporate an op-
tical PSF model with any significant degree of realism, the
contributions to this PSF can be grouped into the following
categories.

1. The shape of the pupil through which light diffracts:
this includes obscurations such as secondary mirror or
instrument at prime focus, and obscurations due to any
struts or supports for these.

2. Aberrations, which can be split into three terms: the “design
residual” (aberrations in a perfectly realized telescope
design); “figure errors” (aberrations due to warping or
manufacturing imperfections in mirrors); and “alignment”
(how well mirrors are positioned relative to each other).

3. Pointing jitter, the variation in the telescope pointing during
an observation, which gives rise to a blurring kernel of a
size and ellipticity that is highly design-dependent.

4. Detector response: a primary term here is the diffusion of
charge within detectors before readout, but other (possibly
nonlinear) effects may be present, depending on the device

in question. Strictly speaking, any nonlinear, signal depen-
dent, or space variant effects cannot be represented in the
simple convolutional model of image formation, and must
be applied on top of that.

In all simulations with variable PSFs, we have a fixed pupil
shape and detector response across a given FOV for all tiles in the
same image. Typically the pupil consists of a circular aperture
upon which is superimposed a co-centric, circular obscuration,
and additional supports that are rectangular in shape and extend
radially from the central obscuration.

Aberrations vary across the simulated FOV, however, with
a different prescription for the ground and space-based data.
Unfortunately, we found that it is extremely difficult to make a
realistically complex optical PSF model, including full spatial
variation, that is not instrument-specific in some way. While our
goal is to make the GREAT3 challenge as generic as possible, we
nevertheless had to adopt optical PSF models that are specific
to certain instruments for the “variable PSF” branches. The
specific optical PSF models used for that branch are described
in Appendix F, and some example PSF images are in Figure 7.

For the simulations with constant PSF models, we adopt
simple variants of the models described in Appendix F. For
example, the space-based optical PSF model we use for the
“constant PSF” branches is generalized compared to that for
WFIRST-AFTA in several ways. In particular, the size of the
basic diffraction-limited PSF is determined by the ratio of
wavelength of the light to primary mirror diameter. We choose a
range of allowed values for this parameter including the values
for several upcoming surveys; a range of obscuration by the
secondary mirror; several different sets of configurations for the
struts. Some additional aberrations to represent deviations from
the design residual are included. These are evenly distributed
among all the aberrations we consider for the space-based
model, and for the ground-based model all aberrations are

12



The Astrophysical Journal Supplement Series, 212:5 (28pp), 2014 May Mandelbaum et al.

represented, but defocus is most important (motivated by the
realistic ground-based optical PSF model). As is commonly the
case, the size of the additional aberrations is a factor of several
higher for the ground-based PSF than for the space-based PSF.

5.2.2. Atmospheric PSFs

Atmospheric turbulence is the primary contributor to the PSF
in ground-based data. Our model for the ground-based PSF
is that of a large (�2 m) ground-based telescope taking long
exposures without adaptive optics. As for the optical PSF model,
the GREAT3 atmospheric PSF model is a step up in realism
compared to previous challenges. The GREAT10 star challenge
did include a variable PSF model that included an atmospheric
term, but the model used here is more physically motivated due
to its being based on a combination of high-fidelity atmospheric
turbulence simulations and observational data. Further technical
details regarding the design of our atmospheric PSFs can be
found in Appendix G.

We invoke the LSST Image Simulator42 (PhoSim; LSST
Science Collaborations & LSST Project 2009; Connolly et al.
2010; J. R. Peterson et al., in preparation), a high-fidelity pho-
ton ray-tracing image simulation tool, for this purpose. PhoSim
adopts an atmospheric turbulence model similar to that used
in the adaptive optics (AO) community (Roggemann & Welsh
1995; Hardy 1998), with several novel implementations to
adapt to the wide-field nature of modern survey telescopes. The
PhoSim atmospheric model has been shown to properly repre-
sent observational data (J. R. Peterson et al., in preparation).
Since we were concerned only with studying the effects of the
atmosphere, we ran PhoSim in a special mode with the LSST
optics removed.

First, we consider the general profile of the atmospheric PSF.
To first order, this includes the PSF radial profile, the PSF size,
and any anisotropy of the PSF shape. The atmospheric PSFs
generated from PhoSim with exposure times appropriate for
the challenge (>1 minute) has a radial profile that is consistent
with the long-exposure limit atmospheric PSF predicted by a
Kolmogorov model. The PSF profile can be written as (Fried
1965)

PSF(θ) = FT

{
exp

[
−1

2
6.88

(
λ̄D| f |

r0

)5/3
]}

, (13)

where “FT ” represents a Fourier transform between angular
position θ and spatial frequency f , λ̄ is the average wavelength,
D is the aperture size, and r0 is the Fried parameter.

Given a survey design, the Kolmogorov PSF takes one
parameter, r0, which can be rephrased in terms of the commonly
used “atmospheric seeing,” defined as the FWHM of the
atmospheric PSF. We adopt a distribution of FWHM values
estimated at the summit of Mauna Kea in one optical filter
(R, 〈λ〉 ∼ 651 nm) at zenith.43 The quartiles of this distribution
are 0.49, 0.62, and 0.78 arcsec; the mean value is 0.66 arcsec.
For a single exposure, we draw a value of atmospheric PSF
FWHM from this distribution. These are not purely random;
since single-epoch experiments only have 10 different PSFs in
the entire branch, and we want to properly cover this distribution,
we draw randomly from within percentiles, i.e., one field has
a PSF drawn randomly from below the tenth percentile in the

42 https://dev.lsstcorp.org/trac/wiki/IS_phosim
43 Figure 1 from http://www2.keck.hawaii.edu/optics/ScienceCase/TechSci
Instrmnts/Products_SeeingVarMaunaKea.pdf.

Figure 8. Single random realization of an atmospheric PSF anisotropy pattern
in a 2 × 2 deg2 field, for a 2 minute exposure at a 4 m telescope. The plot title
gives the median PSF shear. The color scale indicates the fractional change in
size of the atmospheric PSF as a function of position.

(A color version of this figure is available in the online journal.)

distribution, another is from the tenth to twentieth percentile,
and so on. Finally, these Kolmogorov PSFs are assigned an
ellipticity (Equation (6)) to represent the small anisotropy in
the atmospheric PSF. The ellipticity values are based on a large
number of PhoSim simulations.

Next, we consider the spatial variation of the PSF model pa-
rameters (size and ellipticity), quantified by a 2 point correlation
function. We find that the spatial variation of atmospheric PSF
parameters in PhoSim can be well described by a functional
form with two parameters. We generate the spatially varying
PSF parameters as a Gaussian random field that corresponds
to this correlation function, with the two model parameters al-
lowed to vary in a reasonable range. An example of an ellipticity
field and the spatial variation of PSF size generated from this
procedure (described in more detail in Appendix G) is shown in
Figure 8.

Our choice to use a sheared Kolmogorov profile (without any
higher-order distortions) is a simplification compared to reality,
but inspection of the PhoSim simulation images showed that, for
reasonable exposure times and telescope sizes, it is correct to a
good approximation. Hence we consider our prescription to be
realistically complex enough for an interesting and relevant test,
and note that the modeling of atmosphere-driven variations in
PSF size and ellipticity is a significant enhancement in realism
compared to previous projects of this kind.

Figure 9 shows a comparison between the power spectrum
and correlation functions of the lensing shears, the atmospheric
PSF anisotropies, and the ellipticity of the optical space- and
ground-based PSF model (in the latter case, after convolving
with a circular, typical-sized atmospheric PSF). Here we have
omitted the aberrations other than the design residual to get an
idealized version of the results for the optical PSF model. This
plot shows the most important scales for the various systematics
compared to the weak lensing shears. For example, we see that
the lensing power spectrum is below that of the atmospheric
PSF anisotropies on large scales (small �). However, for nearly
all relevant scales on our grid, the atmospheric PSF anisotropy
correlation function is greater than that of the lensing shear.
The optical PSF anisotropy is primarily relevant on small scales
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Figure 9. Top: dimensionless power of lensing shears, atmospheric PSF shears,
and optical PSF shears (where the latter is computed by tiling several adjacent
pointings for our ground-based optical PSF model—without additional tilt,
misalignment, or defocus—after convolving with a circular 0.′′7 Kolmogorov
blur for the ground-based model). For lensing, the power spectrum that is shown
is the E mode, and the B mode power spectrum is zero. For the atmospheric
PSF, the power spectrum shown is the same for E and B. The solid black line
shows the minimum accessible � value given the size of our images. The dashed
black line shows the maximum � value given the grid spacing on our images;
however, since multiple images sample the same shear field, the true maximum
� is actually larger. Bottom: correlation functions for the three cases shown
above, after multiplying by separation on the sky in degrees. Here we show ξ+
and ξ−, but the latter is identically zero for our atmospheric PSF model.

(A color version of this figure is available in the online journal.)

(small angular separation or high �). However, because of the
tiling of multiple fields of view, it can be important on large
scales, particularly for the space-based model.

5.2.3. Star Fields

In the constant PSF experiments, we provide several noiseless
images of the PSF for each image, at the same resolution as the
galaxy images. One of those images is centered within a postage
stamp; the others are randomly offset by some amount to be
determined by participants, who may use them if they wish to
recover information about the PSF on sub-pixel scales. For the
space-based images with single exposures, the PSF is Nyquist
sampled, and hence those offset images carry no additional
information.

In the variable PSF experiment, we provide star fields that can
be used for PSF estimation, one star field per subfield (however,
the 20 subfields in a field have the same underlying PSF). If our
20 slightly offset grids of 100 × 100 galaxies that belong to the
same field cover the same 10 × 10 deg2 area of the sky, and we
want to simulate a realistic stellar density44 of 2 arcmin−2 down
to S/N = 50 for an image that goes to r magnitude of 25, that
means each star field has ∼1.3 × 104 randomly located stars.45

The magnitude distribution for the star fields is motivated by
the model in Jurić et al. (2008). Some methods use only very
high S/N stars resulting in ∼1 arcmin−2, but those that can go
to lower S/N will find a higher usable stellar density and may
be able to better trace the small-scale fluctuations in the PSF.
For the experiment containing all effects, each epoch will have

44 Considered as an average over stellar densities for different galactic
latitudes at reasonable galactic altitudes.
45 However, a small exclusion radius is placed around each one to avoid
blending effects.

its own star field for PSF estimation, since the PSF varies per
epoch.

5.3. Noise Model

In a weak lensing measurement, two important sources of
noise are “shape noise,” the intrinsic, randomly oriented galaxy
shapes that we must average out to measure the small, coherent
lensing shears, and “shape measurement error,” the noise in
individual galaxy shape measurements due to the noise in each
pixel. For typical galaxy populations, the shape noise dominates
over measurement error for all but the very lowest signal-
to-noise galaxies, where the two might become comparable.
Together these sources of error are often called “shot noise.”

Previous challenges have incorporated schemes to cancel
out the shape noise, thus substantially reducing the volume of
simulations needed to test shear measurement methods very
accurately from of the order of 10 TB to ∼1 TB. Shape noise
cancellation is imperfect due to measurement error, but it is
still reasonably effective down to observations with S/N ∼ 20
(for S/N defined in Equation (16) below; this is an idealized
S/N estimate, defined before application of noise to the images,
with an optimal weight that is therefore unachievable in any real
measurement). For galaxies with lower S/N, the noise typically
leads to a substantial measurement failure rate that renders shape
noise cancellation very ineffective. Shape noise cancellation
also eliminates some selection biases.

Given the limitation imposed by our desire to keep the
simulation volume under control, in GREAT3 we employ shape
noise cancellation, with a lower limit on the (optimal) galaxy
S/N of 20, though we will discuss the effective S/N limit
with a more realistic estimator later in this section. In the
constant-shear simulations, shape noise cancellation is carried
out by having the same galaxy included twice, with orientations
rotated by 90◦ before shearing and PSF convolution (Massey
et al. 2007a). Given the typical S/N and intrinsic ellipticity
distribution for the galaxies in our parent sample, the shape
noise cancellation scheme reduces the errors on measured shears
by a factor of three (equivalent to 9× simulation volume). We
have tested the effect of completely random galaxy omissions
(e.g., due to convergence failure for some shape measurement
method), and found that for simulated data with typical S/N,
the errors on the measured shear increase from the optimal case
(perfect shape noise cancellation) by 8%, 30%, and 50% for
the case of 5%, 10%, and 20% missing galaxies, respectively.
This is still well below the 200% increase that corresponds to no
shape noise cancellation, so even for a significant random failure
rate the errors on the shear (and therefore metric) increase, but
not so much that the results become useless.

In the variable-shear simulations, as for GREAT10, the
lensing shear is entirely E-mode power (as in reality) and shape
noise is only in the B-mode (this is completely unrealistic, but
useful). This task is more complicated than for GREAT10 given
our use of a real galaxy population; see Appendix H for a
description of how we carry out shape noise cancellation.

It thus remains to describe our model for pixel noise. In real
data, pixel noise is largely Poisson (since the CCDs are counting
photons) but with a small Gaussian component from detector
read noise. In many data sets, Poisson noise is dominated by
the sky rather than the objects, except for very bright ones
that constitute a small fraction of the objects used for shape
measurement. Moreover, the sky level is often high enough
that its Poisson noise is essentially Gaussian. We therefore
employ a Gaussian noise model only, corresponding to a single
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constant variance and a mean of zero. The variance, which
must be estimated directly by those participants whose method
requires an estimate of noise variance, is constant throughout
a single subfield image, but can vary for different subfields.
While the use of effectively sky noise only (no noise from the
objects) is a simplification, it is not a very problematic one
for the galaxies: as shown in, e.g., Hirata et al. (2004) and
Kacprzak et al. (2012) for two quite different methods of shear
estimation, the realm in which noise bias is most problematic
is for galaxies with S/N � 30, corresponding to galaxies for
which sky noise dominates over the noise in the galaxy flux.
Thus this simplification is acceptable, and has the added benefit
of simplifying other aspects of the simulations (e.g., we do not
have to explore different values of gain, and we have a relatively
simple S/N estimator for the galaxies).

Our definition of galaxy S/N, which we use to decide which
galaxies go into the simulations, is the same as for GREAT08
(Bridle et al. 2010). We define the signal as a weighted integral
of the flux,

S =
∑

W (x)I (x)∑
W (x)

(14)

and its variance is

Var(S) =
∑

W 2(x)Var(I (x))

(
∑

W (x))2
. (15)

In the limit that the sky background dominates, Var(I (x)) is
a constant, so we can just call it Var(I (x)) = σ 2, the pixel
noise variance (this simplification depends on our adopted
noise model, and would not be more generally valid). We
adopt a matched filter for W, i.e., W (x) = I (x). Putting those
assumptions into Equations (14) and (15) gives

S/N =
√∑

I 2(x)

σ
. (16)

While we do not have noise-free images for the real galaxies
(for calculating the sum over squared intensities), we can use
the model fits to the galaxy images as noise-free images for this
purpose.

It is important to remember that this optimal S/N > 20
constraint does not correspond to a S/N > 20 cut that would be
applied using some typical S/N estimator on the real data. For
example, sextractor (Bertin & Arnouts 1996) analysis of the
simulated GREAT3 images gives a distribution of S/N values
that has one-sided 99% and 95% lower limits of 10.0 and 12.0
(ground) or 11.7 and 13.2 (space) for single-epoch simulations.
Hence the galaxy S/N distribution that is being simulated is in
fact comparable to that in samples that are used for real weak
lensing analyses, including the potential for significant noise
bias (Hirata et al. 2004; Kacprzak et al. 2012; Kitching et al.
2012; Melchior & Viola 2012; Refregier et al. 2012).

This S/N definition is also used for the stars in the star
fields when defining a S/N limit. For stars, the assumption that
background dominates is not very realistic.

Also, as described in Section 5.1, the original training data in
the “realistic galaxy” branches has noise in it already, so we only
add enough noise to ensure that the resulting noise correlation
function is the target one, i.e., Gaussian noise with σ defined by
Equation (16), without pixel-to-pixel correlations.

Many image processing steps that are carried out on real data,
especially from space telescopes, can lead to correlated noise,
due to stacking of multiple exposures. For simplicity we include
only uncorrelated noise in GREAT3.

5.4. Image Rendering

GalSim provides two primary methods of rendering images
of a galaxy that has been sheared/magnified and convolved with
a PSF: via discrete Fourier transform (DFT), and via photon-
shooting. The latter method was used by the software for the
GREAT08 and GREAT10 challenges, and involves representing
shears, magnifications, and convolutions as offsets of photons
that were originally drawn according to the light distribution of
the intrinsic galaxy profiles.

However, for the GREAT3 challenge, we have adopted DFT
as our method of image rendering, for the following reason:
to use real galaxy images as the basis for our simulations
(Section 5.1), we need to remove the original PSF from the HST
images. There is no way to represent deconvolution in a photon-
shooting approach, and so for consistency, all branches of the
GREAT3 challenge (even those that use parametric galaxies)
are generated using DFT.

However, since the two methods use different approxima-
tions, our tests of the image rendering in Appendix D include a
comparison of DFT versus photon-shooting as a way to validate
the results.

5.5. Constant versus Variable Shear

The challenge consists of two shear types. Half of the
challenge branches contain images with a single constant value
of shear for the image, and the other half contain images that
have a variable shear field. The justification for this division
is that some lensing measurements, like galaxy-galaxy lensing,
can be carried out by averaging some roughly constant shear
value within annuli around lens object(s), whereas cosmic
shear measurements involve estimating the variable shear field
caused by large-scale structure. Both types of measurements
are scientifically useful. Additionally, some shear estimation
methods may work better in one regime than the other; stacking
methods (e.g., Lewis 2009; Bridle et al. 2010) are simplest to
interpret in the constant shear regime, whereas methods that
assume something about the statistical isotropy of the galaxy
shape distribution may fail in a constant shear field.

For the constant shear branches, simulations have a single
constant value of shear drawn randomly from a hidden distri-
bution in |g| with some minimum and maximum value, with
purely random position angles.

In the variable shear branches, we start with a shear power
spectrum with reasonable shape for a typical cosmology, and
with slightly high amplitude in order to increase sensitivity
of Qv to multiplicative biases. Then, we include a nuisance
function that gives scale-dependent modifications of the order
of ∼10% on the range of scales traced by our grid of galaxies.
In a single dimension, the angular grid extent of L = 10◦
(Lrad = π/18 radians) means that the minimum relevant � value
is �min = 2π/Lrad = 36.

This shear power spectrum is given as input to GalSim, which
uses it to generate a realization of a Gaussian random shear field,
and also generates self-consistent convergences. The resulting
values of shear γ and convergence κ are used to shear the galaxy
according to the reduced shear g (Section 2) and to magnify the
galaxy according to the magnification46μ = [(1 − κ)2 − γ 2]−1.

46 This procedure only includes changes in observed galaxy sizes and fluxes;
it does not include the other important effect of magnification (the
modification of the number density of objects due to the change in solid angles
and the fact that galaxies get scattered across cuts in flux and apparent size by
the magnification process).
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The GalSim “lensing engine” that carries out this process
works in the flat-sky limit. It uses Fourier transforms, with a
Fourier-space grid that is of equal size to the real-space grid,
and hence the power is assumed to be zero for |k| < 2π/L and
|k| >

√
2π/Δx (see Appendix I for details). This artificially

reduces shear correlations on large scales by a significant
amount compared to those in a realistic shear field (B. Rowe
et al., in preparation). To address this limitation, we use an
extended real-space grid for calculating shears, which lowers
the minimum k represented in the power spectrum and preserves
the shear correlations on scales corresponding to our box size.

Because of various effects that modify the power spectrum at
levels up to a few percent (e.g., reduced shear, random chance in
a single realization of the shear field, flat sky approach, and the
limited Fourier space grid used to generate the shears), we do
not compare submitted shear correlation functions with the input
ideal ones, but rather with correlation functions that we estimate
using the true reduced shears output from GalSim before they
are actually applied to the galaxies.

5.6. A Note about Physical Scales

In real images, galaxies may be quite close together (given
typical number densities of ∼20 arcmin−2), yet in the case of
variable shear fields, we usually only estimate shear correlations
for galaxies that are significantly farther apart than the average
separation between galaxies. This fact has motivated GREAT10
and now GREAT3 to consider galaxy grids that are 10×10 deg2

with 100 × 100 galaxies, not spending time simulating galaxies
that are very close together.

However, for variable PSFs, much of the interesting PSF
variation happens on smaller scales than the 0.1 deg grid
spacing. This has motivated us to make each variable PSF
branch contain ten fields of 20 subfields that sample the same
cosmological shear field and PSF field, thus sampling the PSF
field more densely than the cosmological shear field. This also
aids us in the calculation of the metric, Section 4.4.

5.7. Space versus Ground

Much of the difference between space-based and ground-
based data comes from the different PSFs, as described in
Section 5.2. The PSFs in space-based data are smaller and more
stable over time than ground-based PSFs. However, there is an
additional difference that is included in the GREAT3 challenge,
related to the sampling of the images.

Data from existing optical space telescopes, as well as
planned future telescopes, are typically undersampled due to
the relatively large pixel scale compared to the PSF size. Sub-
pixel dithers are used to recover Nyquist sampled data after
combining multiple exposures. However, since the combined
image typically has a smaller pixel scale than the original image,
the combined image has other features such as correlated noise
(and depending on how the image combination is carried out,
there might be some aliasing—see, e.g., Rowe et al. 2011).

In the control, realistic galaxy, and variable PSF experiments,
the simulated data do not have multiple exposures. Thus, if
we are simulating space-based data, we need some way to
have that single exposure be Nyquist sampled. Our choices
are (1) to simulate some realistic co-add over multiple single
exposures, including effects like correlated noise, or (2) to
simulate what would happen if our detectors had smaller pixels
that allowed them to be Nyquist sampled while also having
uncorrelated noise. We opt for choice (2). In the multi-epoch

and full experiments, the individual exposures have pixel scales
that are larger and hence not Nyquist sampled until all exposures
are combined. In practice, we use pixel scales of 0.′′1 and 0.′′05
for simulated multi-epoch and single-epoch data, respectively.

In contrast, ground-based data is rarely undersampled, and we
adopt a single pixel scale of 0.′′2 for the simulated ground-based
data, regardless of whether it is single- or multi-epoch.

5.8. Deeper Data

Many lensing surveys that are planned for the near- and far-
future are designed with both “deep” and “wide” components.
The “deep” components are typically a small subset (few per-
cent) of the area of the “wide” component, but include enough
observations to increase the S/N by a factor of several. These
deep fields enable training methods to learn something about
galaxy populations, which can then be used when interpreting
the data in the (more cosmologically interesting) wide survey.

To facilitate tests of such training methods, the GREAT3 chal-
lenge has additional simulations for each branch (corresponding
to 2.5% of the volume of that branch, i.e., five images) that rep-
resent data that are one magnitude deeper (2.5 times higher
S/N) than the rest of that branch, but are otherwise drawn from
the same underlying galaxy population. The shears and PSFs in
the deeper images are determined according to the same rules
used for the rest of the branch. The deeper data are not to be used
to estimate shears, and results for them should not be submitted;
they are purely for use as a training data set.

In a real data set, the deep survey would include a large
fraction of galaxies that are not even detected in the wide survey.
However, since we do not want most of the galaxies in the
GREAT3 deep data to be useless, we only simulate the ones that
would be observed in the rest of the GREAT3 challenge with
S/N above our limiting value. The galaxies that are simulated
in the deep data set still have resolution cuts imposed according
to the PSF size in the deep data set. The population is therefore
identical, but with S/N > 50 in the deep data set, which means
that the effective deep data fraction is actually 5%–7.5% rather
than 2.5% This volume of deep data is actually relatively high
compared to many planned surveys, but since the amount of deep
data needed is still an open question, a test with this amount of
deep data is quite useful.

Our interest in simulating a galaxy population in the challenge
that goes to I < 25 with limiting S/N = 20, but to also have
a subset of simulations in which the effective S/N limit for the
same population is S/N = 50, poses a difficulty for our training
data set. The depth of our HST training data set (Section 5.1 and
Appendix E) is such that at I = 25, the images we observe have
S/N below 50. We are forced to conclude that if we wish to have
a limiting S/N of 50 in the deep simulations for a magnitude-
limited parent sample from HST, we must use I < 23.5. This is
relatively shallow compared to many extant and future lensing
surveys, and hence somewhat undesirable. To ameliorate this
issue, we developed a simple procedure to use the I < 23.5
sample to mimic the observed properties of an I < 25 sample
by simple changes in flux and radius; a description and tests
of this procedure are in Appendix E.3. This procedure does
not preserve the intrinsic properties of the galaxies such as
their redshift distribution, luminosity distribution, or intrinsic
size distribution. However, it allows us to use the I < 23.5
sample to match the quantities that dictate the shear systematics
for an I < 25 sample—namely, the S/N, observed size, and
observed morphology. This also helps address the concern raised
in Section 5.1 that noise in the original HST images is treated
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as part of the galaxy; with the scheme described here, the added
noise dominates over the noise that was already present for all
galaxies.

6. SIMPLIFICATIONS

As described in Section 3.4, our goal of making simulations
to test particular effects has led to some simplifications. Here
we briefly mention several classes of problems that are left for
future work.

1. Non-gridded galaxies. Since our simulations include galax-
ies on grids at known locations, we do not test for issues
due to blends (overlapping galaxy profiles).

2. Selection biases. Imposition of selection criteria that might
lead to the probability of a galaxy being selected to correlate
with the shear or PSF direction are not tested in this scheme.
However, if the weights used for a particular galaxy depend
on the shear or PSF, then that form of selection bias will
show up in the challenge results.

3. Wavelength-dependent effects. Real PSFs are color-
dependent at some low level. Since star and galaxy SEDs
are not the same, this results in a different effective PSF
for galaxies as for stars. Further complications arise due
to color gradients within galaxies. None of these effects
are included in GREAT3, but may be quite important for
upcoming lensing surveys (Semboloni et al. 2013).

4. Instrument/detector specific effects. There are a whole host
of instrument and detector effects that are not included in
GREAT3, for example cosmic ray hits, saturation, bad pix-
els or columns, scattered light, charge transfer inefficiency,
and distortion. Because these effects are manifested in dif-
ferent instruments in different ways, it is difficult to simulate
them in a generic context.

5. Star/galaxy separation. In a realistic data analysis, it is
necessary to determine from the data itself which objects
are galaxies (to be used for shear estimation) and which are
stars (to be used for PSF modeling). Cross-contamination
between the samples in either direction can cause biases
in shear estimation. Since the GREAT3 challenge provides
galaxy fields for shear estimation, and star fields for PSF
estimation, star/galaxy separation is not explicitly tested
by this challenge.

6. Background estimation. The images in the GREAT3 chal-
lenge have essentially had the sky background level sub-
tracted. In practice, the sky background level is unknown
and spatially varying; incorrect removal (especially con-
tamination by the extended light of galaxies) can lead to
unsubtracted sky level gradients that mimic shear signals.

7. More complex noise model. In real images, the noise may
be more complex than the simple model adopted here
(Section 5.3). Aside from the issue of spatially varying
sky background and Poisson noise from the galaxy flux,
some steps in image processing can induce correlations in
noise levels between pixels.

8. Redshift-dependent effects. The GREAT3 challenge does
not include redshift-dependent shears or allow for estima-
tion of a redshift-dependent shear calibration.

9. Flexion. The GREAT3 challenge assumes the shear is
constant across each galaxy, so it does not include higher-
order distortions such as flexion.

The authors of this work benefited greatly from discussions
with Christopher Hirata, Gary Bernstein, Lance Miller, and Erin

Sheldon; the WFIRST project office, including David Content;
the Euclid Consortium; and the LSST imSim team, including
En-Hsin Peng; and Peter Freeman. We thank the PASCAL-2
network for its sponsorship of the challenge. This work was
supported in part by the National Science Foundation under
grant No. PHYS-1066293 and the hospitality of the Aspen
Center for Physics.

This project was supported in part by NASA via the Strategic
University Research Partnership (SURP) Program of the Jet
Propulsion Laboratory, California Institute of Technology; and
by the IST Programme of the European Community, under
the PASCAL2 Network of Excellence, IST-2007-216886. This
article only reflects the authors’ views.

R.M. was supported in part by program HST-AR-12857.01-
A, provided by NASA through a grant from the Space Telescope
Science Institute, which is operated by the Association of Uni-
versities for Research in Astronomy, Incorporated, under NASA
contract NAS5-26555. B.R. and S.B. acknowledge support from
the European Research Council in the form of a Starting Grant
with number 240672. H.M. acknowledges support from JSPS
Postdoctoral Fellowships for Research Abroad. C.H. acknowl-
edges support from the European Research Council under the
EC FP7 grant number 240185. F.C. and M.G. are supported by
the Swiss National Science Foundation (SNSF).

Center for Particle Astrophysics, Fermi National Accelerator
Laboratory is operated by Fermi Research Alliance, LLC under
contract No. De-AC02-07CH11359 with the United States
Department of Energy.

APPENDIX A

EXISTING APPROACHES TO SHEAR MEASUREMENT

Initially, the field of weak lensing was dominated by methods
that involved applying a correction to the weighted second
moments of the galaxy image to account for smearing by the
PSF. These early methods include KSB (Kaiser et al. 1995) and
implicitly make unrealizable assumptions about the nature of the
galaxy and PSF: that they have concentric isophotes (Massey
et al. 2007a) and small intrinsic ellipticities (Viola et al. 2011).
Since then, the weak lensing community has made significant
progress in developing additional PSF-correction methods. Like
KSB, some of those methods also start with measuring moments
of the galaxy and PSF, with some prescription for correcting the
former to account for the latter (e.g., Kaiser 2000; Rhodes et al.
2000; Hirata & Seljak 2003).

Other methods are based on forward modeling of the intrinsic
galaxy profile, including some methods that carry out <10 pa-
rameter fits for an astrophysically motivated galaxy model (e.g.,
Zuntz et al. 2013; Miller et al. 2013), and others that decompose
the galaxy images into an orthonormal basis set (e.g., Bernstein
& Jarvis 2002; Massey & Refregier 2005; Ngan et al. 2009),
requiring many more parameters but also allowing a lot more
flexibility for describing complex galaxies. Additionally, several
methods have gone in newer directions such as Fourier-space ap-
proaches and non-parametric methods (Bernstein 2010; Zhang
& Komatsu 2011; Bernstein & Armstrong 2014). For mea-
surements of constant shears, image stacking methods (which
were highly successful in the GREAT08 Challenge, Lewis 2009;
Bridle et al. 2010) have a clear potential application.

Several studies have assessed the limitations of previous
methods and devised ways of compensating for them (e.g.,
Bernstein & Jarvis 2002; Hirata & Seljak 2003; Bosch 2010;
Viola et al. 2011). A relatively new development in the
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GREAT10 challenge (Kitching et al. 2012) was the introduction
of several methods using techniques from machine learning and
computer science, such as the use of training methods (neural
network and lookup table approaches, e.g., Gruen et al. 2010).

Because of the wealth of information about these methods
in the literature and in the summaries of the GREAT08 and
GREAT10 challenges, we refer the interested reader to the
relevant papers and references therein for more details on
modern shape measurement methods.

APPENDIX B

ESTIMATING THE SHEAR CORRELATION FUNCTION

For the variable shear branches, we cannot use the average
shear as a useful metric to decide whether a given set of shear
measurements match the input shear field. In fact, the average
input shear is zero by construction. Instead, we use the two-point
correlation function of the shear field. This statistic is commonly
used in weak lensing cosmic shear studies as the lowest order
description of the shear field in a given patch of sky. For a
Gaussian field, as is used in this challenge, it encapsulates all of
the measurable information about the shear field.47

As the name implies, the “two-point” correlation function
involves an average over all pairs of two shear measurements.
The math is simplest if we treat the shears as complex numbers,
g = g1 + ig2. Because of the complex nature of shear, there are
actually two shear correlation functions, ξ+ and ξ−, defined as
follows:

ξ+(r) = 〈g(x)g∗(x + r)〉 (B1)

ξ−(r) = 〈g(x)g(x + r)e−4iα〉, (B2)

where the averages are over all pairs of measured shear values,
α is the polar angle of r and ∗ indicates complex conjugation.

Both ξ+ and ξ− are complex-valued by construction, but they
are both effectively real in practice. In fact, ξ+ is identically real
if the average is allowed to count each pair of galaxies twice,
letting the two shear values swap places for the second counting.
The expectation value of ξ− is real for shear fields that are parity
invariant. That is, if the shear field is statistically identical after
being reflected along some axis, then the imaginary part of ξ−
has an expectation value of 0, and deviations from this value
in a particular realization of a shear field can be discarded as
meaningless.

To measure the shear correlation function, we use a public,
open-source software package, called corr2.48 It uses a ball-
tree algorithm to avoid having to calculate the product of every
pair of galaxies individually. Essentially, it calculates the shear
products for groups of galaxies that have nearly the same
separation vector, and thus belong in the same final bin. For
more details on the algorithm, see Jarvis et al. (2004).

Another relevant property of shear fields is that they can be
divided into so-called E-mode and B-mode components (see
Section 2.2). As discussed in Section 5.3, in our simulated shear
fields, the lensing shear is constructed to be purely E-mode,
whereas the shape noise (due to galaxy intrinsic shapes) is

47 The actual cosmic shear field of the universe is not Gaussian, so higher
order statistics such as three-point correlation functions and shear peak
statistics, among others, are also used to characterize the non-Gaussian
features in the shear field.
48 Available at https://code.google.com/p/mjarvis/.

almost purely49 B-mode. Thus, separating the measurements
into E-mode and B-mode components allows us to mostly
remove the largest source of noise in the measurement, which
lets us use far fewer galaxies than we would otherwise need to
achieve a given statistical precision.

The method we use to perform the separation is called the
“aperture mass statistic,” as discussed in Section 4.4.2. The
information in the shear field can be divided into E-mode and
B-mode components via the following formulae:

ME(θ ) = 1
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where
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The integrals formally go from r = 0 to ∞; however, the weight
functions T+ and T− go to zero quickly for large values of x. At
r = 0, T+ goes to a constant, so E versus B mode separation
formally requires integration over the correlation functions to
zero separation.50 For GREAT3, we get around this difficulty by
knowing the correlation function of the true input shear field at
scales smaller than the closest pairs of galaxies in the simulation.
When we receive a submission consisting of the measured ξ+
and ξ−, we can use the true values for the parts of these statistics
that are unmeasurable from the data. The measured correlation
functions are used for the bulk of the range of integration, so the
correction is small.

In practice, the measured correlation functions are measured
only at specific logarithmically binned values. Thus we convert
Equations (B3) and (B4) into sums over those binned values
using the simplest possible approximation (constant ξ (r) within
each bin). While this procedure would be problematic for
a cosmological analysis, leading to deviations from the true
underlying aperture masses that are more than several percent,
it is not a problem for the challenge because we can apply the
same procedure to the true input shears before comparing with
the ME and MB submitted by participants.

APPENDIX C

CHALLENGE RULES

Here we describe the rules related to participation in the
challenge.

C.1. Teams

Participants can register on the leader board Web site using
a user name and e-mail address (no full name required). The
e-mail address must be a real one, as it will be used to
communicate information related to the challenge (but will not

49 “Almost” because it turns out not to be possible to make the shape noise
pure B-mode while maintaining other features that we wanted to have, such as
a Gaussian input field and the galaxy shape distribution matching the real
galaxy shapes.
50 See Kilbinger et al. (2006) for more discussion of this difficulty for
cosmological surveys.
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be shared/used for any other purposes). This is particularly
important since the simulations may be updated as needed
during the challenge if problems are found, and participants
will need to know about these modifications. At the close of the
challenge, participants will be asked to reveal their identities
and participate in the writing of a results paper. The first and
second place winners must reveal their identities in order to
receive the prizes, and they are strongly encouraged to present
their method at the GREAT3 final meeting, for which travel
support will be available. During the course of the challenge,
participants are encouraged to describe their method(s) on the
wiki at the public GitHub repository described in Section 4.2.
However, before writing papers based on the GREAT3 challenge
results while the challenge is still ongoing, please write to
challenge@great3challenge.info to consult with the leaders
of the challenge. After the challenge ends, participants are
encouraged to write papers based on the results, preferably citing
the official challenge results paper.

Submissions are to be made by teams, which can include
any number of people on them. Likewise, people may be on
any number of teams. Teams are permitted to submit results
labeled as different methods. On any given branch, only the top-
ranked method for any team will appear on the leader board,
though the other submissions are stored for later reference and
interpretation of results.

Submissions should be considered new methods when the
algorithms have some new element involved. A team with
several methods (in terms of algorithm or basic assumptions)
may be ranked on the leader boards for different branches with
different methods.51 The points for those top rankings with
different methods are considered when determining where that
team is ranked on the overall leader board (Appendix C.2).
Forming a new team to submit “new” methods without any
significant differences52 in order to push other teams off the
leader boards is grounds for disqualification from the challenge;
we reserve the right to disqualify teams for other malicious
behavior as well. However, there is an element of choice here:
for a truly different method, people may decide whether they
wish to submit it as the same team or as a different one. On
any given branch, teams are limited to one submission per day.
During the course of the challenge, participants are welcome
to form new teams by opening issues on the public GitHub
repository described in Section 4.2; for example, someone who
only has shape measurement code might try to form a team with
someone who has PSF estimation code in order to participate in
the “variable PSF” branch.

Teams that include �1 participant on the “GREAT3 executive
committee” (which gives them access to privileged information
about the simulations) are flagged as such. This means that while
they appear on the individual leader boards, they do not receive
an official ranking (e.g., if their metric is at the top, they will
appear in the top position, but the first unflagged person is the
one who is ranked as first place on that board when it comes to
determining points for the overall leader board, Appendix C.2).
Such teams appear with starred scores on individual branch

51 Note that this is a change from GREAT08 and GREAT10, which ranked
methods rather than teams. The reason for the change is that given the large
variation in simulated data types (constant and variable shear, space and
ground data), we want to allow the possibility that one team might have two or
more “specialist” methods that only handle certain data types, but do so very
well. In our scheme, the high rankings for those methods can be combined to
allow this team to win.
52 See the leader board Web site for examples of what constitutes a different
method.

leader boards, and do not appear on the overall leader board at
all. The list of executive committee members is on the FAQ at
the public GitHub site;53 however, it is the responsibility of the
committee members to identify themselves as such at the time
their team is formed. If an executive committee member wishes
to join a team after the time of its formation, they should e-mail
the challenge e-mail address given in Section 4.2 to change that
team’s status to “flagged.”

C.2. Overall Leader Board

To create an overall leader board, we award points to each
team based on their rankings on the individual branches. Each
team is awarded points based on their best-ranked 5 branches
(or less than 5, if they submit to less than 5 branches); we award
1000 points for a fifth-place finish, 2000 points for fourth, 4000
points for third, 8000 points for second, and 16,000 points for
first. The team with the highest total number of points is the
winner. In the case of a tie, the total number of points from
all submitted branches will be totaled for the tied teams, and
the team with the most total points wins. If the teams are still
tied, then as a second-level tie-breaker they will be ranked by
the earliest submission time stamp among the branches that
contributed points to the tiebreaker (any branch in which the
team placed in the top 5), with earlier time stamps winning
over later time stamps. We performed 10,000 Monte Carlo
simulations of possible challenge scores, and found that our
ranking method did not strongly favor specific distributions of
scores, although it rewards those who are consistent across
all branches slightly more than those who specialize in an
experiment or observation type. Limiting to the best-ranked 5
branches helps reduce the impact of the number of submissions
per team: around 60% of the simulated teams submitted to 10
or fewer branches, and they made up around 40% of winners,
compared to 15% of winners when we did not limit to the best-
ranked 5 branches per team. With this method, almost 60% of
the first-place teams did not place first in any individual branch.

APPENDIX D

VALIDATION OF GalSim SHEARING PRECISION

Here we provide evidence that GalSim can be used to create
sheared images of parametric and realistic galaxies using the
DFT method of image rendering (Section 5.4) for the purpose
of testing weak lensing algorithms.

Our first test is for Sérsic profiles. GalSim can render Sérsic
profiles in two ways: via photon-shooting or the DFT approach.
For the former approach, the primary approximation is the use of
a lookup table to represent the radial profile when sampling the
photons. The shearing, convolution with a PSF, and binning into
pixels is in principle exactly represented with photon offsets.
For DFT, there are more approximations: we have to represent
the Fourier-space profile as a lookup table, but shearing also
assumes that we are in the regime where DFTs can substitute for
continuous Fourier transforms. There are thus additional caveats
for the DFT approach, and they are in principle independent of
the issues that can arise from photon-shooting. Thus our first
test for Sérsic profiles is whether sheared Sérsic profiles agree
when generated using these two methods. For this purpose
we make images in both ways, measure their shears using
adaptive moments, and define a STEP-like calibration bias (see

53 https://github.com/barnabytprowe/great3-public/wiki/Frequently-Asked-
Questions
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Figure 10. Difference between measured shears (upper panel: g1; lower panel: g2) for Sérsic profiles simulated using the two methods of image rendering in GalSim,
photon-shooting and DFT, plotted against the shear measured from the DFT image. Results are shown for 30 galaxies with realistic size and shape distribution, and
several Sérsic n values shown in the legend. The points can be fit to lines to measure mDFT as defined in Equation (D1), and the best-fit values are shown in the legend.

(A color version of this figure is available in the online journal.)

Section 4.4),

γDFT − γphot = mDFTγphot + cDFT. (D1)

Our target level of accuracy for shear testing with GREAT3 is
that we would like to test for calibration biases and additive
systematics at the level needed for Euclid (Massey et al. 2013),
m ∼ 2 × 10−3 and c ∼ 2 × 10−4. Thus we would like our
simulation software to produce spurious shears that are a factor
of �10 below that, i.e., mDFT < 2 × 10−4.

We carried out a test of shearing accuracy for each of the
two shear components, alongside a similar test for the correct
rendering of galaxy size. Several values of Sérsic indices n
were investigated, for a range of galaxy half light radii and
intrinsic ellipticities ε(s) drawn from a random sample of 30
single component Sérsic model fits to the COSMOS training
data sample. For each galaxy a circular profile was first sheared
to create an object with ellipticity ε(s), convolved with a
COSMOS-like PSF, then rendered as an image via both DFT
and photon shooting. Differences between moment estimates of
the resulting ellipticities are plotted in Figure 10. As shown, the
values of mDFT demonstrate that we can consistently represent
galaxy shears at the few ×10−6 level for n = 1.5, with mDFT
rising as high as ∼1 × 10−4 for the highest n = 6.2 (note that
for GREAT3 we use n � 6). These values are safely below
our target values of 2 × 10−4. Since errors in DFT and photon-
shooting are completely independent, it is highly improbable
that this good agreement is due to chance, and it supports our
claim that we can accurately shear galaxies rendered via DFT
for the GREAT3 challenge.

As a parallel investigation, we also estimated the size of
the galaxies in the images described above, using adaptive
moments. By fitting a slope to the differences between DFT
and photon shooting results, we can also estimate the accuracy
at which weak lensing magnifications can be simulated using
GalSim. We found a slope of mDFT = (4.7 ± 0.7) × 10−5 for
the Sérsic n = 1.5 galaxy sample, mDFT = (−1.4±3.6)×10−5

for the n = 4.5 sample, and mDFT = (−3.4 ± 8.1) × 10−5

for the n = 6.2 sample. These results are safely below the
2 × 10−4 target adopted for multiplicative-style biases in the
simulation of shear. Indeed, the signal to noise expected for
cosmological magnification measurements has been estimated

as �50% relative to shear (e.g., van Waerbeke 2010; Schmidt
et al. 2012; Duncan et al. 2014) motivating a corresponding
relaxation of requirements by a factor �2 (although this figure
is dependent both on the data set and analysis technique used,
see, e.g., Huff & Graves 2014). These results suggest that
the representation of galaxy sizes with GalSim therefore falls
comfortably within requirements for future surveys.

Next, we show that we can accurately shear more complex,
realistic galaxy images. For the GREAT3 challenge, we must
remove the HST PSF, shear and magnify, and convolve with the
target PSF. In this case there is no ground truth. Instead, we
begin with a simpler test for which we do have ground truth:
we treat the HST PSF for our training galaxies as part of the
galaxy itself. In that case, we can compare the shape of the
original image (HST PSF included) with the shape when we
shear it by a small, known amount. We carry out this test for
simulated Sérsic profile images and for realistic HST galaxies,
and ensure that the recovered shears are as expected despite
the need to carry out interpolation to do the shearing. In this
case, since the original galaxies are not round, we calculate the
difference between the observed shear (after applying a shear)
and the expected one given the intrinsic shear and the applied
one, and define calibration bias due to interpolation minterp as

γobs − γexpected = minterpγapplied + cinterp. (D2)

We find for minterp for the two shear components is (−1.3 ±
0.5)×10−5 and (−0.2 ± 3)×10−5. These are both safely below
our tolerance for spurious shear in the simulation process. These
numbers come from using the default interpolants and settings
in GalSim; future work might involve refining these, but they
are clearly adequate for the levels of calibration bias that can be
detected in GREAT3. cinterp is of the order of 10−10, consistent
with zero within the errors.

In addition, we check for leakage between shear components
(i.e., that applying one shear component does not result in an
incorrect level of shear in the other component). For example,
we define cross terms such as

γobs,1 − γexpected,1 = m
(1,2)
interpγapplied,2 (D3)

and likewise for leakage between magnification and shear. We
find that m

(1,2)
interp and m

(2,1)
interp are of the order of 1 × 10−5.

20



The Astrophysical Journal Supplement Series, 212:5 (28pp), 2014 May Mandelbaum et al.

Our final test is to show that we can successfully carry out
the process of “reconvolution” (Mandelbaum et al. 2012) using
GalSim—that is, when we say we are representing what some
galaxy looks like with an added shear γapplied when viewed at
lower resolution, is that statement correct? This test was carried
out using simulated Sérsic profiles at high resolution, putting
them through the reconvolution process and ensuring that the
result looks like what we simulate by taking the original Sérsic
profile and viewing it directly at low resolution. We quantify any
error in the effectively applied shear due to the reconvolution
process as mreconv, defined by

γreconv − γdirect = (1 + mreconv)γapplied. (D4)

mreconv was determined for 270 galaxies randomly selected from
the training sample described in Appendix E, for a space-based
and a ground-based target PSF. As for previous tests, our target
value is mreconv < 2 × 10−4. Since galaxies with different light
profiles might be more or less difficult to accurately render using
reconvolution, we consider not only the mean 〈mreconv〉 but also
its standard deviation, as an indicator of possible galaxy types
for which the method fails to work sufficiently accurately even if
it works for most galaxies. For the default GalSim settings used
for the GREAT3 simulations, we find 〈mreconv〉 is completely
consistent with zero, with a standard deviation of 3×10−5, well
below our target value of mreconv of 2 × 10−4. This result shows
that any profile inaccuracies due to the reconvolution process do
not interfere with our ability to accurately render what a galaxy
looks like with a particular shear, even for different galaxy types.

The results in this section use the default set of parame-
ters for DFT and photon-shooting accuracy in GalSim; more
detailed investigations will be presented in B. Rowe et al.
(in preparation).

APPENDIX E

REAL GALAXY DATASET

Here we describe the data set used to simulate a realistic
galaxy population in the GREAT3 challenge.

E.1. HST Training Sample

The training sample that is compiled here comes from
the COSMOS survey, using galaxy selection criteria from
Mandelbaum et al. (2012), as summarized below.

The COSMOS HST Advanced Camera for Surveys (ACS)
field (Koekemoer et al. 2007; Scoville et al. 2007a, 2007b) is
a contiguous 1.64 deg2 region centered at R.A. = 10:00:28.6,
Decl. = +02:12:21.0 (J2000). Between 2003 October and 2005
June (HST cycles 12 and 13), the region was completely tiled by
575 adjacent and slightly overlapping pointings of the ACS Wide
Field Channel. Images were taken through the wide F814W
filter (“Broad I”). We use the “unrotated” images (as opposed
to North up) to avoid rotating the original frame of the PSF.
The raw images are corrected for charge transfer inefficiency
following Massey et al. (2010). Image registration, geometric
distortion, sky subtraction, cosmic ray rejection, and the final
combination of the dithered images are performed by the
multidrizzle algorithm (Koekemoer et al. 2002). As described
in Rhodes et al. (2007), the multidrizzle parameters have been
chosen for precise galaxy shape measurement in the co-added
images. In particular, a finer pixel scale of 0.′′03 pixel−1 was
used for the final co-added images (7000 × 7000 pixels).

The following cuts are then applied on catalogs derived
from the COSMOS images; for more details on the flags, see
Leauthaud et al. (2007).

1. F814W < 25.2. This cut corresponds to a S/N limit of
∼20. However, as discussed in Section 5.8, we only use
those galaxies at <23.5 for GREAT3, applying simple
transformations (Appendix E.3) to mimic a fainter sample.

2. MU_CLASS = 1. This requirement uses the relationship
between the object magnitude and peak surface brightness
to select galaxies, and to reject other objects.

3. CLEAN = 1. This cut is required to eliminate galaxies
with defects due to very nearby bright stars, or other similar
issues.

4. GOOD_ZPHOT_SOURCE = 1. This cut requires that
there be a good photometric redshift, which typically is
equivalent to requiring that the galaxy not be located within
the masked regions of the ground-based BV Iz imaging
used for photometric redshifts. We impose this cut here
because we wish to test the galaxy population going into
our simulations to ensure that it is representative of reality,
and having a photometric redshift estimate is an important
part of those tests.

Following the procedure in Mandelbaum et al. (2012) for
a brighter subset of the data, postage stamps were cut out
around the position of each galaxy. The background level was
subtracted, and additional objects besides the central one were
masked with a correlated noise field with the same properties
as the noise in the rest of the image. As in that work, in
order to remove the effects of the COSMOS PSF, we use PSF
models from a modification of version 6.3 of the Tiny Tim ray-
tracing program.54 These models represent PSFs for different
primary/secondary separation, since that separation is the main
determinant of the PSF ellipticity; while imperfect, particularly
at long wavelengths (Sirianni et al. 1998), the Tiny Tim PSFs are
close enough to reality to use in our simulations. Future work
will include empirically estimated PSFs.

As described in, e.g., Mandelbaum et al. (2008), the
COSMOS field is small enough that, when measuring quan-
tities as a function of redshift in small redshift bins, large-scale
structure in the field induces non-negligible noise in the results.
This should also be the case when using it as a training sample to
estimate shear calibration as a function of redshift: the intrinsic
ellipticity distribution can differ in dense and underdense envi-
ronments due to their different galaxy populations, so for narrow
redshift slices, the shear calibration would reflect those different
populations. However, here we are using the COSMOS sample
to measure the shear calibration for some redshift-averaged pop-
ulation, such that the large-scale structure fluctuations in narrow
Δz slices effectively cancel out. As a result, we do not impose
any density-dependent weighting on the sample.

E.2. Parametric Fits

We fit the galaxies in the training set with parametric models.
The functional form is given by a Sérsic profile (Sérsic 1968).
The radial surface brightness profile is

I (R) = I1/2 exp[−bn((R/Reff)
1/n − 1)], (E1)

R = [((x − x0) cos φ + (y − y0) sin φ)2

+ ((y − y0) cos φ − (x − x0) sin φ)2/q2]1/2, (E2)

where Reff is the half-light radius, I1/2 is the surface brightness
at the half-light radius, n is the Sérsic index, and bn is a

54 http://www.stsci.edu/software/tinytim/
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normalization factor dependent on the Sérsic index. The radius,
R, defines an ellipse, with minor-to-major axis ratio q = b/a.
We fit each galaxy twice: once with a Sérsic profile, and once
with a de Vaucouleurs (n = 4) bulge profile plus an exponential
(n = 1) disk profile. The fitting method is described in detail
in Lackner & Gunn (2012). The Sérsic profile contains 7 free
parameters: Reff , I1/2, n, the central position (2 parameters),
the axis ratio of elliptical isophotes, and the position angle. We
place some constraints on the fitted parameters. The surface
brightness must be positive, the Sérsic index is between 0.1 and
6 (following Blanton et al. 2005), the axis ratio 0.05 � q � 1,
and the size of the galaxy must be smaller than the size of the
postage stamp. As in Lackner & Gunn (2012), the Sérsic models
cutoff smoothly at large radii. The cutoff radius varies smoothly
from four half-light radii for n = 1 to eight half-light radii for
n = 4.

The bulge + disk models have 10 free parameters, since we
fix the Sérsic indices of both components (n = 4 for the bulge
and n = 1 for the disk) and require that the bulge and disk
share the same centroid. In addition, we require that the bulge
half-light radius is less than that of the disk. Previous studies
have shown that varying the bulge Sérsic index does not yield
statistically significantly better fits for the typical galaxy in this
sample (Simard et al. 2011; Lackner & Gunn 2012; de Jong
1996).

The best-fit parameters are found using a two-dimensional
Levenberg-Marquardt minimization, mpfit2dfun in IDL
(Markwardt 2009). The fitter minimizes the weighted sum of
the squared differences between the galaxy image and PSF-
convolved model. This χ2-minimization method assumes the
pixel values are uncorrelated, which is not true for the HST
postage stamps. The weights are given by the inverse variance
in each pixel, including sky noise and photon noise from the
source. Although this is the optimal weighting scheme for a
least χ2 fit, it does introduce changes in the weighting scheme
as functions of galaxy brightness. Faint galaxies are fit with
constant, sky-noise-dominated weights, while bright galaxies
are down-weighted in the central regions. The initial values for
the minimization are obtained from an exponential profile fit to
the galaxy.

We have tested the fits by creating mock single-Sérsic and
bulge+disk images at various resolutions and S/N using GalSim.
The fitter recovers the correct input parameters for the relevant
range of resolution and S/N, although the uncertainties grow
as the S/N decreases (C. Lackner et al., in preparation). For
simulated galaxies where the ratio of bulge flux to total flux
(B/T) is between 0.3 and 0.7, the error in B/T varies from 0.10 to
0.17 as the S/N decreases from 100 to 50, typical for galaxies in
the HST training sample. The errors in bulge half-light radius are
typically 25%–44%, while the errors in the disk half-light radius
are always smaller, 10%–30%. These uncertainties depend most
strongly on S/N, not B/T, when B/T is far from both 0 and 1.
For single-component simulated galaxies, the uncertainties in
galaxy sizes are smaller still, ranging from 2%–10%, depending
on S/N, input galaxy size, and Sérsic index. The errors in size
are usually 3 times larger for galaxies with Sérsic index near
4 than for bulge-less exponential disks. In all cases, down to
S/N = 50, the mean offsets between the measured values and
the input parameters are within 1 standard deviation.

For our simulations, we use the bulge + disk model described
above, except for cases where B/T is below 0.1 or above 0.9;
or where the bulge radius or axis ratio runs up against the fit
limits (e.g., qbulge = 0.05 precisely). In those cases, the galaxy is

dominated by a single component, and it occasionally happens
that the subdominant component has extremely large radius
and low surface brightness (absorbing some sky gradient), or
otherwise poorly constrained parameters. Thus we do not use
the bulge + disk fits for these edge cases, and instead use the
single Sérsic fits with free n. We also require that the median
absolute deviation or MAD be lower for the two-component fits,
otherwise we just use the single component fits. After all cuts,
we use two-component fits for the ∼1/3 of the sample for which
they seem justified, and single Sérsic fits for the rest. Note that
the fits do include populations of galaxies with 0.1 < B/T < 0.2
with bulges with unusual properties (e.g., q ∼ 0.1); visual
inspection suggests that these are not fit failures but rather the
fitter attempting to represent bars or the beginnings of spiral
arms using a “bulge” component. Thus we do not attempt to
remove these fits.

Figure 11 shows some properties of the sample based on
these fits. Of particular note is the middle right panel, which
compares the position angles for bulge and disk shapes in
the two-component fits. As shown, the bulge and disk have
a significant tendency to be aligned with each other, but some
non-negligible offsets are allowed and thus will be represented
in our simulations even for the control experiment.

E.3. Mimicking a Fainter Sample

Since we wish to use a sample with robust two-component fits
to make the simulations, but want to simulate a galaxy sample
that is typical for deeper surveys (F814W ∼ 25), we have used
a sample with F814W < 23.5 to mimic a deeper sample with a
limit of <25.2. In details of intrinsic properties like redshift, this
would be a difficult task. However, we largely wish to reproduce
the observed properties of the sample that determine shear
calibration, including the distributions of S/N, apparent size,
intrinsic ellipticity, and morphology. To test our ability to do
this, we use the fewer-parameter single-Sérsic fits (and the B/T
from the double Sérsic fits described in the above subsection)
and demonstrate that a very simple prescription enables us to
achieve our goal.

Figure 12 shows the distributions of B/T, Sérsic n and half-
light radius, and photo-z from the catalogs of Leauthaud et al.
(2012). The histograms of these properties are shown as a
function of magnitude in bins shown in the upper left panel,
and for the sample overall in the solid black line. As shown,
the histograms of B/T, Sérsic and n are largely independent of
magnitude.55 However, we see the expected trends that fainter
galaxies are (1) at higher redshift and (2) smaller in size. As
noted previously, (1) does not affect shear calibration per se,
but rather the true shear experienced by a galaxy; hence, if we
are trying to calibrate some average shear calibration, we do not
need to reproduce distributions of photo-z. Therefore, our key
challenge is to get the size and S/N distribution of the <23.5
sample to look like that of the <25.2 sample.

We find that a simple mapping that involves reducing the flux
and decreasing sizes by a factor of 0.6 is sufficient to make the
<23.5 sample look statistically like the <25.2 sample in terms of
the distributions of apparent size, S/N, n, B/T, and ε. The two-
dimensional distributions of properties for the <25.2 sample

55 Another important property, the ellipticity distribution, is also consistent
with being independent of apparent magnitude (modulo noise, which increases
scatter toward high ellipticity in a well-understood way; e.g., Leauthaud et al.
2007). We have not plotted this quantity, because the ellipticity distribution is
so central to shear inference, and as for real data, challenge participants must
carry this out themselves from the simulated data.
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Figure 11. For two magnitude cuts, we show distributions of various galaxy properties from the fits described in Appendix E.2. Top left: distribution of Sérsic n
values, with a slight tendency to pile up at the lower and upper limits for the fainter sample (due to noise). Top right: distribution of bulge-to-total flux ratio B/T
from the two-component fits. Middle left: distribution of physical half-light radius, which tends to smaller values for the fainter sample because that one has more low
luminosity objects. Middle right: for the sample limited at 25th magnitude, for galaxies with two significant components, this plot shows density contours for the joint
distribution of bulge and disk position angles. Bottom: distribution of angular half-light radius.

(A color version of this figure is available in the online journal.)

(Figure 13) are almost completely reproduced by the <23.5
sample if we make this transformation. The one exception to
this statement is a slight difference in the ellipticity distribution;
the “fake” sample has fewer high-ellipticity objects. However,
since the existence of those high-ellipticity objects in the faint
sample is consistent with being caused by noise, it may actually
be a benefit that our “fake” deep sample does not contain them.

Thus, for all branches, we always apply this transformation
factor of 0.6 to the observed sizes in the I < 23.5 sample to
mimic a deeper sample.

We have not confirmed that this scheme reproduces the
fraction of irregular galaxies, since we have no good way
of quantifying irregularity for the faint sample. It is likely
that our procedure slightly under-represents the population of
irregulars, which is known to increase at higher redshift. This
means that our conclusions about realistic galaxy morphology
might slightly underestimate that in reality. However, this seems

preferable to the alternative of using rather noisy galaxy images
as the basis for our simulations, effectively considering the non-
negligible noise as part of the galaxies.

APPENDIX F

OPTICAL PSF MODELS

Here we describe the specific optical PSF models used for the
“variable PSF” experiment, for simulated ground- and space-
based data.

For the simulations that mimic observations from a space
telescope, we have secured an approximate description of the
design residual (Section 5.2.1) of a prototype telescope model
for the 2.4 m WFIRST-AFTA mission56 (Content et al. 2013).
The model consists of a Zernike polynomial description of

56 http://wfirst.gsfc.nasa.gov/
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Figure 12. Histograms of the properties of training sample galaxies for magnitude bins defined in the uppermost panel.

(A color version of this figure is available in the online journal.)

wavefront errors up to the order of j = 11 in the notation
of Noll (1976), and therefore contains trefoil and third-order
spherical aberration (but no higher order aberrations). This
Zernike approximation to the design residual was provided at
a series of fixed locations in the WFIRST-AFTA FOV, and we
interpolate the Zernike terms between these locations to provide
a fully continuous approximate model of a space telescope.
Additional aberrations, to model those due to misalignment or
figure errors, were included as additions to these Zernike terms
(also up to order j = 11 only). Values of these additional
Zernike aberrations were chosen such that the ensemble root
mean square wavefront error added was λ/13, where λ is the
wavelength of the light being observed. This is a relatively
stringent operational definition of a diffraction-limited optical
system, and a target for aberrations due to misalignment and
figure errors for space missions such as WFIRST-AFTA.

In addition to these aberrations, the WFIRST-AFTA prototype
model includes 6 non-radial struts (i.e., ones that do not go
directly across the center of the aperture). GalSim is currently
only able to simulate PSFs with radial struts, so that is the model
we use for GREAT3. Since jitter can be directional but typically
not with a preferred direction over long timescales, we model
jitter as convolution with a Gaussian with rms of 0.′′005–0.′′015
per axis, with ellipticity from 0 to 0.3 but random direction. In

contrast, charge diffusion often has some preferred direction,
so we model it as a Gaussian with σ = 0.05–0.2 pixels, with
ellipticity from 0–0.2, always in the same direction. Like the
additional aberrations, the jitter and charge diffusion parameters
are chosen for each field as a whole, and for a given epoch, they
are the same for all subfields within the field.

We need to determine a size for the tiles within the 10 ×
10 deg2 images that will represent individual fields of view for
the PSF model. The WFIRST-AFTA model is defined within a
0.42 × 0.42 deg2 FOV; we artificially stretch these length scales
to 0.5×0.5 deg2, which means we can tile a 10×10 deg2 region
with 400 PSF tiles in the space-based simulations.

For the simulations that mimic observations from a ground-
based telescope, we use an approximate description of the
design residual of an early model (S. Kent & M. Gladders
2013, private communication) for the Dark Energy Camera
(DECam) at the Blanco Telescope in Chile. This model differs
in some respects from the one that was actually used, but it is
nonetheless a reasonable optical PSF model for an instrument
on a 4m telescope. As for the WFIRST-AFTA PSF model,
we restrict ourselves to a Zernike polynomial description of
wavefront errors up to the order of j = 11 at a series of
fixed locations in the FOV, between which we interpolate the
Zernikes. We add additional aberrations to the ground-based
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Figure 13. Two-dimensional contour plots showing the relationship between F814W < 25.2 training galaxy properties, shown on a logarithmic scale.

(A color version of this figure is available in the online journal.)

PSF model to represent misalignment and tilt, based on a model
for DECam determined using extra-focal imaging (code to be
included in a future version of GalSim). This model is defined
over a 1.56×1.56 deg2 field of view; however, for convenience,
we stretch all length scales so that it is 2 × 2 deg2, which allows
us to use 25 optical PSF tiles within a 10 × 10 deg2 image.

APPENDIX G

DESIGN AND IMPLEMENTATION OF THE
ATMOSPHERIC PSF MODEL

G.1. The PhoSim Atmospheric Model

Here we give more details on the atmospheric model used for
PhoSim, which we use as the basis for GREAT3 as described
in Section 5.2.2. In this model, a set of frozen Kolmogorov
screens (Kolmogorov 1992) are distributed vertically above the
telescope (representing the column of air above the telescope).
For the work described here, the atmospheric model assumes
seven atmospheric layers at altitudes of 16 km, 8 km, 4 km,
2 km, 1 km, 0.5 km, and 0.02 km (ground layer), each having
different strengths. During the time of the exposure, the screens
move according to the wind conditions at different altitudes.
As photons propagate through different parts of the screen at
different times, their trajectories are perturbed by an amount
depending on the wavelength and the value of the screen at
that location. This simulates the refraction of light as it passes
though air of different densities (and thus refractive index).
Atmospheric dispersion is included by scaling this perturbation
according to the wavelength and zenith angle, as the screens
represent a thicker layer of air when the telescope is pointed
away from zenith.

The “frozen screen approximation” is justified since the
timescale for the shapes of turbulent cells to change signifi-
cantly is much longer than the time required for those cells to

pass through the field of view, given the typical wind speeds of a
few meters per second (Taylor 1938; Poyneer et al. 2009). These
atmospheric screens are constructed according to a full three-
dimensional van Karman power spectrum (see, e.g., Sasiela
1994) with assigned parameters including the structure function,
inner scale, outer scale, wind speed, and wind direction. Adopt-
ing the model of Tokovinin & Travouillon (2006), PhoSim uses
seven atmospheric layers (including ground layer), each layer
has the effective physical size of ∼2.6 × 2.6 km2 and resolution
of ∼1 × 1 cm2. Since storing all the information in these large
turbulent screens while ray-tracing is practically impossible,
PhoSim adopts the technique used by Vorontsov et al. (2008)
and splits the full van Karman power spectrum into three, each
containing a smaller range of scales. PhoSim then generates
three much smaller screens with these piecewise power spectra
and only registers the value of the “combined screen” on the fly
as the photon hits a specific pixel on the screen.

Since the specific model parameters vary from site to site,
PhoSim uses parameters based on atmospheric data taken close
to the LSST site, Cerro Pachon, Chile (2738 m above sea level,
70◦44′01′′W, 30◦14′17′′S) in order to simulate LSST data. Since
this site also hosts the 8 m Gemini-South telescope and the
4 m SOAR telescope, which are both equipped with adaptive
optics instruments, relatively complete atmospheric data and
literature can be found (Vernin et al. 2000; Abahamid et al.
2004; Ellerbroek & Rigaut 2000). Note, however, that dynamic
information about the variation in timescales shorter than a day
is currently lacking.

G.2. Estimation of Atmospheric PSF Parameters

In this section, we explain how we derived the ellipticity
values and the spatial variation of the ellipticity and size of the
atmospheric PSF using PhoSim.
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Figure 14. For several simulated atmospheric PSF fields from the LSST PhoSim
with 60 s exposure times, we show the correlation function of PSF shapes defined
as ξ+ (Equation (B1)). ξ− (Equation (B2)) is consistent with zero and therefore is
not shown. Different line colors are different realizations with randomly chosen
atmosphere parameters.

(A color version of this figure is available in the online journal.)

We used PhoSim to make simulated images of exposure
time57 10 s, 20 s, 60 s, and 120 s, each covering 0.5 × 0.5 deg2,
with stars that have S/N ∼ 1000 on a regular grid of 0.5 arcmin
grid spacing. For each exposure time we made 10 r-band
images with different seeing/wind/structure functions based on
a random seed. We then carried out several tests on the resulting
images.

We calculate the star ellipticities, e (Equation (6)), and their
correlation functions; examples are in Figure 14. The zero-lag
value of the correlation function is simply the variance of the
shapes, i.e., 〈e2

1 + e2
2〉 averaged over all simulated stars in the

exposure. The salient features of this plot are the following.

1. There is substantial range in the amplitude and slope of this
correlation function between individual realizations.

2. The amplitude of the ellipticity variance is relatively small,
typically in the range 10−4 to 10−3.

3. The shapes are coherent to quite large scales, an effect that
has been seen even for simulations of a larger area than
shown here. (See Figure 9 for an example of how the shape
correlation functions compare to those for lensing shear or
optical PSFs.)

In practice, we adopted a functional form that can describe
these atmospheric PSF correlations in a set of images covering
a larger 2 × 2 deg2 field, and on even larger scales in PhoSim.
That functional form has two parameters: the overall PSF
ellipticity variance and a length scale determining how quickly
the correlations die off with scale. For a given exposure in the
variable PSF experiment, two random numbers are chosen for
those parameters with a flat distribution (also consistent with the
simulations) to determine a PSF ellipticity correlation function.
The amplitude also scales inversely with the exposure time and
the telescope diameter. For the GREAT3 simulations, we choose
random values of exposure times of 60–180 s.

57 Note that real observations are typically anywhere from one to several
minutes long, though PhoSim typically runs with 15 s exposures to match the
LSST observation plan.

The spatial variation of the PSF size also follows a similar
correlation function. Typical fractional fluctuations in size are a
few tenths of a percent.

G.3. GalSim Implementation of the Atmospheric PSF

To simulate the atmospheric PSF for the challenge, we use the
GalSim software that takes a lensing shear power spectrum and
uses it to simulate galaxy shears.58 The physics in the two cases
is the same, except that for the atmosphere, there is equal power
in E and B modes, whereas lensing only generates E modes.
Moreover, the fluctuations in PSF size across the FOV are
sourced by the same physical source of the E-mode anisotropies,
so we can use the “convergences” from the GalSim outputs as
fractional changes in PSF size. Using this software requires us
to convert the PSF anisotropy correlation function that we use
to a power spectrum, via numerical integration. We tabulate the
power spectra for logarithmically spaced values of correlation
length; for some random value of correlation length, we use the
nearest one for which the power spectrum was tabulated. The
GalSim lensing code can then generate a random realization
of a gridded shear field with very large spatial extent (to avoid
issues with cutoffs in correlations at the edges of our image,
Section 5.5) using the chosen power spectrum divided into half
E-mode and half B-mode power. We use this gridded shear
field along with simple assumptions described at the end of
Section 5.2.2 to generate the atmospheric PSF as a function of
position in the field of view.

APPENDIX H

B-MODE SHAPE NOISE

As described in Section 5.3, in order to maintain a reasonable
simulation volume for the GREAT3 challenge, we need a way
to remove the intrinsic galaxy shape noise from the quantity of
interest, the reconstructed shear correlation function. However,
the scheme described there of using 90-degree rotated galaxy
pairs does not work for spatially varying shear fields (see, e.g.,
Appendix A of Kitching et al. 2011). As in the GREAT10
challenge, we adopt a scheme to ensure that the intrinsic shape
noise only shows up in the B mode shear correlation function,
whereas the lensing shear is only E mode.

However, the situation in GREAT3 is somewhat more com-
plex because the galaxy p(|ε(s)|) is determined for us by the
galaxy training sample that we are reproducing. Whereas in
GREAT10, it was possible to generate a Gaussian random field
of pure B-mode intrinsic ellipticities with an appropriate vari-
ance, in GREAT3 we only have the freedom to choose the orien-
tations, not the ellipticity magnitudes, of the galaxies which we
simulate. Without altering the p(|ε(s)|) for our training sample,
which we wish to avoid doing as the p(|ε(s)|) is an important
characteristic of realistic galaxy populations for weak lensing, it
is impossible to avoid some leakage of shape noise into E-modes
where it increases the uncertainty on GREAT3 submission re-
sults.

The extent of this B-mode leakage can be reduced using a
prescription we now describe. First, an estimate of ε is made
for every galaxy in the COSMOS training sample, using the
second moments of high resolution images of the model fits

58 This is significantly less computationally intensive than making a large
number of PhoSim simulations directly, and in the long-exposure limit we can
make simple models that capture the relevant physics at the level needed for
this challenge.

26



The Astrophysical Journal Supplement Series, 212:5 (28pp), 2014 May Mandelbaum et al.

described in Appendix E. Taking these estimates of ε(s) for the
training sample, we calculate the variance in each component of
ellipticity, Var[ε(s)

1 ] and Var[ε(s)
2 ]. These determine the variance

σI of the pure B-mode, constant power spectrum, Gaussian
random field to use as a “target” for the intrinsic galaxy shapes
in the simulations, σI = Var[ε(s)

1 ] + Var[ε(s)
2 ].

We label as b the resultant ellipticities for a given realization
of this target B-mode Gaussian field (using the ε convention
for ellipticity, see Section 2.1). We seek to put down source
galaxies from the training set with ε(s) as close to b as
needed to ensure negligible B-mode leakage. The p(|b|) is, by
definition, a Rayleigh distribution with σ = σI . Comparison
with histograms of the training sample |ε(s)| showed reasonable,
but not perfect, agreement between the distributions. This
provided encouragement that it might be possible to generate
a field of galaxies with nearly pure B-mode intrinsic shapes
by appropriate selection from the training sample, followed by
rotation (we are free to rotate our source galaxies to align their
ellipticities with b). The procedure adopted was then as follows.

1. For each simulation field, a realization of pure B-mode el-
lipticities is generated as a Gaussian random field, yielding
a target ellipticity bj at each of j = 1., . . . , N galaxy posi-
tions in the field. We note that here the subscript j does not
denote shear component.

2. A sample of N galaxy models are drawn from the full
training sample, with replacement. These models have
estimated ellipticities ε

(s)
k .

3. The ranked ordering of bj by ascending |bj | is determined
by sorting; the ranked ordering of ε

(s)
k by ascending |ε(s)

k | is
determined similarly.

4. At each galaxy position with target ellipticity bj the source
galaxy for which |ε(s)

k | took the same ordered rank as |bj |
is selected, and assigned to this position.

5. This source galaxy is then rotated so that its ellipticity ε
(s)
k

is aligned with bj.

This procedure yielded samples of source galaxies with
intrinsic ellipticities that were acceptably close to being a pure
B-mode signal, while maintaining the real p(|ε(s)|) from the
training set. Simulations using the COSMOS training sample
demonstrated a leakage into the E-mode that was a factor of
seven to eight smaller in variance than the expected shot noise
σ 2

n due to noisy pixels (e.g., Section 4.4.2), which is a tolerable
contribution to the overall uncertainty.

APPENDIX I

SIMULATING SHEAR FIELDS ON FINITE GRIDS

The Fourier space analogue of the shear correlation function
is the power spectrum P (k), which describes the variance of
a shear field in Fourier modes as a function of the angular
wavenumber k = |k| on the sky.

An approximate simulation of a random shear field according
to a specified power spectrum is straightforward using the DFT.
Inherent in the approach is that the underlying shear must be
approximated as a Gaussian random field, and values of the
shear are provided only at grid points of fixed spatial separation
Δx, which we label γij .

The DFT of these shears, γ̃ij for discrete wavenumbers kij,
can be generated as complex random variables subject to the
constraint that

〈|γ̃ij |2
〉 = (Δk)2 P (kij ), where Δk is the grid

spacing in Fourier space (Δk = 2π/L, where L is the spatial

extent of the grid in real space, and we assume a square grid for
simplicity). Drawing Gaussian random deviates so that

γ̃ij = Δk

√
P (kij )

2
[N (0, 1) + iN (0, 1)] (I1)

satisfies this constraint. Applying the inverse DFT to such a
realization yields γij with a power spectrum that can be di-
rectly related to a periodic sample of the desired P (k). Pro-
vided Δx and Δk are sufficiently small, this will be a good
approximation to the desired shear field. For more details,
see https://github.com/GalSim-developers/GalSim/blob/master/
devel/modules/lensing_engine.pdf.
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