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ABSTRACT

Weak gravitational lensing (WL) is one of the most powerful techniques to learn

about the dark sector of the universe. To extract the WL signal from astronomical

observations, galaxy shapes must be measured and corrected for the point spread func-

tion (PSF) of the imaging system with extreme accuracy. Future WL missions—such

as NASA’s Wide-Field Infrared Survey Telescope (WFIRST)—will use a family of hy-

brid near-infrared CMOS detectors (HAWAII-4RG) that are untested for accurate WL

measurements. Like all image sensors, these devices are subject to conversion gain non-

linearities (voltage response to collected photo-charge) that bias the shape and size of

bright objects such as reference stars that are used in PSF determination. We study

this type of detector nonlinearity (NL) and show how to derive requirements on it from

WFIRST PSF size and ellipticity requirements. We simulate the PSF optical profiles

expected for WFIRST and measure the fractional error in the PSF size (∆R/R) and

the absolute error in the PSF ellipticity (∆e) as a function of star magnitude and the

NL model. For our nominal NL model (a quadratic correction), we find that, uncali-

brated, NL can induce an error of ∆R/R = 1 × 10−2 and ∆e2 = 1.75 × 10−3 in the

H158 bandpass for the brightest unsaturated stars in WFIRST. In addition, our sim-

ulations show that to limit the bias of ∆R/R and ∆e in the H158 band to ∼ 10% of

the estimated WFIRST error budget, the quadratic NL model parameter β must be

calibrated to ∼ 1% and ∼ 2.4%, respectively. We present a fitting formula that can be

used to estimate WFIRST detector NL requirements once a true PSF error budget is

established.

http://arxiv.org/abs/1605.01001v2
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1. Introduction

Weak gravitational lensing (WL) has been identified as a powerful probe of the nature and

evolution of the components of the Universe. In particular, cosmic shear—the subtle distortions

of background galaxy shapes by the large-scale structure of the Universe—constrains the prop-

erties of dark matter and dark energy through the measurement of the expansion history and

growth of structure of the Universe (Réfrégier 2003; Hoekstra and Jain 2008; Kilbinger 2015). WL

measurements also allow the testing of the validity of General Relativity that relates the grav-

itational potential to the matter-energy distribution. Several surveys in the visible part of the

spectrum of > 1000 deg2 of the sky are currently underway and use the WL signal from hundreds

of millions of galaxies as one of their central scientific techniques (e.g., the Dark Energy Survey

(DES), Diehl and Dark Energy Survey Collaboration 2012, Jarvis et al. 2015; the Kilo-Degree Sur-

vey (KiDS), Kuijken et al. 2015; and the Hyper Suprime-Cam Survey (HSC), Miyazaki et al. 2012).

In addition, future ground- and space-based surveys and missions in the visible and near infra-red

(NIR) are planned to image more than O(109) galaxies in the next decade (e.g., the Large Syn-

optic Survey Telescope (LSST), Ivezic et al. 2008; the Euclid spacecraft, Laureijs et al. 2011; and

NASA’s Wide-Field Infrared Survey Telescope (WFIRST), Green et al. 2012, Spergel et al. 2013,

Spergel et al. 2015).

The process of extracting the WL signal from images of the sky, in the presence of intrinsic

galaxy ellipticity variations that are ∼ 0.4 r.m.s, is highly non-trivial. It must be done through

a statistical analysis of large galaxy samples, with a careful control of systematic uncertainties.

The dominant signal produced by WL can be described by a local linear transformation of the

source image that produces a shear (a complex, spin-2 field of components γ1 and γ2) and a scalar

magnification, both of which have an r.m.s. amplitude of only ∼ 2% in the case of cosmic shear.

Most of the background galaxies usable by WL are at hight redshift (with low signal-to-noise (S/N)

ratio) and with a size comparable or smaller than the Point Spread Function (PSF) of the imaging

system. Incorrect estimation of the size of the PSF induces a modulation in the signal (multi-

plicative errors), and errors in the estimation of the PSF ellipticity propagate into asymmetries

that produce coherent spurious patterns (additive errors) that mimic the WL signal. Bright stars

are commonly used to estimate the PSF, and then this information must be interpolated to the

observed galaxy positions to deconvolve the PSF contribution and measure the galaxy shape (in

the form of a complex ellipticity e = e1 + ie2) to estimate the shear field.1 This interpolation

step introduces systematic errors if the information inferred from the stars does not fully constrain

the PSF at the galaxy position with the required accuracy. In order not to bias the determi-

nation of dark energy and other cosmological parameters in Stage IV surveys (in the language

1Most of the shape measurement algorithms to date rely on the accurate measurements of galaxy shapes to produce

an estimator of the WL shear field (γ1, γ2). However, recent algorithms propose skipping this step and creating a

direct shear estimator through Bayesian analysis (Miller et al. 2013, Bernstein and Armstrong 2014, Bernstein et al.

2015, Schneider et al. 2015, Alsing et al. 2016).
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of Albrecht et al. 2006), the ellipticity and relative size of the PSF must be known to an accu-

racy of O(10−3) (Huterer et al. 2006, Amara and Réfrégier 2008, Paulin-Henriksson et al. 2008,

Paulin-Henriksson et al. 2009, Massey et al. 2013, Cropper et al. 2013) or better (4.7 × 10−4 for

the knowledge of the WFIRST PSF ellipticity, Spergel et al. 2013).

Systematic errors that originate from a telescope’s detectors (image sensors) introduce biases

in astronomical observables such as photometry and astrometry that propagate into shear measure-

ment biases. These type of errors have been extensively studied in the case of thick, fully-depleted,

high-resistivity Charge Coupled-Devices (CCDs), which are the detectors of choice for many cur-

rent and planned surveys such as DES, HSC, and LSST (e.g., Stubbs 2014, Plazas et al. 2014,

Gruen et al. 2015), as well as in other types of CCDs (e.g., Prod’homme et al. 2014, Niemi et al.

2015). It is of great importance to quantify the impact of these sensor effects on the inference of cos-

mological parameters, in particular throughWL (Jarvis 2014, Mandelbaum 2015, Meyers and Burchat

2014). Future missions such as the James Webb Space Telescope and WFIRST will utilize a family

of near-infrared detectors that are also subject to effects such as nonlinearity, reciprocity fail-

ure (Bohlin et al. 2005, Biesiadzinski et al. 2011), interpixel capacitance (IPC; McCullough 2008,

Kannawadi et al. 2015), and persistence (Smith et al. 2008). These effects can imprint biases on

weak lensing shape measurements if not taken into account.

In this paper we study the effect of nonlinear detector conversion gain (voltage response to

collected photo-charge) on PSF size and ellipticity in the context of the NIR detectors that will be

used by NASA’s WFIRST mission. This type of detector nonlinearity (NL) will tend to attenuate

the measured flux in bright stars, broadening the inferred PSF. In other words, NL preferentially

depresses the flux in the core of the PSF relative to the wings, thus complicating its deconvolution

from the observed galaxy image, which itself is fainter and less subject to the effects of NL. In

addition, even though NL does not induce a spurious ellipticity by itself, it modifies the PSF

ellipticity if the PSF is anisotropic. Our analysis is also useful to set preliminary requirements

on NL for these sensors. Once characterized, NL can be corrected in each image, and remaining

residuals will depend on the accuracy in the knowledge of the NL parameters and their spatial

variation. We use the python/C++ code GalSim2 (Rowe et al. 2015) to simulate WFIRST PSF

profiles and to analyze the impact of NL on PSF size and ellipticity.

In Section 2 we summarize the main characteristics of the NIR detectors that will be used in

WFIRST and describe NL. In Section 3 we describe the simulations we create to study NL for

WFIRST PSF profiles. Section 4 presents our main results on fractional errors in size and absolute

errors in ellipticity caused by NL, as function of relevant parameters such as the model parameters

and PSF magnitude. We also study the effect of the spatial variability of the NL model across the

pixel array. We conclude in Section 5 with a discussion of our results and how they can be used in

the derivation of NIR detector specifications to satisfy WL accuracy requirements.

2https://github.com/GalSim-developers/GalSim, https://wfirst.ipac.caltech.edu/sims/Code.html

https://github.com/GalSim-developers/GalSim
https://wfirst.ipac.caltech.edu/sims/Code.html
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2. Voltage nonlinearity in the NIR detectors of WFIRST

The WFIRST mission will use a 2.4 m telescope equipped with a Wide Field Instrument

(WFI) with 6 bandpass filters: Z087, Y106, J129, W149, H158, and F184 (Spergel et al. 2015).3

The WFI will perform a high-latitude survey (HLS), imaging over an area of 2200 deg2 in four NIR

(∼ 0.92–2.00 µm) bands (Y106, J129, H158, and F184) down to a 5σ point-source AB magnitude

of 26.7 in the J129 band. The weak lensing program in the HLS will measure shapes of about 380

million galaxies in the J129, H158, and F184 bands (Spergel et al. 2015).

The WFI possesses a wide-field channel that has a Focal Plane Assembly (FPA) of 18 4k× 4k

HgCdTe (mercury, cadmium, and telluride) NIR detectors, arranged in a 6 × 3 layout and with

a pixel size and scale of 10 µm and 0.11 arcseconds per pixel, respectively. The HgCdTe NIR

detectors are manufactured by Teledyne Imaging Systems, and are part of a family of detectors

known as Hawaii-XRG (HXRG), where X denotes the detector width in thousands of pixels4.

The detector arrays are fabricated with a hybrid complementary metal-oxide-semiconductor

(CMOS) architecture, which combines the qualities of HgCdTe to detect infra-red light (e.g., al-

tering the relative molar contributions of mercury and cadmium allows one to tune the band gap

by up to an order of magnitude) and the advanced readout performance of integrated circuits.

Light is absorbed, converted to charge through the photoelectric effect, and collected by electric

fields generated by a reverse-biased p-n junction in the detector layer. The charge per pixel is then

converted to a voltage and amplified through a source follower. This operation is performed in the

silicon readout integrated circuit (ROIC) layer, which is connected to the HgCdTe detection layer

by indium interconnects (one indium bump per pixel). Finally, the ROIC transfers the signal (and

for this it is also known as “multiplexer”) to the off-chip electronics at the edge of the FPA, where

it is digitized through analog-to-digital converters (Beletic et al. 2008).

An ideal detector would produce a measurable signal that is proportional to the detected

photons. However, there are several places in the signal chain where this expected linearity is

not realized, and the conversion of charge to measured voltage (or digital numbers) becomes non-

linear. Each pixel’s p-n junction acts as a parallel-plate capacitor, and as charge accumulates

the depletion region narrows, causing a deviation from linearity of the charge-to-voltage conversion

relation. Nonlinearity can also be introduced through the electronic gain of the ROIC. Furthermore,

the charge accumulation rate might be a function of the photon-accumulation rate, an effect known

as count-rate nonlinearity or reciprocity failure (RF) (Smith et al. 2008, Biesiadzinski et al. 2011).

The first two types of nonlinearity depend only on fluence (integrated signal) as opposed to RF,

which is flux dependent. They can be analyzed together in a single transfer function typically

called “nonlinearity” (NL). We study the impacts of NL (more relevant at high signals) on PSF

3In addition to a integral field unit and a coronagraph for supernovae and exoplanet studies, respectively.

4HAWAII stands for HgCdTe Astronomical Wide Area Infrared Imager, and RG stands for “Reference pixels and

Guide mode”.
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measurements in this paper, while we leave investigations on the consequences of RF (relevant at

lower signals) on WL measurements for future work.

Assuming that the dominant contribution to nonlinearity is the varying capacitance of the

pixel p-n junction, we find that the correction to the detector signal is well-approximated by a

quadratic term:

S(Q) = Q− βQ2 (1)

Here, Q is the true number of elementary charges collected in the pixel, S is the number inferred

from the voltage change at the sense node, and β is a constant. To estimate β, we compute

Q(V ) = C(V ) ∗ V/qe, where qe is the elementary charge, and the total capacitance is given by

the varying junction capacitance plus a constant C(V ) = Cjn(V ) + Cfix. The junction capacitance

varies as (McCaughrean 1987)

Cjn(V ) ∝ (1 + V/Vbi)
−1/2 . (2)

Here, Vbi is the “built in” potential of the junction and V = VDSUB−VRESET+ δV , where VDSUB is

the constant potential at the diode cathode, VRESET is the initial potential at the anode, and δV

is the change in anode potential due to accumulated photocharge. As an example, we substitute

measurements of a 2.4µm cutoff H2RG by Finger 2006:5

Vbi = 0.412 V

VDSUB = 1 V

VRESET = 0.5 V

Cfix = 17.8 fF

Cjn(V = .912 V) = 30 fF

Using these parameters to compute Q(V ) for 0 ≤ δV ≤ 0.3 V (corresponding to maximum

Q=60115) and then inverting to find S(Q), we find it is well-fit (to 0.1% or better) by Eq. 1

with β = 1.18× 10−6. In practice, HXRG calibrations have included additional polynomial param-

eters which can reduce residuals, extend the range of valid Q, and account for additional nonlinear

effects (Hilbert 2004, Hilbert 2008, Hilbert 2014); however, the additional parameters are highly

degenerate, resulting in large variances in the fitted values. For our purposes, it suffices to analyze

the shape-distorting effects of nonlinearity using a single parameter, β, which encapsulates most of

the effect. In this paper we chose a nominal value of β0 = 5× 10−7, which is near the midpoint of

the measured range for β in Hilbert 2014.

To illustrate the effect of NL on photometry, consider nearly saturated stars in the HLS. Using

PSF profiles with a simulated AB magnitude up to 18.3 for an exposure time of 168.1 seconds

(expected for the HLS), the total flux in each band is shown in Table 1, along with the peak

5https://www.eso.org/sci/meetings/2006/neon-2006/Finger.pdf

https://www.eso.org/sci/meetings/2006/neon-2006/Finger.pdf
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pixel value. When the profile is drawn on a pixelated postage stamp with a scale of p = 0.11

arcseconds and placed on the center of the pixel,6 this particular magnitude produces a peak

charge of ∼ 1× 105 e− (Y106 band, see Table 1), which represents about 90% of the typical pixel

full well value of 1.1 × 105 e−.7 At this level of charge, the signal attenuation due to NL for the

nominal β0 value is about 5% (Eq. 1).

Calculations with the Trilegal galaxy model8 (Girardi et al. 2012) show that there will be

approximately 20 stars at or brighter than this magnitude (18.3) and flux level per detector.9 We

assume that galaxies will have about two orders of magnitude fewer total electrons than bright

stars, and therefore for this quadratic model, star shapes are distorted by NL and galaxies are

(approximately) not, which would result in an incorrect PSF correction if not accurately calibrated.

Thus our goal is apply NL to simulated WFIRST PSF profiles and quantify the impact on PSF

properties such as size and shape.

3. Methods

3.1. Simulations

We use the publicly available GalSim code (v1.3) to simulate the impact of NL on the WFIRST

PSF shape and size. GalSim is a python/C++ open-source code that allows the user to create simu-

lations of astronomical objects, and it was developed by the weak lensing community to investigate

shape measurement algorithms and systematics.

Kannawadi et al. (2015) have developed within GalSim v1.3 a WFIRST module called “galsim.

wfirst”, which allows the simulation of a PSF profile10 according to the optical design character-

istics of the WFIRST WFI (Pasquale et al. 2014)11

6Note that the peak value is a function of the PSF profile centroid location within the pixel, as well as pixel

resolution. When drawing the PSF profiles in our simulations, we randomize the PSF centroid within the native scale

pixel, as described in Section 3.

7Dave Content, private communication.

8http://stev.oapd.inaf.it/cgi-bin/trilegal

9We thank Christopher Hirata, who wrote the code to perform these calculations. The NIR filter sets used in

Trilegal had to be converted from the vega to the AB magnitude system. The code was run at the South Galactic

Pole with the SDSS and 2MASS (ugriz and JHKs) filters in 1 deg2 and interpolated to WFIRST filter centers, which

ignores the fact that stars have spectral structure in the NIR, but gives a result good to about 10%. The number of

stars quoted in the text is expected to be higher at moderate galactic latitudes.

10By calling the galsim.wfirst.getPSF routine.

11Pasquale et al. 2014 discuss the so-called “Cycle 4” optical design, whereas the GalSim WFIRST module—used

in this work—uses files corresponding to “Cycle 5”.

http://stev.oapd.inaf.it/cgi-bin/trilegal
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For this work, we have created simulations in the four bands of the HLS. A central circular

obscuration (30%; linear in value) and six support struts are included as well.

The module generates PSF models that do not include pointing jitter nor charge diffusion.

These effects could be added to the profile (e.g., by means of an extra convolution with a Gaussian

profile in the case of diffusion), but we did not include them in our simulations. Their effect would

be to create a slightly larger PSF, reducing the impact of NL. Their omission makes our results

slightly conservative.

The ellipticity of the WFI PSF varies over the field of view due to optical aberrations. To make

our results conservative, we simulate only detector #18, whose PSF was determined to have the

largest ellipticity (see Section 3.2 for a description of the shape measurement method used) across

all bands among all the detectors (Table 1). We also evaluate the PSF at the mean wavelength

weighted by each bandpass or effective wavelength.12 We then form an effective PSF by convolving

the profile with a 2D top-hat profile of length equal to the nominal angular scale of the WFIRST

WFI (0.11 arcseconds per pixel).

Band
Min. λ Max. λ λeff b(λ) peak value e1 e2 σ (pix)

(µm) (µm) (µm) (×105) (e−) (×105) (e−) (#18) (#18) (#18)

Y106 0.900 1.230 1.061 2.7621 1.00237 -0.0163 0.2035 1.7020

J129 1.095 1.500 1.292 2.8267 0.89742 -0.0127 0.1325 1.717

H158 1.340 1.830 1.577 2.7922 0.38654 -0.0089 0.0802 1.832

F184 1.630 2.060 1.837 1.8346 0.71890 -0.0071 0.0550 1.995

Table 1: The first column lists the four bands that will be used in the HLS. For weak lensing analysis,

multi-band shape measurement will be done in bands J129, H158, and F184. Columns 2, 3, and

4 show their minimum, maximum, and effective wavelengths, respectively (from Kannawadi et al.

2015). Column 5 shows the baseline total flux (in electrons) b(λ) of Eq. 4 at AB magnitude 18.3

(at 168.1 seconds of exposure time) in each band as calculated in GalSim, while column 6 shows the

peak value for each profile when rendered on a postage stamp at the native pixel scale (p = 0.11

arcseconds per pixel) at that same magnitude and with the PSF centroid at the center of the pixel.

The last three columns show the ellipticity components and size of the WFIRST PSF profile (drawn

a a resolution of p/N , with N = 3) in detector number 18 as calculated by the adaptive moments

routine in GalSim. Chip #18 was found to possess the largest values of absolute PSF ellipticity.

The WFI PSF is undersampled by design. In order to maximize the field of view, detectors in

instruments of space missions are usually built with a physical size that results in undersampled

images, which fail to satisfy the Nyquist-Shannon criterium for the maximum band limit set by

the optical response of the system, and therefore produce aliased images.13 In general, it is not

12This is called an achromatic galsim.OpticalPSF object in GalSim.

13The Nyquist-Shannon criterium states that the sampling interval p must satisfy p < 1/(2umax), where umax is
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possible to recover all the information of a continuous function from a discrete sample of points

if the image is aliased, and measurements of astronomical object’s properties such as magnitude

and shape will be erroneous (Lauer 1999a, Fruchter 2011, Rhodes et al. 2007). Undersampled data

can be fit to a model at the risk of introducing model bias. In practice, we find that our shape

measurement algorithm (see Section 3.2 below) performs poorly on undersampled images—when

most light is concentrated in one or a few pixels, the image ellipticity is poorly constrained. Thus

we must simulate the effect of NL on oversampled images.

To overcome the problem of undersampling in real data, multiple dithered exposures are taken,

and then processed by an image combination algorithm (Lauer 1999b, Fruchter and Hook 2002,

Bertin 2006, Rowe et al. 2011) in order to produce an oversampled image that satisfies the Nyquist-

Shannon criterium. To study NL with repeated simulations, however, such external software is

computationally expensive. Instead, we approximate oversampled data by rendering the convolved

PSF profile—including the pixel response at its native scale—as a GalSim object at a high resolu-

tion,14 setting the parameter scale to p/N , where N is a positive integer and p is the native pixel

scale. Defining Q ≡ 1/p× umax as the sampling factor (Q < 2, Q = 2, and Q ≥ 2 represent under-,

critically, and over-sampled images, respectively), we see that in order to produce an over-sampled

image (Q ≥ 2), the Nyquist-Shannon criterium implies that N must be given by (see e.g., Marks

2009, Shapiro et al. 2013)

N =
2p

λminF
(3)

where p is the pixel size, λmin is the shortest wavelength in a given filter, and F is the the f-number

of the telescope. In the case of the WFIRST telescope, p = 10 µm and F = 7.8, resulting in N ≥ 3

(N ≥ 2) for the J129 (H158) band. Thus, we have chosen to set N = 3 in our simulations to ensure

oversampling.

Note that the NL effect on the reconstructed image from dithering real exposures will depend

on the centroid of the source in the dithered inputs: an exposure where the PSF peaks at a pixel

center will have higher NL than an exposure where the peak is spread more evenly over 2-4 pixels.

To mimic this behavior in our approximation, we create a PSF profile whose centroid coordinates

are random numbers uniformly distributed over the size of a native detector pixel. We then render

the profile at a higher resolution p/N and measure its average size and shape over 100 realizations.

With N=3, the variation of the NL correction in the pixels of the oversampled image should be

similar to the variations in the 5-8 exposures combined using the WFIRST dither strategy. In

practice, we find that the scatters of the shape measurements over these realizations are negligible

relative to the means; therefore, we expect that the effect of NL on the shape of an oversampled

image is insensitive to the precise dither pattern.

the highest frequency in the signal, in order to avoid aliasing.

14This is done by calling the galsim.GSObject.drawImage method with option“method=no_pixel”.
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Notice that this method to approximate oversampled images can only be used in the case of

sensor effects such as NL, which depend on each pixel individually. In the case of other effects that

correlate the signal in one pixel with the signal of its neighbors (such as IPC), the effect should be

applied to the native scale of the detector and then a properly sampled image should be generated

through adequate combination of several dithered images before performing any analysis (see for

instance the “interleaving” algorithm of Kannawadi et al. 2015, also included in GalSim).

The PSF profiles are drawn into squared postage stamps of size 1.5k pixels (k = 64), large

enough to ensure that most (∼ 96%) of the total PSF flux is contained in the stamp. Each profile

object was assigned a total flux of

f = b(λ)× 100.4(18.3−m) e−, (4)

Eq. 4 gives the number of source counts per exposure, and m represents the AB magnitude of the

object for a given band. b(λ) e− is a baseline flux at AB magnitude m = 18.3 for a exposure time

of 168.1.15

We have neglected the main sources of noise that would affect the HLS—zodiacal background,

thermal emission, and read noise—which would make all images slightly more nonlinear. Calcula-

tions performed with the WFIRST Exposure Time Calculator v.1416 (Hirata et al. 2012) in weak

lensing mode (ETC-WL) by Spergel et al. 2015 in the F184 band (a conservative case) show that

the combined contribution due to these backgrounds sources would be approximately 130 e− per

pixel for a 174 seconds exposure (comparable to the 168.1 seconds of exposure time assumed in this

work), which creates negligible corrections in our simulations for a NL parameter β of order 10−6.

Total and peak flux values at each filter per postage stamp are shown in Table 1. The peaks

are upper limits estimated by assuming the PSF centroid is centered on a pixel. The brightest

magnitude used was AB m = 18.3, based on the peak value of the PSF profile in the Y106 band

when rendered into a postage stamp at the native pixel scale and placed at the center of the pixel:

∼ 1.00237× 105 electrons, representing about 90% of the typical full well depth in the pixels of the

H4RG detectors— ∼ 1.1 × 105 electrons. Recall that for each postage stamp, we select a centroid

with coordinates randomly chosen from a uniform distributed across the native scale pixel. In

addition, since NL is a function of signal, and since GalSim conserves total flux when changing

pixel scales, the total flux in the higher resolution image must be multiplied by a factor of N2 to

preserve the appropriate response per pixel to this effect, correcting for the fact that the new image

has a factor of N2 more pixels than the one created at the native scale.

For simplicity of analysis, the postage stamps are noiseless and no other sensor effect is applied.

15The magnitudes are determined by using the routine galsim.wfirst.getBandpasses (AB_zeropoint=True).

16https://wfirst.ipac.caltech.edu/sims/tools/wfDepc/wfDepc.html

https://wfirst.ipac.caltech.edu/sims/tools/wfDepc/wfDepc.html
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Fig. 1.— Example of the WFIRST PSF profiles in the Y106 band created by the

galsim.wfirst.getPSFmethod. The profile is drawn on a postage stamp with a size of 1.5k×1.5k

pixels (k = 64) and a resolution of p/N , with p = 0.11 arcseconds and N = 3. Before drawing the

profiles, they are first convolved with a pixel response of size p and given a flux obtained through the

use of the galsim.wfirst.getBandpasses (AB_zeropoint=True) routine at an AB magnitude of

18.3 (at an exposure time of 168.1 seconds). However, to preserve the correct response to NL, the

higher-resolution image has N2 more total flux. The NL effect is applied at the high-resolution

pixel scale p/N , but the centroid of the profile is randomized within the native pixel scale p (in this

example the centroid and the pixel center coincide). The upper left panel shows the full postage

stamp PSF image without the NL applied, while the lower left panel shows a zoom into the core

(squared central region in upper left panel) of 30 by 30 high-resolution pixels. The right-hand side

image shows the fractional difference between the PSF without the NL applied and a PSF with NL

using β0 for the model parameter.
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After convolving the PSF profile with a pixel of the size of the native scale and rendering the image

at the high-resolution scale, NL is applied by using Eq. 1.17

Fig. 1 shows an example of the PSF profiles and postage stamps created for our simulations

(in the Y106 band). The effect of NL (at the nominal β0) is small, and the difference image reveals

that the attenuation in the flux is of the order of a few percent, mainly for the larger signals found

at the core of the PSF. Kannawadi et al. 2015 present more details on the galsim.wfirst module,

along with examples of the PSF profiles that can be generated in all 6 WFIRST filters.

3.2. PSF size and shape measurement

The accurate determination of PSF properties such as size and ellipticity is crucial to avoid

the propagation of systematic biases in cosmological parameters through the use of weak gravi-

tational lensing (Paulin-Henriksson et al. 2008, Paulin-Henriksson et al. 2009, Massey et al. 2013,

Cropper et al. 2013). In general, the problem of galaxy and PSF shape measurements for accurate

weak lensing is non-trivial, and even when the PSF is perfectly known, shape measurement algo-

rithms can introduce biases. Several shape measurements algorithms—ranging from model-fitting

methods to particular combinations of weighted central moments and bayesian techniques—have

been and are being investigated in order to produce accurate shear estimators that satisfy the

requirements of current and future WL surveys (Mandelbaum et al. 2015).

To measure the profile shapes and size, we use the adaptive moments method (Bernstein and Jarvis

2002, Hirata and Seljak 2003).18. Adaptive moments are effectively weighted by an elliptical Gaus-

sian. At first they are calculated by computing moments weighted by a circular Gaussian with

some arbitrary size. Then the output moments are used to define a new elliptical Gaussian that

will act as a new weight function. The process is iteratively repeated until the output moments are

the same as those of the weight function. The ellipticity e = e1+ ie2 and size R are then defined as

e1 =
Mxx −Myy

Mxx +Myy
(5)

e2 =
2Mxy

Mxx +Myy
(6)

R = det[M]1/4 (7)

17galsim.image.applyNonlinearity.

18Already implemented in GalSim as galsim.hsm.FindAdaptiveMom().
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where the centroid x̄ and moment matrix M of an image are defined as

x̄ =

∫
d2x w(x)xI(x)

∫
d2x w(x)I(x)

(8)

Mij =

∫
d2x (x− x̄)i(x− x̄)jw(x)I(x)∫

d2x w(x)I(x)
(9)

for an elliptical Gaussian weight function w(x). We note that adaptive moments are particularly

sensitive to the core of the PSF when the PSF profile is diffraction-limited, and therefore they

should be particularly sensitive to NL effects.

3.3. Changes in size and ellipticity induced by NL

We quantify the effect of nonlinearity by measuring the fractional change in size and the

absolute change in ellipticity of the PSF profiles,19 in the 4 filters of the HLS of WFIRST and for

several values of the NL model parameter β. We calculate the quantities ∆e1, ∆e2, and
∆R
R , which

are defined as the difference between the measured ellipticity or size after the effect (NL) is applied

and the reference values measured before (represented by the subscript “0”) the application of NL:

∆ei ≡ ei − ei,0, i ∈ [1, 2] (10)

∆R

R
≡

R−R0

R0
(11)

In this way, we are less sensitive to the details (and possible biases) of the shape measurement

algorithm, since we only care about relative changes induced by the detector effect.

The basic simulation process is summarized by the following steps:

1. Create a WFIRST PSF surface brightness profile with a given flux as prescribed by Eq. 4,

and convolve the PSF profile with a top-hat pixel response with the size of the native scale

of the WFIRST FPA (p = 0.11 arcseconds per pixel) to produce an effective PSF.

2. Sample the effective PSF profile on a 2D grid to draw a noiseless postage stamp of size 1.5k by

1.5k (k = 64) pixels at a higher resolution of of p/N , with N = 3, and multiply the resulting

19In WL, before measuring a given galaxy shape the PSF has to be corrected. By propagating the errors in the

determination of the size and ellipticity of the PSF, it can be shown (see, e.g., Paulin-Henriksson et al. 2008) that

the error in the measurement of the source galaxy ellipticity is—to first order—given by a linear combination of the

fractional PSF size error and the absolute PSF ellipticity error, which are the metrics we have chosen to study in this

work.
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image by N2. In this step, NL is not yet applied, but it will be done so in a later step, so

the flux still needs to be adjusted. The centroid of the profile is randomly selected from a

uniform 2D distribution within the size of a native pixel.

3. Create another image of the effective PSF at a higher resolution and with the flux adjusted

as in step 2. Apply the nonlinearity to the postage stamps according to the transformation

I 7→ I − βI2 (c.f. Eq. 1).

4. Use the adaptive moments algorithm to measure the shape e0 = (e1,0, e2,0) and size R0 of the

profile without NL to have as baseline reference.

5. Measure the shape and size of the object with the sensor effect applied, and calculate the

quantities ∆e1, ∆e2, and
∆R
R , as defined in Eqs. 10 and 11.

6. Repeat steps 1 to 5, averaging over 100 centroid realizations. The size and ellipticity values

reported will be the mean and the standard deviation over these realizations (see Fig. 2 and

Fig. 3).

7. To study the impact of spatial variability in β, repeat steps 1 to 6 and assume that the model

parameter β for each high-resolution pixel can be drawn from a Gaussian distribution with

a particular mean β and variance σ2
β. Over M realizations (for a fixed centroid), calculate

the dispersion values σ∆e1 , σ∆e2 , and σ∆R/R as a function of σβ . In our simulations we use

M = 100 (see Fig. 4 and Fig. 5).

4. Results

4.1. Biases in ellipticity and size

Fig. 2 shows the fractional change in PSF size and the absolute error in PSF ellipticity as a

function of the mean nonlinearity parameter β, for different bandpass filters at fixed AB magnitude

of 18.3 in each band, consistent with the magnitude of nearly saturated stars in the HLS. We note

that the flux in each band will depend on the particular stellar spectral energy distribution (SED),

and we would need to specify a particular SED to go from one reference band to other bands. For

simplicity, we are performing our calculations based on a grid of AB magnitudes in different filters.

In the H158 band, the mean nominal value of β0 = 5× 10−7/e− induces errors in the size and

ellipticity of about 1× 10−2 and 2× 10−3 respectively, larger than the required values of 10−3 and

4.5 × 10−4 on the knowledge of the size and ellipticity of the PSF in order not to bias cosmolog-

ical parameter inferences from WL experiments (Section1). As the β parameter is increased, the

amplitude of the errors increases approximately in a linear manner within the domain of β values

considered.
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Fig. 2.— Fractional error in PSF size (upper panel) and absolute error in PSF ellipticity compo-

nents (lower panels) as a function of the mean nonlinearity parameter β for the WFIRST PSF, in

four the four HSL filters (J129, Y106, H158, and F184), and an AB magnitude of 18.3 at 168.1

seconds of exposure time. Each point is the mean over 100 realizations of uniformly distributed

random centroid shifts within the high resolution images (N = 3). The standard deviations of the

realizations are negligible.

Since ∆R/R and ∆e are approximately linear in β, we can condense this information by simply

plotting the slope for various filters and star magnitudes. This is shown in Fig. 3, which presents

∆R/R/β and ∆e/β (the slopes in Fig. 2) vs m for each of the four filters of the HLS. From

Fig. 3, it is possible to estimate the precision to which β would have to be calibrated in order to

limit the relative size and ellipticity bias of a star with a given magnitude. In particular, letting

(β − β0)/β0 ≡ ∆β/β0 represent the fractional error in the measurement of a given value of β0, we

have:

∆R/R

∆β
= c ⇒

∆β

β0
=

∆R/R

cβ0
(12)

In Eq. 12, c represents the ordinate value in Fig. 3 for a given magnitude, and we have replaced
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Fig. 3.— Fractional error in PSF size and absolute error in PSF ellipticity components normalized

by the NL model parameter β, as a function of magnitude for the four HSL filters (J129, Y106,

H158, and F184). The ordinate axis in each plot represents the slope of the linear relationships in

Fig. 2, derived by linear fitting of points around the vicinity of β0 in each curve of that figure.

∆R/R/β by ∆R/R/∆β since the linearity in the bias in ∆R/R and ∆e vs β for all magnitudes

makes the choice of the expansion point of the approximation by Taylor expansion unimportant

(i.e., it does not matter if the expansion is around β = 0 or β = β0). An analogous equation to

Eq. 12 can be written for the error in the ellipticity if ∆R/R is replaced by ∆e.

Under these conditions, Fig. 3 shows that for the brightest stars in our range, to limit the bias

of ∆R/R (∆e) in the H158 band to 10−4 (4.7× 10−5)—about 10% of the estimated WFIRST error

budgets, β must be calibrated to ∼ 1% (∼ 2.4%) (using c ∼ 2×104 atm = 18.3 from the upper panel

of Fig. 3, c ∼ 4000 at m = 18.3 from the lower right panel of the same figure, and β0 = 5× 10−7).

Alternatively, this calculation can be used to convert between NL calibration requirements, shape

measurement error requirements, and the minimum useable star magnitude: given any two of these,

we can obtain the third. E.g., if NL calibration precision reaches some practical limit, then given

a tolerance on shape measurement error, one can find the star magnitude for which the shape

measurement bias due to NL matches the tolerance (brighter stars cannot be used to measure the



– 16 –

PSF). Our choice of error tolerance here is only for illustration, and Eq. 12 and Fig. 3 should be

used to derive detector requirements once true PSF requirements are known.

The trends in Fig. 3 are clearly well-described by a power law with a common slope for

the various filters. We fit a function only to the PSF size trend since it will be a more robust

characteristic of the survey, whereas ellipticity can have relatively wide spatial variations. For a

power law of the form

∆R/R

β
= AF10

BF(m−m0) (m0 = 20), (13)

the parameters AF and BF for each filter F are listed in Table 2.

4.2. Impacts of spatial variability of β

We also studied the impact on ∆e and ∆R/R due to the dispersion in the β parameter. Due

to non-uniformities in fabrication, each pixel can have a different NL coefficient, and biases in the

measurement of PSF properties could be introduced if a mean response curve is used to calibrate

NL instead of a single curve per pixel. Fig. 4 shows the dispersion over M = 100 realizations (for

a fixed centroid) in the metrics ∆e1, ∆e2, and ∆R/R as a function of the standard deviation σβ0
,

assuming that the coefficient β is drawn from a distribution of the form N ∼ (β0, σβ0
). We have

verified that the mean value of the metrics over all the realizations are consistent with the case

where a fixed β0 is considered, and therefore our stochastic beta model simply introduces scatter

around the shape measurement biases computed in Section 4.1.

We found that the results in Fig. 4 are insensitive to the nominal β and therefore, in general,

σβ can be treated as an error on β estimation. The linear relationships in Fig. 4 also allows us

to plot the slope of each curve for different magnitudes, as was done in Fig. 3, and therefore

analogous equations to Eq. 12 can be used to convert between the dispersion in errors on β and

the dispersions of errors in size and ellipticity measurements. This computation may also be useful

for deriving calibration requirements, although weak lensing analyses are much more sensitive to

shape measurement biases than to small random errors. The results are shown in Fig. 5. We also

fitted a model of the form
σ∆R/R

σβ
= AF10

BF(m−m0) (m0 = 20) (14)

for the PSF size trends in Fig. 5, as was done above for Fig. 3 (c.f., Eq. 13). The fit parameters

are presented in Table 2 as well.

5. Conclusion

We have used the WFIRST module in GalSim to study the impact on PSF measurement for

weak lensing science due to the nonlinearity in the conversion of charge to voltage in near-infrared
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Fig. 4.— Impact of spatial variability in the β0 parameter, quantified as the standard deviation

over M = 100 realizations (for a fixed centroid) in ∆e1, ∆e2, and ∆R/R as a function of the

standard deviation σβ0
. The source magnitude is fixed at 18.3.

hybrid CMOS detectors (such as those that will be used in the Wide Field Imager of the WFIRST

mission). The PSF profiles created by the galsim.wfirst module posses several of the design

characteristics of the expected PSF of the mission, such as optical aberrations and pixel scale. The

module can also be used to assign the PSF profiles fluxes per pixel consistent with the expected

brightness of the HLS.

Voltage nonlinearity—as studied in this work—encompasses the linearity due to the shrinking

of the depletion region at the p-n junction as charge accumulates, and the deviation from linearity

originating in the multiplexer gain. It depends on the total integrated signal (fluence), and it is

more dominant at high signals than other types of nonlinearity such as reciprocity failure, which

dominates at lower signals. As such, NL will tend to depresses the flux in the core of the PSF

relative to the wings in bright stars that are usually used for PSF estimation, introducing errors

when deconvolving the PSF at the interpolated galaxy positions.

To model NL, we have used a single, one-parameter transfer function quadratic in the charge

Q (Eq. 1). We have studied the consequences of NL in isolation by using the relationship in Eq.1,
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Fig. 5.— Standard deviation of the fractional error in PSF size and of the absolute error in PSF

ellipticity components normalized by the error in the NL parameter σβ, as a function of magnitude

for the four HSL filters (J129, Y106, H158, and F184).

not considering other sensor effects, and neglecting sources of noise such as zodiacal background,

thermal emission, and read noise (which would produce a negligible contribution). We have used

the metrics ∆R/R and ∆e to assess the impact of NL on PSF size and ellipticity, which have to

be controlled to ∼ O(10−4) or better, for different values of the parameter space at hand (β, PSF

magnitude, and bandpass filters to be used in WFIRST WL analyses). We have also studied the

Band
size bias (Fig. 3) size scatter (Fig. 5)

AF BF AF BF

Y106 8322 -0.4086 5057 -0.4045

J129 6958 -0.4089 4215 -0.4050

H158 4668 -0.4069 2711 -0.4038

F184 2209 -0.4035 1194 -0.4018

Table 2: Parameters resulting from fitting the curves in the upper panel of Figs. 3 and 5 to power-

law functions of the form ∆R/R/β = AF 10BF(m−20) and σ∆R/R/σβ = AF 10BF(m−20), respectively.
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effects of spatial variation of the β coefficient along the pixel array, by assuming that it follows a

Gaussian distribution.

For the nominal value β0 assumed in this work, we find that NL induces errors in PSF size and

shape larger to what is tolerable by accurate WL measurements. For an example set of assumed

requirements on PSF size and ellipticity (10−4 and 4.7× 10−5, respectively), we find that β should

be calibrated to about 1% to 2.4% (H158 band). However, the results derived in this study (Eq.

12, Fig. 3, and Fig. 5) can be used to derive requirements on NL for the WFIRST detectors for

a different set of tolerances on PSF properties. It is important to note that new measurements on

the actual H4RG detector that will be used by the WFIRST imager will have to be performed in

order to determine the mean value of β and its dispersion.

Nonlinearity measurements are usually performed by looking at signal as a function of exposure

time at a constant flux (and subtracting dark frames at the appropriate times), which is sensible to

any gain dependence on fluence. These measurements are normally subject to other effects such as

inaccuracies in the readout time, persistence, reciprocity failure, and time-dependent changes in the

electronic offset due to self-heating effects in the multiplexer. Despite these challenges, the mean

non-linearity signal can usually be characterized to a precision of 5–10%. Thus it is not obvious

that a typical NL calibration program will be sufficient for WL with WFIRST without more careful

study and error budgeting. To ensure that voltage nonlinearity in the WFIRST H4RG detectors can

be calibrated to the levels demanded by WL science, NL characterization will be crucial through

the use of facilities such as the Detector Characterization Laboratory20 for rigorous calibration

studies and the Precision Projector Laboratory (PPL, Seshadri et al. 2013, Shapiro et al. 2013)21

for validating the impact of NL on shape measurement.
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JR are being supported in part by the Jet Propulsion Laboratory. The research was carried out
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