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Significance Tests and Estimates for R2 for Multiple Regression in
Multiply Imputed Datasets: A Cautionary Note on Earlier Findings,
and Alternative Solutions

Joost R. van Ginkel

Department of Methodology and Statistics, Leiden University, Leiden, The Netherlands

ABSTRACT
Whenever multiple regression is applied to a multiply imputed data set, several methods for
combining significance tests for R2 and the change in R2 across imputed data sets may be
used: the combination rules by Rubin, the Fisher z-test for R2 by Harel, and F-tests for the
change in R2 by Chaurasia and Harel. For pooling R2 itself, Harel proposed a method based
on a Fisher z transformation. In the current article, it is argued that the pooled R2 based on
the Fisher z transformation, the Fisher z-test for R2, and the F-test for the change in R2 have
some theoretical flaws. An argument is made for using Rubin’s method for pooling signifi-
cance tests for R2 instead, and alternative procedures for pooling R2 are proposed: simple
averaging and a pooled R2 constructed from the pooled significance test by Rubin.
Simulations show that the Fisher z-test and Chaurasia and Harel’s F-tests generally give
inflated type-I error rates, whereas the type-I error rates of Rubin’s method are correct. Of
the methods for pooling the point estimates of R2 no method clearly performs best, but it
is argued that the average of R2’s across imputed data set is preferred.
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Introduction

In multiple regression, the coefficient of determination,
R2, is the squared correlation between the observed val-
ues of the outcome variable y, and its predicted values.
To test whether the population coefficient of determin-
ation, denoted q2, is 0, an F-test is used. Suppose k is
the number of predictors in the regression model, and
N is the sample size, the F-test is computed as

F ¼ R2=k

1� R2ð Þ= N � k� 1ð Þ (1)

which, under the assumption of normality of the errors,
has an F-distribution with k numerator degrees of free-
dom, and N � k� 1 denominator degrees of freedom.

When researchers want to test a large model
with k2 predictors against a smaller model with k1
(k1< k2) predictors, an F-test may be used for testing
the change in R2 for significance, denoted DR2.
Suppose that R2

1 is the R2 of the smaller model and R2
2

is the R2 of the larger model. The F-test for testing

DR2 for significance is given by

F ¼ R2
2�R2

1

� �
= k2�k1ð Þ

1�R2
2

� �
=N � k2 � 1

: (2)

For an overview of regression and its statistical tests,
see Chatterjee and Hadi (1999).

The computation of both ðDÞR2 and the F-tests may
be complicated by missing data. A highly recommended
technique to handle missing data is multiple imputation
(Rubin, 1987; Van Buuren, 2012). The complete multiple
imputation process consists of three steps: (1) the missing
data are estimated several times (M) using a stochastic
model that accurately describes the data, creatingM plaus-
ible complete versions of the incomplete data set, (2) each
completed data set is analyzed using the same statistical
analysis, resulting inM different outcomes of this analysis,
and 3) the M analyses are combined into one analysis,
using specific formulas that take into account the add-
itional uncertainty due to the missing data in the standard
errors and statistical tests. Such formulas for obtaining
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overall statistics from multiply imputed data sets are
henceforth denoted combination rules.

Rubin (1987) provided a general set of combination
rules for a parameter estimate of a statistical model,
its standard error, its error degrees of freedom,
and its significance test. Additionally, Rubin provided
multivariate extensions of these rules for testing
multiple parameter estimates for significance simul-
taneously. Barnard and Rubin (1999) and Reiter
(2007) developed improved error degrees of freedom
for these combination rules. Simulation studies
(Barnard & Rubin, 1999; Grund, L€udtke, & Robitzsch,
2016; Li, Raghunathan, & Rubin, 1991; Liu & Enders,
2017; Reiter, 2007; Schafer, 1997) have shown that
these combination rules generally give type-I error
rates close to the theoretical type-I error rates.

In the specific context of regression, Harel (2009) pro-
posed combination rules for R2 and its significance test.
Chaurasia and Harel (2014) offered combination rules for
DR2 and its significance test. Simulations (Chaurasia &
Harel, 2014; Harel, 2009) showed that their methods gave
type-I error rates close to the theoretical type-I error rates.
However, both methods have some theoretical flaws.
Additionally, the situations under which these methods
were studied have, to the author’s opinion, limited rele-
vance in practice. Given the flaws and the circumstances
under which the methods were studied, the question is
whether these results will generalize to slightly different,
more relevant situations.

Fortunately, the general combination rules (Barnard
& Rubin, 1999; Li, Meng, Raghunathan, & Rubin, 1991;
Reiter, 2007; Rubin, 1987) can also serve for pooling the
F-values for R2 and DR2. However, besides the referen-
ces for these rules being rather technical, they either
only briefly or implicitly state the suitableness of these
methods for testing R2 and DR2 for significance. Harel
(2009) and Chaurasia and Harel (2014) on the other
hand, are very explicit in stating that their methods are
meant for this purpose. Consequently, the average
applied researcher may not be aware of the existence of
a better alternative than their methods. Furthermore, no
alternatives to the methods by Harel (2009) and
Chaurasia and Harel (2014) for pooling the point esti-
mates for R2 and DR2 exist as of yet. Consequently,
applied researchers who want to carry out a regression
to a multiply imputed data set may use Harel’s and
Chaurasia and Harel’s methods, and might end up
drawing incorrect conclusions. The above issues were
the motivation for the current article.

The current article has three goals. The first goal is
to show the theoretical flaws of the methods by Harel
(2009) and Chaurasia and Harel (2014). The second

goal is to explicitly formulate the earlier combination
rules (Rubin, 1987) as a suitable alternative for testing
R2 and DR2 for significance, and propose alternative
combination rules for the point estimate of R2. The
third goal is to empirically demonstrate the flaws of
the methods by Harel (2009) and by Chaurasia and
Harel (2014), and compare them with the proposed
alternatives, in more relevant situations. To this
end, two simulation studies were carried out. Besides
apparent similarities between these studies and the
studies by Harel (2009) and Chaurasia and Harel
(2014), both studies also had some overlap with
a more recent study by Liu and Enders (2017). The
specific similarities and differences between these
studies and the current two studies will be discussed
in the methods section.

In the next sections, the general combination
rules for multiple imputation (Rubin, 1987), and the
combination rules by Harel (2009), and Chaurasia
and Harel (2014) along with their flaws are discussed.
Next, it is explained how the general combination
rules can be used for testing R2 and DR2 for signifi-
cance, and alternative pooled measures for R2 are pro-
posed. After that, two simulation studies comparing
the different methods are discussed, and all methods
are applied to an empirical data example. Finally, con-
clusions are drawn about the results, and guidelines
for pooling the results of (significance tests of) R2 and
DR2 in multiply imputed data, are given.

Rubin’s combination rules

Single-parameter estimates

Suppose Q̂ is the sample estimate of parameter Q
for complete data, and U is its variance. Each imputed
data set m (m¼ 1,… , M) has an estimate of Q̂, denoted
Q̂m, and a variance Um. The overall estimate of Q is

Q ¼ 1
M

XM
m¼1

Q̂m: (3)

The overall variance T of Q consists of two parts,
namely the within-imputation variance U , and the
between-imputation variance B, and are computed as
follows:

U ¼ 1
M

XM
m¼1

Um; (4)

and

B ¼ 1
M � 1

XM
m¼1

Q̂m�Q
� �2

; (5)
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respectively. The overall variance T then becomes

T ¼ U þ 1þM�1ð ÞB: (6)

The idea behind the additional term 1þM�1ð ÞB is
that the additional uncertainty caused by the missing
data are incorporated in the variance (and thus in the
standard error) of Q. Consequently, this adjusts the
p-values and confidence intervals for the additional
uncertainty due to the missing data. To test whether
a parameter is equal to a specific population value Q0,
the following statistic is used:

tRu ¼ Q�Q0ffiffiffiffi
T

p ; (7)

which has an approximate t-distribution with �BR

(Barnard & Rubin, 1999) degrees of freedom. �BR is
computed as:

�BR ¼ 1
�1

þ 1
�obs

� ��1

; (8)

�1 ¼ M�1ð Þ 1þ U

1þM�1ð ÞB

" #
;2

�obs ¼ 1� 1þM�1ð ÞB
T

� �
��com;

��com ¼ �com þ 1
�com þ 3

� �
�com:

where �com is the number of degrees of freedom in
case of complete data.

The above-described combination rules are available
in IBM SPSS 25.0 (2017), using an old approximation
(Rubin, 1987) of the number of degrees of freedom. The
approximation from Barnard and Rubin (1999) can be
applied using an SPSS macro by Van Ginkel (2010).
Other software packages that include these combination
rules are SAS 9.4 (SAS Institute, Inc., 2013) in the
procedure MIAnalyze (Yuan, 2011), Stata 14.0 (ICE;
StataCorp, 2015), and the pool() function of the mice
package (Van Buuren & Groothuis-Oudshoorn, 2011)
in R (R Core Team, 2017).

Multiparameter estimates

For testing several parameters for significance
simultaneously, several solutions are available (Li,
Raghunathan, et al., 1991; Li et al., 1991; Meng &
Rubin, 1992; Rubin, 1987). Of these solutions, the
most promising one (Li, Raghunathan, et al., 1991;
Rubin, 1987) according to several simulation studies
(Grund et al., 2016; Li, Raghunathan, et al., 1991;
Liu & Enders, 2017; Reiter, 2007) is a set of formulas
that are multivariate extensions of Equations (3)–(8).

This solution will be compared with the combination
rules by Harel (2009) and by Chaurasia and
Harel (2014).

Suppose Q̂ is a k-dimensional vector of estimates
of parameter vector Q that would have been obtained
if no data were missing, and U is its covariance
matrix. For imputed data set m an estimate of Q̂
is denoted Q̂m, and its covariance matrix Um. The
overall estimate Q is

Q ¼ 1
M

XM
m¼1

Q̂m: (9)

The within-imputation covariance matrix is
computed as

U ¼ 1
M

XM
m¼1

Um; (10)

and the between-imputation covariance matrix B is
computed as

B ¼ 1
M � 1

XM
m¼1

Q̂m �Q
� �

Q̂m �Q
� �0: (11)

The overall covariance matrix T is

T ¼ 1þ rð ÞU; (12)

r ¼ 1þM�1ð Þtr BU
�1

� �
=k;

where r is the relative increase in variance due to
nonresponse. To test whether the parameter vector is
equal to the vector under the null hypothesis, Q0, we use

FRu ¼ Q�Q0

� �0T�1 Q�Q0

� �
=k; (13)

which has an approximate F-distribution with k
numerator degrees of freedom and �Rt (Reiter, 2007)
denominator degrees of freedom. The latter is com-
puted as follows:

�Rt ¼ 4þ 1
z
; (14)

z ¼ 1
��com � 4 1þ að Þ þ

1
q� 4

a2 ��com�2 1þ að Þ	 

1þ að Þ2 ��com � 4 1þ að Þ	 


 !

þ 1
q� 4

8a2 ��com�2 1þ að Þ	 

1þ að Þ ��com�4 1þ að Þ	 
2 þ 4a2

1þ að Þ ��com � 4 1þ að Þ	 

 !

þ 1
q� 4

4a2

��com � 4 1þ að Þ	 

��com � 2 1þ að Þ	 
þ 16a2 ��com�2 1þ að Þ	 


1þ að Þ ��com � 4 1þ að Þ	 

 !

þ 1
q� 4

8a2

��com�4 1þ að Þ	 
2
 !

;

a ¼ rq
q� 2

;

q ¼ k M�1ð Þ:
These combination rules for multiparameter esti-

mates can be applied in SAS 9.4 (SAS Institute, Inc.,
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2013; Yuan, 2011), in Stata 14.0 (2015), in the
MIwaldtest() function of the miceadds package in
R (Robitzsch, Grund, & Henke, 2017), and SPSS using
Van Ginkel’s (2010) macro. Also, see Van Ginkel and
Kroonenberg (2014) who used this macro for pooling
the results of ANOVA obtained from multiply
imputed data sets.

Combination rules for regression analysis by
Harel, and Chaurasia and Harel

Combination rules for R2 and its
significance test

Harel (2009) argues that averaging R2 (Equation (3),
applied to R2) is not justified because the rules
for single-parameter estimates were defined under
the assumption that the sampling distribution of
the parameter estimate is normal. R2 is not normally
distributed as it is bounded to values between 0
and 1. Schafer (1997, p. 109) argues that for
pooling significance tests of correlations and
pooling correlations themselves, it is advisable to
use a Fisher z transformation and to apply the
combination rules for single parameter estimates
to the Fisher z transformed correlation.

Harel (2009) applied Schafer’s procedure to the
square root of R2 in multiple regression, justifying this
by arguing that

ffiffiffiffiffi
R2

p
is a correlation as well. Suppose

R2
m is the coefficient of determination for imputed

data set m. First, R2
m is transformed to a Fisher

zF-score:

zF;m ¼ 1
2
ln
1þ ffiffiffiffiffiffi

R2
m

p
1� ffiffiffiffiffiffi

R2
m

p : (15)

Next, let Q̂m ¼ zF;m and substitute this result
into Equations (3) and (5). Under the null hypothesis
of no association, the variance of zF;m is Um ¼ 1=
ðN � 3Þ, and may be substituted into Equation (4).
Next, using Equations (6) and (7), R2 is tested for sig-
nificance. The resulting statistic is denoted tRu;Ha.
Finally, to get a pooled estimate of R2, the pooled
Fisher z score Q, obtained from Equation (3), is trans-
formed back:

R2 ¼ exp 2Q
� �

�1

exp 2Q
� �

þ 1
Þ

" #2
: (16)

The above pooling procedure has been implemented
in the mice package in R (see the pool.r.squared()

function by Van Buuren & Groothuis-
Oudshoorn, 2011).

Potential problems of Harel’s combination rules

Incorrect justification. Harel’s argument of nonnormality
of R2 would be valid if R2 were tested using a t-test as if
it were a single parameter estimate. However, this is not
how R2 is tested for significance. In complete data, R2 is
tested using the F-test from Equation (1). In this F-test
the normality assumption does not concern the sampling
distribution of R2 but the distribution of the residuals in
the regression model (Fox, 2016, pp. 107, 112;
Tabachnick & Fidell, 2013, pp. 124–126). As long as the
distribution of the residuals is normal, no assumption of
normality is violated. Likewise, when R2 is tested for sig-
nificance in a multiply imputed data set, we need an
equivalent of the F-test in Equation (1) for multiply
imputed data sets. In using this equivalent the distribution
of the residuals needs to be normal, not the sampling dis-
tribution of R2. In short, Harel’s argument for transform-
ing nonnormally distributed parameters does not
apply here.

Incorrect assumption of normality of the Fisher z
transformation. While a Fisher z transformation of
a correlation between two variables is approximately
normally distributed, this is not the case for zF;m
(Equation (15)). The Fisher z transformation stretches
the lower bound of a correlation of �1 to minus
infinity, and the upper bound of þ1 to plus infinity.ffiffiffiffiffi
R2

p
differs from an ordinary correlation in that it

can only range from 0 to 1. Consequently, zF;m ranges
only from 0 to plus infinity, and so it is not normally
distributed.

Since only the positive value of
ffiffiffiffiffi
R2

p
is used in the

formulation, dividing p by 2 will solve this problem
for complete data. However, this would not work for
multiply imputed data. To illustrate this, consider the
bivariate case where the Fisher z transformed correla-
tions of the M imputed data sets are substituted
for the Q̂m’s in Equation (3). If the same is done with
the M Fisher z transformed

ffiffiffiffiffiffi
R2
m

p
’s, this will not give

the same absolute value of Q when in some of the
imputed data sets the correlation is negative. The
resulting R2 (Equation (16)) will be overestimated
because in averaging it ignores the signs of the M
correlations. Likewise, in a multiple regression model
possible sign differences among the M regression coef-
ficients of a specific predictor are ignored when
Harel’s method is applied to the

ffiffiffiffiffiffi
R2
m

p
’s. Again, the

resulting R2 will be overestimated, and tRu;Ha will be
too large. This problem may especially occur when
the relation between a predictor and y is weak.

Ignoring the model degrees of freedom in the signifi-
cance test.

ffiffiffiffiffi
R2

p
differs from an ordinary correlation

in that it is not a correlation between two different

4 J. R. VAN GINKEL



variables, but a correlation between the observed and
expected values of the same variable y. The expected
values have been obtained from a regression model
with k predictors. Normally k is incorporated in the
F-test as the model degrees of freedom. Different
numbers of model degrees of freedom result in differ-
ent critical F-values. If a Fisher z-test is used, the
model degrees of freedom are not incorporated, which
will consequently lead to incorrect p-values.

Combination Rules for DR2 and its
Significance Test

For pooling the significance test of DR2, Chaurasia
and Harel (2014) proposed the following procedure.
Suppose R2

1 is the pooled estimate of R2 of the smaller
model and R2

2 is the pooled estimate of R2 of
the larger model (both obtained using Equation (16)).
Furthermore, substitute zF2;m for Q̂m in Equations (3)
and (5), use Um ¼ 1=ðN � k2 � 2Þ in Equation (4),
compute T using Equation (6), and compute r in
Equation (12) using U and B (which are for a single-
parameter equivalent to U and B, respectively).
Finally, using these quantities, compute either �BR2
(Equation (8)) or �Rt2 (Equation (14)) using
��com ¼ N � k2 � 1. Two pooled F-values across M
imputed data sets are computed as follows:

FBR ¼ R2
2�R2

1

� �
= k2�k1ð Þ

1�R2
2

� �
=�BR2

; (17)

and

FRt ¼ R2
2�R2

1

� �
= k2�k1ð Þ

1�R2
2

� �
=�Rt2

; (18)

respectively, both with k2�k1 model degrees
of freedom.

Potential problems of Chaurasia and Harel’s
combination rules
Underestimation of DR2. Like in Harel’s (2009) method,
the estimates R2

1 and R2
2 may suffer from the fact that

possible sign differences among the M regression coeffi-
cients of a specific predictor are ignored. For R2

1 this
problem will be more severe than for R2

2 because R2
1 is

closer to 0. As a result, R2
2 �R2

1 might be an underesti-
mation of DR2. This problem may especially occur for
weak relations between the predictors of the smaller
model on the one hand and y on the other hand.

Inclusion of between-imputation variance in error
degrees of freedom. A potentially more serious problem
is the way the additional variation due to the missing
data B (Equation 5) is incorporated in both FBR and FRt .

In both tests B is included in the error degrees of free-
dom. Both �BR2 and �Rt2 are only approximations of the
actual number of degrees of freedom. It is unknown
how the use of these approximations would affect the
outcome of FBR and FRt. Some work (Van Ginkel &
Kroonenberg, 2014) suggests that for large percentages
of missingness and small M, �Rt2 may become too low
for what is considered a reasonable estimate of the error
degrees of freedom. When used for constructing the
reference distribution, this may not be problematic
because for fairly large N, critical F-values do not vary
much across different numbers of error degrees
of freedom. However, the use of these approximations
may be more influential when used for calculating
a pooled F-test itself.

No justification for calculation within-imputation
variance. Chaurasia and Harel (2014, p. 435) use
Um ¼ 1=ðN � k2 � 2Þ as the within-imputation
variance for computing �BR2 and �Rt2 in Equations (17)
and (18), respectively. However, they neither give
a reference, nor a justification for this generalization
of 1=ðN � 3Þ to the multivariate case. This raises the
question whether the use of this variance estimate is
justified, and performs well at all times.

Although Chaurasia and Harel (2014, p. 435) did not
explicitly mention the above-mentioned problems, they
do recognize that their methods are “ad hoc.” They jus-
tify their procedures by their ease in terms of computa-
tion and implementation. However, due to the issues
raised above it may be wondered whether their methods
just happened to perform well in the specific situations
studied, possibly because the several potential sources
of bias may have canceled each other out.

Alternatives to the methods by Harel, and
Chaurasia and Harel

Rubin’s combination rules used as significance tests
for R2 and DR2

Pooling significance tests of R2. Let bm be a vector
of all regression coefficients (excluding the intercept),
Xm be a matrix of predictors of the regression model,
and s2e;m be the error variance, in imputed data set m.
The covariance matrix of ym is Vm ¼ s2e;mIN . Next,
let Q̂m ¼ bm, and Um ¼ ðXm

0V�1
m XmÞ�1. Using these

values for Q̂m and Um, and using �com ¼ N � k� 1
(Equation (8)) for computing ��com in Equation (14),
FRu for testing all regression coefficients simultaneously
is computed using Equations (9)–(14). Since the null
hypothesis that all population regression coefficients are
0 is equivalent to testing the null hypothesis that q2 ¼ 0,

MULTIVARIATE BEHAVIORAL RESEARCH 5



Rubin’s (1987) FRu actually tests the null hypothesis
of q2 ¼ 0.

Pooling significance tests of DR2. Let b2;m be a vec-
tor of regression coefficients of the larger model, and
let s2e2;m be the error variance of the larger model, in
imputed data set m. Define bk2�k1;m as a subset of
b2;m with dimension (k2 - k1), containing only the
regression coefficients of the newly added predictors,
and let Q̂m ¼ bk2�k1;m. Third, let Xk2�k1;m be an N �
(k2�k1) matrix containing only the newly added pre-
dictors, and let Um ¼ ðXk2�k1;m

0V�1
2;mXk2�k1;mÞ�1 be the

covariance matrix of the regression coefficients of the
newly added predictors (V2;m ¼ s2e2;mIN), in imputed
data set m. Using these newly defined Q̂m and Um,
and using �com ¼ N � k2 � 1, we can compute FRu for
DR2 using Equations (9)–(14). Since testing the null
hypothesis that Dq2 ¼ 0 is equivalent to testing the
null hypothesis that all population coefficients of the
newly added predictors are 0, FRu in this context tests
the null hypothesis of Dq2 ¼ 0.

Alternative methods for pooling R2

Two alternative combination methods to R2 will be
proposed below. Firstly, since the justification for
using a Fisher z transformation in calculating R2 is
incorrect, it could be argued that this transformation
might be put aside altogether, and average all R2

m’s
directly. This pooled version of R2 is denoted R2 .
Although this procedure is ad hoc, it is not based on
an incorrect justification, and it is simpler to calculate
than R2.

Because both R2 and R2 have a lower bound of 0, a
problem of both measures is that the sampling errors of
the R2

m’s and zF;m’s in the direction of the middle will
on average be larger than the sampling errors in the dir-
ection of the lower bound when q2 is close to 0. As a
result, both measures may move to the center.
Additionally, as R2 has an upper bound of 1, this prob-
lem may occur for R2 when q2 is close to 1 as well.

Alternatively, a pooled R2 can be constructed that
does not use any averaging at all. By back-transform-
ing F to R2 using the relation between the F-test and
R2 (Equation (1)), R2 can be written as R2 ¼ F=½Fþ
ðN � k� 1Þk�1�. This formula may easily be general-
ized to multiply imputed data by means of:

R2
F ¼ FRu

FRu þ �Rt=k
: (19)

A potential disadvantage of R2
F is that it uses �Rt

in its calculation. As already mentioned, some work
(Van Ginkel & Kroonenberg, 2014) suggests that �Rt

as an a approximation may be too low for large
percentages of missingness and low M.

To summarize, R2 is the simplest way to pool R2

and has neither a correct nor incorrect justification.
However, for values of q2 close to 0 or 1, its estimate
may move toward the center of the scale because
of floor and ceiling effects. R2

F does not have this
problem, but uses approximation �Rt which might not
always be accurate. The question is which of these
problems are more influential, and how both
estimates compare to the already existing R2.

Table 1 gives an overview of all the pooled signifi-
cance tests and point estimates for ðDÞR2 in multiply
imputed data sets.

Method

Two simulation studies assessed the performance of the
methods by Harel and Chaurasia and Harel. In study 1,
the performance of Harel’s (2009) R2 and its signifi-
cance test tRu;Ha were compared with the performance
of the newly proposed R2 and R2

F , and significance test
FRu (Rubin, 1987). In study 2, the performance of DR2

and its significance tests, FRt and FBR (Chaurasia &
Harel, 2014), were compared with DR2 and DR2

F , and
the significance test FRu, respectively.

Properties of the simulation study were largely
based on Harel’s (2009) study. The general form of
the regression model that will be the basis for the
simulations is

yi ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ ei (20)

(a regression model with three predictors). The
simulations were programmed in R.

It should be noted that in a study by Liu and
Enders (2017) about combination techniques for
regression analysis of multiply imputed data, the
number of predictors in the regression model was var-
ied. The purpose of the study by Liu and Enders was
to study the robustness of several combination rules
under many different circumstances, among which
different numbers of predictors. The purpose of the
current studies was to specifically show the flaws of
the methods by Harel (2009) and Chaurasia and Harel
(2014). The number of predictors was not expected to
have any influence on the visibility of these flaws.

Constant factors. In both studies, within each
design cell, twenty-five hundred (D¼ 2500) replica-
tions were drawn of N¼ 100. Unlike Liu and Enders
(2017) who studied different sample sizes, sample size
was kept constant here, because if the flaws of Harel’s
method already become visible under a fairly large N,
it is unnecessary to study it under a smaller, or other

6 J. R. VAN GINKEL



N. See, Chaurasia and Harel (2014, p. 436), who used
the reversed reasoning for using only one small N to
show the robustness of their method.

In both studies, missing data were simulated under
missingness mechanism missing completely at random
(MCAR; Little & Rubin, 2002, p. 10). Under MCAR
missing data are randomly scattered across the data
and are not related to observed background variables,
as in missing at random (MAR; Little & Rubin, 2002,
p. 10), or on unobserved data, as in not missing at
random (NMAR; Little & Rubin, 2002).

Besides MCAR being sufficient for the scope of the
current paper (i.e., showing the flaws of the methods
by Harel and by Chaurasia and Harel), MCAR also
allows including complete case analysis (CCA; i.e.,
deleting all cases with at least one missing value from
the analysis) as a lower benchmark (to be discussed
shortly). CCA may give an impression of the lowest
possible power from the incomplete data, but this
method is not guaranteed to give unbiased results
under MAR and NMAR.

In both studies, complete data were simulated using
a multivariate normal distribution with mean vector
l ¼ ðl1; l2; l3; lyÞ¼ (2,5,10,20), and two different
covariance structures, to be discussed in the independ-
ent variables section. The method for multiple imput-
ation was chosen to be fully conditional specification
using regression (Van Buuren, 2012, pp. 108–116; Van
Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006).

Independent variables. In study 1, two covariance
structures were studied: one where q2 ¼ 0, and one
where q2 ¼ 0:18. More specifically, the covariance
structures under q2 ¼ 0 and q2 ¼ 0:18, were

q2 ¼ 0 q2 ¼ 0:18;

x1 x2 x3 y x1 x2 x3 y

R ¼
5 0 0 0
0 5 1 0
0 1 5 0
0 0 0 10

2
664

3
775R ¼

5 0 0 3
0 5 1 0
0 1 5 0
3 0 0 10

2
664

3
775:

In study 2, it was assumed that variable x1 in the
regression model of Equation (20) was the only pre-
dictor in the smaller model and that variables x2 and
x3 were added to the smaller model to form the larger
model. Chaurasia and Harel (2014) added only one
additional variable in their study. The reason for using
two additional variables here was that when one
variable is added, the significance test can already
be pooled using Rubin’s rules for single-parameter
estimates (Equations (3)–(8)). This was considered a
trivial case that neither required the development
of new combination methods (FRt and FBR) nor anTa
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explicit formulation of Rubin’s rules for this context.
This led to two covariance structures in study 2, one
with Dq2 ¼ 0 and one with Dq2 ¼ 0:14:

Dq2 ¼ 0 Dq2 ¼ 0:14;

x1 x2 x3 y x1 x2 x3 y

R ¼
5 0 0 3
0 5 1 0
0 1 5 0
3 0 0 10

2
664

3
775 R ¼

5 1 1 3
1 5 1 2
1 1 5 3
3 2 3 10

2
664

3
775:

Contrary to Liu and Enders (2017) who studied
three different effect sizes along with the null model
(q2 ¼ 0), in the current studies only one alternative
effect size was studied. When the robustness of several
combination rules for regression in multiply imputed
data is studied (like Liu & Enders, 2017) it is important
to study the behavior of combination techniques under
various circumstances. In the current article, however,
it was only important to show that the methods by
Harel (2009) and Chaurasia and Harel (2014) would
give incorrect type-I error rates under the null model,
and that their observed power values would deviate
more from those of the original data without missing
data, than the combination rules by Rubin (1987).

In both studies of the current article, four percen-
tages of missingness were simulated: 6.25%, 12.50%,
25%, and 50%. Finally, the number of imputations
was varied to be M¼ 6, M¼ 25, M¼ 100, and
M¼ 250 in both studies. Note that for M¼ 5 (which
is a more commonly used small number of imputa-
tions. See Schafer, 1997), �Rt (Equation (14)) will
reduce to 4 when k¼ 1, regardless of the sample size.
Because this will heavily influence the value of FRt
(Equation (18)) in study 2, the smallest number of
imputations was chosen to be M¼ 6, rather
than M¼ 5.

Dependent variables. In study 1, three different
pooled versions of R2 were studied: R2, R2 , and R2

F .
In study 2, DR2, DR2 , and DR2

F were studied.
Additionally, in both studies ðDÞR2 based on CCA
was studied as a lower benchmark. Note that when
q2 ¼ 0, the R2 measures are expected to be positively
biased because when q2 ¼ 0, the sample estimate R2

can only be 0 or larger. However, the question is how
much larger the bias in the three measures will be
compared to the bias in R2 of the same data without
missing values, how much smaller they will be than
for CCA, and how much they will differ with each
other. The inclusion of different combination rules for
ðDÞR2 in the current two studies extends the work by
Liu and Enders (2017), who only studied properties of
combination rules for statistical tests of R2.

Furthermore, Harel (2009) used a simulation model
with q2 ¼ 0:75, and studied the percentage of times the
hypothesis of q2 ¼ 0:75 was rejected for tRu;Ha. In study
1, the percentage of times the null hypothesis of q2 ¼ 0
was rejected across D replications was studied for both
tRu;Ha and FRu, regardless of the actual value of q2.
There were two reasons for testing against q2 ¼ 0 for
all simulation models. Firstly, the author wanted to
keep tRu;Ha comparable with the F-test, which can only
test against q2 ¼ 0.1 Secondly, it is common practice to
test against q2 ¼ 0, which makes the current situation
more relevant for practice than Harel’s (2009) study.
Under q2 ¼ 0, the percentage of times the null hypoth-
esis is rejected is the observed type-I error rate; under
q2 ¼ 0:18 this is the observed power. Ideally, a pooled
significance test for R2 should have type-I error rates
close to 5% when q2 ¼ 0, substantially higher observed
power than CCA when q2 ¼ 0:18, and only slightly
lower observed power than the original data under
q2 ¼ 0:18. Finally, in study 2, the percentage of times
the null hypothesis of Dq2 ¼ 0 was rejected across
replications, was studied for methods FRu, FBR, and FRt .

Results

Results simulation study 1

The results of study 1 are shown in Table 2. For the
different pooled measures of R2, both the means and
the standard deviations (between brackets) across the D
replications, are reported. Note that for 50% missing-
ness, results for CCA are not displayed because often
too few cases were left for the intended regression.

In general, it can be seen that differences between
R2 and R2 (first two columns) are small, but that R2

F ,
(third column), is on average higher than the other
two measures for M¼ 6 imputations, but lower for
higher numbers of imputations. For FRu (fourth
column) the type-I error rate is close to 5% for all
percentages of missing data and all M. Harel’s tRu;Ha
however (fifth column), produces substantially larger
type-I error rates, and increase even more as the per-
centage of missingness increases, or M decreases.
Even in the original data and in CCA, the Fisher z-
test gives type-I error rates far off the theoretical 5%.

For q2 ¼ 0:18, R2 and R2 (first two columns, lower
half) increase as the percentage of missingness
increases, and are higher than R2 from the original
data, but lower than R2 from CCA. Again, differences

1A noncentral F-distribution may test against other values than 0.
However, a noncentral F-test is not implemented in R’s lm(), SPSS’s
“MIXED” or Regression procedure, or SAS’s “reg”.
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between R2 and R2 are small, but R2
F (third column)

is overestimated compared to the original data for
M¼ 6, and underestimated for higher M. The power
of FRu (fourth column, lower half) decreases as both
the percentage of missingness and M increase,
and stays above the power of CCA. The power
of the Fisher z-test for both the original data and
the multiply imputed data on the other hand (fifth
column) is close to 100% across all design cells.

Results simulation study 2

Table 3 shows the results of simulation study 2. When
Dq2 ¼ 0, both DR2 and DR2 (first two columns, upper
half) increase and deviate more from DR2 of the original
data as the percentage of missingness increases. Here,
DR2 increases somewhat more than DR2 , but again dif-
ferences are small. The number of imputations does not
influence DR2 and DR2 much. On the other hand, DR2

F

(third columns) is substantially lower than DR2 , DR2,
and DR2 of CCA, and is even negative occasionally,
especially for low M and high percentages of missing-
ness. For FRu (fourth column), the type-I error rate is
close to 5% across all M and all percentages of missing-
ness. However, the type-I error rates of FRt and
FBR (last two columns) heavily depend on both M and
the percentage of missingness. For FRt it varies from
.000 (M¼ 6, 50% missingness) to .378 (M¼ 250, 50%
missingness), while for FBR it varies from .015 (M¼ 6,
50% missingness) to .094 (M¼ 250, 25% missingness).

For Dq2 ¼ 0:14, both DR2 and DR2 (first two
columns, lower half) are stable across different M,
but increase as the percentage of missingness increases.
Of these two measures, DR2 increases most.
Furthermore, when the percentage of missingness
increases, DR2 and DR2 remain closer to DR2 of the ori-
ginal data than of CCA. In general, differences between
DR2 and DR2 are small. Again, DR2

F (third column) is

Table 2. Means of R2, �R2 , and R2F (SDs between brackets), and rejection rate using FRu and tRu;Ha, of study 1. Results for R2 of
the original data and of CCA, and results of the Fisher z-tests of the original data and of CCA are displayed for comparison.
When Dq2 ¼ .180, rejection rates represent power.

q2 % Missing data M R2 �R2 R2F

Rejection rate

FRu tRu;Ha
.00 Original .030 (.024) .030 (.024) .030 (.024) .053 .290

6.25% 6 .039 (.029) .039 (.029) .040 (.033) .058 .306
25 .038 (.029) .039 (.029) .032 (.027) .054 .314
100 .038 (.029) .039 (.029) .031 (.026) .055 .322
250 .038 (.029) .039 (.029) .031 (.026) .055 .321
CCA .040 (.033) .040 (.033) .040 (.033) .055 .408

12.5% 6 .048 (.033) .049 (.033) .057 (.045) .056 .338
25 .047 (.031) .049 (.031) .034 (.027) .047 .354
100 .047 (.031) .049 (.031) .032 (.025) .045 .354
250 .047 (.031) .049 (.031) .031 (.025) .045 .361
CCA .051 (.039) .051 (.039) .051 (.039) .038 .540

25% 6 .071 (.045) .075 (.045) .097 (.074) .051 .402
25 .070 (.042) .074 (.042) .042 (.034) .050 .446
100 .070 (.041) .074 (.041) .034 (.027) .048 .454
250 .070 (.042) .075 (.041) .032 (.026) .048 .459
CCA .094 (.074) .094 (.074) .094 (.074) .052 .759

50% 6 .091 (.061) .095 (.061) .119 (.093) .040 .429
25 .090 (.059) .095 (.059) .048 (.041) .042 .492
100 .090 (.058) .095 (.059) .035 (.029) .045 .521
250 .089 (.058) .095 (.058) .033 (.027) .043 .524

.180 Original .202 (.070) .202 (.070) .202 (.070) .976 .998
6.25% 6 .206 (.074) .206 (.074) .224 (.082) .938 .994

25 .205 (.073) .205 (.073) .188 (.067) .946 .996
100 .206 (.075) .206 (.075) .186 (.070) .946 .996
250 .206 (.074) .206 (.073) .185 (.069) .946 .996
CCA .207 (.079) .207 (.079) .207 (.079) .919 .996

12.5% 6 .213 (.081) .214 (.081) .268 (.103) .874 .984
25 .211 (.079) .212 (.079) .180 (.072) .896 .993
100 .212 (.081) .213 (.080) .169 (.070) .896 .992
250 .213 (.080) .214 (.079) .168 (.068) .896 .993
CCA .216 (.091) .216 (.091) .216 (.091) .816 .990

25% 6 .227 (.092) .229 (.091) .326 (.126) .694 .954
25 .226 (.090) .228 (.088) .173 (.077) .770 .983
100 .229 (.091) .231 (.089) .145 (.068) .782 .987
250 .228 (.091) .230 (.089) .139 (.066) .786 .988
CCA .247 (.119) .247 (.119) .247 (.119) .536 .984

50% 6 .243 (.103) .245 (.101) .342 (.136) .571 .912
25 .240 (.101) .242 (.098) .171 (.083) .658 .976
100 .243 (.101) .245 (.098) .135 (.068) .670 .984
250 .242 (.100) .245 (.098) .128 (.065) .676 .985
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substantially lower than DR2 , DR2, and DR2 of both the
original data and CCA, and is heavily influenced by
bothM and the percentage of missingness.

Finally, under Dq2 ¼ 0:141, the observed power
increases for all tests as either the percentage of missing-
ness decreases or M increases (last three columns). For
FRt and FBR, the power increases more with increasing M
than for FRu, with the power of these tests being lower
than FRu for M¼ 6, but higher than FRu for M> 6.

Empirical data example

In this section, the three measures of ðDÞR2 and the
significance tests of ðDÞR2 are applied to an empirical
data example from a study about obesity in young
children (Camfferman, Van der Veek, & Mesman,
2017). The original data set has N¼ 101 children.
Some of the variables of interest are Body Mass Index
(BMI) of both the father and the mother, restrictions

(the parents’ control of their child’s eating behavior
by restriction of the type or amount of food), pressure
(attempts by the parents to increase children’s food
consumption), and approaching eating habits by the
child (the extent to which a child is tended to
approach food rather than to avoid it). Restrictions
and pressure by the parents are measured using two
subscales of the Children’s Feeding Questionnaire
(CFQ; Birch, Fisher, Grimm-Thomas, Markey, Sawyer,
& Johnson, 2001); approaching eating habits are
measured by a subscale of the Children’s Eating
Behavior Questionnaire (CEBQ; Wardle, Guthrie,
Sanderson, & Rapoport, 2001). The data used in this
example are a random subsample (n¼ 55) of the com-
plete data set, meant for illustrative purposes only. In
the reduced data set, BMI of the father has 11 missing
values, BMI of the mother is completely observed,
restriction has 6 missing values, pressure has 4
missing values, and approaching eating habits has 1

Table 3. Means of DR2, D �R2 , and DR2F (SDs between brackets), and rejection rate using FRu, FRt , and FBR, of study 2. Results for
of the original data and of CCA are displayed for comparison. When Dq2 ¼ .141, rejection rates represent power.

Dq2 % Missing data M DR2 D �R2 DR2F

Rejection rate

FRu FRt FBR
.00 Original .016 (.016) .016 (.016) .016 (.016) .048 .048 .048

6.25% 6 .022 (.020) .022 (.020) �.177 (.133) .051 .005 .034
25 .022 (.020) .022 (.020) .007 (.020) .049 .065 .052
100 .022 (.020) .022 (.020) .013 (.019) .050 .085 .058
250 .022 (.020) .022 (.020) .014 (.019) .049 .087 .060
CCA .022 (.022) .022 (.022) .022 (.022) .052 .052 .052

12.5% 6 .028 (.024) .028 (.024) �.255 (.121) .052 .004 .024
25 .028 (.023) .028 (.023) �.009 (.026) .048 .070 .050
100 .028 (.023) .028 (.023) .008 (.021) .048 .116 .062
250 .028 (.022) .028 (.022) .010 (.020) .049 .122 .065
CCA .028 (.027) .028 (.027) .028 (.027) .044 .044 .044

25% 6 .045 (.034) .044 (.034) �.247 (.101) .054 .002 .022
25 .045 (.032) .044 (.031) �.033 (.039) .056 .065 .041
100 .045 (.032) .044 (.031) �.001 (.026) .054 .209 .078
250 .045 (.032) .044 (.031) .005 (.025) .058 .246 .094
CCA .053 (.052) .053 (.052) .053 (.052) .052 .052 .052

50% 6 .058 (.046) .057 (.045) �.225 (.111) .048 .000 .015
25 .059 (.043) .057 (.042) �.040 (.048) .045 .061 .038
100 .059 (.043) .057 (.042) .043 (.028) .048 .286 .076
250 .059 (.043) .057 (.044) .003 (.027) .044 .383 .086

.141 Original .152 (.058) .152 (.058) .152 (.058) .976 .976 .976
6.25% 6 .155 (.064) .154 (.063) �.020 (.148) .952 .452 .897

25 .156 (.063) .155 (.063) .134 (.062) .959 .968 .960
100 .155 (.063) .155 (.063) .137 (.060) .960 .971 .965
250 .156 (.063) .155 (.063) .137 (.060) .961 .973 .964
CCA .154 (.068) .154 (.068) .154 (.068) .929 .929 .929

12.5% 6 .160 (.068) .159 (.068) �.094 (.146) .900 .169 .706
25 .161 (.067) .159 (.066) .115 (.066) .929 .949 .927
100 .161 (.067) .160 (.066) .122 (.061) .931 .970 .944
250 .161 (.066) .159 (.066) .123 (.060) .934 .971 .953
CCA .158 (.076) .158 (.076) .158 (.076) .827 .827 .827

25% 6 .170 (.078) .168 (.077) �.092 (.143) .744 .038 .385
25 .171 (.076) .168 (.075) .079 (.079) .794 .840 .778
100 .171 (.075) .168 (.074) .093 (.063) .806 .949 .880
250 .171 (.075) .168 (.074) .094 (.061) .805 .964 .896
CCA .175 (.104) .175 (.104) .175 (.104) .570 .570 .570

50% 6 .186 (.089) .182 (.087) �.067 (.154) .646 .035 .312
25 .186 (.086) .182 (.084) .072 (.087) .729 .773 .696
100 .186 (.086) .182 (.084) .086 (.067) .732 .953 .844
250 .186 (.085) .182 (.083) .087 (.066) .740 .972 .865
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missing value. Missing values were imputed M¼ 100
times. In the intended analysis, the score of approach-
ing eating habits is predicted by BMI of both the
father and mother (block 1), and by pressure and
restrictions (block 2). The complete data set and its
analysis are described in Camfferman et al. (2017).
The results of the combined analysis using the three
measures for ðDÞR2 and the significance tests are
shown in Table 4. The pooled coefficients and their
t-tests were computed using Equations (3)–(8).

The table shows that differences between DR2 and
R2 are small, and that R2

F is substantially lower than
DR2 and R2. The p-values of tRu; Ha are not any way
near those of FRu. FRuðDR2Þ has a p-value higher than
that of FRt, but lower than that of FBR.

Discussion

Significance Tests for R2 and DR2

In this study different procedures for pooling
statistical tests for ðDÞR2 in multiply imputed data
were compared. In advance, it was argued that meth-
ods tRu; Ha, FRt , and FBR would give biased type-I
error rates, despite earlier simulations (Chaurasia &
Harel, 2014; Harel, 2009), which showed that these
methods performed well. New simulations supported
the theoretical objections against these statistics.
It should be noted that the current two studies were
not exact replications of Harel (2009) and Chaurasia
and Harel (2014).

However, one of the reviewers suggested to exactly
replicate both studies and to provide the results
as supplemental material. Both studies were partly
replicated (see, supplemental material). The replicated
results of Harel’s (2009) study were largely in accord-
ance with his findings. Apparently, for the specific
situations studied by Harel (2009) his method works
better than for the situations studied in the current

paper. To some extent this makes sense. When q2 is
as high as 0.75 (like in Harel’s study) and R2 is tested
against this value, the problem of the Fisher z trans-
formation of

ffiffiffiffiffi
R2

p
having a lower bound of 0 is not

much of an issue because it will hardly ever come
close to 0. It remains unclear how the exclusion of the
model degrees of freedom of the regression model in
the Fisher z test may have had such a small influence
on the results of Harel’s (2009) study and the replica-
tion study. However, given that in practice such high
values of q2 rarely occur, and that normally the null
hypothesis of q2 ¼ 0 is tested, both this question and
these findings are largely irrelevant.

The results by Chaurasia and Harel (2014) could
not (exactly) be replicated: The type-I error rates were
on average 2.2% higher for FBR and 3.7% higher for
FRt than found by Chaurasia and Harel. Additionally,
the observed power rates for FRt were on average
5.8% higher while observed power rates for FBR were
similar to the ones found by Chaurasia and Harel.
Because of this failure to replicate, the author asked
Chaurasia for the programming code of his methods.
Additionally, whenever specific details of Chaurasia
and Harel’s study were open to interpretation,
the author asked for clarification. Comparison of both
codes and clarification of these details revealed no
differences in both procedures that could explain the
differences in findings. Thus, the exact cause of failure
to replicate remains unclear.

However, even if programming errors had been
found in this replication study explaining the differen-
ces, then still the theoretical objections to both meth-
ods put forward in this article, would have remained.
Because of a lack of theoretical justification, any
promising result found for both methods might as
well have been only context-specific. Thus, to rule out
this possibility, more research under more various
circumstances would have been necessary. However,
given the availability of an alternative of which the

Table 4. Pooled regression analysis of the multiply imputed data from Camfferman et al. (2017) about obesity.
Model 1 Model 2

Effect B SE p B SE p

Intercept �0.07 0.15 0.64 �0.03 0.143 0.82
BMI Mother �0.09 0.18 0.61 0.04 0.170 0.84
BMI Father 0.05 0.18 0.76 0.06 0.158 0.72
CFQ pressure to eat �0.33 0.166 0.06
CFQ restriction 0.38 0.153 0.02�
R2 0.014 0.199
�R2 0.017 0.202
R2F 0.005 0.157
FRu, p F(2, 48)¼ 0.13, p¼ 0.88 F(4, 47)¼ 2.17, p¼ 0.09
tRu;Ha, p Z¼ 1.02, p¼ 0.31 Z¼ 3.58, p< 0.001�
FRuðDR2Þ, p F(2, 46)¼ 4.09, p¼ 0.02�
FRt , p F(2, 44)¼ 5.11, p¼ 0.01�
FBR, p F(2, 33)¼ 3.86, p¼ 0.03�
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statistical properties are largely known (FRu; Rubin,
1987), further investigation of FBR and FRt seems
rather unnecessary anyway.

Estimates for R2

Along with the proposed pooling techniques for the sig-
nificance tests for R2 and DR2 Harel (2009) proposed
a pooling technique for R2, denoted R2. This measure
was compared with two newly proposed alternatives: R2

and R2
F . It turned out that R2 and R2 produced very

similar results. Unfortunately, the newly proposed R2
F

did not perform as well as was hoped for. This pooled
version underestimated q2, and was lower on average
than lower benchmark CCA as well. In study 2, for
some situations DR2

F was even negative. This probably
lies in the fact that �Rt in Equation (14) includes the
relative increase in variance, r (Equation (12)). This
value of r is not constant across two (or more) compet-
ing regression models as newly added variables come
with new missing values, consequently changing r.
Especially for weak relations between the newly added
variables and the outcome variable, and a high percent-
age of missingness, this could result in negative DR2

F ’s.
For practical purposes a negative DR2

F is not a problem
because it may be interpreted as no relationship between
the newly added predictors and the outcome variable.
Nevertheless, the severe underestimation of R2 using the
R2
F statistic in general, is problematic.

Implications and conclusions

The calculation of R2 (Harel, 2009) is more compli-
cated than that of R2 and relies on an incorrect
justification. Although R2 is on average close to R2

of the original data, its results hardly differ from
the simpler R2 , which neither has a correct nor an
incorrect justification. On the other hand, R2

F is on
average substantially lower than R2 of the original
data, and even lower than that of CCA. The above
considerations lead to the conclusion that R2 is the
preferred pooled version of R2 in multiple imputation.

As for the combination rules for the significance
tests for ðDÞR2, although earlier studies show that
tRu;Ha (Harel, 2009), FRt, and FBR (Chaurasia & Harel,
2014) give satisfactory type-I error rates, the current
studies indicate otherwise. Although Chaurasia and
Harel admit that their method is ad hoc, they justify
its use by its ease of computation (2014, p. 433) and
its higher observed power (p. 439), compared to FRu.
However, the former argument only holds when FRu
has to be calculated manually. Nowadays, FRu is

available in both SPSS 25.0 using the macro by Van
Ginkel (2010), in SAS 9.4, and in R. In Appendix A,
the procedure for calculating FRu for R2 and DR2 in
SPSS is explained using the reduced data set from
Camfferman et al. (2017). Appendices B and C show
the procedure for SAS an R, respectively.

As for the argument of better power, in study 2 of
the current article, it was found that when M> 6, FRt
and FBR indeed correctly reject the null hypothesis more
frequently than FRu. One interpretation is that these tests
have more power than FRu. However, given that under
Dq2 ¼ 0 these tests have deflated type-I error rates
when M¼ 6 and inflated type-I error rates when M> 6,
a more logical interpretation is that for low M these F-
tests are biased downwards and that for high M biased
upwards, that is, for the situations studied here (assum-
ing that no programming errors were made in the cur-
rent study). The bottom line is that the argument of
increased power only holds when the type-I error rates
of these tests are not heavily affected by factors that
should not affect them, such as the number of imputa-
tions and the percentage of missingness.

To conclude, R2 is the preferred point estimate for
R2, and FRu is the preferred method for testing ðDÞR2

for significance. Using R2 as a point estimate for R2 will
give estimates that hardly differ from the recommended
R2 , but considering its incorrect justification and the fact
that is more difficult to compute, there does not seem to
be any reason to prefer R2 over R2 . Finally, based on
the current results, R2

F and the statistics by Harel (2009)
and Chaurasia and Harel (2014) must be avoided.
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Appendix A

In this appendix, the complete procedure for obtaining FRu
for the complete model and for DR2 using the SPSS macro
by Van Ginkel (2010), is described. The procedure is
demonstrated using the example data set (Camfferman
et al., 2017). The interested reader can download this subset
from the author’s personal webpage https://www.universiteitl
eiden.nl/en/staffmembers/joost-van-ginkel#tab-1 and reproduce
the results from Table 4. From now on it is assumed that the
data set is stored in C:\MyData\ CamffermanEtAl.sav.

First we open the data set in SPSS:

GET FILE¼ ‘C:\MyData\CamffermanEtAl.sav’.

In order for the multiply imputed data set to be analyzed
as a multiply imputed data set by SPSS, a split file must
be carried out, using the variable Imputation_ as a split
variable (in the menu: Data, Split File):
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SORT CASES BY Imputation_.
SPLIT FILE LAYERED BY Imputation_.

The SPSS macro (Van Ginkel, 2010) reads SPSS data files
in which the results of the statistical analyses are stored.
To create such a data file, we use the OMS command
(in the menu: Utilities, OMS Control Panel):

OMS
/SELECT TABLES
/IF COMMANDS¼ [‘Mixed’] SUBTYPES¼
[‘Covariance Matrix’

‘Parameter Estimates’]
/DESTINATION FORMAT¼ SAV

NUMBERED¼TableNumber_
OUTFILE¼‘C:\MyData\Parameters1.sav’ VIEWER¼YES.

What is particularly needed are the regression coeffi-
cients and the covariance matrix of the regression
coefficients.

This can be found in the line: /IF COMMANDS¼
[‘Mixed’] SUBTYPES¼ [‘CovarianceMatrix’ ‘Parameter Estimates’].

More extensive examples of how to use the OMS
command are given in the manual of the SPSS macro (Van
Ginkel, 2016).

Once the OMS option has been carried out, the regres-
sion analysis may be carried out on the multiply imputed
data sets. However, this regression must be carried out
in Mixed models (In the menu: Analyze, Mixed Models,
Linear) as Van Ginkel’s (2010) macro can only process
the regression coefficients and covariance matrices
when they are stored in the format that is generated by
Mixed Models.

MIXED ZCEBQ_APPROACH WITH ZM_BMI_combi
ZF_BMI_combi
/CRITERIA¼CIN(95) MXITER(100) MXSTEP(10)

SCORING(1) SINGULAR(0.000000000001)
HCONVERGE(0, ABSOLUTE) LCONVERGE(0,
ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
/FIXED¼ZM_BMI_combi ZF_BMI_combi j SSTYPE(3)
/METHOD¼REML
/PRINT¼COVB SOLUTION.

More examples of how to carry out analyses using
Mixed Models may be found in the manual as well. Next,
the OMS command is ended by the following statement:

OMSEND.

After ending the OMS command, the macro has to be
called, and arguments must be specified. We assume the
macro MI-MUL2.sps is saved to the directory C:\MyData\.
The syntax code for running the macro to get pooled regres-
sion coefficients of Model 1 (Table 4) and their significance
tests, plus the pooled F-test of the complete model, is

INCLUDE ’C:\MyData\MI-mul2.sps’.
RULESMIMUL FILE¼ ’C:\MyData\Parameters1.sav’
/ESTIMATE¼Estimate
/COV¼ Intercept to ZF_BMI_combi
/LEVELSIND ¼1,1
/DF¼ df
/M¼ 100.

Here, the INCLUDE line calls the macro. The
RULESMIMUL FILE line specifies the data set in which
the results of the analyses are stored. The /ESTIMATE
line specifies the variable in the file Parameters1.sav that
contain the regression coefficients. The /COV line speci-
fies the variables that contain the covariance matrices of
the regression coefficients. In the /LEVELSIND command,
the number of predictor variables taking part in the ana-
lysis, and their number of levels are specified. In the spe-
cific example, there are two continuous predictors
(ZF_BMI_combi and ZF_BMI_combi), all with one level.
Continuous predictors are specified as variables with one
level (Van Ginkel, 2016, p. 15). The /DF line specifies the
variable that contains the number of degrees of freedom.
This is needed for the calculations of �Rt (Equation (14)).
The last line (/M) specifies the number of imputed
data sets.

To carry out the analysis of Model 2, the same procedure
must be followed as for Model 1. First, the analysis must be
“carried out” on each imputed data set separately, and the
results must be stored in a data file, using the OMS option:

GET FILE¼ ’C:\MyData\CamffermanEtAl.sav’ .
SORT CASES BY Imputation_.
SPLIT FILE LAYERED BY Imputation_.
OMS

/SELECT TABLES
/IF COMMANDS¼ [’Mixed’] SUBTYPES¼ [’Covariance
Matrix’
’Parameter Estimates’]

/DESTINATION FORMAT¼ SAV NUMBERED¼
TableNumber_

OUTFILE¼’ C:\MyData\Parameters2.sav’ VIEWER¼YES.
MIXED ZCEBQ_APPROACH WITH ZM_BMI_combi
ZF_BMI_combi ZCFQpressuretoeat ZCFQ_Arestriction

/CRITERIA¼CIN(95) MXITER(100) MXSTEP(10)
SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,

ABSOLUTE) LCONVERGE(0, ABSOLUTE)
PCONVERGE(0.000001, ABSOLUTE)

/FIXED¼ZM_BMI_combi ZF_BMI_combi ZCFQ
pressuretoeat

ZCFQ_Arestriction j SSTYPE(3)
/METHOD¼REML
/PRINT¼COVB SOLUTION.

OMSEND.

To compute the FRu for DR2 of Model 2 against Model 1
(Table 4) the following syntax code has to be used:

INCLUDE ’C:\MyData\MI-mul2.sps’.
RULESMIMUL FILE¼ ’C:\MyData\Parameters2.sav’
/ESTIMATE¼Estimate
/COV¼ Intercept to ZCFQ_Arestriction
/LEVELSIND ¼1,1,2
/DF¼ df
/M¼ 100.

The F-test at the top of the output is the FRu for the
complete Model 2 (Table 4). In the /LEVELSIND com-
mand, the latter two variables have been joined into one
“variable” with two levels. The last pooled F-test in the
resulting output is the FRu for DR2 (Table 4, the fifth row
of bottom panel).
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Appendix B

Below the complete procedure for obtaining FRu for both R2

and DR2 in SAS 9.4 is described, using the example data set
(Camfferman et al., 2017). In order for SAS to carry out the
pooled tests, the SPSS data set has to be converted to SAS
format in SPSS first.

Multiply imputed data sets in SAS do not include the
incomplete data set without imputed values on top of the
data file, while in SPSS this incomplete file is included, indi-
cated by an imputation number of 0 (Variable Imputation_
in the example data set).

This incomplete data set must be deleted first before the
data can be saved in SAS format:

GET FILE¼’C:\MyData\CamffermanEtAl.sav ’.
FILTER OFF.
USE ALL.
SELECT IF (Imputation_ �¼ 0).
EXECUTE.

Once this has been done, the data can be saved in SAS
format (Menu: Save As… , and set “Save as type:” to SAS
v9þWindows (�.sas7bdat)):

SAVE TRANSLATE OUTFILE¼’C:\MyData\Camfferman
EtAl.sas7bdat’
/TYPE¼ SAS
/VERSION ¼9
/PLATFORM¼UNIX
/ENCODING¼’UTF8’
/MAP
/REPLACE.

Next, we open SAS and read the data file. In SAS the
variable containing the imputation number is called
_Imputation_. Thus, the variable Imputation_ in the
data set must be renamed first, and the data must be saved
to a new file named CamffermanEtAl2.sas7bdat:

data
"C:\MyData\CamffermanEtAl2.sas7bdat";set"

C:\MyData\CamffermanEtAl.sas7bdat";
Rename Imputation_¼_Imputation_;

run;

Next, the regression analysis of the smaller model
is carried out for each imputed data set separately:

proc
reg data¼"C:\MyData\CamffermanEtAl2.sas
7bdat"outest¼"
C:\MyData\parametersSPSS.sas7bdat"covout;
model ZCEBQ_APPROACH¼ZM_BMI_combi
ZF_BMI_combi;
by _Imputation_;
run;

The results of the smaller model can be pooled
by means of:

proc mianalyze data¼
"C:\MyData\parametersSPSS.sas7bdat"edf¼52;
modeleffectsInterceptZM_BMI_combiZF_BMI_
combi;
test ZM_BMI_combi¼ZF_BMI_combi¼ 0/mult;

run;

Next, analysis of the larger model is carried out for each
imputed data set separately:

proc regdata¼"C:\MyData\CamffermanEtAl2.sas7
bdat"
outest¼"C:\MyData\parametersSPSS.sas7b
dat"covout;
model ZCEBQ_APPROACH¼ZM_BMI_combi
ZF_BMI_combi ZCFQpressuretoeat ZCFQ_
Arestriction;
by _Imputation_;
run;

The FRu for R2 and for DR2 can be calculated by
means of:

proc mianalyze data¼"C:\MyData\
parametersSPSS. sas7bdat" edf¼50;
modeleffects Intercept ZM_BMI_combi
ZF_BMI_combi ZCFQpressuretoeat
ZCFQ_Arestriction;
test ZM_BMI_combi¼ZF_BMI_combi¼ZCFQ
pressuretoeat¼
ZCFQ_Arestriction¼0/mult;
test ZCFQpressuretoeat¼ZCFQ_Arestriction
¼ 0/mult;
run;

Finally, it should be noted that for this example the
already imputed data file was used rather than multiply
imputing the incomplete data set in SAS, to ensure that the
results would be identical to the results in Table 4.

Appendix C

In R, FRu can be calculated using the miceadds package
(Robitzsch, Grund, & Henke, 2017). After installation, this
package is called:

library(miceadds)

Furthermore, this package is only applicable to a data
set that has been multiply imputed within R using the
mice package (Van Buuren & Groothuis-Oudshoorn,
2011). Therefore, we cannot directly use the multiply
imputed data set as in the SPSS and SAS examples. Instead,
the incomplete data set from Camfferman et al. is read in R
as a plain text file, named CamffermanEtAl.dat (miss-
ings are indicated by -999 in the file), available from the
author’s personal page:

CamffermanData <-
read.csv("http://leidenuniv.nl/fsw/
Psychologie/CamffermanEtAl.dat",
header=TRUE, sep = " ")

Next, the data are multiply imputed using the
mice package:

library(mice)
CamffermanDataImputed<-mice(CamffermanData,
m¼100, maxit ¼100, seed ¼361)
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In order to obtain the FRu for testing all parameters of
the smaller model simultaneously, we create a function in which
one can specify the multiply imputed data, regression model and
the set of parameters that one wants to test for significance
simultaneously. More specifically, this function requires four
arguments: (1) data set: a multiply imputed data set obtained
from the mice procedure (here: CamffermanDataImputed),
(2) response: the name of the response variable (in the data
set from Camfferman et al. this variable is called ZCEBQ_
APPROACH), (3) predictors: a string vector containing
the names of the predictors in the model (the names of the
predictors depend on the specific model that is evaluated), and
(4) testpredictors: a string vector containing the names
of a subset of predictors inthe model, which are tested for
significance. The code for the specific function is:�

library(mitools)
Fru <- function(dataset, response,

predictors, testpredictors){
#Creating a string of the specific linear

model
eq <- paste(response, " � ",
paste(predictors, collapse¼ " þ ")
)
#Computing the pooled model using the pool
function in mice
model <- with(dataset, lm(as.formula(eq)))
pooled model <- pool(model)

#Creating arrays containing the regression
coefficients and covariance matrices of each
# imputed dataset, denoted qhat and u,
#respectively.
qhat <- MIextract (model$analyses,
fun=coef)

u <- MIextract (model$analyses,
fun=vcov)

#Creating a vector containing the parameter
names of the model.
pars <- names(qhat[[1]])

#creating a design matrix indicating which
ofthe
#parameters inqhat are tested simultan-
eously. The
#create.designMatrices.waldtest function
facilitates
#the creation of the design matrix.
Since the
#miceadds manual (Robitzsch, Grund, &
Henke, 2017),
#pp. 103-107) gives some clear examples
of this
#function, the next lines are not fur-
ther explained.

design<-create.designMatrices.waldtest
(pars¼pars,
k¼length(testpredictors))
Cdes <- design$Cdes
rdes <- design$rdes
ii <- 0
for (predictor in testpredictors) {
ii <- ii þ1
Cdes[ii, predictor] <- 1
}
#The MIwaldtest function in the
miceaddspackage
#calculates a pooled F value testing the
parameters in vector testparameters”
#for significance
Wald <- MIwaldtest(qhat, u, Cdes, rdes)
summary(Wald)
}

Once the above code has been run, FRu testing
all parameters of Model 1 simultaneously can be obtained
by means of:

response <- "ZCEBQ_APPROACH"
predictors<-c("ZM_BMI_combi",
"ZF_BMI_combi")
result1 <- Fru(
CamffermanDataImputed,
response,
predictors,
predictors
)

Note that the results for this FRu are not identical to
the results of the SPSS and SAS examples since the original
reduced multiply imputed data set by Camfferman et al.
(2017) could not be read by the miceadds package, and
the incomplete data set had to be re-imputed using the
mice package instead.

Next, R2 of Model 2 is tested. This is done in a similar
way as for the smaller model:

predictors <- c("ZM_BMI_combi",
"ZF_BMI_combi",
"ZCFQpressuretoeat", "ZCFQ_Arestriction")
result2 <- Fru(
CamffermanDataImputed,
response,
predictors,
predictors
)

Finally, the FRu for testing DR2 for significance is
obtained using:

testpredictors <- c("ZCFQpressuretoeat",
"ZCFQ_Arestriction")
result3 <- Fru(
CamffermanDataImputed,
response,
predictors,
testpredictors
)

�
Disclaimer: shortly after acceptance of this article the mice package
was updated such that the code of the originally accepted draft did not
work anymore. Fortunately the code in this appendix could be changed
before appearing online. However, because of the rapid developments in
mice and in R in general, the author cannot guarantee that the code
provided will still work in future versions of R.
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