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5 Poor electronic screening in lightly doped Mott insulators

5.1 Introduction

One of the unsolved mysteries that we encountered in chapter 4 is that the effec-

tive Mott gap measured by scanning tunneling microscopy in the very lightly doped

Mott insulator (Sr1-xLax )2IrO4 differs greatly from values reported by photoemission

spectroscopy and optical experiments [71, 73, 78, 79].

In the present chapter, we focus on this observation. We attribute its origin to poor

electronic screening of the tip-induced electric field in the sample. This phenomenon is

well known from STM experiments on semiconductors and goes under the name of tip-

induced band bending (TIBB) [49, 50]. In principle, TIBB can affect measurements

of all materials with poor electronic screening, including Mott insulators. Indeed,

signatures of TIBB are observed for the lightly hole-doped oxychloride Ca2CuO2Cl2
[103], and poor electronic screening effects around charged impurities are observed for

Fe dopants in the topological insulator Bi2Se3 [115], for Co adatoms in graphene [116]

and possibly for chiral defects in Sr3Ir2O7 [98, 117]. TIBB has also been discussed for

2D transition metal dichalcogenides [118] and for graphene systems [119]. However,

other than in semiconductors and especially with respect to Mott insulators, the

effects of TIBB have not been analyzed in much detail.

Here, we develop a model for TIBB specifically for lightly doped Mott insulators.

When applied to the iridate (Sr1-xLax )2IrO4, the model is able to retrieve the intrin-

sic energy gap from the measured STM data, obtaning a value that reconciles with

literature. In general, this model allows us to better understand the physics of the

material, and to provide new insights for STM experiments on lightly doped Mott

insulators.

We begin with an overview of the phenomenon of TIBB in Sec. 5.2. We start from its

basics in semiconductor physics, and we discuss differences and similarities between

Mott insulators and semiconductors with respect to the problem of electric field pen-

etration. Section 5.3 is the core of the chapter. Here, we show clear indications of

electric field penetration in the iridate samples, and we develop an algorithm to re-

trieve the intrinsic energy gap from the measured STM gap. Finally, in Sec. 5.4, we

show a different manifestation of TIBB in the iridate samples, appearing at doping

x ≈ 5 %.

5.2 Poor electronic screening and tip-induced band bend-

ing

A good measure of how efficiently mobile charges inside a material can screen an

externally applied electric field, is given by the screening length λs. When a charge
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5.3 Influence of poor screening on the energy gap of (Sr1-xLax)2IrO4

q is added to an electron liquid, its Coulomb potential φ(r) is screened as φ(r) =

q/r · e−r/λs . In metals like copper, the charge potential is almost perfectly screened

since λs = 0.5 Å, whereas, in less conducting materials, λs can be higher by a few

orders of magnitude. In semiconductors, it is typically of the order of 10 nm [120, 121].

As illustrated in Sec. 2.4, Fig. 2.5, poor electronic screening is very detrimental for

STM experiments performed on semiconductors. In contrast to metallic samples, here

the electric field generated by the tip can partially penetrate the surface, causing an

additional potential drop inside the material. This can strongly affect the interpreta-

tion of STM data. For instance, the gap measured with tunneling spectroscopy can

significantly differ from the intrinsic bandgap in the density of states of the sample,

as it has been observed, e.g., on the surfaces of Ge(111) [48], FeS2(100) [122] and

ZnO(110) [123]. Moreover, TIBB can cause the ionization of donors/acceptors in the

semiconductor [124–126], an effect that has been used in tip-induced quantum dot

experiments [120].

In all these cases, being able to quantitatively calculate the band bending potential

ϕBB at the surface is necessary for the correct interpretation of STM data: only if

the value of ϕBB is known, the intrinsic bandgap can be retrieved from the data, and

the binding energies of the donors/acceptors can be extracted. For semiconductors,

this is often done with a Poisson’s equation solver developed by Feenstra [51], that

uses the known dielectric constant and carrier concentration. This treatment yields

apparent bandgaps ≈15-20% larger than the intrinsic ones [48, 122].

While Mott insulators share the reduced ability to screen electric fields with semi-

conductors, their underlying physics is radically different due to the strong electron-

electron correlations (see Sec. 1.2). As a consequence, several material parameters

that are easily accessible in semiconductors, such as the number of carriers, are dif-

ficult to estimate for a (lightly doped) Mott insulator. The models developed for

calculating ϕBB in semiconductors can therefore not be applied to Mott insulators.

In the following, we develop a model of electric field penetration in the absence of free

carriers specifically for lightly doped Mott insulators.

5.3 Influence of poor screening on the energy gap of

(Sr1-xLax)2IrO4

We now concentrate on the lightly doped Mott insulator (Sr1-xLax )2IrO4 at doping

levels x < 4%. The physics of the material has been thoroughly discussed in chapter 4,

and all the experimental conditions are the same. In section 4.5, we left the open

mystery that the gap in the sample LDOS as measured with STM is significantly

bigger, and thus in disagreement with the one reported by other techniques. Here, we
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Figure 5.1: Schematic illustration of a tunneling spectroscopy experiment on a Mott insulator in

absence (green) and presence (blue) of TIBB. The apparent gap measured with STM is bigger

than the intrinsic gap of the material.

show how this can be attributed to the presence of field penetration in the material,

and how we can correct for this phenomenon.

The main effect of field penetration is that the voltage between the tip and the sample

surface directly below the tip no longer corresponds to the applied bias voltage Vb,

but only to a fraction of it. It is relatively easy to qualitatively understand why

this causes the measured STM gap to be bigger than the intrinsic gap in the sample

LDOS. Let us consider in Fig. 5.1 how a scanning tunneling spectroscopy experiment

is affected by the presence of TIBB. When acquiring a spectrum, the bias voltage

Vb is swept while measuring the differential conductance dI/dV . In the case of a

gapped LDOS as in a Mott insulator, the onset in the tunneling current occurs when

the tip Fermi level crosses the lower boundary of the upper Hubbard band or the

upper boundary of the lower Hubbard band. Both events occur at higher absolute

bias voltages Vb in the presence of TIBB, as the bands bend upwards or downwards

following the position of the tip Fermi level. Thus the apparent gap is wider than the

real one when the tip electric field penetrates the sample.

In the following, we develop an algorithm that is able to retrieve the value of the

intrinsic energy gap from the measured one. First, we need to calculate the value of

the band banding potential ϕBB at the sample surface directly below the tip apex. For

Mott insulators, this has never been done before: The models developed to calculate

ϕBB in semiconductors [51] cannot be applied, since they require knowledge of the

band structure, the carrier concentration and the dielectric constant, quantities that

are not always available for Mott insulators. In Sec. 5.3.1, we introduce a model for

electric field penetration in absence of free carriers that allows us to get an estimate

of ϕBB by using the image charges method. Then, in Sec. 5.3.2, we use the obtained

value of ϕBB as input parameter of an algorithm that allows us to retrieve the real
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Figure 5.2: Schematic representation of the configuration used to calculate the band bending

potential using the image charges method.

energy gap in the sample LDOS from the gap measured with STM, bridging the

apparent contradiction with literature.

5.3.1 Calculation of the band-bending potential

Here, we develop a simple model of electric field penetration in the absence of free

carriers that allows us to calculate the band-bending potential ϕBB for a lightly doped

Mott insulator where important material parameters are unknown.

We consider the situation depicted in Fig. 5.2. As a first approximation, we model

the tip as a conductive charged sphere of radius R at a distance h from the sample,

where h� R, and the sample as a dielectric medium with dielectric constant ε filling

a half-space. We consider a bias voltage Vb applied between the tip and the bottom

of the sample, which is grounded. We need to find the band-bending potential ϕBB

at the point of the sample closest to the tip (point A in Fig. 5.2), as a function of the

bias voltage Vb applied to the tip.

In order to calculate the electric potential ϕBB, we make use of the image charges

method [127]. In the simplest approximation of a uniformly charged sphere that

can be replaced with a single point charge at the center of the sphere, an analytic

expression for TIBB can be obtained:

ϕBB(Vb, R, h, ε) =
1

1 + ε hR
· (eVb −W0), (5.1)

where W0 = Wsample−Wtip represents the difference in work functions between sam-

ple and tip. In a more realistic configuration, the surface charge redistributes on the

sphere. This problem has no analytical solution, and the expression for ϕBB has to
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5 Poor electronic screening in lightly doped Mott insulators

be found numerically by using an infinite series of converging image charges with di-

minishing absolute value1. The set of image charges is built in the following recurrent

sequence: A charge q is added to the uncharged sphere, which is the equivalent of

a point charge in the center of the sphere (q;R + h). This point charge induces an

image charge in the dielectric medium (−kq;−(R+ h)), where k = ε−1
ε+1 . This in turn

induces a dipole image on the sphere, ( −kqR2(R+h) ;R + h) and ( −kqR2(R+h) , r + h − R2

2(R+h) ),

and so on. The electric potential in the whole space is then given by

ϕ(r) =
κ

4πε0

∑
i

qi
|r− ri|

. (5.2)

For z ≥ 0, κ = 1 and (qi, ri) are the initial charge and all the image charges induced

on the sphere and in the sample. For z < 0, κ = 2
1+ε and (qi, ri) are the initial charge

and all the image charges induced on the sphere [127].

From Eq. (5.2), we can compute ϕ(r = A), which corresponds to the value of ϕBB at

the point on the sample closest to the tip. Because the value of ϕBB depends on the

bias voltage Vb applied to the tip, we also compute the potential at ϕ(r = B). We

can then extract the proportionality constant between ϕBB and Vb from the ratio of

this two potentials,

F (R, h, ε) =
ϕ(r = A)

ϕ(r = B)
, (5.3)

obtaining finally the following expression for ϕBB:

ϕBB(Vb, R, h, ε) = F (R, h, ε) · (eVb −W0). (5.4)

The value of ϕBB therefore depends on the tip radius R, the tip-sample distance h, the

static dielectric constant of the sample ε and the difference in work functions between

sample and tip. In order to calculate ϕBB, we fix the values of R and ε to realistic

parameters of our experiment. Using SEM, we measure typical radii R for our tips of

25 nm. We estimate the static dielectric constant of a typical Mott insulator as ε = 30

(based on Ref. [128] for La2CuO4 and Ref. [129] for Sr2IrO4). We assume that this

value can still be applied in the case of a very low doping concentration of ≈ 2−3%

extra holes or electrons.

We further make use of finite element analysis (FEA) performed with the software

package Comsol [60], first to confirm the results obtained with the image charges

method on the simplified geometry, and second to estimate how different these results

are in a more realistic geometry. In the latter, the tip is modeled as a cone with

aperture of 20◦ ending with a spherical segment with the same tip radius R. The two

configurations computed with FEA are represented in Fig. 5.3, where the calculated

equipotential lines are shown.

1We verified that the simplified situation of a uniformly charged sphere underestimates ϕBB by

a factor of two for our setup, requiring to take the full charge redistribution into account.
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Figure 5.3: Result of FEA performed with Comsol [60] showing the electrical potential around

tip and sample. a, Simplified spherical tip geometry. b, Conical tip geometry. In both panels,

the tip-sample distance is set to 5 Å and the equipotential lines, emphasizing the electric field

penetration in the sample, are equally spaced by 50 mV. The equipotential line at 50 mV in panel

b is not visible, because it is deeper below the surface of the sample.

In Table 5.1, we report the values of F (R, h, ε) obtained from the image charges

method and from the two configurations calculated with FEA for a selection of tip-

sample distances (where for simplicity we set W0 = 0). The image charges method

results agree within 1 % accuracy with FEA results performed on the same simplified

geometry, and if the more realistic geometry is taken into account, the value of ϕBB

increases by ≈ 10 %. We can therefore conclude that our approximation of a spherical

tip yields reasonable results.

h (Å) image charges FEA sphere FEA cone

3 0.430 0.426 0.457

5 0.354 0.353 0.388

7 0.309 0.309 0.346

Table 5.1: Values of F (R, h, ε) obtained for three different tip-sample separations h from dif-

ferent methods: image charges method, FEA on spherical tip geometry, FEA on conical tip

geometry.

71



5 Poor electronic screening in lightly doped Mott insulators

5.3.2 Algorithm to retrieve the real energy scales in the LDOS

After obtaining the expression for ϕBB in Eq. (5.4), we can use it to extract the native

density of states from the STM spectra. In addition to the calculated value of ϕBB,

our algorithm needs as input parameters a series of dI/dV spectra measured at the

same location with different tip-sample distances (fixed Vs and varying Is covering at

least one order of magnitude) and an I(z) spectrum.

Measuring a series of spectra with different set-up conditions can already give an

indication for the presence of TIBB (even though it usually cannot rule it out). Figure

5.4a shows a series of dI/dV spectra measured subsequently at the same location with

increasing tip-sample distances on a (Sr1-xLax )2IrO4 sample with 2.2 % doping. The

setup bias voltage is kept constant at Vs = 1.5 V and the setup current Is ranges from

600 pA to 10 pA, covering almost two orders of magnitude. A clear dependence on

the setup conditions, reflecting a dependence on the tip-sample distance, is visible.

We can calculate G = dI/dV in the presence of TIBB by taking the derivative with

respect to Vb of Eq. (2.12):

G(Vb, h) =
4πe2

~

(
1− ∂ϕBB(Vb, h)

∂Vb

)
|M(h)|2 gt gs

(
eVb − ϕBB(Vb, h)

)
. (5.5)

The tip-sample distance h is mainly included in the unknown tunneling matrix el-

ements |M(h)|2. Following Ref. [23], we eliminate |M(h)|2 by normalizing the dif-

ferential conductance G(Vb, h) by the setup current divided by the setup voltage:

Ḡ(Vb, h) ≡ G(Vb, h)

Is/Vs
. (5.6)

In absence of TIBB, Ḡ would become independent of h, and such normalized spectra

should collapse on a single curve. We apply Eq. (5.6) to the data in Fig. 5.4a, plotting

the result in Fig. 5.4b: the curves do not collapse exactly on each other, the biggest

differences arising for negative energies (see arrow). We quantify this difference by

the standard deviations calculated for each energy, shown as the gray line in Fig. 5.4b.

The differences in the normalized spectra are due to the presence of TIBB and thus

further modeling is required to extract the intrinsic sample LDOS.

To do so, we calculate an effective bias voltage V eff(h) for each tip-sample distance h

such that

eVs − ϕBB(Vs, h) ≡ eV eff(h)− ϕBB(V eff(h), h0) (5.7)

for a fixed tip-sample distance h0.

Using Eq. (5.7), we rewrite the tunneling equation Eq. (2.12) as:

eVs−ϕBB(Vs,h)∫
0

gs(ε) dε =
I(V eff(h), h0)
4πe
~ |M(h0)|2gt

. (5.8)
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Figure 5.4: a, G ≡ dI/dV spectra measured at different tip-sample distances h on a sample

with 2.2% doping. The bias setup voltage Vs is fixed to 1.5 V and the current Is goes from 600 pA

(red) to 10 pA (light blue). In all insets the corresponding plot is shown on a logarithmic scale.

b, The same spectra as in panel a, each normalized by its setup junction resistance Is/Vs. The

gray line shows the standard deviation σ(G) calculated for each energy, multiplied by a factor

two. c, Intrinsic LDOS gs after correction for TIBB, obtained from Eq. (5.9). Since the rescaling

of the curves causes different horizontal axes for each curve, we calculate σ(gs) over extrapolated

values of gs at equally spaced energies. d, Calculated apparent gap as a function of tip-sample

distance.

By inserting Eq. (5.8) into Eq. (5.5) divided by the setup conditions, we can extract

the intrinsic density of states gs(ε) from measured G(h) curves at different heights:

gs(ε) =
G(h)

Is/Vs

1

1− ∂ϕBB(Vb,h)
∂Vb

I(V eff(h), h0)
4πe2

~ |M(h0)|2gt
, (5.9)

where ε = eVb−ϕBB(Vb, h). The parameters in the model are the dielectric constant

ε, the tip radius R, the difference in work functions W0, the minimal tip-sample

distance hmin and the exponential prefactor κ of the tunneling current I = I0 · e−κh.
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5 Poor electronic screening in lightly doped Mott insulators

We keep R and ε fixed at the values mentioned in Sec. 5.3.1. We estimate hmin = 5 Å

as a typical tunneling distance for 1 GΩ tunneling resistance for this material. From

measured I(z) curves, we determine κ = 1.1 Å−1. Thus the only free parameter left

in Eq. (5.9) is W0.

We apply our model to the data of Fig. 5.4a, extracting the parameter W0 as the

value that minimizes the error function Ω =
∫

[σ(gs)]
2, where σ(gs) are the standard

deviations of the gs curves for each energy. Minimization gives a work function

difference between tip and sample of W0 = 0.55 eV.

We show in Fig. 5.4c the result of the application of our model to the data. The

resulting spectra are rescaled in energy, leading to a gap value of 600 meV and to a shift

of the onset of the lower Hubbard band to −0.1 eV. This is in good agreement with

values reported in literature by optical spectroscopy, theory and ARPES [71, 73, 77–

79], allowing us to reconcile our measurement to the other techniques.

In Fig. 5.4d, we show the calculated evolution of the apparent gap with tip-sample

distance. While there is a remarkable difference between the intrinsic gap value and

the apparent gap, we want to stress that, within the values of h in which STM

experiments are typically conducted, the variation of the apparent gap is relatively

small. Therefore, even when measurements do not show sizable dependence on setup

conditions, TIBB might be present, and further analysis might be required to retrieve

the intrinsic energy scales.

5.4 Bubbles in the conductance layers of (Sr1-xLax)2IrO4

In the samples with higher doping levels (x ≈ 5 %), we observe a different signature

of field penetration: circular rings of enhanced conductance appear in the layers of

constant energy of the spectroscopic maps. In the following, we will refer to these

features as ‘bubbles’. Their diameter increases with energy, as shown in Fig. 5.5a-d,

causing hyperbolas of enhanced conductance in a (E, r) plot, as shown in Fig. 5.5e.

We shall see that these bubbles are generated by the presence of a low concentration

of specific impurity atoms which can be used as a probe to better understand the field

penetration in the material.

Very similar features have been observed in semiconductors, where they are identified

as markers of ionization/empty state filling of donors or acceptors induced by the

vicinity of the STM tip. ‘Bubbles’ in semiconductors have been thoroughly studied

because they can help in extracting material parameters such as the binding energy of

the donors. This was done for instance for Si donors in GaAs [124, 125], for which it

was further demonstrated that donors closer to the surface have an enhanced binding

energy with respect to the bulk [130]. Effects of charge manipulation by the STM tip
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Figure 5.5: Visualization of a tip-induced band bending bubble in (Sr1-xLax)2IrO4 at x=5.5 %.

a-d, Conductance layers in a field of view of 3×3 nm2 at 250 meV, 175 meV, 40 meV, -230 meV,

respectively. e, (E,r) plot of the bubble along the red line in a. The hyperbolic profile visualizes

the increasing diameter of the bubble with increasing energy. The arrows indicate the energies

at which the conductance layers shown in panels a-d are extracted.

and enhanced binding energy closer to the surface were also reported for Mn acceptors

in InAs and GaAs [121, 131] and for donors in ZnO [132, 133]. Moreover, bubbles due

to TIBB effects have also been reported when using a scanning capacitance probe to

image transport in two-dimensional electron gas in AlGaAs/GaAs heterostructures

[134]. Despite semiconductors being relatively simple and accessible systems, the

physics governing the appearance of the bubbles is quite complicated, and many

details are not yet agreed upon.

We note that signatures of finite field penetration resembling the bubbles observed in

our samples are also found in other correlated-electron systems, such as the lightly

hole-doped oxychloride Ca2CuO2Cl2 [103] and possibly the correlated iridates Sr3Ir2O7

and Sr3(Ir1-xRux )2O7 [98, 117, 135]. However, these bubbles have never been dis-

cussed in details for a correlated-electron system.

We expect that the mechanism leading to the formation of bubbles in our samples is

the same as in semiconductors, and we refer to Ref. [124, 125] for a detailed description

of the processes.

Here, we emphasize that the impurity atoms in our samples are identified as electron

donors, that each of these donors generates one hyperbola as in Fig. 5.5d, and that the

two parts of the hyperbola lying above and below the chemical potential come from

two different tunneling processes. For Vb > 0, the enhanced conductance is due to the

ionization of the donor, which locally changes the potential landscape in the sample.
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5 Poor electronic screening in lightly doped Mott insulators

In this process, the electrons tunnel from the tip to the bulk of the sample, therefore

the bubble becomes visible only after the onset of the upper Hubbard band. For

Vb < 0, the enhanced conductance is instead caused by the opening of an additional

tunneling channel. In this process, electrons tunnel from the sample bulk to the tip

via the donor state. The bubble’s diameter in this part of the hyperbola reflects the

extension of the donor wave function in real space. Both processes are triggered at

a specific value of ϕBB, causing the hyperbola to follow a constant ϕBB contour. We

emphasize that the two parts of the hyperbola will lie on the same constant ϕBB

contour only when the sample chemical potential roughly coincides with the onset of

the upper Hubbard band, otherwise they might be shifted in energy.

In a typical spectroscopic map, we can usually identify several bubbles which start to

emerge at different energies. Figure 5.6a shows the topograph of a 17×17 nm2 field

of view with doping level of 5.5%, where we count 180 dopant atoms on the surface.

In the same field of view, the conductance layers show the appearance of only ≈ 15

bubbles (Fig. 5.6b). In general, the number of bubbles that we observe corresponds

to less than 10 % of the total number of La dopants present on the surface. We

can therefore exclude that La dopants in their normal state cause the appearance of

bubbles. Our best hypothesis on the nature of the bubbles is that they originate either

from some special chemical state of the La atoms (for instance an oxygen vacancy

next to the La atom) or from Pt atoms that substitute for the Ir atoms. The latter

could originate from the Pt crucible where the samples were grown.

Even if the origin of the bubbles is not certain, from their presence and behavior

we can still extract useful information about the material. Importantly, the bubbles

are not influenced by and do not influence the phase-separated density of state of

the sample. In Fig. 5.6b, we show the conductance layer at E = 540 meV where

the black contour indicates the border between pseudogap phase and Mott phase, as

defined by the Mott parameter (see Sec. 4.6). The bubbles originate from both Mott

regions and pseudogap regions, and when they cross the sharp border between the

two regions their shape is not affected. Moreover, the phase-separated landscape and

the emerging order that we describe in section 4.6 are not influenced by the presence

of the bubbles.

Unfortunately, the model that we developed for the low doping level samples is unable

to grasp the physics of the samples with doping x ≈ 5%, due to the presence of free

carriers in the latter case. We can still make some important qualitative observations

by plotting in Fig. 5.6c all the hyperbolas extracted from the bubbles in Fig. 5.6b:

(i), The bubbles start to appear at different threshold potentials. The threshold

potential is an indication of the donor depth below the surface [130], with donors

that lie deeper below the surface having a lower threshold potential. We therefore

conclude that we observe bubbles originating form donors located at different depths.
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Figure 5.6: a, Topograph of a sample with x=5.5 % doping in a field of view of 17×17 nm2 (same

FOV as in Fig. 4.5). The setup conditions are (Vs = 460 meV, Is = 300 pA). b, Conductance layer

at 540 meV in the same field of view. We observe ≈15 circular bubbles of different sizes. The

black line indicates the phase separation according to the Mott parameter defined in Sec. 4.6.

c, Hyperbolas extracted from all the bubbles appearing in panel b. The gray lines are fits to the

hyperbolas, added as a guide to the eye. The two green straight lines emphasize the increasing

maximal bubble diameter with increasing donor depth below the surface. The vertical black lines

group hyperbolas appearing at similar threshold potentials.
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5 Poor electronic screening in lightly doped Mott insulators

(ii), For the lower part of the hyperbola, the maximum bubble’s diameter gets smaller

for donors closer to the surface. Since the maximum diameter reflects the real space

extension of the donor wave function, this gives evidence for enhanced binding energy

for donors closer to the surface [130].

(iii), Most of the bubbles can be grouped as starting at roughly the same threshold

potential (within an error of 50 meV), therefore probably originating from donors at

the same depth below the surface, i.e. belonging to the same crystal layer. In Fig. 5.6c

this is indicated by the short vertical black lines.

Concluding, we would like to emphasize a last important point that might tell us

something more about the material. The typical lateral extension of the bubbles in

our samples is ≈1.5 nm. This is significantly lower than in semiconductors where,

for example, the typical extension of bubbles due to Si donors in GaAs is ≈10 nm.

Among the factors that can influence the extension of the bubbles are the tip radius,

the concentration of free carriers and the material’s electrical permittivity. We can

exclude that the tip radius is the cause for the small extension of the bubbles, as one

would need to have an unrealistically small tip radius to reproduce the bubbles. We

identify two factors that could be responsible for the reduced lateral extension of the

bubbles: (i) the resistivity in (Sr1-xLax )2IrO4 is lower in the ab-crystal plane than

along the c-axis [129], although with diminishing strength upon doping [91]; (ii) the

electrical permittivity of Sr2IrO4 is anisotropic [129]. We can only speculate that the

small extension of the bubbles is related to these effects; in any case it is evidence for

the strongly anisotropic electronic structure of the material.

5.5 Conclusions

In this chapter, we showed that electric field penetration in materials with poor elec-

tronic screening can strongly influence STM results.

It is important to be aware of the possibility to encounter TIBB when performing

experiments on lightly doped Mott insulators and other materials with poor electronic

screening (including topological materials [136] and van der Waals heterostructure;

magic-angle superconducting graphene [137] would likely be affected by this effect).

The presence of TIBB could be difficult to identify, and one has to be extra careful

when measuring such materials. The appearance of bubbles in the conductance layer

can and should be used as an indication for the presence of TIBB in the sample.

In particular, we showed that the incompatibilities between STM and other tech-

niques in the gap value measured on (Sr1-xLax )2IrO4 for x < 4% are caused by field

penetration. We developed a model to correct for this effect that can generally be

applied to lightly doped Mott insulators. We showed that, after correcting the data
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5.5 Conclusions

according to this model, our STM results reconcile with literature. We would like

to emphasize that what is discussed in this chapter does not influence the findings

of chapter 4. Even though the gap values for the low doping samples as reported in

chapter 4 do not correspond to the intrinsic values, our interpretation of the physics

of the material is not affected.
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