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2 The experimental technique: spectroscopic-imaging STM

2.1 Scanning tunneling microscopy

The working principle of scanning tunneling microscopy (STM) is based on quantum

tunneling. To achieve tunneling, a sharp metallic tip is brought close to the flat sur-

face of a conducting sample (typically a few angstroms), as illustrated in Fig. 2.1a.

When a bias voltage is applied between tip and sample, electrons can tunnel through

the vacuum gap between the two, just as they tunnel through a potential barrier in

textbook, one-dimensional quantum tunneling [21]. This creates a measurable tunnel-

ing current, typically of the orders of pico- to nanoamperes, that decays exponentially

with the distance between tip and sample. The tip is then scanned over the surface

using a feedback loop that keeps the tunneling current constant by adjusting the tip-

sample distance. By recording the vertical position of the tip at every location, a

topographic image of the surface is created.

In Fig. 2.1b, we show an example of such an STM image (from now on called to-

pograph) measured on the top BiO layer of a Bi2Sr2CaCu2O8+δ (BSCCO) sample.

Atomic resolution is achieved, with the Bi atoms visible on the surface. The addi-

tional long-wavelength vertical corrugation is typical of the material and commonly

called supermodulation. Importantly, the contrast in STM topographs is given by a

mixture of geometrical height and electronic structure, whose contributions cannot

generally be separated from each other.

The main motivation of Binnig and Roher, who invented STM and won a Nobel prize

for it, was, however, not to construct a scanning probe technique, but to have an

instrument able to perform tunneling spectroscopy locally on an area less than 100 Å

in diameter [22]. Tunneling spectroscopy is a very powerful tool, and the combination

of topographic information with spatially-resolved spectroscopy is indeed what made

STM so important for understanding solid-state physics, and in particular quantum

materials.

The process of incorporating spectroscopy in STM quickly developed from the first

pioneering experiments on semiconductors [23] and metals [24, 25] to the study of

BCS superconductors [26] and unconventional high-Tc superconductors. It is on the

latter materials that the technique manifested its full potential, because they have

an intrinsically inhomogeneous electronic structure at the nanoscale [15, 16]. Overall,

performing spectroscopy with STM greatly outperformed the 100 Å-resolution goal

of Binnig and Roher, since the technique can easily distinguish the effect of single

impurity atoms on the density of states with picometer resolution [27, 28].

In the rest of this chapter, we motivate why the combination of STM with tunneling

spectroscopy is ideally suited to study quantum matter. We start by showing that

STM gives a local view into the density of states by deriving the expression for the

tunneling current and the tunneling spectra (Sec. 2.1.1). We then introduce the tech-
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Figure 2.1: a, Cartoon picture of the working principle of an STM. b, Topograph measured

on an underdoped Bi2Sr2CaCu2O8+δ sample (Tc= 40 K). The field of view is 43×43 nm2 and

the setup conditions are (Vb=160 mV, It=80 pA). Atoms and the extra corrugation known as

supermodulation are resolved. Some defects of unknown origin are also visible on the surface.
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2 The experimental technique: spectroscopic-imaging STM

nique of spectroscopic-imaging STM (Sec. 2.2), that yields powerful 3-dimensional

datasets. We discuss several possibilities to analyze these datasets in order to ob-

tain deep insights into the physics of the materials, both in real and in momentum

space (Sec. 2.3). Finally, we introduce a tip-induced artifact that we will encounter in

chapters 4 and 5 of this thesis (Sec. 2.4), and we conclude with a comment on energy

resolution in STM (Sec. 2.5).

2.1.1 STM as a probe of the local density of states

Here, we give a brief derivation of the tunneling current between tip and sample,

illustrating how it is related to the local density of states (LDOS) of the sample

[29, 30].

In Fig. 2.2, the density of states of tip and sample, gt(ε) and gs(ε), respectively, are

sketched next to each other. The tip is a good metal, and therefore its density of

states (DOS) can be considered flat in the proximity of the Fermi level, while the

sample has, in general, a more complicated DOS. If tip and sample are electrically

connected, the two chemical potentials µt and µs are aligned at the same energy.

Applying a positive bias voltage Vb to the sample causes its chemical potential µs

to shift downwards by eVb with respect to µt. Now, electrons can tunnel from the

occupied states of the tip to the empty states of the sample within the energy window

eVb. At finite temperatures, the occupation probability for the electronic states is

given by the Fermi-Dirac distribution

f(ε, T ) =
1

1 + exp[(ε− µ)/(kBT )]
, (2.1)

where µ is the chemical potential and kB the Boltzmann constant. The number of

occupied states on the tip at energy ε is therefore given by gt(ε) · f(ε, T ), while the

number of available states on the sample is gs(ε) · [1 − f(ε, T )]. From now on, for

simplicity, we set the chemical potential of the sample at zero energy, µs = 0. This is

indeed the convention that is used in real STM measurements.

The tunneling current from tip to sample can be calculated as the integral over all

energies of the number of filled states on the tip times the number of empty states on

the sample. There is also a small contribution of electrons tunneling from the sample

to the tip. The total tunneling current can obtained by summing this two opposite

currents, and it is expressed as:

I(Vb, h) = −2e
2π

~

∫ +∞

−∞
|M(h)|2 [f(ε)− f(ε− eVb)] gs(ε) gt(ε− eVb) dε. (2.2)

Here, the factor 2 takes the two possible spin states into account, the factor 2π/~
is derived from perturbation theory, and |M(h)|2 represents the tunneling matrix
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Figure 2.2: Schematic representation of the tunneling process between tip and sample density

of states.

elements, which contain the exponential dependence of the tunneling current on the

tip-sample distance h. The broadening of the Fermi-Dirac distribution is quantified

by kBT . At liquid helium temperature, where all measurements reported in this thesis

are performed, kBT = 0.36 meV. This is very sharp compared to typical features in

the DOS, and therefore we can approximate the Fermi-Dirac distribution by a step

function. This significantly simplifies the tunneling current to

I(Vb, h) =
4πe

~

∫ eVb

0

|M(h)|2 gs(ε) gt(ε− eVb) dε. (2.3)

Under the realistic assumptions that the tunneling matrix elements do not depend

on energy and that gt is flat in energy (a condition that is verified before every

measurement by obtaining a flat DOS on a featureless gold sample), the expression

for the tunneling current can be further simplified:

I(Vb, h) =
4πe

~
|M(h)|2 gt

∫ eVb

0

gs(ε) dε. (2.4)

The tunneling current therefore depends directly on both tip-sample separation h

and the integrated sample density of states. Since STM probes the sample locally,

it actually measures the local density of states, LDOS(r, ε = eVb), defined as the

number of electrons per unit volume and energy at a given point in space r and at a

given energy ε [29].

Since the tunneling current is proportional to the integrated sample LDOS, its deriva-

tive with respect to the bias voltage (the differential conductance) is proportional to
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2 The experimental technique: spectroscopic-imaging STM

the local density of states of the sample:

∂I(Vb, h)

∂Vb
=

4πe2

~
|M(h)|2 gt gs(eVb) . (2.5)

This is exactly what is measured in a tunneling spectroscopy experiment, and it is

commonly called a dI/dV tunneling spectrum.

In practice, in order to acquire such a spectrum, the tip is brought in tunneling

with setup conditions (Vs, Is). This means that a bias voltage Vs is applied, and the

feedback adjusts the tip-sample distance until the current reaches Is. The feedback is

then switched off and the bias voltage is swept while recording changes in the current

to obtain a current-voltage (IV ) curve. For bias voltage Vb > 0 applied to the sample,

electrons will tunnel from tip to sample, probing the unoccupied sample states. For

Vb < 0, electrons will tunnel from sample to tip, probing the occupied sample states.

Taking the numerical derivative of such acquired IV curves provides the sample LDOS

as a function of energy. However, numerical derivatives usually enhance the noise. To

overcome this problem, it is standard technique to use a lock-in amplifier to modulate

the bias voltage with an amplitude dV and to directly measure the demodulated value

of the current dI. In this way, the differential conductance can be directly measured

as a dI/dV spectrum, where the energy resolution is given by the amplitude of the

lock-in modulation. Typical modulations that are used in the work presented in this

thesis range from 2 meV (rhodates, chapter 6) to 50 meV (low doping level iridates,

chapter 4).

2.1.2 Tunneling into many-body systems: Green’s functions and
spectral functions

The density of states, that we used to describe the tunneling current so far, is a well-

defined concept only for non-interacting electrons. In this case, the available energies

for given states with wave vector k are defined by the dispersion relation. In correlated

electron systems, however, even when k is well defined, the electron-like quasiparticle

can exchange energy with other quasiparticles due to interactions. It is then better to

use the formalism of many-body systems and express the relevant quantities through

Green’s functions and spectral functions. A good, full introduction to these concepts

can be found in Ref. [31, 32]; here, we focus on expressing the quantities measured

with STM in terms of these concepts.

The spectral function A(k, ω) can be seen as a generalized version of the density of

states for many-body systems, since it represents the probability of finding a single-

particle excitation at a given energy ω and momentum k. The tunneling equation

can be fully derived using spectral functions instead of density of states, leading to

the same final result that the tunneling current is proportional to the integrated local
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2.2 Spectroscopic-imaging STM

density of states [32]. The local density of states can in fact be expressed as the local

spectral function A(r, ω) =
∑

kA(k, ω; r), which is in turn related to the many-body

retarded Green’s function G(r, ω) by:

LDOS(r, ω) = A(r, ω) = − 1

π
Im[G(r, ω)]. (2.6)

STM tunneling spectra therefore measure the local (in real-space) spectral function

averaged over all momenta [32, 33].

Experimentalists in strongly correlated electron systems are often acquainted with

the concept of spectral functions from angle-resolved photoemission spectroscopy

(ARPES), which directly measures the spectral function in momentum space. We

show how the two techniques compare in section 2.3.1.

2.2 Spectroscopic-imaging STM

We now introduce spectroscopic-imaging STM1, which is the most powerful technique

to measure topographic and spectroscopic information simultaneously. It consists of

measuring a dI/dV spectrum for every pixel of a simultaneously acquired topograph.

The result is a three-dimensional dataset representing the local density of states as

function of position and energy, LDOS(rx, ry, ε). Such a dataset is commonly called a

spectroscopic map. Most of the data presented in this thesis is collected in this form.

A typical spectroscopic map contains 104−105 dI/dV spectra, that are acquired one

after the other. The feedback is only active when moving the tip to the new location,

and switched off while acquiring the spectra. This makes this type of measurement

extremely sensitive to external vibrations. Such a measurement can last from one

to several days (it is typically limited by the hold time of the cryostat). SI-STM

therefore puts highest demands on the stability of the microscope.

A spectroscopic map is extremely rich in information which can be extracted and

analyzed in several different ways. In Fig. 2.3, we show a visual representation of

a spectroscopic map, together with examples of data analysis options that are used

throughout this thesis. One can look at the data ‘vertically’ (i.e. along the energy),

analyzing the dI/dV spectra one by one. For example, it is interesting to observe how

they change with location, and how they are influenced by the presence of a dopant

atom or an impurity in the crystal. This can be well visualized in waterfall plots.

Additionally, a properly chosen function can be fitted to every single spectrum to

extract locally changing parameters. A well-known example is extracting the width

1Note that the terms spectroscopic-imaging STM (SI-STM), Fourier-transform STM (FT-STM)

and scanning tunneling spectroscopy (STS) are often used interchangeably. Here, we will use the

convention SI-STM.
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Figure 2.3: SI-STM generates 3-dimensional datasets. Exploring the data along different di-

rections opens many data analysis options. The data shown as example is measured on an

underdoped Bi2Sr2CaCu2O8+δ sample (Tc= 40 K). The field of view is 21×21 nm2.

of the superconducting gap in unconventional superconductors [16]. This can then

be used to build a so-called gapmap, where the magnitude of the gap is given as an

intensity plot as function of location. Alternatively, one can look at the data ‘hor-

izontally’ (i.e. along the spatial coordinates), directly analyzing the constant-energy

conductance layers. They can reveal spatially organized structures hinting towards

charge order or wave-like patterns indicating quasiparticle interference. When the

conductance layers show periodicity, their Fourier transform can provide additional

quantitative information.
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2.3 Probing momentum space: quasiparticle interference

2.3 Probing momentum space: quasiparticle interference

SI-STM is a direct probe for real space properties, but it can also access momentum

space information through quasiparticle interference (QPI) imaging. This technique

has been initiated by observing standing waves caused by QPI on the surface of

Cu(111) [24]. Briefly afterwards, it was realized that quantitative information about

the scattering vectors could be obtained by Fourier transforming the images of the

standing waves pattern [25]. The technique has since then been extensively used, and

it proved to be particularly powerful in the study of unconventional superconductors

[18, 34–36], heavy fermions [37, 38] and topological insulators [39–41]. In the present

section, we briefly explain the phenomenon of quasiparticle interference using the

simple example of a metal, based on Ref. [30]. The concepts that we introduce here

will then be applied in chapter 6 to study QPI in the correlated metal Sr2RhO4.

In an ideal metal, the quasiparticle eigenstates are Bloch wave functions with the

periodicity of the crystal lattice. They are characterized by the momentum k, and

their energy must follow the dispersion relation ε(k). The presence of crystal defects

or impurities causes elastic scattering of the quasiparticles, that mixes states with

different wave vectors k1, k2 but same energy ε(k). The result of scattering are

standing waves with wave vectors q(ε) = k1(ε)−k2(ε). These standing waves and their

interference pattern can be directly imaged in the conductance layers of spectroscopic

maps measured with SI-STM.

In Fig. 2.4a, we show an example of standing waves on Cu(111) caused by quasipar-

ticles scattering off a single impurity on the surface. By taking the two-dimensional

10 nm

high

low

kF

q

a b c

k1k2

EF

kx
ky

ϵ

Figure 2.4: a, QPI on Cu(111) in real space: conductance layer at 50 meV around a single

impurity scattering center. The field of view is 45 nm2. Adapted from Ref. [42]. b, QPI in Fourier

space: Fourier transform of panel a. Adapted from Ref. [42]. c, Cartoon picture representing the

band structure of a 2D metal.
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2 The experimental technique: spectroscopic-imaging STM

Fourier transform of such a conductance layer, an image in momentum space is ob-

tained, as shown in Fig. 2.4b. Here, the magnitudes of the quasiparticle scattering

vectors q are plotted as a function of direction. The pattern seen in the Fourier trans-

formed images is related to the band structure of the material. For a 2D electron gas,

the band structure is a paraboloid where the constant energy contours are circles with

radius k(ε), as illustrated in Fig. 2.4c. The Fourier transform of the conductance lay-

ers will therefore be dominated by circles with radius q(ε) = 2k(ε). The QPI pattern

in real and momentum space will evolve with energy, reflecting the increasing diame-

ter of the constant energy contours. By tracking the magnitude of scattering vectors

q as a function of energy, one can measure their dispersion and extract information

about the electronic properties of the material.

In general, it is challenging to identify the origin of the scattering vectors q without

previous knowledge of the band structure. In a simplistic picture, the wave vectors q

that dominate the QPI pattern correspond to a large joint DOS (JDOS) of pairs of k

vectors. High JDOS can arise from regions in k-space where the constant energy con-

tours are parallel, as for example in the quasi one-dimensional bands of Sr2RuO4 [43].

Alternatively, high JDOS arises from scattering that connects flat regions in the dis-

persion, where the density of states is significantly larger. In cuprates, this is at the

origin of the well-known octet model for QPI in Bi2Sr2CaCu2O8+δ [18].

2.3.1 Comparing STM and photoemission

The most successful direct probe of momentum space is angle-resolved photoemission

spectroscopy (ARPES), which is also a surface sensitive technique. Having seen that

STM can also be used as a (indirect) probe for momentum space, it is interesting to

compare its results with the ones of ARPES.

ARPES is based on the photoelectric effect. A beam of photons incident on the

surface of a material can excite and eventually cause the emission of electrons from the

material. By directly measuring the energy and momentum of the emitted electrons,

one can reconstruct the band structure. Under a series of approximations (that go

under the name of sudden approximation), the photocurrent measured by ARPES

can be expressed in terms of the single-particle spectral function, A(k, ω), as [44]:

IARPES(k, ω) = I0 |Mf,i|2 f(ω)A(k, ω), (2.7)

where Mf,i represents the photoemission matrix elements, and f(ω) is the Fermi-Dirac

distribution.

We showed in section 2.1.2 that STM probes the local density of states, which can

be expressed as the (real-space) local spectral function averaged over all momenta.

The ARPES signal, on the other hand, is proportional to the spectral function in

18



2.4 STM on materials with poor electronic screening

momentum space, averaged over a real-space area corresponding to the photon beam

size [32]:

ISTM ∝ A(r, ω) = − 1

π
Im [G(r, ω)], (2.8)

IARPES ∝ A(k, ω) = − 1

π
Im [G(k, ω)]. (2.9)

STM and ARPES data cannot be mathematically related to each other simply by

a spatial Fourier transform, because their relationship involves terms that are not

measured [33].

However, in a simplified JDOS picture for the origin of QPI, STM data can still

be compared with ARPES through autocorrelation approaches [45–47]. Here, high

JDOS for the scattering vectors q can be described as [47]:

JDOS(q, ω) =

∫
A(k + q, ω)A(k, ω) d2k. (2.10)

This corresponds to the autocorrelation of constant energy ARPES images when pho-

toemission matrix elements are neglected. This approach to compare STM QPI and

ARPES data is very simplified, though it is useful to at least qualitatively recognize

the origin of the scattering vectors observed in FT-STM images.

We use this autocorrelation approach in chapter 6, to aid the identification of scat-

tering vectors observed on the correlated metal Sr2RhO4.

2.4 STM on materials with poor electronic screening

The tunneling current equation obtained in Sec. 2.1.1 assumes as a starting point

that the sample is metallic. STM experiments can, however, also be performed on

materials that have a small gap around the Fermi level (up to 2-3 eV), such as semi-

conductors or lightly doped Mott insulators. These materials, differently than metals,

are characterized by poor electronic screening, which can affect the interpretation of

STM results.

We encounter such a situation in our STM measurements on Sr2IrO4 (chapter 4),

which leads to some artifacts in the data. Here, we give a brief introduction to

this phenomenon, and derive how it affects the tunneling current equation (2.4).

Chapter 5 is dedicated to explore this effect in more detail, in order to have a correct

interpretation of the experimental data measured on materials with poor elecronic

screening.

To understand the effect of poor electronic screening in STM measurements, we con-

sider a standard tip-sample configuration, and assume for simplicity that the bias
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Figure 2.5: Equipotential lines in STM experiments showing different screening of electric fields

in different materials. a, In standard STM experiments on metals, the electric field generated by

the tip is largely screened within the first atomic layer and there is no significant field penetration.

b, In samples with a gapped density of states at the chemical potential, the electric field can

penetrate the sample due to poor electronic screening.

voltage is applied to the tip. When a metallic sample like copper is placed in the

electric field generated by the STM tip, the field is almost perfectly screened and the

sample has a uniform potential. If the bottom of the sample is grounded, the full sam-

ple will be at zero electric potential, and the tunneling equation Eq. (2.4) holds. This

scenario changes if the sample is not a metal: the electric field generated by the tip

can then partially penetrate the sample surface, causing an additional potential drop

inside the sample. This is schematically depicted in Fig. 2.5. Because the potential

landscape in the sample changes in a way similar to how bands bend at semiconductor

interfaces, this effect is known as tip-induced band bending (TIBB) [48–50].

Tip-induced band bending will affect the tunneling equations because the surface of

the sample directly below the STM tip will not be at zero potential, but at some finite

potential ϕBB. The tunneling current in the presence of band bending at T ∼ 0 K is

therefore given by

I(Vb, h) =
4πe

~
|M(h)|2

∫ eVb−ϕBB(Vb,h)

0

gs(ε) gt
(
ε− eVb + ϕBB(Vb, h)

)
dε, (2.11)

which, in the assumption of constant tip DOS, simplifies to

I(Vb, h) =
4πe

~
|M(h)|2 gt

∫ eVb−ϕBB(Vb,h)

0

gs(ε) dε. (2.12)

It is essential to know the expression for ϕBB if one wants to extract quantitative in-

formation about the LDOS from tunneling spectroscopy experiments. In the semicon-

ductor community, the phenomenon of TIBB is well known, and methods to compute

ϕBB in order to get a correct interpretation of the data are available (for example,

the Poisson’s equation solver developed by Feenstra [51]). In lightly doped Mott in-

sulators, on the other hand, the phenomenon of TIBB is less studied, and the models

developed for semiconductors cannot be applied. In chapter 5, we thoroughly discuss
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the phenomenon of TIBB for this case, with an application to the lightly doped Mott

insulator Sr2IrO4.

2.5 Thermal broadening and energy resolution in STM

To obtain the expression for the tunneling current shown in Eq. (2.4), we approximated

the Fermi-Dirac distribution by a step function. This is licit only when T = 0 K,

because for any finite temperature the Fermi-Dirac function has a finite spread of a

few kBT that broadens all features in energy.

Taking this into account, the question arises of how much the thermal broadening

will affect the energy resolution of tunneling spectroscopy. The finite temperature

expression for dI/dV spectra can be obtained by taking the derivative of Eq. (2.2):

∂I(Vb)

∂Vb
∝
∫ +∞

−∞
gs(ε)

∂f(ε− eVb)

∂Vb
dε (2.13)

The derivative of the Fermi-Dirac distribution shows a peak of height 1/(4kBT ) cen-

tered at ε = eVb. A standard measure for the energy resolution is given by the FWHM

of this peak [4], that can be easily evaluated being

∆E = kBT · [ln(3 + 2
√

2)− ln(3− 2
√

2)] = 3.53 kBT . (2.14)

The energy resolution at 4.2 K is therefore 1.3 meV. We have seen that the resolution of

a dI/dV spectrum directly measured with a lock-in amplifier is given by the amplitude

of the voltage modulation dV . Thermal broadening therefore puts a fundamental

lower limit for the smallest value of dV .
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