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1
Introduction

1.1 Studying correlated electrons with a scanning tun-

neling microscope

Modern solid-state physics successfully describes the electronic properties of many

solids within the framework of band theory [1]. Its most surprising aspect is the as-

sumption that the interactions between the valence electrons are negligible, despite

them carrying charge and therefore being subject to Coulomb repulsion. Many elec-

tronic and thermal properties of conventional materials can, indeed, be described in

this independent-electron approximation, where the electron interactions are treated

as a perturbation of the single-electron properties. These concepts are the foundation

of Landau’s Fermi-liquid theory. In this theory, the electronic properties of materials

are described by single particle-like excitations that are called quasiparticles. Quasi-

particles can be considered as electron-like particles that have renormalized properties,

such as their mass, in order to take the interactions into account [2].

There are materials, however, where the Coulomb interaction between electrons is

so strong that it cannot be treated by Landau’s theory. These materials go under

the name of strongly-correlated electron systems. The Fermi-liquid description fails to

reproduce their physical properties, because the picture of independent quasiparticles

does not hold any longer. These systems are characterized by emerging collective

behavior that cannot be simply described by adding single-particle excitations. To

quote P.W. Anderson: ‘More is different’ [3]. Strongly-correlated electrons are found
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1 Introduction

in a variety of materials, and are responsible for some of the most intriguing phe-

nomena in condensed-matter physics, including high-temperature superconductivity,

Mott physics and quantum criticality.

The field of correlated-electron systems has been initially driven by the experimental

discovery of a number of novel, engineered materials. In the last thirty years, progress

in material science has facilitated the growth of better crystals, and improvement of

scientific instrumentation has brought to the acquisition of data with ever-increasing

quality. We believe that these advances, combined with the efforts in the development

of new theoretical techniques, are key to understand the emergent collective properties

of quantum materials.

Among the experimental techniques that are used to study strongly-correlated elec-

tron systems, spectroscopic-imaging scanning tunneling microscopy (SI-STM) stands

out for its ability to resolve electronic inhomogeneities at the atomic scale [4]. The

power of SI-STM lies in its ability to directly measure the local density of states

(LDOS) of the sample with very high energy and spatial resolution. This allows, for

instance, the visualization of the effect of a single impurity atom on the electronic

structure. This (otherwise unattainable) resolution achieved by STM is particularly

important in the study of strongly-correlated electron systems, that are often charac-

terized by nanoscale inhomogeneities in the electronic structure.

In the last twenty years, SI-STM has proven to be very successful in the study of

correlated-electron systems. However, performing SI-STM experiments is technically

challenging: most prominently, the technique is extremely sensitive to external vibra-

tions, that easily impact the data quality and bury important features in the noise.

For this reason, specially designed equipment is required to achieve good data quality.

This thesis discusses our contribution to the progress of the field of strongly correlated-

electron systems in two main areas. The first is the construction of a new, home-built,

cryogenic STM that is stiffer than any other reported in literature to date (where

stiffness directly implies high stability against vibrational noise and thus better data

quality). The second is the study of the physics of lightly doped Mott insulators, a

prototypical example of how strong electron-electron correlations give rise to unusual

phases of matter.

In the remainder of this introduction, we first give a general overview to the physics of

Mott insulators, and then briefly review cuprate high-temperature superconductors,

as an example of the exotic phases of matter that appear upon doping a Mott insulator

(Sec. 1.2). This allows us to introduce several concepts that will be used throughout

this thesis. Finally, in Sec. 1.3, we give an outline of the thesis.

2



1.2 From Mott insulators to high-Tc superconductors

1.2 From Mott insulators to high-Tc superconductors

Mott insulators are the simplest example of the effect of strong electron-electron cor-

relations. Band theory fails to describe them, predicting that they would be metallic.

Their theoretical description, however, is very simple once electron-electron repulsion

is taken into account. It was first proposed by Nevill Mott as follows [5–7]: con-

sider a lattice model as illustrated in Fig. 1.1a, with a single orbital per atom and

one electron on each site (half filling). When the electrons move through the lattice

with (hopping) kinetic energy t1, some sites occasionally become doubly occupied.

This is opposed by the on-site Coulomb repulsion U . If U � t, the hopping of the

electrons from site to site is energetically suppressed. Electrons then localize on the

atomic sites, and the material becomes insulating simply because the electrons can

not move. They can be thought of as frozen at their atomic locations. Even if the

electrons are localized, their spins are in principle still free to point in all possible

directions. However, their interaction energy is minimized when they are either in

parallel or antiparallel configuration. By considering virtual hopping processes, it is

shown that they organize in an antiferromagnetic ground state [7].

From a different point of view, one can see how ‘switching on’ the Coulomb interaction

affects the density of states [8]. This is schematically illustrated in Fig. 1.1b. For

U = 0, i.e. without electron-electron correlations, a single band of width W forms from

the overlap of the atomic orbitals; with single occupancy of each site, the system is

metallic. The bandwidth W can be obtained from tight-binding calculations as W =

t

U

a b

D
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y 
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s
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W

~U

U=0

U>>W

Figure 1.1: a, Cartoon picture of a Mott insulator. The kinetic hopping energy t competes with

the on-site Coulomb repulsion U. b, Schematic illustration of the opening of the Mott gap, with

the formation of a filled lower Hubbard band (LHB) and an empty upper Hubbard band (UHB);

adapted from Ref. [8].

1Here, t represents the hopping matrix elements as defined in standard tight-binding models, and

it contains the kinetic energy associated with the motion through the lattice.

3



1 Introduction

2zt, where t represents the hopping matrix elements and z is the number of nearest

neighbors, e.g., z=2 in one dimension, z=4 in a square lattice. The bandwidth is

therefore related to the kinetic energy of the electrons. If U �W , a gap opens around

the Fermi level, with the creation of two subbands. The lower band represents states

with singly-occupied sites, while the upper band corresponds to states with doubly-

occupied sites. These bands are called lower and upper Hubbard bands, respectively.

Note how different this is from a band insulator or a semiconductor: instead of an

energy gap determined by the periodic potential of the crystal lattice, we now have a

gap that is entirely due to electron correlations.

But which materials are most likely to be Mott insulators? In other words, what

governs the relation between U and W , and what are typical values in real materials?

In a solid, the atoms are close together: the closer the atomic orbitals are to each other,

the more the hopping term t (and therefore the bandwidth W ) increases. At the same

time, the bare Coulomb interaction U gets screened and becomes smaller. Transition

metal oxides with 3d valence electrons are very good candidates to become Mott

insulators, with a relatively narrow bandwidth (W ≈ 1 − 3 eV) and large Coulomb

interaction (U ≈ 5 eV). Indeed, some of the vanadates, nickelates, cobaltates, and,

most prominently, cuprates, are found to be Mott insulators. When moving in the

periodic table towards the more spatially extended orbitals of 4d and 5d transition

metal oxides, the bandwidth increases and the electron correlations are reduced. As

we show in chapter 6, the 4d-transition metal oxide rhodate Sr2RhO4 is a correlated

metal that can almost perfectly be described by Fermi-liquid theory. With increasing

atomic numbers, however, other quantities become relevant, in particular spin-orbit

coupling. We will show in chapter 4 that indeed the interplay of bandwidth, Coulomb

interaction and spin-orbit coupling can cause the 5d-transition metal oxide iridate

Sr2IrO4 to be a Mott insulator, even if Coulomb interactions for 5d transition metal

oxides are strongly reduced and the bandwidths are larger.

The physics of Mott insulators as discussed thus far is well understood within the

framework of the Hubbard model, and can be described by the Mott-Hubbard Hamil-

tonian:

H(t, U) = −t
∑
<i,j>

c†iσcjσ + U

N∑
i=1

ni↑ni↓ (1.1)

where < i, j > indicates the sum over nearest neighbors, c†iσ(ciσ) creates (annihilates)

an electron with spin σ on a lattice site i, and niσ = c†iσciσ is the number operator.

The model considers only electrons in a single band. Despite this being a considerable

simplification, low-energy properties of several real systems are well-described by this

model, because typically only a small number of bands (sometimes just one) are

crossing the Fermi level [6].

4



1.2 From Mott insulators to high-Tc superconductors

If the description of a Mott insulator is relatively simple and successful, the situation

becomes more complicated very quickly once one moves away from the Mott insulating

state. This can happen by tuning external parameters like pressure, temperature or

insertion of extra carriers (doping) [6, 9]. Due to the strong electron correlations,

small changes of these external parameters strongly influence the properties of the

system, giving rise to fascinating, emergent, collective behaviors and complex phase

diagrams.

One of the most interesting and studied phases emerging from doped Mott insulators is

unconventional, high-temperature superconductivity. In the remainder of this section,

we will focus on cuprates, copper-oxide-based high-Tc superconductors, and we will

give a description of their phase diagram.

Cuprates are a family of layered materials with perovskite crystal structure, char-

acterized by the presence of CuO2 planes. Since the discovery of high-temperature

superconductivity in 19862, the chemical composition of cuprates has been tuned until

reaching Tc = 135 K [11]. Typically, their unit cells are large and complex, containing

heavy elements such as Bi, Hg, and Ba.

In the parent state, without the insertion of extra carriers, the copper atoms are in

the Cu2+ 3d9 configuration with half-filled dx2−y2 orbitals. They are typical Mott

insulators, with the localized spins arranged in an antiferromagnetic ground state.

When doped with extra carriers3, they show a wide number of different behaviors,

as illustrated in the phase diagram in Fig. 1.2. Importantly, the strong Coulomb

repulsion, that causes the parent compound to be a Mott insulator, keeps being the

dominant interaction, also in the doped compound. The electrons are thus strongly

correlated even in the phases that appear upon doping, and Fermi-liquid theory is

unable to describe them. Understanding the cuprates phase diagram indeed remains

one of the biggest open problems in condensed-matter physics [11].

We will now give a very brief overview of the electronic phases that are encountered

in the phase diagram. We mainly follow Ref. [11], and, as a conclusion, emphasize the

main contributions that the use of scanning tunneling microscopy has given to the

field.

High-Tc superconductivity emerges at low temperatures upon doping, and spans a

dome-shaped area around the so-called optimal doping level, where the highest T c is

achieved. The electron-pair wave function (also called order parameter) has d-wave

symmetry, making it an unconventional superconductor — opposed to conventional

2High-Tc superconductivity was first found in La2-xBaxCuO4 (Tc ≈ 30 K) by Bednorz and Müller

[10], who were awarded the Nobel prize for the discovery in 1987.
3The highest Tc and the most interesting electronic phases are observed upon hole-doping. The

effects of electron-doping cuprates have also been studied (see Ref. [12] for a review); here, we focus

on hole-doped cuprates.
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Figure 1.2: Phase diagram of cuprates, as a function of hole doping and temperature. Adapted

from Ref. [11].

BCS superconductors, where the superconducting wave function has s-wave symme-

try. This causes the superconducting gap to be anisotropic in momentum space.

When the temperature is raised, a variety of exotic electronic behaviors emerge, most

of which are not yet fully understood. At low doping and high temperature, a very

mysterious phase appear at the threshold indicated by T ∗. It is called the pseudogap

phase, because it is characterized by a depletion of the density of states close to the

Fermi level, measured by several experimental techniques. Its origin is still under

debate; one hypothesis is that at T ∗ electron pairs already start to form, however the

superconducting order is suppressed by phase fluctuations. Between the pseudogap

and the superconducting phase, at relatively low temperatures, a series of intertwined

orders appear [13]. Their origin can be ascribed to the short-range antiferromagnetic

correlations inherited from the Mott state, and they are believed to compete with

superconductivity.

At high temperature, around optimal doping, cuprates enter the so-called strange

metal phase. The name is due to the fact that the transport properties are remark-

ably different from the ones of ‘normal’ metals. The most striking example is the

behavior of the resistivity ρ as a function of temperature: while in a normal Fermi

liquid ρ grows quadratically with temperature and finally saturates according to the

Mott-Joffe-Regel criterion4, in cuprates ρ ∝ T , and this behavior persists up to very

high temperature. The strange metal phase has been proposed to be related to quan-

4The Mott-Joffe-Regel criterion puts a lower limit to the conductivity of metals, corresponding

to a minimum mean free path equal to the lattice constant. This, in turn, puts an upper limit to

the resistivity [14].
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1.3 Outline of this thesis

tum criticality emerging from the presence of a quantum critical point under the

superconducting dome near optimal doping. This would imply the absence of quasi-

particle excitations in this phase of matter.

Scanning tunneling microscopy greatly contributed to the understanding of the phase

diagram of the cuprates, and allowed, among others, the visualization of nanoscale

electronic disorder [15–17], the determination of the superconducting gap structure

by quasiparticle interference [18], and the imaging of local symmetry breaking in the

pseudogap phase [19, 20]. In the present work, we use STM to elucidate the transition

between the Mott insulating state and the pseudogap phase for the iridate Sr2IrO4,

that we find has striking similarities to the cuprates.

1.3 Outline of this thesis

In this thesis we aim to better understand correlated electron systems using spectros-

copic-imaging STM. To this end, we both develop new scientific instrumentation and

study correlated electron systems with an emphasis on lightly doped Mott insulators.

The thesis is organized as follows.

Chapter 2 gives an introduction to the experimental technique of spectroscopic-

imaging scanning tunneling microscopy and to the interpretation of its data.

Chapter 3 describes the design, construction and performance of our newly built ultra-

stable scanning tunneling microscope, which we called Dome5. The microscope is the

stiffest against external vibration reported to date, which makes it particularly suited

to study quasiparticle interference. It lead to the experimental results presented in

chapter 6.

Chapters 4 and 5 are dedicated to the study of lightly doped Mott insulators. The

measurements have been performed with a commercial STM, in parallel to the con-

struction phases of the home-built microscope. In chapter 4, we investigate the melt-

ing of the Mott state upon the addition of extra carriers in the Mott insulator Sr2IrO4.

We show the appearance, at sufficient doping, of a pseudogap phase and of emergent

order, and we are able to precisely elucidate how this state develops from the Mott

insulating phase. In chapter 5, we focus on the special situation that is encountered

when STM experiments are performed on materials with poor electronic screening.

Our motivation stems from the results of chapter 4, where, at very low doping levels,

we find discrepancies with other experimental techniques. Here, we develop a model

that explains our results and reconciles them with literature.

5Referring, among other things, to the superconducting dome of unconventional superconductors.
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Chapter 6 shows quasiparticle interference measurements on the correlated metal

Sr2RhO4, which is an example of a 2D Fermi liquid. These are the first measurements

that we perform with the home-built STM described in chapter 3.

Finally, chapter 7 gives some concluding thoughts and an outlook of the possible

measurements that can be performed with the microscope Dome in the near future.

8
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2 The experimental technique: spectroscopic-imaging STM

2.1 Scanning tunneling microscopy

The working principle of scanning tunneling microscopy (STM) is based on quantum

tunneling. To achieve tunneling, a sharp metallic tip is brought close to the flat sur-

face of a conducting sample (typically a few angstroms), as illustrated in Fig. 2.1a.

When a bias voltage is applied between tip and sample, electrons can tunnel through

the vacuum gap between the two, just as they tunnel through a potential barrier in

textbook, one-dimensional quantum tunneling [21]. This creates a measurable tunnel-

ing current, typically of the orders of pico- to nanoamperes, that decays exponentially

with the distance between tip and sample. The tip is then scanned over the surface

using a feedback loop that keeps the tunneling current constant by adjusting the tip-

sample distance. By recording the vertical position of the tip at every location, a

topographic image of the surface is created.

In Fig. 2.1b, we show an example of such an STM image (from now on called to-

pograph) measured on the top BiO layer of a Bi2Sr2CaCu2O8+δ (BSCCO) sample.

Atomic resolution is achieved, with the Bi atoms visible on the surface. The addi-

tional long-wavelength vertical corrugation is typical of the material and commonly

called supermodulation. Importantly, the contrast in STM topographs is given by a

mixture of geometrical height and electronic structure, whose contributions cannot

generally be separated from each other.

The main motivation of Binnig and Roher, who invented STM and won a Nobel prize

for it, was, however, not to construct a scanning probe technique, but to have an

instrument able to perform tunneling spectroscopy locally on an area less than 100 Å

in diameter [22]. Tunneling spectroscopy is a very powerful tool, and the combination

of topographic information with spatially-resolved spectroscopy is indeed what made

STM so important for understanding solid-state physics, and in particular quantum

materials.

The process of incorporating spectroscopy in STM quickly developed from the first

pioneering experiments on semiconductors [23] and metals [24, 25] to the study of

BCS superconductors [26] and unconventional high-Tc superconductors. It is on the

latter materials that the technique manifested its full potential, because they have

an intrinsically inhomogeneous electronic structure at the nanoscale [15, 16]. Overall,

performing spectroscopy with STM greatly outperformed the 100 Å-resolution goal

of Binnig and Roher, since the technique can easily distinguish the effect of single

impurity atoms on the density of states with picometer resolution [27, 28].

In the rest of this chapter, we motivate why the combination of STM with tunneling

spectroscopy is ideally suited to study quantum matter. We start by showing that

STM gives a local view into the density of states by deriving the expression for the

tunneling current and the tunneling spectra (Sec. 2.1.1). We then introduce the tech-

10



2.1 Scanning tunneling microscopy

Vb
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Figure 2.1: a, Cartoon picture of the working principle of an STM. b, Topograph measured

on an underdoped Bi2Sr2CaCu2O8+δ sample (Tc= 40 K). The field of view is 43×43 nm2 and

the setup conditions are (Vb=160 mV, It=80 pA). Atoms and the extra corrugation known as

supermodulation are resolved. Some defects of unknown origin are also visible on the surface.
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2 The experimental technique: spectroscopic-imaging STM

nique of spectroscopic-imaging STM (Sec. 2.2), that yields powerful 3-dimensional

datasets. We discuss several possibilities to analyze these datasets in order to ob-

tain deep insights into the physics of the materials, both in real and in momentum

space (Sec. 2.3). Finally, we introduce a tip-induced artifact that we will encounter in

chapters 4 and 5 of this thesis (Sec. 2.4), and we conclude with a comment on energy

resolution in STM (Sec. 2.5).

2.1.1 STM as a probe of the local density of states

Here, we give a brief derivation of the tunneling current between tip and sample,

illustrating how it is related to the local density of states (LDOS) of the sample

[29, 30].

In Fig. 2.2, the density of states of tip and sample, gt(ε) and gs(ε), respectively, are

sketched next to each other. The tip is a good metal, and therefore its density of

states (DOS) can be considered flat in the proximity of the Fermi level, while the

sample has, in general, a more complicated DOS. If tip and sample are electrically

connected, the two chemical potentials µt and µs are aligned at the same energy.

Applying a positive bias voltage Vb to the sample causes its chemical potential µs

to shift downwards by eVb with respect to µt. Now, electrons can tunnel from the

occupied states of the tip to the empty states of the sample within the energy window

eVb. At finite temperatures, the occupation probability for the electronic states is

given by the Fermi-Dirac distribution

f(ε, T ) =
1

1 + exp[(ε− µ)/(kBT )]
, (2.1)

where µ is the chemical potential and kB the Boltzmann constant. The number of

occupied states on the tip at energy ε is therefore given by gt(ε) · f(ε, T ), while the

number of available states on the sample is gs(ε) · [1 − f(ε, T )]. From now on, for

simplicity, we set the chemical potential of the sample at zero energy, µs = 0. This is

indeed the convention that is used in real STM measurements.

The tunneling current from tip to sample can be calculated as the integral over all

energies of the number of filled states on the tip times the number of empty states on

the sample. There is also a small contribution of electrons tunneling from the sample

to the tip. The total tunneling current can obtained by summing this two opposite

currents, and it is expressed as:

I(Vb, h) = −2e
2π

~

∫ +∞

−∞
|M(h)|2 [f(ε)− f(ε− eVb)] gs(ε) gt(ε− eVb) dε. (2.2)

Here, the factor 2 takes the two possible spin states into account, the factor 2π/~
is derived from perturbation theory, and |M(h)|2 represents the tunneling matrix

12



2.1 Scanning tunneling microscopy

sample DOS, gs(ϵ)tip DOS, gt(ϵ)

μt

μs

ϵ ϵ

eVb

0
e-

Figure 2.2: Schematic representation of the tunneling process between tip and sample density

of states.

elements, which contain the exponential dependence of the tunneling current on the

tip-sample distance h. The broadening of the Fermi-Dirac distribution is quantified

by kBT . At liquid helium temperature, where all measurements reported in this thesis

are performed, kBT = 0.36 meV. This is very sharp compared to typical features in

the DOS, and therefore we can approximate the Fermi-Dirac distribution by a step

function. This significantly simplifies the tunneling current to

I(Vb, h) =
4πe

~

∫ eVb

0

|M(h)|2 gs(ε) gt(ε− eVb) dε. (2.3)

Under the realistic assumptions that the tunneling matrix elements do not depend

on energy and that gt is flat in energy (a condition that is verified before every

measurement by obtaining a flat DOS on a featureless gold sample), the expression

for the tunneling current can be further simplified:

I(Vb, h) =
4πe

~
|M(h)|2 gt

∫ eVb

0

gs(ε) dε. (2.4)

The tunneling current therefore depends directly on both tip-sample separation h

and the integrated sample density of states. Since STM probes the sample locally,

it actually measures the local density of states, LDOS(r, ε = eVb), defined as the

number of electrons per unit volume and energy at a given point in space r and at a

given energy ε [29].

Since the tunneling current is proportional to the integrated sample LDOS, its deriva-

tive with respect to the bias voltage (the differential conductance) is proportional to

13



2 The experimental technique: spectroscopic-imaging STM

the local density of states of the sample:

∂I(Vb, h)

∂Vb
=

4πe2

~
|M(h)|2 gt gs(eVb) . (2.5)

This is exactly what is measured in a tunneling spectroscopy experiment, and it is

commonly called a dI/dV tunneling spectrum.

In practice, in order to acquire such a spectrum, the tip is brought in tunneling

with setup conditions (Vs, Is). This means that a bias voltage Vs is applied, and the

feedback adjusts the tip-sample distance until the current reaches Is. The feedback is

then switched off and the bias voltage is swept while recording changes in the current

to obtain a current-voltage (IV ) curve. For bias voltage Vb > 0 applied to the sample,

electrons will tunnel from tip to sample, probing the unoccupied sample states. For

Vb < 0, electrons will tunnel from sample to tip, probing the occupied sample states.

Taking the numerical derivative of such acquired IV curves provides the sample LDOS

as a function of energy. However, numerical derivatives usually enhance the noise. To

overcome this problem, it is standard technique to use a lock-in amplifier to modulate

the bias voltage with an amplitude dV and to directly measure the demodulated value

of the current dI. In this way, the differential conductance can be directly measured

as a dI/dV spectrum, where the energy resolution is given by the amplitude of the

lock-in modulation. Typical modulations that are used in the work presented in this

thesis range from 2 meV (rhodates, chapter 6) to 50 meV (low doping level iridates,

chapter 4).

2.1.2 Tunneling into many-body systems: Green’s functions and
spectral functions

The density of states, that we used to describe the tunneling current so far, is a well-

defined concept only for non-interacting electrons. In this case, the available energies

for given states with wave vector k are defined by the dispersion relation. In correlated

electron systems, however, even when k is well defined, the electron-like quasiparticle

can exchange energy with other quasiparticles due to interactions. It is then better to

use the formalism of many-body systems and express the relevant quantities through

Green’s functions and spectral functions. A good, full introduction to these concepts

can be found in Ref. [31, 32]; here, we focus on expressing the quantities measured

with STM in terms of these concepts.

The spectral function A(k, ω) can be seen as a generalized version of the density of

states for many-body systems, since it represents the probability of finding a single-

particle excitation at a given energy ω and momentum k. The tunneling equation

can be fully derived using spectral functions instead of density of states, leading to

the same final result that the tunneling current is proportional to the integrated local
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2.2 Spectroscopic-imaging STM

density of states [32]. The local density of states can in fact be expressed as the local

spectral function A(r, ω) =
∑

kA(k, ω; r), which is in turn related to the many-body

retarded Green’s function G(r, ω) by:

LDOS(r, ω) = A(r, ω) = − 1

π
Im[G(r, ω)]. (2.6)

STM tunneling spectra therefore measure the local (in real-space) spectral function

averaged over all momenta [32, 33].

Experimentalists in strongly correlated electron systems are often acquainted with

the concept of spectral functions from angle-resolved photoemission spectroscopy

(ARPES), which directly measures the spectral function in momentum space. We

show how the two techniques compare in section 2.3.1.

2.2 Spectroscopic-imaging STM

We now introduce spectroscopic-imaging STM1, which is the most powerful technique

to measure topographic and spectroscopic information simultaneously. It consists of

measuring a dI/dV spectrum for every pixel of a simultaneously acquired topograph.

The result is a three-dimensional dataset representing the local density of states as

function of position and energy, LDOS(rx, ry, ε). Such a dataset is commonly called a

spectroscopic map. Most of the data presented in this thesis is collected in this form.

A typical spectroscopic map contains 104−105 dI/dV spectra, that are acquired one

after the other. The feedback is only active when moving the tip to the new location,

and switched off while acquiring the spectra. This makes this type of measurement

extremely sensitive to external vibrations. Such a measurement can last from one

to several days (it is typically limited by the hold time of the cryostat). SI-STM

therefore puts highest demands on the stability of the microscope.

A spectroscopic map is extremely rich in information which can be extracted and

analyzed in several different ways. In Fig. 2.3, we show a visual representation of

a spectroscopic map, together with examples of data analysis options that are used

throughout this thesis. One can look at the data ‘vertically’ (i.e. along the energy),

analyzing the dI/dV spectra one by one. For example, it is interesting to observe how

they change with location, and how they are influenced by the presence of a dopant

atom or an impurity in the crystal. This can be well visualized in waterfall plots.

Additionally, a properly chosen function can be fitted to every single spectrum to

extract locally changing parameters. A well-known example is extracting the width

1Note that the terms spectroscopic-imaging STM (SI-STM), Fourier-transform STM (FT-STM)

and scanning tunneling spectroscopy (STS) are often used interchangeably. Here, we will use the

convention SI-STM.
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Figure 2.3: SI-STM generates 3-dimensional datasets. Exploring the data along different di-

rections opens many data analysis options. The data shown as example is measured on an

underdoped Bi2Sr2CaCu2O8+δ sample (Tc= 40 K). The field of view is 21×21 nm2.

of the superconducting gap in unconventional superconductors [16]. This can then

be used to build a so-called gapmap, where the magnitude of the gap is given as an

intensity plot as function of location. Alternatively, one can look at the data ‘hor-

izontally’ (i.e. along the spatial coordinates), directly analyzing the constant-energy

conductance layers. They can reveal spatially organized structures hinting towards

charge order or wave-like patterns indicating quasiparticle interference. When the

conductance layers show periodicity, their Fourier transform can provide additional

quantitative information.
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2.3 Probing momentum space: quasiparticle interference

2.3 Probing momentum space: quasiparticle interference

SI-STM is a direct probe for real space properties, but it can also access momentum

space information through quasiparticle interference (QPI) imaging. This technique

has been initiated by observing standing waves caused by QPI on the surface of

Cu(111) [24]. Briefly afterwards, it was realized that quantitative information about

the scattering vectors could be obtained by Fourier transforming the images of the

standing waves pattern [25]. The technique has since then been extensively used, and

it proved to be particularly powerful in the study of unconventional superconductors

[18, 34–36], heavy fermions [37, 38] and topological insulators [39–41]. In the present

section, we briefly explain the phenomenon of quasiparticle interference using the

simple example of a metal, based on Ref. [30]. The concepts that we introduce here

will then be applied in chapter 6 to study QPI in the correlated metal Sr2RhO4.

In an ideal metal, the quasiparticle eigenstates are Bloch wave functions with the

periodicity of the crystal lattice. They are characterized by the momentum k, and

their energy must follow the dispersion relation ε(k). The presence of crystal defects

or impurities causes elastic scattering of the quasiparticles, that mixes states with

different wave vectors k1, k2 but same energy ε(k). The result of scattering are

standing waves with wave vectors q(ε) = k1(ε)−k2(ε). These standing waves and their

interference pattern can be directly imaged in the conductance layers of spectroscopic

maps measured with SI-STM.

In Fig. 2.4a, we show an example of standing waves on Cu(111) caused by quasipar-

ticles scattering off a single impurity on the surface. By taking the two-dimensional

10 nm

high

low

kF

q

a b c

k1k2

EF

kx
ky

ϵ

Figure 2.4: a, QPI on Cu(111) in real space: conductance layer at 50 meV around a single

impurity scattering center. The field of view is 45 nm2. Adapted from Ref. [42]. b, QPI in Fourier

space: Fourier transform of panel a. Adapted from Ref. [42]. c, Cartoon picture representing the

band structure of a 2D metal.

17
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Fourier transform of such a conductance layer, an image in momentum space is ob-

tained, as shown in Fig. 2.4b. Here, the magnitudes of the quasiparticle scattering

vectors q are plotted as a function of direction. The pattern seen in the Fourier trans-

formed images is related to the band structure of the material. For a 2D electron gas,

the band structure is a paraboloid where the constant energy contours are circles with

radius k(ε), as illustrated in Fig. 2.4c. The Fourier transform of the conductance lay-

ers will therefore be dominated by circles with radius q(ε) = 2k(ε). The QPI pattern

in real and momentum space will evolve with energy, reflecting the increasing diame-

ter of the constant energy contours. By tracking the magnitude of scattering vectors

q as a function of energy, one can measure their dispersion and extract information

about the electronic properties of the material.

In general, it is challenging to identify the origin of the scattering vectors q without

previous knowledge of the band structure. In a simplistic picture, the wave vectors q

that dominate the QPI pattern correspond to a large joint DOS (JDOS) of pairs of k

vectors. High JDOS can arise from regions in k-space where the constant energy con-

tours are parallel, as for example in the quasi one-dimensional bands of Sr2RuO4 [43].

Alternatively, high JDOS arises from scattering that connects flat regions in the dis-

persion, where the density of states is significantly larger. In cuprates, this is at the

origin of the well-known octet model for QPI in Bi2Sr2CaCu2O8+δ [18].

2.3.1 Comparing STM and photoemission

The most successful direct probe of momentum space is angle-resolved photoemission

spectroscopy (ARPES), which is also a surface sensitive technique. Having seen that

STM can also be used as a (indirect) probe for momentum space, it is interesting to

compare its results with the ones of ARPES.

ARPES is based on the photoelectric effect. A beam of photons incident on the

surface of a material can excite and eventually cause the emission of electrons from the

material. By directly measuring the energy and momentum of the emitted electrons,

one can reconstruct the band structure. Under a series of approximations (that go

under the name of sudden approximation), the photocurrent measured by ARPES

can be expressed in terms of the single-particle spectral function, A(k, ω), as [44]:

IARPES(k, ω) = I0 |Mf,i|2 f(ω)A(k, ω), (2.7)

where Mf,i represents the photoemission matrix elements, and f(ω) is the Fermi-Dirac

distribution.

We showed in section 2.1.2 that STM probes the local density of states, which can

be expressed as the (real-space) local spectral function averaged over all momenta.

The ARPES signal, on the other hand, is proportional to the spectral function in

18



2.4 STM on materials with poor electronic screening

momentum space, averaged over a real-space area corresponding to the photon beam

size [32]:

ISTM ∝ A(r, ω) = − 1

π
Im [G(r, ω)], (2.8)

IARPES ∝ A(k, ω) = − 1

π
Im [G(k, ω)]. (2.9)

STM and ARPES data cannot be mathematically related to each other simply by

a spatial Fourier transform, because their relationship involves terms that are not

measured [33].

However, in a simplified JDOS picture for the origin of QPI, STM data can still

be compared with ARPES through autocorrelation approaches [45–47]. Here, high

JDOS for the scattering vectors q can be described as [47]:

JDOS(q, ω) =

∫
A(k + q, ω)A(k, ω) d2k. (2.10)

This corresponds to the autocorrelation of constant energy ARPES images when pho-

toemission matrix elements are neglected. This approach to compare STM QPI and

ARPES data is very simplified, though it is useful to at least qualitatively recognize

the origin of the scattering vectors observed in FT-STM images.

We use this autocorrelation approach in chapter 6, to aid the identification of scat-

tering vectors observed on the correlated metal Sr2RhO4.

2.4 STM on materials with poor electronic screening

The tunneling current equation obtained in Sec. 2.1.1 assumes as a starting point

that the sample is metallic. STM experiments can, however, also be performed on

materials that have a small gap around the Fermi level (up to 2-3 eV), such as semi-

conductors or lightly doped Mott insulators. These materials, differently than metals,

are characterized by poor electronic screening, which can affect the interpretation of

STM results.

We encounter such a situation in our STM measurements on Sr2IrO4 (chapter 4),

which leads to some artifacts in the data. Here, we give a brief introduction to

this phenomenon, and derive how it affects the tunneling current equation (2.4).

Chapter 5 is dedicated to explore this effect in more detail, in order to have a correct

interpretation of the experimental data measured on materials with poor elecronic

screening.

To understand the effect of poor electronic screening in STM measurements, we con-

sider a standard tip-sample configuration, and assume for simplicity that the bias
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Figure 2.5: Equipotential lines in STM experiments showing different screening of electric fields

in different materials. a, In standard STM experiments on metals, the electric field generated by

the tip is largely screened within the first atomic layer and there is no significant field penetration.

b, In samples with a gapped density of states at the chemical potential, the electric field can

penetrate the sample due to poor electronic screening.

voltage is applied to the tip. When a metallic sample like copper is placed in the

electric field generated by the STM tip, the field is almost perfectly screened and the

sample has a uniform potential. If the bottom of the sample is grounded, the full sam-

ple will be at zero electric potential, and the tunneling equation Eq. (2.4) holds. This

scenario changes if the sample is not a metal: the electric field generated by the tip

can then partially penetrate the sample surface, causing an additional potential drop

inside the sample. This is schematically depicted in Fig. 2.5. Because the potential

landscape in the sample changes in a way similar to how bands bend at semiconductor

interfaces, this effect is known as tip-induced band bending (TIBB) [48–50].

Tip-induced band bending will affect the tunneling equations because the surface of

the sample directly below the STM tip will not be at zero potential, but at some finite

potential ϕBB. The tunneling current in the presence of band bending at T ∼ 0 K is

therefore given by

I(Vb, h) =
4πe

~
|M(h)|2

∫ eVb−ϕBB(Vb,h)

0

gs(ε) gt
(
ε− eVb + ϕBB(Vb, h)

)
dε, (2.11)

which, in the assumption of constant tip DOS, simplifies to

I(Vb, h) =
4πe

~
|M(h)|2 gt

∫ eVb−ϕBB(Vb,h)

0

gs(ε) dε. (2.12)

It is essential to know the expression for ϕBB if one wants to extract quantitative in-

formation about the LDOS from tunneling spectroscopy experiments. In the semicon-

ductor community, the phenomenon of TIBB is well known, and methods to compute

ϕBB in order to get a correct interpretation of the data are available (for example,

the Poisson’s equation solver developed by Feenstra [51]). In lightly doped Mott in-

sulators, on the other hand, the phenomenon of TIBB is less studied, and the models

developed for semiconductors cannot be applied. In chapter 5, we thoroughly discuss
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the phenomenon of TIBB for this case, with an application to the lightly doped Mott

insulator Sr2IrO4.

2.5 Thermal broadening and energy resolution in STM

To obtain the expression for the tunneling current shown in Eq. (2.4), we approximated

the Fermi-Dirac distribution by a step function. This is licit only when T = 0 K,

because for any finite temperature the Fermi-Dirac function has a finite spread of a

few kBT that broadens all features in energy.

Taking this into account, the question arises of how much the thermal broadening

will affect the energy resolution of tunneling spectroscopy. The finite temperature

expression for dI/dV spectra can be obtained by taking the derivative of Eq. (2.2):

∂I(Vb)

∂Vb
∝
∫ +∞

−∞
gs(ε)

∂f(ε− eVb)

∂Vb
dε (2.13)

The derivative of the Fermi-Dirac distribution shows a peak of height 1/(4kBT ) cen-

tered at ε = eVb. A standard measure for the energy resolution is given by the FWHM

of this peak [4], that can be easily evaluated being

∆E = kBT · [ln(3 + 2
√

2)− ln(3− 2
√

2)] = 3.53 kBT . (2.14)

The energy resolution at 4.2 K is therefore 1.3 meV. We have seen that the resolution of

a dI/dV spectrum directly measured with a lock-in amplifier is given by the amplitude

of the voltage modulation dV . Thermal broadening therefore puts a fundamental

lower limit for the smallest value of dV .
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3
Dome: design and construction of an

ultra-stable scanning tunneling microscope

This chapter has been published as:

Battisti et al., Rev. Sci. Instrum. 89, 123705 (2018).
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3.1 Introduction

3.1 Introduction

This chapter describes the design, construction and performance of our fully home-

built scanning tunneling microscope optimized for spectroscopic-imaging measure-

ments, that we called Dome. Chapter 2 gives an introduction to the working principle

of STM and to the different types of measurements that can be performed, but does

not discuss technical challenges. For instance, how is it possible to bring and keep two

macroscopic objects such as tip and sample at a constant distance of few angstroms

from each other? And more generally, what are the most critical points one has to

take care of when designing and building a microscope?

Here, we start in section 3.1.1 by describing the factors that most critically affect STM

measurements and, in light of that, we give an overview of the key specifications for

designing an STM dedicated to spectroscopic-imaging. We then explain some basic

principles of vibration isolation in section 3.1.2, to motivate the choices we made

for the design of Dome. In the remainder of the chapter, we discuss the design,

construction and performance of the microscope, which is shown in Fig. 3.1 as a

computer-aided design (CAD) rendering. We start in section 3.2 with the STM head

where tip and sample are placed, therefore the most critical part of the instrument.

We show how finite element analysis calculations guide our design choices to obtain

a very stiff microscope. Combined with a careful choice of materials, this leads to

an STM head that is three times stiffer than what has been previously reported

[52]. We continue with a description of the cryogenic insert (Sec. 3.3), the vibration

isolation table (Sec. 3.4) and the UHV chamber (Sec. 3.5). Finally, we demonstrate the

performance of the microscope by showing vibrational noise spectra and quasiparticle

interference data on the correlated metal Sr2RhO4 (Sec. 3.6).

All data presented in chapter 2, 3 and 6 of this thesis is acquired with this new

microscope.

3.1.1 The technical challenge of building an STM

The exponential dependence of the tunneling current on the tip-sample distance can

be considered the main strength of STM, because it is the factor allowing it to resolve

atoms. It is however also a considerable drawback: the smallest vibrations coupling to

the tip-sample junction from the environment are directly transmitted, exponentially,

to the tunneling current signal. And vibrations are, indeed, the main source of noise

in STM measurements. When acquiring a topograph, the tip scans over the sample

using a feedback mechanism that can partially correct for vibrations transmitted to

the junction, as explained in chapter 2. During most spectroscopy experiments, in-

stead, the feedback to the tip is switched off, and even the smallest vibration can
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Figure 3.1: Overview of the full Dome microscope. The insert and the STM head are shown by

virtually cutting open the CAD rendering. The most significant parts are indicated.

exponentially couple to the tunneling current, causing the dI/dV spectra to be sig-

nificantly noisier. For a spectroscopic map, typically 104 − 105 spectra are acquired

subsequently over a period of several days (up to a full week of continuous measure-

ment). An extreme stability of the microscope against external vibrations is thus the

prime requirement one has to meet when building an STM for spectroscopic imaging.

The other requirements depend on the samples and the physics one wants to study:

low temperatures are needed for quantum materials and to achieve higher energy

resolution, as explained in section 2.5; ultra high vacuum (UHV) is necessary to
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prepare and maintain atomically clean surfaces; a magnet opens the possibility to

study samples in a magnetic field.

Our instrument is designed to operate in UHV and at low temperatures, with an

achieved base pressure p = 3 × 10−10 mbar and base temperature T = 4.27 K. Both

low temperatures and UHV requirements make the building more challenging: only

a selected amount of materials are compatible with cryogenic and UHV conditions.

Moreover, one has to compensate for the different thermal contractions of different

materials and to ensure good thermal stability to avoid thermal drift during cool down

procedures and measurements.

3.1.2 Reducing vibrations in STM

The transmission of vibrations to the tunneling junction is typically reduced by com-

bining a very rigid microscope construction with the use of a vibration isolation table

(and, if available, laboratories with low-vibration facilities). In this section, we show

that the reasons underlying this choice can be easily understood by considering both

STM head and vibration isolation table as one-dimensional driven harmonic oscilla-

tors [29].

The basics of the isolation of a mass m from the vibrations of a reference frame can

be understood as follows. Vibrations from the environment cause a time-dependent

displacement of the reference frame X(t) that, in turn, causes a displacement x(t)

of the mass m, as illustrated in the inset of Fig. 3.2a. We can simplify the induced

displacement to a harmonic excitation of frequency ω by using Fourier decomposition.

The mass then moves with the same frequency ω as the reference frame, with a phase

difference φ:

X(t) = X0 cos(ωt),

x(t) = x0 cos(ωt− φ). (3.1)

The equation of motion for the mass m contains the restoring force of the spring, with

spring coefficient k, and a damping term, with damping coefficient ν:

mẍ = −k(x−X)− ν(ẋ− Ẋ). (3.2)

It is useful to define the natural frequency of the system by ω0 = 2πf0 =
√
k/m, and

the damping term by γ = ν/2m. One can then solve the equation of motion Eq. (3.2)

by using the ansatz of Eq. (3.1), to obtain the expressions for the transfer function

Γ(ω) and the phase difference φ(ω), plotted in Fig. 3.2a-b, respectively:
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Figure 3.2: a, Transfer function of a harmonic oscillator with driven reference frame and damping,

from Eq. (3.3). The system is schematically represented in the inset. b, Phase between the motion

of m and the reference frame, from Eq. (3.4). Both transfer function and phase are shown for

different damping values γ.

Γ(ω) =
x0

X0
=

√
ω4

0 + 4γ2ω2

(ω2
0 − ω2)2 + 4γ2ω2

, (3.3)

φ(ω) = tan−1

(
2γω3

ω2
0(ω2

0 − ω2) + 4γ2ω2

)
. (3.4)

The problem of vibration isolation is to reduce the transfer function at all frequencies,

while trying to push the resonance to a frequency where it is harming the least. Note

that higher damping γ reduces the resonance peak height, but worsens the efficiency

of vibration isolation for ω � ω0 (see Fig. 3.2a). It is, therefore, necessary to find a

compromise between reducing the peak height and having better isolation at higher

frequency.

In an STM, typically one can find two systems that resemble such a harmonic os-

cillator. The first one is the vibration isolation table, with the table acting as the

mass that is decoupled from the vibrating floor by means of (typically commercial)

springs. Their natural frequency, fiso = ωiso/2π, should be as low as possible, in order

to have vibrations at most frequencies falling on the right-hand side of the resonance

peak, where the transfer function is small (Fig. 3.2a). The second system resembling

a harmonic oscillator is the STM head, with the sample as the reference frame, the

tip as the mass, and the STM head connecting the two as the spring. In this case, one

wants to avoid relative displacement between tip and sample, and this is achieved by

having a very high value of the natural frequency f0 = ω0/2π for the STM head. One

would then have most vibrations coupling on the far left-end side of the resonance

peak, where the displacement is in phase, meaning that tip and sample will not move
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3.2 The STM head

relative to each other. In a continuous system such as the STM head, f0 corresponds

to the frequency of its first vibrational eigenmode, and it is directly related to the

stiffness.

But what are the numbers in a real setup? The most damaging vibrations for STM

measurements are in the 0−100 Hz range, introduced by people walking in the build-

ing, resonances of the building, and traffic (0−10 Hz), and by air ventilation and other

appliances (10−100 Hz).

The vibration isolators of the table typically have a natural frequency fiso of a few

hertz (from 1-2 Hz for compressed air isolators, down to 0.5 Hz for negative spring

coefficient isolators). The vibration isolation can be improved further by having a

multiple stage system, where the STM table is placed on a heavy concrete block that

is, in turn, resting on springs. This lowers fiso further, however there is a lower limit

at about 0.1 Hz.

The most room for improvement lies in the value of f0 for the STM head. Typically,

f0 lies in the 1−5 kHz range, but can be increased of about one order of magnitude by

choosing a smart design and stiff materials [29, 52], as we will show in the following.

Obtaining a very stiff STM head, with the highest possible f0, is, indeed, our main

focus during the design phase.

3.2 The STM head

The STM head is often the most critical part in the determination of the microscope’s

performance. It needs to both guarantee a very stiff tip-to-sample connection and to

provide an approach mechanism that allows to bring the tip from few millimeters

away from the sample to tunneling distance. A beautiful solution to this problem was

found 20 years ago by Pan et al. [53], with a design that is to date the best one for

a cryogenic STM head. The stiffest cryogenic-compatible STM head that is reported

in literature to date is based on this design, using oriented single-crystalline sapphire

as the material for the body of the STM head [52]. This is our starting point. To

improve the stiffness further, we optimize the geometry of all the components of the

head with finite element analysis (FEA) calculations, towards achieving a higher f0

of the fully assembled STM head.

Before describing the STM head design, we want to emphasize why sapphire is the

ideal material from which to machine an STM head. Before White el al. (Ref. [52])

introduced sapphire as the main building material, the materials that have been used

for STM heads are Macor or metals like titanium or molybdenum, mostly because

they are much easier to machine. We note that is generally preferable to machine the

STM head from an insulating material, to avoid the risk of electrical shorts. From
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3 Design and construction of an ultra-stable STM

Material ρ E ν κ (4K)

[g/cm3] [GPa] [ - ] [W/m/K]

sapphire

(Al2O3 99.99%)

3.98 360 - 440 0.32 100

Macor 2.52 66.9 0.29 0.1

titanium 4.54 110.3 0.32 0.1

molybdenum 10.22 330 0.32 60

Table 3.1: Properties of materials typically used for STM heads. Density ρ, Young’s modulus

E and Poisson’s ratio ν are the structural properties defining the stiffness of the material. The

thermal conductivity at low temperatures κ gives an indication for the thermalization times. The

structural properties of sapphire and Macor are from Ref. [55]. The thermal properties at low

temperatures are extracted from tables of Ref. [54] for sapphire, of Ref. [56] for Macor, and from

Ref. [57] for the metals.

a quick look at the material properties in Table 3.1, it is clear that sapphire has the

advantage of being stiffer, with a Young’s modulus1 much higher than Macor. More-

over, sapphire has an exceptionally high thermal conductivity at low temperatures,

which is comparable to the one of copper and greatly exceeding the one of any other

insulating material2. The main drawback of sapphire is that the material is very diffi-

cult to machine and prone to cracks. Recent advancements in production technology,

however, allowed us to machine more complicated and detailed sapphire parts for the

STM head than it was previously possible.

3.2.1 STM head design

The assembled STM head is shown in Fig. 3.3, in both CAD rendering and pho-

tographs.

Its main body is a hollow sapphire cylinder open on one side, inside which a triangular

polished sapphire prism (the slider) is clamped via six shear piezo stacks3 and a

molybdenum plate acting as spring. The piezo stacks are glued with non-conductive

epoxy4 to the sapphire body, while the triangular prism is just clamped, and can

1The Young’s modulus defines the relationship between stress and strain, and it is the mechanical

property that measures the stiffness of a solid material.
2This is due to the extreme purity of single crystalline sapphire: heat in electrical insulators is

carried only by phonons, and at low temperatures phonons are scattered only by defects and crystal

boundaries, which are very rare in sapphire [54].
3P-121.01T from PI Ceramics, customized with height 2.7 mm, and polished Al2O3 end plates.
4Epotek H74F.
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Figure 3.3: a, Cross section of the 3D CAD rendering of the STM head, with the main com-

ponents being pointed out. b, Photograph of the fully assembled STM head. c, Top view of

the open STM head, showing the slider construction and the tip holder. d, Photograph of the

piezotube and tip holder during the construction phase.

slide up and down with respect to the body when high voltage pulses are applied

to the piezo stacks (principle of stick-slip motion [29, 53]). This whole construction

provides the coarse approach mechanism, also called walker, that allows to move the

tip towards the sample over a 5 mm range with nanometer-sized steps (at 4 K, with

120 V pulses, one step up is about 20 nm). It is essential to the functioning of the

walker to have very flat and perfectly parallel surfaces at the contact between the

slider and the piezostacks, which requires polishing of the contacting surfaces.
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3 Design and construction of an ultra-stable STM

The scanning motion is provided by a piezotube5, which has four outer electrical

contacts for deflections in the ±X, ±Y directions (in-plane) and one inner contact for

contractions and elongation in Z. It is driven with maximum ±100 V on all contacts,

resulting at 4 K in a XY field of view of 380 nm2 and a Z elongation of 110 nm. The

piezotube is glued with non-conductive epoxy on top of a Macor support which is in

turn fixed inside the sapphire prism with screws.

The tip is mounted on a tip holder glued on top of the piezotube. The tip holder

assembly is optimized for low weight, in order to increase the resonant frequencies of

the scanner, and for low capacitance, in order to allow for high frequency STM mea-

surements [58, 59]. It consists of a small Al2O3 ring glued directly on the piezotube,

and a conical Al2O3 holder glued on the ring. This last piece hosts a small molybde-

num cylinder inside which the tip is clamped by friction. The bottom surface of the

conical piece is additionally sputtered with 450 nm of gold to provide a ground shield

for the tip wire. With this assembly we obtain a tip-to-sample capacitance of 180 fF

(at tunneling distance, with tip retracted) and a tip-to-ground shield capacitance of

2 pF. The tip-to-ground shield capacitance should be as low as possible to facilitate

high frequency STM measurements, and the value we measure is reduced of more

than a factor 10 with respect to commercially available instruments.

The sample holder receptacle is on top of the main body, with the sample facing

downwards towards the tip and clamped by a BeCu spring. The scanner is not

provided with an XY stage for coarse motion of the sample holder, in order to not

reduce the stability of the assembly.

3.2.2 Improving the geometry with finite element analysis

The main factor allowing us to obtain a stiffer STM head is the optimization of the

geometry, which we achieve by performing finite element analysis (FEA) calculations

with the software package Comsol [60]. FEA calculations have been used before to

improve the geometry of various scanning probe techniques [61–64], and in particular

of high-scanning-speed STM [65–67], where high resonance frequencies are essential.

Here, we use them for the first time to improve the geometry of a low-temperature

STM for spectroscopic imaging.

The optimization procedure that we applied to several components of the STM head

in order to achieve high resonant frequencies is shown in Fig. 3.4a. As an example, we

discuss here how we apply this procedure to the piezotube. After importing the initial

design in Comsol, we compute the mechanical eigenfrequencies of the first vibrational

modes with the base of the piezotube fixed, as shown in Fig. 3.4b. We can identify two

double degenerate bending modes, a rotational mode and a vertical mode. We then

5EBL4 from EBL Products. Height 8.0 mm, OD 3.68 mm, wall thickness 0.58 mm.
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Figure 3.4: a, Flow chart explaining the procedure applied to several components of the STM

head in order to achieve higher resonant frequencies. b, Mode shapes of the first six mechanical

resonances of the piezotube as computed with Comsol, as a legend for panels c-d. The modes

are shown as (exaggerated) displacements with colors from red (max displacement) to blue (no

displacement). c, Variation of eigenfrequencies of the piezotube’s modes with respect to the

piezotube height, with base diameter fixed. d, Variation of eigenfrequencies of the piezotube’s

modes with respect to the wall thickness (with fixed outer diameter D=3.68 mm). The dashed

boxes indicate the eigenfrequencies for the final chosen dimensions.

progressively change the dimensions of the part and recompute the eigenfrequencies,

in order to understand which dimensions can be optimized to increase the stability.

We find that is beneficial to lower the height (Fig. 3.4c), while changing the wall

thickness (with fixed outer diameter) does not have a significant effect (Fig. 3.4d). In

the case of a simple tube, this problem could also be solved analytically; however, here

we want to show the procedure that then we will apply to more complicated parts of

the STM head. In general, the optimization towards higher resonant frequencies can

be limited by functional requirements and geometrical constraints. For the piezotube,

reducing the aspect ratio between height and diameter diminishes the XY scanning
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3 Design and construction of an ultra-stable STM

b1 = 13.0 kHz b4 = 32.9 kHzb3 = 24.4 kHzb2 = 13.5 kHz

s1 = 4.3 kHz
     (x2)

s4 = 43.5 kHzs3 = 29.5 kHzs2 = 22.4 kHz 
      (x2)

s5 = 69.3 kHz
      (x2)

Figure 3.5: Main vibrational modes of the STM head, as calculated with Comsol, with the

base of the STM fixed. The modes are shown as (exaggerated) displacements with colors from

red (max displacement) to blue (no displacement). All the modes shown are calculated for the

full design, but to ease visualization, the modes that belong to the scanner assembly (s1-s5) are

shown separately. See the main text, Sec. 3.2.2, for a description of the modes.

range, and our final design is chosen as a compromise between stability and desired

XY scanning range of ≈ 400 nm at 4 K.

A similar analysis is performed on other STM head components, including the sap-

phire slider, the STM body, the Macor front piece and the sample holder. For instance,

the simulations indicate that to reach a higher f0, the STM head will benefit from

a lower aspect ratio, a shorter and lighter sapphire slider and a lighter Macor front

piece. The simulations also help determining until which point removing mass, for

instance by drilling holes in the Macor front piece or in the sample holder, would help

and when instead it would start hinder the stiffness of the part.

Finally, we also performed FEA calculations on the whole assembly of the STM head,

simplified by removing small details in the design to allow for a simpler finite element

mesh. This can provide further insights about the design choices, and moreover it

can be directly compared to the measured values of the eigenfrequencies. The most

significant modes that we obtain from FEA calculations of the full STM head are

shown in Fig. 3.5. They can be divided in two groups: the modes belonging to the

body of the STM (b−modes in Fig. 3.5) and the modes belonging to the scanner

assembly (s−modes). The modes b1, b2 are almost degenerate and correspond to the
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3.2 The STM head

bending modes of the full head, b3 corresponds to the rotational mode and b4 to the

motion of the slider inside the head. The modes s1 and s2 are double degenerate

and correspond to first order and second order bending mode of the scanner, s3 is

the rotational mode of the scanner, s4 the vertical mode of the scanner and s5 is the

bending mode of the tip.

Intuitively, one could think that the walker assembly used for coarse approach is

the weakest point of the STM head design, and therefore that the lowest vibrational

mode should correspond to the vertical motion of the slider inside the scanner (b4). In

our simulations, however, the main body vibrational modes and the scanner bending

modes have lower frequencies, showing that the limiting factor for f0 is mainly the

STM head geometry. Clearly, the calculated value of the mode b4 depends strongly

on the stiffness of the shear piezo stacks that we feed into the simulation. The value of

b4 shown in Fig. 3.5 is obtained with half the stiffness reported in the specifications,

to take into account the effect of glue and other factors involved in the mounting.

Furthermore, the measured resonant frequencies reported in section 3.2.3 confirm

that the slider construction is not the weakest point of the design.

3.2.3 Measurement of resonant frequencies

After the construction of the STM head, we measure both the eigenfrequencies of the

walker assembly and of the piezotube assembly independently and we compare them

with the calculations. The measurement is performed in situ with the head mounted

in the cryogenic insert at room temperature and under vacuum. A lock-in amplifier

is used to excite the piezo elements and to read out their response. The applied ex-

citation is a sinusoidal signal of amplitude 1Vpeak−peak and sweeping frequency. A

scheme of the circuit is presented in the inset of Fig. 3.6a [65]. Thanks to the intrin-

sic properties of piezoelectric materials, the electrical excitations Vin provided by the

lock-in is converted into a mechanical excitation. When the excitation frequency cor-

responds to one of the STM eigenfrequencies, its amplitude gets enhanced, resulting

in an enhanced electrical signal from the piezos Vout that is detected by the lock-in

[65, 66].

Figure 3.6a-b show the transfer function obtained when exciting the six shear piezo

stacks for the coarse approach connected in parallel. The main result is that we do

not observe any resonant mode of the coarse approach assembly before 10 kHz, with

the first strong peaks appearing at ≈13 kHz. We also performed the measurement at

4 K (not reported here), leading to slightly higher resonance frequencies due to the

different stiffness of the materials at low temperatures and to thermal contractions.

Remarkably, the value we achieve is a factor three better than the previously reported

eigenfrequencies for a sapphire STM head [52], where the first strong peak in the coarse

approach excitation appears at 4.6 kHz.
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Figure 3.6: a, Measured transfer function Vout/Vin of the walker mechanism for the coarse

approach. A scheme of the electronic circuit is shown in the inset, where R=11 Ω. b, Zoom of

the gray area in a. c, Measured transfer function Vout/Vin of the piezotube vertical excitation. d,

Zoom of the gray area in c. e, Measured transfer function Vout/Vin of the piezotube horizontal

bending excitation. In the inset, a zoom of the low frequency peaks. f, Zoom of the gray area in

e.
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3.3 Cryogenic insert

Additionally, we can now compare the measured resonances with the computed ones.

We can easily identify the first two almost degenerate peaks at 13.2 kHz and 13.4 kHz

as the two bending modes of the STM body (b1, b2). The peak at 20.5 kHz is more

difficult to identify, but it could correspond to the rotational mode b3. We interpret

the peak measured at 36.2 kHz as the mode b4, given that in the FEA calculations b4
is the only mode we find in the frequency window between 30 kHz and 50 kHz, and in

the measurement we do not observe any other peak before ≈80 kHz.

For the piezotube, we can measure the transfer function while exciting either the

vertical modes (which are the most crucial ones) or the bending modes (which have

less influence on the noise), simply by applying the excitation to different electrodes.

In Fig. 3.6c-d we show the transfer function of the vertical modes, measured with the

outer electrical contacts (±X,±Y) connected in parallel against the inner contact (Z)

acting as ground. The small peak at 36.4 kHz results from coupling to the mode b4,

and the peak at 49.5 kHz can be identified as the vertical mode s4 of the full scanner

assembly. The peaks at 63.0 kHz and at 95.6 kHz are more difficult to identify, but

could correspond to the rotational and vertical mode of the piezotube alone, that the

calculations give respectively at 63.7 kHz and 100.0 kHz (from Fig. 3.4). In Fig. 3.6e-f

we show the transfer function of the bending modes, measured between +X and -X

contacts. The two very small peaks measured at 4.53 kHz and 4.66 kHz correspond

to the first order bending modes of the piezotube s1. The peaks at 26.6 kHz and

27.4 kHz could correspond to the second order bending modes s2, and the peak at

29.5 kHz to the rotational mode s3. We do not find correspondence to the calculations

for the other small peaks, and the strong peak at 72.1 kHz could correspond to the

bending mode of the tip s5, even if we are doubtful that this could lead to such a

sizable response of the piezotube.

The lowest resonant frequencies of the STM head thus correspond to the bending

modes of the piezotube and of the STM head, which are substantially less critical for

STM measurements than the vertical modes. The walker assembly, often a critical

point for the vertical stability, proves to be the stiffest reported to date for a Pan-style

head. Taken together, this confirms the exceptional stiffness of our STM head.

3.3 Cryogenic insert

The STM head is mounted at the bottom of a home-built cryogenic insert that op-

erates at the base temperature of 4.27 K. The insert is rigidly connected to the UHV

chamber and the table and it is placed in a 4He bath cryostat. The cryostat has a

capacity of 65L, which yields a hold time of ≈275 hours (≈11 days).

A picture of the cryogenic insert with the indication of the main parts is shown in

Fig. 3.7. The bottom part of the insert, where the STM is rigidly connected without
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Figure 3.7: a, Photograph of the full cryogenic insert without the can that closes the bottom

part. b, Zoom of the bottom part where the STM is mounted.

the use of springs, is made of gold-plated oxygen-free copper to optimize the thermal

connection to the 4He bath. It is enclosed in a gold-plated copper can (not shown

in the picture), sealed with an indium wire gasket. The connection to the room

temperature UHV chamber is made of thin-walled stainless steel tubes, that are used

for pumping and wiring.

The design of the cryogenic insert has also been optimized for maximum stiffness.

For this reason, we opted for a reinforced insert structure that features four stainless

steel tubes. The central tube has an outer diameter of 31.0 mm and wall thickness

of 0.5 mm and it is used as sample transfer line and main pumping line. The three

smaller tubes (of outer diameter 12.7 mm and wall thickness 0.25 mm) are used for

wiring and are placed in a triangular pattern around the central one. We find that

choosing three tubes for wiring, instead of two, drastically improves the stability

for the pendulum mode, with the resonant frequency corresponding to this mode

increasing by 50%. Furthermore, we provide additional stability by connecting the
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3.4 Vibration isolation table

tubes with thin (0.3 mm) stainless steel plates. These plates have triangular holes in

order to reduce the heat transfer from room temperature to the 4He bath, and are

laser spot welded directly to the tubes. Around the tubes, and perpendicular to them,

we place four stainless steel baffles that act as radiation shields inside the dewar neck,

to reduce the radiation heat transfer to the 4He bath.

All the extra features that we added to improve the stability imply a higher heat

conduction to the 4He bath, and a compromise has to be found between stability and

desired helium consumption. With our particular design we still obtain an excellent

helium consumption of 0.18 L/h (4.3 L/day), which ensures a very quiet helium boil-off

noise and allows for >7 days long measurements.

The bottom part of the insert is provided with a radiation shield and a sample cleaving

stage. The radiation shield can be placed with the sample transfer mechanism and

it significantly reduces by 0.3 K the temperature measured on the STM head. The

cleaver is also actuated by the sample transfer mechanism, and it has a bucket that

collects the cleaved rods. Before cleaving, the samples are thermalized for a few

minutes on the 4 K plate, and we estimate that the cleaving temperature is ≈ 20 K.

3.4 Vibration isolation table

The vibration isolation table is made of two parts: a rigid stainless steel hollow frame

with triangular shape and a 40-mm-thick triangular aluminum plate. The plate is

rigidly connected to the frame by screws, and the assembly is designed with the

specifications of not having any resonant frequencies below 300 Hz. The frame is

mounted on top of three negative spring coefficient vibration isolators6 with resonant

frequency 0.5 Hz. In order to reduce acoustic-induced noise and to increase the mass

of the table, the frame is filled with lead shots to reach a weight of the total system

of ∼ 1000 kg. The full system is standing on a measurement island that is decoupled

from the surrounding walking floor, but is not additionally isolated with dampers

from the foundations.

3.5 UHV chamber

The fully home-built UHV chamber comprises a small load lock chamber and a main

preparation chamber. A turbo pump, which is switched off during measurements, is

connected to the load lock, and an ion getter pump is installed on the main chamber,

leading to a base pressure of p = 3× 10−10 mbar. Sample storage space and manipu-

6Minus K R© 800CM-1.
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3 Design and construction of an ultra-stable STM

lators are provided in both chambers. In the main chamber, we installed an ion gun

for Ar sputtering and a home-built sample heater.

3.6 Performance

We test the performance of our microscope by measuring vibrational noise spectra

at the tunnel junction and by obtaining topographic and spectroscopic data on the

correlated metal Sr2RhO4. Here, we briefly show the data to demonstrate the perfor-

mance of the microscope, while the physics of Sr2RhO4 is discussed in the dedicated

chapter 6.

3.6.1 Current and height noise at the tunneling junction

We first characterize the noise level of our laboratory by measuring both vibrations

with a seismometer7 and acoustic noise with a low-frequency microphone8. The mea-

surement is reported as linear spectral density (LSD) of the velocity for the vibrations

and of the pressure difference for the acoustics. The spectra are obtained by Fourier

transforming one minute of real time data with the Welch method using a Hamming

window.

We report in Fig. 3.8a typical spectra of (i) the vibrations measured on the island

where the table is standing, (ii) the vibrations measured on the table, (iii) the sound

measured in the surrounding room. The table reduces the general vibrational noise

of about one order of magnitude after 10 Hz, and it dampens many of the peaks. It

is instead less effective in reducing the sound-induced noise, as it can be noticed from

the peak at 24 Hz that is only partially dampened.

In Fig. 3.8b we show the vibrational noise at the tunnel junction as the linear spectral

density of the z height (corresponding to the tip-sample distance) measured in feed-

back on a (Pb,Bi)2Sr2CuO6+x sample at setup condition V = 300 mV and I = 150 pA.

Remarkably, the noise is very low, with an average vibration level of ≈ 6 fm/
√

Hz

and only two peaks with amplitude bigger than 20 fm/
√

Hz, respectively at 12 Hz and

50 Hz.

In Fig. 3.8c we further show the linear spectral density of the current noise measured

with the same tunneling junction and setup condition. With tip retracted, we achieve

an average noise level of ≈ 8 fA/
√

Hz. The preamplifier we use9 has a noise floor of

6.5 fA/
√

Hz.

7Guralp CMG-40T.
8G.R.A.S. 46AF.
9FEMTO LCA-4K-1G.

40



3.6 Performance

Frequency (Hz)
0 200 400 600 800 1000

Cu
rre

nt
 L

SD
 (

fA
 H

z 
-1

/2
) 

 

10 0

10 1

10 2

feedback close
feedback open
out of tunneling

Frequency (Hz)

10 1

10 2

Frequency (Hz)

10 - 8

10 - 7

10 - 6

10 - 5

0 20 40 60 80 100 120

0 20 40 60 80 100 120

Z 
he

ig
ht

  L
SD

 (
fm

 H
z 

-1
/2
) 

 
Ve

lo
cit

y 
LS

D
 (

m
 s

-1
 H

z 
-1

/2
) 

 

Pr
es

su
re

 L
SD

 (
Pa

 H
z 

-1
/2
) 

 

table vibration
island vibration
sound

a

b

c

10 -10

10 -6

10 -2

Figure 3.8: a, Linear spectral density (LSD) of the velocity measured in the Z direction on the

island and on the STM table with a seismometer (Guralp CMG-40T). In the same graph, with

scale on the right axis, acoustic noise is reported as LSD of the pressure difference measured

with a low-frequency microphone (G.R.A.S. 46AF). b, Linear spectral density of the Z height

noise at the tunnel junction measured on (Pb,Bi)2Sr2CuO6+x at setup condition V = 300 mV

and I = 150 pA. c, Linear spectral density of the tunneling current at same tunnel junction as b,

measured out of tunneling as well as in tunneling with feedback loop closed and open.
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In tunneling and with feedback loop closed we can see an increase in the noise to

≈ 20 fA/
√

Hz above 200 Hz, with some peaks reaching up to ≈ 50 fA/
√

Hz. The feed-

back takes care of reducing the low frequency noise.

An important figure of merit for spectroscopic measurements is the out-of-feedback

current noise (in tunneling and with feedback loop open). We obtain a noise level of

≈ 10 fA/
√

Hz, with only the peaks at 12 Hz and 50 Hz higher than 20 fA/
√

Hz, which

ensures the capability of performing high quality spectroscopy experiments.

3.6.2 Quasiparticle interference on Sr2RhO4

To demonstrate the topographic and spectroscopic capabilities of the microscope, we

show quasiparticle interference measurements on the correlated metal Sr2RhO4, that

is known to have a highly two-dimensional electronic structure [68–70].

The sample is cleaved at the 4 K cleaving stage and immediately transferred to the

STM head. Measurements are performed with a chemically etched tungsten tip that

has previously been prepared by field emission on a gold surface. Atomic resolution

can be easily achieved, as shown in the 15 × 15 nm2 topograph in Fig. 3.9a and in

the corrugation profile along the black line plotted in Fig. 3.9b. The cleaved surface

shows the SrO layer; the Sr atoms are visible on the surface, with interatomic distance

distance a = 3.85 Å. Moreover, we can observe two different types of defects.

In Fig. 3.9c we plot a typical single dI/dV spectrum acquired during a spectroscopic

map. The spectrum is metallic, and does not show sharp features.

In Fig. 3.9d we show the real space imaging of quasiparticle interference (QPI) in the

conductance layer at -20 meV (with respect to the Fermi level), acquired simultane-

ously to the topograph in Fig. 3.9a. The defects obviously act as scattering centers

for the quasiparticles, creating an interference pattern between the standing waves

that emphasizes the quantum mechanical wave nature of the quasiparticles.

In Fig. 3.9e we show the Fourier transform of the real-space QPI pattern measured at

the Fermi level during a spectroscopic map. The map is acquired on a field of view of

55× 55 nm2 with 288×288 pixels, thus consists of ≈ 80000 spectra acquired one after

the other without the use of feedback to the tip during the spectra acquisition. The

Fourier-transformed data is not symmetrized nor processed in any other way, and still

shows sharp features with very high signal-to-noise ratio.

A more comprehensive analysis, including a quantitative comparison with ARPES

data from Ref. [69], will be discussed in chapter 6.
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Figure 3.9: STM measurements on Sr2RhO4. a, Topograph in a field of view of 15×15 nm2.

Setup conditions (Vb=−20 mV, It= 600 pA). The image is not filtered. b, Atomic corrugation

profile along the black line in a. c, Example of a single dI/dV spectrum measured during a spec-

troscopic map. d, Density of states measured simultaneously to the topograph in panel a, showing

the quasiparticle interference pattern in real space at energy E=−20 meV. e, Non-symmetrized

Fourier transform of the conductance layer at the Fermi level acquired in a spectroscopic map

over a 55×55 nm2 field of view. One of the Bragg peaks is highlighted in the blue circle.
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3 Design and construction of an ultra-stable STM

3.7 Conclusions

In the present chapter, we describe design principles, construction and performance

of our ultra-stable STM Dome. We constructed a very stiff microscope by combining

smart material choice and design improvement guided by FEA calculations. This

allows us to obtain outperforming data quality even in a lab not dedicated to low

vibrations, as described in Sec. 3.6. While writing this thesis, the instrument has

been moved to a new building with world-class low-vibration facilities, and we believe

that this will improve its performance further. In chapter 7, we propose a series of

experiments that we are planning to perform with the microscope Dome in the near

future.
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4
Universality of pseudogap and emergent

order in lightly doped Mott insulators

This chapter has been published as:

Battisti et al., Nat. Phys. 13, 21 (2017).
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4.1 Introduction

4.1 Introduction

Mott insulators are one of the most iconic examples of correlated electron systems.

In these materials, electrons are localized due to strong electron-electron interactions,

and they can be thought of as frozen at the location of their atomic core (see Sec. 1.2).

A core mystery of condensed-matter physics is how this rigid arrangement of electrons

loosens when inserting extra carriers (doping). The strong electron correlations that

characterize the Mott insulating state, in fact, are thought to be responsible for the

remarkably complex, emerging behaviors that are observed upon doping [6, 9, 11].

A prime example are cuprates, copper-oxide based compounds (see Sec. 1.2 for a

brief overview). Upon adding extra carriers to the Mott insulating parent compound,

cuprates show, at low doping levels, the formation of a pseudogap and a variety of

inhomogeneous electronic orders, and, at higher doping, high-Tc superconductivity

[11]. These phenomena have often been assumed (though not verified), to not be

limited to the CuO2 planes, but common to spin- 1
2 Mott physics.

Here, we study the iridate Sr2IrO4, a compound that is chemically radically different

from cuprates, but also an effective spin- 1
2 quasi two-dimensional Mott insulator. We

show that, upon electron doping, a spatially inhomogeneous pseudogap as well as a

local glassy charge order exists in this compound as well, revealing an universality

of these emergent phenomena. Moreover, we are able to precisely elucidate how the

insertion of extra carriers causes the transition from Mott to pseudogap phase.

We start with an introduction to the properties of Sr2IrO4 and an overview of the

relevant literature (Sec. 4.2 and 4.3). We then show our STM results on the electron-

doped compound (Sr1-xLax )2IrO4, at doping levels 0 ≤ x ≤ 5.5 %. We find two

distinct electronic behaviors, one at low doping levels, x ≤ 4% (Sec. 4.5), and one at

higher doping levels, x ≈ 5% (Sec. 4.6). In section 4.7, we illustrate the melting of

the Mott state with doping, and we propose a theoretical interpretation of our data.

4.2 The electron-doped iridate (Sr1-xLax)2IrO4

The parent compound Sr2IrO4 is a quasi two-dimensional material, isostructural to

the cuprate La2CuO4. It has a perovskite crystal structure with alternating IrO2 and

SrO planes, such that oxygen octahedra form around each iridium atom. The IrO6

octahedra additionally undergo an in-plane rotation of 11◦ (Fig. 4.1a).

Each iridium atom has five 5d electrons (5d5), in contrast to the cuprates, where each

copper atom has nine 3d electrons (3d9). As introduced in chapter 1, the orbitals

of 5d transition metal atoms are more spatially extended than those of 3d transi-

tion metals, causing larger bandwidths and higher hopping energy t. Moreover, the
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Figure 4.1: a, Crystal structure of Sr2IrO4. b, Effect of crystal field and spin-orbit coupling on

the 5d band of Sr2IrO4. The Coulomb repulsion U splits the resulting Jeff = 1/2 band into a lower

and upper Hubbard band (LHB and UHB, respectively) [71].

electron-electron correlations caused by the Coulomb repulsion U are reduced due

to higher screening compared to 3d elements (for 3d materials the electron corre-

lation magnitude is U ≈ 5 eV, for 5d materials typically U ≈ 0.5 eV). Despite the

weaker electron-electron correlation U which is not able to open a Mott gap in the

spatially extended 5d states, Sr2IrO4 is found to be an effective spin- 1
2 Mott insulator

[71, 72]. This can be explained by the fact that 5d atoms are heavier and therefore

have a stronger spin-orbit coupling: while in cuprates spin-orbit coupling is typically

negligible, in the iridates it acquires energies comparable to the electron-electron cor-

relations.

Fig. 4.1b illustrates how this affects the electronic structure. The 5d states are first

split by the crystal field into three t2g states and two eg states, analogous to cuprates.

The crystal field energy is large enough that the five electrons prefer a low spin state

and occupy only the t2g states. At this point, the moderate electron correlations U

are not able to open a Mott gap within the t2g band. However, the strong spin-orbit

coupling splits the t2g band to form a filled Jeff = 3
2 band and a half-filled Jeff = 1

2

band. The moderate on-site Coulomb repulsion U is now strong enough to open a

Mott gap in the Jeff = 1
2 band, making Sr2IrO4 an effective spin- 1

2 Mott insulator

[71, 72].

Theoretical calculations, including LDA1+SO+U [71, 73], variational Monte Carlo

studies [74] and LDA+DMFT2 [75] confirm this scenario.

Experimentally, the parent compound Sr2IrO4 has been probed by several techniques.

Optical conductivity measurements [71, 73, 76] show a Mott gap value of ≈ 500 meV,

1LDA: local-density approximation.
2DMFT: dynamical mean-field theory.
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4.3 Sample characterization

in good agreement with calculations [77]. Angle-resolved photoemission spectroscopy

(ARPES) shows that the Mott gap is asymmetric around the Fermi level, with the

upper edge of the lower Hubbard band between -200 meV and -100 meV [71, 78–

80]. Resonant (inelastic) x-ray scattering (REXS - RIXS) shows antiferromagnetic

ordering typical of the Mott state, with the magnetic moments Jeff = 1
2 lying in the

IrO2 plane, and additionally canted due to the rotation of the ochtaedra [81]. The

spin excitations as measured with RIXS have energies comparable to the ones of

the cuprates [82], and REXS data has revealed the presence of an incommensurate

magnetic state reminiscent of the diagonal spin density wave state observed in the

cuprate (La1-xSrx )2CuO4 [83].

Given the insulating behavior of the material at low temperatures, pioneering STM

measurements are reported for the parent compound only at 77 K [84–86], each of

them showing different Mott gap values. Accidental doping was reported in one study

[84], indicating a possible cause of the different values.

Despite the very different chemical make-up, the similarity of Sr2IrO4 to the parent

compound of cuprate superconductors is striking. It thus seems straightforward to

expect that doping the material with holes or electrons will display the same myste-

rious phases that emerge upon doping cuprates. Indeed, theoretical studies predict

that the material should become superconducting upon electron doping [87, 88].

Electron-doped samples have been created by depleting oxygen [89] or substituting

La at the Sr sites in bulk crystals [79, 80, 90–92] and by surface doping through in

situ deposition of alkali-metal atoms [93, 94]. Hole-doped samples have been made

by substituting Rh at the Ir sites [80, 90]. In all cases, doping quickly suppresses

magnetism and affects transport results. Moreover, there is consensus about the

appearance of a pseudogap [79, 92, 93] and of a low-temperature d-wave gap [94,

95] upon electron doping. Unfortunately, superconductivity has not been achieved

to date, possibly because samples with sufficiently high doping levels could not be

created.

4.3 Sample characterization

We think that the most reliable way to dope Sr2IrO4 with extra electrons is by

La substitution on the Sr sites, because this method produces the cleanest crys-

tals. Therefore, the results presented in this chapter are measured on single crystal

(Sr1-xLax )2IrO4 samples, spanning the doping range 0 ≤ x ≤ 5.5 %. The samples are

grown and pre-characterized by our collaborators from University College London and

University of Geneva, who performed ARPES experiments on samples from the same

batch [79]. The single crystals are flux grown from a mixture of off-stoichiometric

quantities of IrO2, La2O3 and SrCO3 in an anhydrous SrCl2 flux. The mixture is
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Figure 4.2: a, Evolution of the resistivity with doping. b, Evolution of the magnetic behavior

with doping. The magnetization curves are taken with an applied magnetic field of H = 1 T after

zero-field cooling and are normalized by the magnetic moment at H = 2 T, which for the magnetic

samples corresponds to the saturation field. Reproduced from Ref. [79].

heated to 1245 ◦C for 12 h and cooled at a rate of 8 ◦C h−1 to 1100 ◦C before quench-

ing to room temperature. The resulting crystals are mechanically separated from the

flux by washing with water, and range between 200 µm and 600µm in size.

Transport measurements of the ab-plane resistivity at different doping concentrations

x (as determined by EDX3) are shown in Fig. 4.2a. For the highest doping level,

the resistivity shows metallic behavior down to 50 K followed by an upturn at lower

temperature. The upturn is reported from several groups [80, 91, 92, 96], and is

reminiscent of low-doped cuprates [97]. Figure 4.2b shows the doping evolution of the

magnetic behavior. The magnetic order persists for x = 1%, but with decreased Neel

temperature; the highest doping samples are paramagnetic, indicating suppression of

the Mott antiferromagnetic state.

These bulk transport measurements probe the properties of the material between two

macroscopically spaced electrodes (in this case, applied on two sides of the crystal).

If the material is electronically inhomogeneous, transport will average the electronic

properties and the interpretation of its results becomes more complicated. Impor-

tantly, we know from our STM measurements and from subsequent near-field optical

microscopy measurements [96] that the doping concentration is not homogeneous

within one (Sr1-xLax )2IrO4 sample. In samples with doping x = 5% determined

by EDX, we find with STM areas where the local doping changes from x = 2% to

x = 5% on a length-scale of ≈ 100 µm. In order to obtain more reliable results with

easier interpretation, one should measure transport from areas where the doping is

3energy dispersive X-ray spectroscopy.
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4.4 Doping level determination with STM

homogeneous, for example by using electron-beam lithography or focused-ion beam

(FIB) to reduce the size of the crystals before measuring transport.

4.4 Doping level determination with STM

The STM experiments reported in this chapter are performed with a low-temperature

(2 K), ultrahigh vacuum commercial STM4. The iridate crystals are cleaved in situ at

a temperature of 20 K and a pressure of 2×10−10 mbar, and then transferred imme-

diately into the STM sample stage. Importantly, we found that cleaving at a higher

temperature deteriorates the quality of the surface. The STM topographs are taken

in the constant current mode, and the dI/dV spectra are collected using a standard

lock-in technique with a modulation frequency of 857 Hz. We use mechanically ground

PtIr tips that are tested on a crystalline Au(111) surface prepared in situ by Ar ion

sputtering and temperature annealing.

The iridate (Sr1-xLax )2IrO4 cleaves between the SrO layers, revealing an atomically

flat SrO terminated surface. In Fig. 4.3, we show two topographs at different doping

concentrations. The Sr atoms are easily resolved, and the lattice constant is a0 =

3.9 Å. Since La dopants substitute for Sr atoms, they are visible on the surface, and

they can be identified as dark atoms surrounded by a brighter square [98].

3 nm

a b

3 nm

high

low

height

Figure 4.3: Examples of atomically resolved STM topographs measured on (Sr1-xLax)2IrO4 at

different doping levels. The La3+ dopant atoms are readily identified as dark spots surrounded

by brighter atoms (see, e.g., red square). a, Doping level 2.0%, field of view 18×18 nm2, setup

conditions (Vb= −1.1 V, It= −200 pA). b, Doping level 5.5%, field of view 18×18 nm2, setup

conditions (Vb= −750 mV, It= −400 pA).

4modified USM1500 from Unisoku.
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4 Universality of pseudogap and emergent order in lightly doped Mott insulators

The ability to easily identify the dopant positions with atomic precision (e.g. in con-

trast to the cuprates [17, 99]) is key to our investigation, as it allows us to precisely

localize dopant atoms and investigate their effect on the electronic structure. As the

doping inhomogeneities are large (see Sec. 4.3), it is important to determine the local

doping level: with STM, we can simply do that by counting the La to Sr ratio within

a given field of view.

We investigate surfaces with densely spaced local doping concentrations between 2.1 %

and 5.5 %, where we estimate an error of ±0.7 % in the doping determination. We

also attempt to measure an undoped sample, but even at 77 K the material is too

insulating to allow STM experiments, and the tip crashes on the sample during the

approach procedure. This is in contrast with previous measurements on the parent

compound [84–86], which we interpret as a confirmation of the high purity of our

samples.

In the available doping range, we find strikingly different spectroscopic properties that

allow us to separate the doping levels into two main groups, one of low doping, where

x < 4%, and one of high doping, where x ≈ 5%.

4.5 Low doping levels: frozen Mott state

We find that very lightly doped samples with x < 4 % are deep in the Mott phase. In

all our measurements, these doping levels yield a clear Mott gap, as shown in Fig. 4.4

for a sample with x = 2.2 %. The shape of the gap is reminiscent of STM spectra of

cuprate parent materials [100, 101].

To investigate how the Mott state reacts when dopant atoms are inserted, we acquire

spectroscopic maps from which we extract Mott gap maps, i.e., the magnitude of the

Mott gap as a function of location, ∆Mott(r). Figure 4.4a shows the result on a 2.2 %

sample, where the La dopant positions are marked by green dots. The gap size is

determined by fitting a phenomenological gap function consisting of two artificially

broadened Fermi functions that have the gap energy as fitting parameter. We fit

negative and positive sides separately.

The biggest variation in the Mott gap is highlighted in the inset of Fig. 4.4a, where the

two spectra correspond to the average of all the spectra inside the white circles. The

main difference is the small additional density of states around −0.8 eV. Importantly,

La dopants do not significantly change the Mott gap size in their close vicinity. How-

ever, a long-wavelength arrangement of varying Mott gap is visible, and it is possibly

induced by the presence of the dopants. We interpret these nanoscale arrangements

as the first of a series of orders that will appear upon doping. The most surprising
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Figure 4.4: a, Mott gap map ∆Mott of a sample with doping concentration x = 2.2 %. Position

of dopant atoms are indicated by green circles. The inset shows local density of states spectra

averaged inside the white circles. b, Local density of states spectra, each corresponding to a

single measurement, along the green line in a, vertically offset for visual clarity.

observation is the total lack of in-gap states, despite the presence of dopants. We will

discuss our interpretation of this fact in Sec. 4.7.

Another important observation regards the size of the gap: the magnitude of the Mott

gap that we measure with STM on the lightly doped samples does not agree with what

has been reported in literature by other techniques [71, 73, 77–79]. If we interpret the

gap size as the energy range where the LDOS is zero, we measure a gap of ≈ 1 eV,

which is very different from the 500 meV gap reported by optical spectroscopy and

ARPES and predicted by theory [71, 73, 77–79].

This is caused by the phenomenon of tip-induced band bending (TIBB) that we

introduced in Sec. 2.4. Due to the poor electronic screening in the material, the

electric field generated by the tip can penetrate the sample, changing the potential

landscape and strongly affecting the spectra measured with STM. In particular, TIBB

can cause the gap measured with STM to be bigger than the intrinsic gap of the

material.

In chapter 5, we show that this is exactly what happens in the lightly doped iridates,

and we develop a model that is able to retrieve the intrinsic Mott gap from the

apparent Mott gap measured by STM. Here, we just want to state that after applying

our TIBB model to the data, we obtain an intrinsic gap value of ≈ 600 meV for the

low doping level samples, a value that roughly reconciles with literature.
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4 Universality of pseudogap and emergent order in lightly doped Mott insulators

4.6 High doping levels: pseudogap and electronic order

The pure Mott state described in section 4.5 is not sustained at higher doping levels

x ≈ 5%. At this threshold, we find an abrupt transition to a strikingly inhomo-

geneous electronic structure, with a phase-separated Mott gap/pseudogap electronic

landscape. Within the pseudogap regions, we additionally observe signatures of elec-

tronic order that are reminiscent of the order observed in the cuprates.

4.6.1 Phase separation

At doping levels of x ≈ 5%, the dI/dV spectra drastically change5. In some regions

we still measure a Mott gap, which now has the Fermi level pinned closer to the

bottom of the upper Hubbard band (blue curve in Fig. 4.5a). This is in contrast

to the low doping samples, and is to be expected for a Mott insulator doped with

electrons. In other regions, we measure electronic states inside the Mott gap (red curve

in Fig. 4.5a). Here, the spectra are remarkably similar to the pseudogap spectra in the

cuprates [101, 102], with a gap value of 70 - 300 meV, in rough agreement with ARPES

measurements [79, 93, 95]. In addition, some of the spectra show clear ‘coherence

peaks’ (Fig. 4.5d).

In order to analyze how these two different types of spectra are spatially distributed

within a field of view, we introduce a parameter that we call Mott parameter, M(r).

It is obtained by integrating the LDOS inside the Mott gap (red-shaded area in

Fig 4.5b) and normalizing it by the integrated LDOS outside the gap (blue-shaded

area in Fig 4.5b). In numbers,

M(r) =

∫ +50 meV

−350 meV
LDOS(E, r) dE∫ +500 meV

+200 meV
LDOS(E, r) dE

. (4.1)

This parameter is large when there are states inside the gap, and small when the Mott

gap is dominating. In Fig. 4.5c, we plot M(r) as a function of the spatial coordinates

for a spectroscopic map measured on a x = 5.5 % surface, with the dopant atoms

positions indicated by green dots. This allows us to quickly identify Mott areas (in

blue) vs. pseudogap areas (in red).

The pseudogap areas, that we will, from now on, call pseudogap puddles, are not ran-

domly distributed, but form around clusters of dopant atoms. We want to emphasize

that pseudogap puddles are not observed in the low doping level samples, even if few

dopants happen to be close together by chance: a certain threshold in the doping

level is needed for the transition to occur. Moreover, the transition between the two

5This is also reported by Chen et al. [92].
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Figure 4.5: Phase separated Mott/pseudogap electronic structure at 5.5 % doping. a, Spectra

from two different regions: Mott spectrum (blue), and mixed Mott/pseudogap spectrum (red).

The spectra are the average of 180 spectra inside the white circles in panel c. b, Definition of

the Mott parameter as the integrated LDOS inside the Mott gap (red) normalized by the one

outside the gap (blue). c, The Mott parameter identifies pseudogap puddles (red) and pure

Mott regions (blue). Green circles indicate the La dopant locations. The triangle on the colorbar

indicates the value of the black contour. d, Local density of states spectra along the white line

in c (whose length is 1.5 nm), vertically offset for clarity. Each spectrum corresponds to a single

measurement.

regimes of different electronic behavior is well defined and sharp, in the sense that it

occurs within less than a nanometer. We highlight the sharpness in Fig. 4.5d, where

we show single spectra along the white line in Fig. 4.5c. This sharpness allows us to

define a threshold between Mott and pseudogap regions (black contour in Fig. 4.5c),

and to state that we observe an electronic phase separation at the nanoscales.

4.6.2 Mapping pseudogap and Mott gap

To further characterize the electronic structure, we develop a fitting procedure that

is able to fit spectra both in the Mott regions and in the pseudogap puddles. We

choose to use a largely phenomenological fitting function, given that the vast variety

of the spectra complicates the development of a complete theory. It comprises a

polynomial background that multiplies a phenomenological Mott gap summed with a

phenomenological pseudogap (see Fig. 4.6a for a graphic representation):

LDOStotal(E) = LDOSbackground(E) · [LDOSMott(E) + LDOSPG(E)]. (4.2)
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4 Universality of pseudogap and emergent order in lightly doped Mott insulators

The polynomial background density of states is given by

LDOSbackground(E) = aE2 + b, (4.3)

where and a and b are fitting parameters. The phenomenological Mott gap ∆Mott con-

sists of two slightly broadened gap edges, asymmetric around the chemical potential:

LDOSMott(E) =

∣∣∣∣ 1

1 + e(−E−E0)/w
− 1

1 + e(−E+E0−∆Mott)/w

∣∣∣∣ , (4.4)

where w gives the broadening, E0 is the energy where the upper Hubbard band roughly

pins to the chemical potential and ∆Mott is the size of the Mott gap. We keep the

first two parameters fixed (w = 0.026 eV, E0 = 0.1 eV), while the size of the Mott

gap is used as a fitting parameter. To fit the pseudogap, we follow ARPES results on

electron-doped Sr2IrO4 [79, 95] and use a phenomenological function inspired by the

d-wave gap function commonly used to fit cuprates spectra [103, 104]:

LDOSPG(E) = C0

∣∣∣∣∣∣∣∣
E + iα

√
E√(

E + iα
√
E
)2

−∆2
PG

∣∣∣∣∣∣∣∣ . (4.5)

It contains two fitting parameters: a scaling factor C0 and the size of the pseudogap

∆PG. We keep α, the effective scattering rate, fixed to 0.2 eV1/2. The square root in

the imaginary part is selected to ensure a rather constant broadening independent of

the gap.

All the spectra of the spectroscopic map shown in Fig. 4.5 are fitted with this function,

using the least squares method. Since for this doping level the upper edge of the Mott

gap is pinned to the chemical potential, and because in that location pseudogap and

Mott gap overlap, we fit the model to the data only for negative energies. We are able

to obtain excellent fits to all the spectra. This allows us to simultaneously extract

both the pseudogap ∆PG and the Mott gap ∆Mott for all the spectra, and to plot

them as a function of location, as it is shown in Fig. 4.6c-d. From these plots we can

learn how the gaps are spatially distributed, and hence what are the length-scales at

which the gap widths change. We can then additionally investigate the correlations

between the two gaps for > 104 spectra located in the pseudogap puddles, as it is

shown in Fig. 4.6b. We find a positive correlation of 0.31, i.e. the larger the Mott gap,

the larger the pseudogap.

In general, the microscopic origin of the pseudogap in electron-doped Sr2IrO4 is still

a matter of debate. Theoretical proposals include fluctuations of the long-range anti-

ferromagnetic order [105] and the onset of short-range antiferromagnetic order [106].

The latter is supported by experimental evidence that the temperature at which the

pseudogap opens (≈100 K, from ARPES [93] and optical spectroscopy [76]) roughly
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Figure 4.6: a, Phenomenological fit function to simultaneously extract both the Mott and

pseudogap size. A parabolic density of states (dot-dashed, black) is multiplied with Mott gap

(dashed, blue) summed with a V-shaped pseudogap (dotted, red). b, Correlation between Mott

and pseudogap size for all the spectra showing a pseudogap in the field of view in panel c, plotted

as a 2D-histogram where the colorscale indicates the amount of spectra falling in each bin. c,

Pseudogap map extracted from the fitting procedure in the same field of view shown in Fig. 4.5.

The green square indicates the area analyzed further in Fig. 4.7. d, Mott gap map simultaneously

extracted from the same fitting procedure. The circular features are due to TIBB and will be

discussed further in chapter 5.

coincides with the onset of short-range antiferromagnetic correlations measured with

bulk magnetization and neutron scattering [92].

We interpret the positive correlation emerging from our data as evidence that pseudo-

gap and Mott physics are intimately linked, therefore suggesting that the pseudogap

might not simply be caused by magnetic correlations.
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4 Universality of pseudogap and emergent order in lightly doped Mott insulators

4.6.3 Emergent order

After observing the nucleation of pseudogap puddles in the samples, we want to test

if the cuprate phenomenology can be extended further to this other lightly doped

Mott insulator. In the low-doping region of the cuprates phase diagram, a sizable

set of orders coexist, which are sometimes believed to cause the pseudogap [11]. In

particular, these include disordered, stripy charge arrangements [4, 13, 19, 107, 108].

We therefore search for such ordered phases within the pseudogap puddles in our

samples. We find that the spatial distribution of the pseudogap value, when ex-

tracted with atomic precision, reveals a striking tendency for order. We can observe

in Fig. 4.6c and Fig. 4.7a that the ∆PG gap maps exhibit glassy, locally unidirectional

structures, reminiscent of lightly hole doped cuprates [4, 19, 103].

Glassy charge order is also visible in the density of states right outside the pseudogap.

In Fig. 4.7c we show the conductance layer at −210 meV, where a stripy structure is

clearly visible. When plotted together with the position of the Ir atoms (small green

dots, while the big green dots still indicate the position of La dopants), it appears that

the ordered arrangements consist of bond-centered, unidirectional objects of length

scales of two to four Ir-Ir distances, clearly very disordered on a larger length scale. In

Fig. 4.7d we show the laplacian of the ratio map z = g(-210 meV)/g(210 meV) where

the stripy order is emphasized. Similarly to the pseudogap, these arrangements also

nucleate around the dopant atom positions and are not present in the Mott-like areas

of the field of view.

The limited data that exist on underdoped cuprates [19, 101, 103] show that the

patterns in the conductance layers get more disordered when patches of the sample

become insulating. In our measurements, the pseudogap puddles are smaller than

what has been observed on the cuprates, and we thus expect the disorder to be even

stronger than in cuprates. In the last two panels of Fig. 4.7 we report examples

from literature of how order manifests in the cuprates. In Fig. 4.7e, we show the

conductance layer measured on an underdoped Ca2-xNaxCuO2Cl2 sample [103]. In

Fig. 4.7f, we show the laplacian of the ratio map measured on a (DyBi)-2212 sample

[19].

It is clear that the iridates are more disordered, with the stripy patterns appearing

only in the pseudogap puddles, and becoming better arranged when the pseudogap

puddles get bigger. We can therefore speculate that at higher doping the order ob-

served in the iridates would resemble the one observed in the cuprates.
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Figure 4.7: a, Map of the pseudogap ∆PG, corresponding to the area in the green square from

Fig.4.6c. The small green dots indicate Ir atom locations, the larger green circles indicate La

dopant locations on the Sr sites. In the inset, spectra along the white line show the variations

in the pseudogap, offset for clarity. b, Topograph in the same field of view, showing the atomic

periodicity. c, Conductance layer g = dI/dV at -210 meV. Glassy order is nucleating around

the La dopant atoms. d, Laplacian of the ratio map layer z = g(-210 meV)/g(210 meV). e,

Conductance layer at -0.22 V measured on an underdoped Ca2-xNaxCuO2Cl2 sample, adapted

from Ref. [103]. Glassy order is visible only whithin some areas. f, Laplacian of the ratio map

z = I(150 meV)/I(-150 meV) for a (Dy,Bi)-2212 sample, adapted from Ref. [19].
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4 Universality of pseudogap and emergent order in lightly doped Mott insulators

4.7 Doping evolution: a sharp transition

After illustrating the electronic behavior of the samples at low and high doping levels,

we want to elucidate how the evolution towards the pseudogap phase occurs. Since

in the iridate samples the dopant atoms can be seen on the surface, we have the

unique possibility of measuring samples with densely-spaced local doping concentra-

tions between x = 2.1 % and x = 5.5 %. We measure spectroscopic maps with > 106

data-points at each doping concentration, and we analyze them using the methods

described above. Figure 4.8 summarizes the results: Fig. 4.8a shows the evolution of

the averaged spectra, Fig. 4.8b-g show the maps of the Mott parameter on the respec-

tive fields of view. For the measurements above x = 4 %, where phase separation is

observed, we show the averaged spectra separately for the pseudogap regions (in red)

and for the Mott regions (in blue).

It is clear that at a certain doping threshold, around x = 5 %, the electronic behavior

undergoes an abrupt transition from a purely Mott-like state to a phase-separated

Mott/pseudogap electronic landscape. At doping concentration below the transition

threshold, none of the spectra exhibits any sort of impurity state, as we already

emphasized in Sec. 4.5. Nor is the chemical potential pinned to the bottom of the

upper Hubbard band, as one would expect from an electron-doped Mott insulator

with shallow dopant centers. Moreover, the phenomenology of the electronic structure

is surprisingly independent of the doping concentration for x < 4 %, showing a clear

Mott gap with small variations. This leads to the question: Where did all the dopant

electrons go?

We propose the scenario illustrated in Fig. 4.9. Randomly distributed La dopants

form localized states within the forbidden energy gap, similarly to what happens

when inserting donors in a semiconductor [109, 110]. At low doping, the dopant

energy levels aggregate into a narrow range of energy, forming what in semiconductor

parlance is called an ‘impurity band’ (note that this is a partially misleading term,

as the electrons wave functions remain localized [110]). This nevertheless shifts the

chemical potential to the mid-energy of the impurity band. In a simple one-electron

picture and for shallow dopant centers, this scenario typically leads to a quick collapse

of the insulating gap towards conductivity, with the impurity band merging into the

conduction band and the chemical potential shifting into the latter. This simplified

picture might however change when the extra electrons also experience the strong

on-site Coulomb repulsion U . It was proposed by N.F. Mott that, due to the strong

electron-electron correlations in the impurity band, a Mott gap can open in the latter,

creating a filled lower band and an empty upper band [5, 110, 111].

We think that this is the scenario that can best explain our experimental results.

There are however some points to address: How can we explain the total absence of
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Figure 4.8: Evolution of the electronic structure with increasing dopant atoms concentration.

a, Density of states spectra at different doping levels, each averaged over regions with Mott gap

(blue) and pseudogap (red) as defined by the Mott parameter in b-g. Due to the different setup

conditions for the different measurements, the spectra are normalized by their setup conditions

(indicated to the right of each panel), (dI/dV )/(Is/Vs). b-g, Respective maps of the Mott

parameter, where blue indicates a pure Mott gap, and red indicates a pseudogap puddle.

in-gap states? Why is the chemical potential not shifting towards the upper Hubbard

band with electron doping?

We propose that we do not observe in-gap states because the electron-electron cor-

relations that cause the opening of the Mott gap in the impurity band are strong

enough to push the resulting subbands outside of the Mott gap itself, as illustrated

in Fig. 4.9c.
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Figure 4.9: Illustration of the melting of the Mott state. a, With a very few extra carriers,

the dopant energy levels aggregate into a narrow range of energy, however the electrons are still

localized on the atomic sites. b, The extra carriers would eventually form a band at the Fermi

level, with the appearance of in-gap states in the dI/dV spectra. This is however not observed

in (Sr1-xLax)2IrO4. c, Mott transition in the impurity band: the impurity band gets split due to

the strong Coulomb repulsion, and pushed outside the Mott gap. The chemical potential stays

at about mid-gap, at the energy of the impurity band. d, At sufficient doping, due to electronic

screening, the Mott gap collapses and pseudogap puddles appear.

The fact that the chemical potential stays at about mid-gap upon doping indicates

that the dopant electrons are tightly bound to the dopant atom, resulting in very deep

dopant electronic states. In other words, the chemical potential is indeed moving to

the impurity band, but the latter is located very deep, at about mid-gap. The Mott

transition does not influence the position of the chemical potential, that remains

roughly corresponding to the binding energy of the extra electrons.

Now that we gave a possible explanation for the low doping regime behavior, let

us elucidate how the abrupt collapse to the phase-separated landscape takes place.

In a static picture, increasing the dopant concentration would eventually lead to an

overlap of the localized wave functions, and to a collapse of the impurity Mott state.

However, if we assume the small extension of the wave functions necessary to explain

the deep trapping of the extra electrons, the doping threshold for the collapse would

have to be much higher than what we measure. We propose that, with increasing

doping, screening of the long-range Coulomb interaction by doped carriers leads to

an abrupt collapse of the impurity Mott state at doping concentrations lower than

one would expect in a static picture.
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In the cuprates, similar microscopic processes have initially been proposed, but the

Mott state is much more fragile: even weak hole-doping of around 2% can destroy

the logarithmic divergence in the resistance [112]. This is due to the much smaller

energy scales of the trapping in the cuprates; below the transitions, the material

behaves similar to a doped semiconductor, with an impurity band close to the energy

of the valence band [112, 113]. This is consistent with the later observation that the

dopant centers are quite shallow [101]. Based on our results, we predict that LDA+U

calculations on doped iridates will reveal the trapping of La dopant states to be much

deeper than the equivalent states in the cuprates.

4.8 Discussion and conclusions

In this chapter, we have presented our SI-STM study of the electronic behavior of

Sr2IrO4 upon electron doping.

The appearance of a pseudogap at doping x ≈ 5 % is to date well established by

different experimental techniques (STM [92, 94], ARPES [79, 95], optics [76, 96]) and

theory [106, 114], with open discussions on the microscopic origin of the pseudogap,

as mentioned in Sec. 4.6.2.

At lower doping, instead, the picture is still not confirmed. Due to the strong doping

inhomogeneities found by us (Sec. 4.3) and by Ref. [96], it is difficult to study samples

in this doping concentration with techniques that average over a big area, such as

photoemission, transport and optical spectroscopy. Indeed, ARPES studies in the

low-doping regime [79, 80] have contrasting results, both with our STM observations

and between each other. However, two optical spectroscopy studies seem to be in

partial agreement with our results [76, 96]: Both the studies reveal that in the low

doping regime, below x = 4 %, the strong correlations from the Mott state are still

present, with the optical transition corresponding to the Mott gap not shifting in

energy, and only partially dampening. Above x = 5 % doping, signatures of the

pseudogap start to appear in both studies, and the Mott transition peak no longer

persists. In Ref. [96], the authors also observe a soft collective mode at 40 meV in

the low doping regime. They propose that this soft collective mode stems from the

excitation of a frozen correlated state of the electrons pinned by disorder associated

with the donor states. This interpretation would be consistent with the frozen Mott

state proposed by us.

To conclude this chapter, we would like to go back to the comparison between the

electron-doped iridates studied here and hole-doped cuprates. Detailed SI-STM mea-

surements on cuprates, for example, Ca2-xNaxCuO2Cl2 and Bi2Sr2CaCu2O8+δ, re-

vealed surprising universalities including the glassy charge order observed in the CuO

layer. On first look, (Sr1-xLax )2IrO4 seems to be a very different beast: electron
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4 Universality of pseudogap and emergent order in lightly doped Mott insulators

instead of hole doping, Ir instead of Cu, 5d5 instead of 3d9 electronic configuration.

However, our data clearly shows that electronic order and pseudogap are present in

(Sr1-xLax )2IrO4 as well. Moreover, we believe that the interplay between dopants,

pseudogap and order seen here holds for the cuprates too. In general, our results,

combined with the bigger picture emerging from literature on doped Sr2IrO4, con-

firm that the phenomenology observed in the low-doping region of the phase diagram

of the cuprates is not specific to the copper oxide planes, but generic to a bigger

class of two-dimensional lightly doped Mott insulators. By extension, we can expect

(Sr1-xLax )2IrO4 to become a high-temperature superconductor at only slightly higher

doping concentration.
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5 Poor electronic screening in lightly doped Mott insulators

5.1 Introduction

One of the unsolved mysteries that we encountered in chapter 4 is that the effec-

tive Mott gap measured by scanning tunneling microscopy in the very lightly doped

Mott insulator (Sr1-xLax )2IrO4 differs greatly from values reported by photoemission

spectroscopy and optical experiments [71, 73, 78, 79].

In the present chapter, we focus on this observation. We attribute its origin to poor

electronic screening of the tip-induced electric field in the sample. This phenomenon is

well known from STM experiments on semiconductors and goes under the name of tip-

induced band bending (TIBB) [49, 50]. In principle, TIBB can affect measurements

of all materials with poor electronic screening, including Mott insulators. Indeed,

signatures of TIBB are observed for the lightly hole-doped oxychloride Ca2CuO2Cl2
[103], and poor electronic screening effects around charged impurities are observed for

Fe dopants in the topological insulator Bi2Se3 [115], for Co adatoms in graphene [116]

and possibly for chiral defects in Sr3Ir2O7 [98, 117]. TIBB has also been discussed for

2D transition metal dichalcogenides [118] and for graphene systems [119]. However,

other than in semiconductors and especially with respect to Mott insulators, the

effects of TIBB have not been analyzed in much detail.

Here, we develop a model for TIBB specifically for lightly doped Mott insulators.

When applied to the iridate (Sr1-xLax )2IrO4, the model is able to retrieve the intrin-

sic energy gap from the measured STM data, obtaning a value that reconciles with

literature. In general, this model allows us to better understand the physics of the

material, and to provide new insights for STM experiments on lightly doped Mott

insulators.

We begin with an overview of the phenomenon of TIBB in Sec. 5.2. We start from its

basics in semiconductor physics, and we discuss differences and similarities between

Mott insulators and semiconductors with respect to the problem of electric field pen-

etration. Section 5.3 is the core of the chapter. Here, we show clear indications of

electric field penetration in the iridate samples, and we develop an algorithm to re-

trieve the intrinsic energy gap from the measured STM gap. Finally, in Sec. 5.4, we

show a different manifestation of TIBB in the iridate samples, appearing at doping

x ≈ 5 %.

5.2 Poor electronic screening and tip-induced band bend-

ing

A good measure of how efficiently mobile charges inside a material can screen an

externally applied electric field, is given by the screening length λs. When a charge
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5.3 Influence of poor screening on the energy gap of (Sr1-xLax)2IrO4

q is added to an electron liquid, its Coulomb potential φ(r) is screened as φ(r) =

q/r · e−r/λs . In metals like copper, the charge potential is almost perfectly screened

since λs = 0.5 Å, whereas, in less conducting materials, λs can be higher by a few

orders of magnitude. In semiconductors, it is typically of the order of 10 nm [120, 121].

As illustrated in Sec. 2.4, Fig. 2.5, poor electronic screening is very detrimental for

STM experiments performed on semiconductors. In contrast to metallic samples, here

the electric field generated by the tip can partially penetrate the surface, causing an

additional potential drop inside the material. This can strongly affect the interpreta-

tion of STM data. For instance, the gap measured with tunneling spectroscopy can

significantly differ from the intrinsic bandgap in the density of states of the sample,

as it has been observed, e.g., on the surfaces of Ge(111) [48], FeS2(100) [122] and

ZnO(110) [123]. Moreover, TIBB can cause the ionization of donors/acceptors in the

semiconductor [124–126], an effect that has been used in tip-induced quantum dot

experiments [120].

In all these cases, being able to quantitatively calculate the band bending potential

ϕBB at the surface is necessary for the correct interpretation of STM data: only if

the value of ϕBB is known, the intrinsic bandgap can be retrieved from the data, and

the binding energies of the donors/acceptors can be extracted. For semiconductors,

this is often done with a Poisson’s equation solver developed by Feenstra [51], that

uses the known dielectric constant and carrier concentration. This treatment yields

apparent bandgaps ≈15-20% larger than the intrinsic ones [48, 122].

While Mott insulators share the reduced ability to screen electric fields with semi-

conductors, their underlying physics is radically different due to the strong electron-

electron correlations (see Sec. 1.2). As a consequence, several material parameters

that are easily accessible in semiconductors, such as the number of carriers, are dif-

ficult to estimate for a (lightly doped) Mott insulator. The models developed for

calculating ϕBB in semiconductors can therefore not be applied to Mott insulators.

In the following, we develop a model of electric field penetration in the absence of free

carriers specifically for lightly doped Mott insulators.

5.3 Influence of poor screening on the energy gap of

(Sr1-xLax)2IrO4

We now concentrate on the lightly doped Mott insulator (Sr1-xLax )2IrO4 at doping

levels x < 4%. The physics of the material has been thoroughly discussed in chapter 4,

and all the experimental conditions are the same. In section 4.5, we left the open

mystery that the gap in the sample LDOS as measured with STM is significantly

bigger, and thus in disagreement with the one reported by other techniques. Here, we
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Figure 5.1: Schematic illustration of a tunneling spectroscopy experiment on a Mott insulator in

absence (green) and presence (blue) of TIBB. The apparent gap measured with STM is bigger

than the intrinsic gap of the material.

show how this can be attributed to the presence of field penetration in the material,

and how we can correct for this phenomenon.

The main effect of field penetration is that the voltage between the tip and the sample

surface directly below the tip no longer corresponds to the applied bias voltage Vb,

but only to a fraction of it. It is relatively easy to qualitatively understand why

this causes the measured STM gap to be bigger than the intrinsic gap in the sample

LDOS. Let us consider in Fig. 5.1 how a scanning tunneling spectroscopy experiment

is affected by the presence of TIBB. When acquiring a spectrum, the bias voltage

Vb is swept while measuring the differential conductance dI/dV . In the case of a

gapped LDOS as in a Mott insulator, the onset in the tunneling current occurs when

the tip Fermi level crosses the lower boundary of the upper Hubbard band or the

upper boundary of the lower Hubbard band. Both events occur at higher absolute

bias voltages Vb in the presence of TIBB, as the bands bend upwards or downwards

following the position of the tip Fermi level. Thus the apparent gap is wider than the

real one when the tip electric field penetrates the sample.

In the following, we develop an algorithm that is able to retrieve the value of the

intrinsic energy gap from the measured one. First, we need to calculate the value of

the band banding potential ϕBB at the sample surface directly below the tip apex. For

Mott insulators, this has never been done before: The models developed to calculate

ϕBB in semiconductors [51] cannot be applied, since they require knowledge of the

band structure, the carrier concentration and the dielectric constant, quantities that

are not always available for Mott insulators. In Sec. 5.3.1, we introduce a model for

electric field penetration in absence of free carriers that allows us to get an estimate

of ϕBB by using the image charges method. Then, in Sec. 5.3.2, we use the obtained

value of ϕBB as input parameter of an algorithm that allows us to retrieve the real
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Figure 5.2: Schematic representation of the configuration used to calculate the band bending

potential using the image charges method.

energy gap in the sample LDOS from the gap measured with STM, bridging the

apparent contradiction with literature.

5.3.1 Calculation of the band-bending potential

Here, we develop a simple model of electric field penetration in the absence of free

carriers that allows us to calculate the band-bending potential ϕBB for a lightly doped

Mott insulator where important material parameters are unknown.

We consider the situation depicted in Fig. 5.2. As a first approximation, we model

the tip as a conductive charged sphere of radius R at a distance h from the sample,

where h� R, and the sample as a dielectric medium with dielectric constant ε filling

a half-space. We consider a bias voltage Vb applied between the tip and the bottom

of the sample, which is grounded. We need to find the band-bending potential ϕBB

at the point of the sample closest to the tip (point A in Fig. 5.2), as a function of the

bias voltage Vb applied to the tip.

In order to calculate the electric potential ϕBB, we make use of the image charges

method [127]. In the simplest approximation of a uniformly charged sphere that

can be replaced with a single point charge at the center of the sphere, an analytic

expression for TIBB can be obtained:

ϕBB(Vb, R, h, ε) =
1

1 + ε hR
· (eVb −W0), (5.1)

where W0 = Wsample−Wtip represents the difference in work functions between sam-

ple and tip. In a more realistic configuration, the surface charge redistributes on the

sphere. This problem has no analytical solution, and the expression for ϕBB has to
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5 Poor electronic screening in lightly doped Mott insulators

be found numerically by using an infinite series of converging image charges with di-

minishing absolute value1. The set of image charges is built in the following recurrent

sequence: A charge q is added to the uncharged sphere, which is the equivalent of

a point charge in the center of the sphere (q;R + h). This point charge induces an

image charge in the dielectric medium (−kq;−(R+ h)), where k = ε−1
ε+1 . This in turn

induces a dipole image on the sphere, ( −kqR2(R+h) ;R + h) and ( −kqR2(R+h) , r + h − R2

2(R+h) ),

and so on. The electric potential in the whole space is then given by

ϕ(r) =
κ

4πε0

∑
i

qi
|r− ri|

. (5.2)

For z ≥ 0, κ = 1 and (qi, ri) are the initial charge and all the image charges induced

on the sphere and in the sample. For z < 0, κ = 2
1+ε and (qi, ri) are the initial charge

and all the image charges induced on the sphere [127].

From Eq. (5.2), we can compute ϕ(r = A), which corresponds to the value of ϕBB at

the point on the sample closest to the tip. Because the value of ϕBB depends on the

bias voltage Vb applied to the tip, we also compute the potential at ϕ(r = B). We

can then extract the proportionality constant between ϕBB and Vb from the ratio of

this two potentials,

F (R, h, ε) =
ϕ(r = A)

ϕ(r = B)
, (5.3)

obtaining finally the following expression for ϕBB:

ϕBB(Vb, R, h, ε) = F (R, h, ε) · (eVb −W0). (5.4)

The value of ϕBB therefore depends on the tip radius R, the tip-sample distance h, the

static dielectric constant of the sample ε and the difference in work functions between

sample and tip. In order to calculate ϕBB, we fix the values of R and ε to realistic

parameters of our experiment. Using SEM, we measure typical radii R for our tips of

25 nm. We estimate the static dielectric constant of a typical Mott insulator as ε = 30

(based on Ref. [128] for La2CuO4 and Ref. [129] for Sr2IrO4). We assume that this

value can still be applied in the case of a very low doping concentration of ≈ 2−3%

extra holes or electrons.

We further make use of finite element analysis (FEA) performed with the software

package Comsol [60], first to confirm the results obtained with the image charges

method on the simplified geometry, and second to estimate how different these results

are in a more realistic geometry. In the latter, the tip is modeled as a cone with

aperture of 20◦ ending with a spherical segment with the same tip radius R. The two

configurations computed with FEA are represented in Fig. 5.3, where the calculated

equipotential lines are shown.

1We verified that the simplified situation of a uniformly charged sphere underestimates ϕBB by

a factor of two for our setup, requiring to take the full charge redistribution into account.
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Figure 5.3: Result of FEA performed with Comsol [60] showing the electrical potential around

tip and sample. a, Simplified spherical tip geometry. b, Conical tip geometry. In both panels,

the tip-sample distance is set to 5 Å and the equipotential lines, emphasizing the electric field

penetration in the sample, are equally spaced by 50 mV. The equipotential line at 50 mV in panel

b is not visible, because it is deeper below the surface of the sample.

In Table 5.1, we report the values of F (R, h, ε) obtained from the image charges

method and from the two configurations calculated with FEA for a selection of tip-

sample distances (where for simplicity we set W0 = 0). The image charges method

results agree within 1 % accuracy with FEA results performed on the same simplified

geometry, and if the more realistic geometry is taken into account, the value of ϕBB

increases by ≈ 10 %. We can therefore conclude that our approximation of a spherical

tip yields reasonable results.

h (Å) image charges FEA sphere FEA cone

3 0.430 0.426 0.457

5 0.354 0.353 0.388

7 0.309 0.309 0.346

Table 5.1: Values of F (R, h, ε) obtained for three different tip-sample separations h from dif-

ferent methods: image charges method, FEA on spherical tip geometry, FEA on conical tip

geometry.
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5 Poor electronic screening in lightly doped Mott insulators

5.3.2 Algorithm to retrieve the real energy scales in the LDOS

After obtaining the expression for ϕBB in Eq. (5.4), we can use it to extract the native

density of states from the STM spectra. In addition to the calculated value of ϕBB,

our algorithm needs as input parameters a series of dI/dV spectra measured at the

same location with different tip-sample distances (fixed Vs and varying Is covering at

least one order of magnitude) and an I(z) spectrum.

Measuring a series of spectra with different set-up conditions can already give an

indication for the presence of TIBB (even though it usually cannot rule it out). Figure

5.4a shows a series of dI/dV spectra measured subsequently at the same location with

increasing tip-sample distances on a (Sr1-xLax )2IrO4 sample with 2.2 % doping. The

setup bias voltage is kept constant at Vs = 1.5 V and the setup current Is ranges from

600 pA to 10 pA, covering almost two orders of magnitude. A clear dependence on

the setup conditions, reflecting a dependence on the tip-sample distance, is visible.

We can calculate G = dI/dV in the presence of TIBB by taking the derivative with

respect to Vb of Eq. (2.12):

G(Vb, h) =
4πe2

~

(
1− ∂ϕBB(Vb, h)

∂Vb

)
|M(h)|2 gt gs

(
eVb − ϕBB(Vb, h)

)
. (5.5)

The tip-sample distance h is mainly included in the unknown tunneling matrix el-

ements |M(h)|2. Following Ref. [23], we eliminate |M(h)|2 by normalizing the dif-

ferential conductance G(Vb, h) by the setup current divided by the setup voltage:

Ḡ(Vb, h) ≡ G(Vb, h)

Is/Vs
. (5.6)

In absence of TIBB, Ḡ would become independent of h, and such normalized spectra

should collapse on a single curve. We apply Eq. (5.6) to the data in Fig. 5.4a, plotting

the result in Fig. 5.4b: the curves do not collapse exactly on each other, the biggest

differences arising for negative energies (see arrow). We quantify this difference by

the standard deviations calculated for each energy, shown as the gray line in Fig. 5.4b.

The differences in the normalized spectra are due to the presence of TIBB and thus

further modeling is required to extract the intrinsic sample LDOS.

To do so, we calculate an effective bias voltage V eff(h) for each tip-sample distance h

such that

eVs − ϕBB(Vs, h) ≡ eV eff(h)− ϕBB(V eff(h), h0) (5.7)

for a fixed tip-sample distance h0.

Using Eq. (5.7), we rewrite the tunneling equation Eq. (2.12) as:

eVs−ϕBB(Vs,h)∫
0

gs(ε) dε =
I(V eff(h), h0)
4πe
~ |M(h0)|2gt

. (5.8)
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Figure 5.4: a, G ≡ dI/dV spectra measured at different tip-sample distances h on a sample

with 2.2% doping. The bias setup voltage Vs is fixed to 1.5 V and the current Is goes from 600 pA

(red) to 10 pA (light blue). In all insets the corresponding plot is shown on a logarithmic scale.

b, The same spectra as in panel a, each normalized by its setup junction resistance Is/Vs. The

gray line shows the standard deviation σ(G) calculated for each energy, multiplied by a factor

two. c, Intrinsic LDOS gs after correction for TIBB, obtained from Eq. (5.9). Since the rescaling

of the curves causes different horizontal axes for each curve, we calculate σ(gs) over extrapolated

values of gs at equally spaced energies. d, Calculated apparent gap as a function of tip-sample

distance.

By inserting Eq. (5.8) into Eq. (5.5) divided by the setup conditions, we can extract

the intrinsic density of states gs(ε) from measured G(h) curves at different heights:

gs(ε) =
G(h)

Is/Vs

1

1− ∂ϕBB(Vb,h)
∂Vb

I(V eff(h), h0)
4πe2

~ |M(h0)|2gt
, (5.9)

where ε = eVb−ϕBB(Vb, h). The parameters in the model are the dielectric constant

ε, the tip radius R, the difference in work functions W0, the minimal tip-sample

distance hmin and the exponential prefactor κ of the tunneling current I = I0 · e−κh.
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5 Poor electronic screening in lightly doped Mott insulators

We keep R and ε fixed at the values mentioned in Sec. 5.3.1. We estimate hmin = 5 Å

as a typical tunneling distance for 1 GΩ tunneling resistance for this material. From

measured I(z) curves, we determine κ = 1.1 Å−1. Thus the only free parameter left

in Eq. (5.9) is W0.

We apply our model to the data of Fig. 5.4a, extracting the parameter W0 as the

value that minimizes the error function Ω =
∫

[σ(gs)]
2, where σ(gs) are the standard

deviations of the gs curves for each energy. Minimization gives a work function

difference between tip and sample of W0 = 0.55 eV.

We show in Fig. 5.4c the result of the application of our model to the data. The

resulting spectra are rescaled in energy, leading to a gap value of 600 meV and to a shift

of the onset of the lower Hubbard band to −0.1 eV. This is in good agreement with

values reported in literature by optical spectroscopy, theory and ARPES [71, 73, 77–

79], allowing us to reconcile our measurement to the other techniques.

In Fig. 5.4d, we show the calculated evolution of the apparent gap with tip-sample

distance. While there is a remarkable difference between the intrinsic gap value and

the apparent gap, we want to stress that, within the values of h in which STM

experiments are typically conducted, the variation of the apparent gap is relatively

small. Therefore, even when measurements do not show sizable dependence on setup

conditions, TIBB might be present, and further analysis might be required to retrieve

the intrinsic energy scales.

5.4 Bubbles in the conductance layers of (Sr1-xLax)2IrO4

In the samples with higher doping levels (x ≈ 5 %), we observe a different signature

of field penetration: circular rings of enhanced conductance appear in the layers of

constant energy of the spectroscopic maps. In the following, we will refer to these

features as ‘bubbles’. Their diameter increases with energy, as shown in Fig. 5.5a-d,

causing hyperbolas of enhanced conductance in a (E, r) plot, as shown in Fig. 5.5e.

We shall see that these bubbles are generated by the presence of a low concentration

of specific impurity atoms which can be used as a probe to better understand the field

penetration in the material.

Very similar features have been observed in semiconductors, where they are identified

as markers of ionization/empty state filling of donors or acceptors induced by the

vicinity of the STM tip. ‘Bubbles’ in semiconductors have been thoroughly studied

because they can help in extracting material parameters such as the binding energy of

the donors. This was done for instance for Si donors in GaAs [124, 125], for which it

was further demonstrated that donors closer to the surface have an enhanced binding

energy with respect to the bulk [130]. Effects of charge manipulation by the STM tip
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Figure 5.5: Visualization of a tip-induced band bending bubble in (Sr1-xLax)2IrO4 at x=5.5 %.

a-d, Conductance layers in a field of view of 3×3 nm2 at 250 meV, 175 meV, 40 meV, -230 meV,

respectively. e, (E,r) plot of the bubble along the red line in a. The hyperbolic profile visualizes

the increasing diameter of the bubble with increasing energy. The arrows indicate the energies

at which the conductance layers shown in panels a-d are extracted.

and enhanced binding energy closer to the surface were also reported for Mn acceptors

in InAs and GaAs [121, 131] and for donors in ZnO [132, 133]. Moreover, bubbles due

to TIBB effects have also been reported when using a scanning capacitance probe to

image transport in two-dimensional electron gas in AlGaAs/GaAs heterostructures

[134]. Despite semiconductors being relatively simple and accessible systems, the

physics governing the appearance of the bubbles is quite complicated, and many

details are not yet agreed upon.

We note that signatures of finite field penetration resembling the bubbles observed in

our samples are also found in other correlated-electron systems, such as the lightly

hole-doped oxychloride Ca2CuO2Cl2 [103] and possibly the correlated iridates Sr3Ir2O7

and Sr3(Ir1-xRux )2O7 [98, 117, 135]. However, these bubbles have never been dis-

cussed in details for a correlated-electron system.

We expect that the mechanism leading to the formation of bubbles in our samples is

the same as in semiconductors, and we refer to Ref. [124, 125] for a detailed description

of the processes.

Here, we emphasize that the impurity atoms in our samples are identified as electron

donors, that each of these donors generates one hyperbola as in Fig. 5.5d, and that the

two parts of the hyperbola lying above and below the chemical potential come from

two different tunneling processes. For Vb > 0, the enhanced conductance is due to the

ionization of the donor, which locally changes the potential landscape in the sample.
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5 Poor electronic screening in lightly doped Mott insulators

In this process, the electrons tunnel from the tip to the bulk of the sample, therefore

the bubble becomes visible only after the onset of the upper Hubbard band. For

Vb < 0, the enhanced conductance is instead caused by the opening of an additional

tunneling channel. In this process, electrons tunnel from the sample bulk to the tip

via the donor state. The bubble’s diameter in this part of the hyperbola reflects the

extension of the donor wave function in real space. Both processes are triggered at

a specific value of ϕBB, causing the hyperbola to follow a constant ϕBB contour. We

emphasize that the two parts of the hyperbola will lie on the same constant ϕBB

contour only when the sample chemical potential roughly coincides with the onset of

the upper Hubbard band, otherwise they might be shifted in energy.

In a typical spectroscopic map, we can usually identify several bubbles which start to

emerge at different energies. Figure 5.6a shows the topograph of a 17×17 nm2 field

of view with doping level of 5.5%, where we count 180 dopant atoms on the surface.

In the same field of view, the conductance layers show the appearance of only ≈ 15

bubbles (Fig. 5.6b). In general, the number of bubbles that we observe corresponds

to less than 10 % of the total number of La dopants present on the surface. We

can therefore exclude that La dopants in their normal state cause the appearance of

bubbles. Our best hypothesis on the nature of the bubbles is that they originate either

from some special chemical state of the La atoms (for instance an oxygen vacancy

next to the La atom) or from Pt atoms that substitute for the Ir atoms. The latter

could originate from the Pt crucible where the samples were grown.

Even if the origin of the bubbles is not certain, from their presence and behavior

we can still extract useful information about the material. Importantly, the bubbles

are not influenced by and do not influence the phase-separated density of state of

the sample. In Fig. 5.6b, we show the conductance layer at E = 540 meV where

the black contour indicates the border between pseudogap phase and Mott phase, as

defined by the Mott parameter (see Sec. 4.6). The bubbles originate from both Mott

regions and pseudogap regions, and when they cross the sharp border between the

two regions their shape is not affected. Moreover, the phase-separated landscape and

the emerging order that we describe in section 4.6 are not influenced by the presence

of the bubbles.

Unfortunately, the model that we developed for the low doping level samples is unable

to grasp the physics of the samples with doping x ≈ 5%, due to the presence of free

carriers in the latter case. We can still make some important qualitative observations

by plotting in Fig. 5.6c all the hyperbolas extracted from the bubbles in Fig. 5.6b:

(i), The bubbles start to appear at different threshold potentials. The threshold

potential is an indication of the donor depth below the surface [130], with donors

that lie deeper below the surface having a lower threshold potential. We therefore

conclude that we observe bubbles originating form donors located at different depths.
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Figure 5.6: a, Topograph of a sample with x=5.5 % doping in a field of view of 17×17 nm2 (same

FOV as in Fig. 4.5). The setup conditions are (Vs = 460 meV, Is = 300 pA). b, Conductance layer

at 540 meV in the same field of view. We observe ≈15 circular bubbles of different sizes. The

black line indicates the phase separation according to the Mott parameter defined in Sec. 4.6.

c, Hyperbolas extracted from all the bubbles appearing in panel b. The gray lines are fits to the

hyperbolas, added as a guide to the eye. The two green straight lines emphasize the increasing

maximal bubble diameter with increasing donor depth below the surface. The vertical black lines

group hyperbolas appearing at similar threshold potentials.
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5 Poor electronic screening in lightly doped Mott insulators

(ii), For the lower part of the hyperbola, the maximum bubble’s diameter gets smaller

for donors closer to the surface. Since the maximum diameter reflects the real space

extension of the donor wave function, this gives evidence for enhanced binding energy

for donors closer to the surface [130].

(iii), Most of the bubbles can be grouped as starting at roughly the same threshold

potential (within an error of 50 meV), therefore probably originating from donors at

the same depth below the surface, i.e. belonging to the same crystal layer. In Fig. 5.6c

this is indicated by the short vertical black lines.

Concluding, we would like to emphasize a last important point that might tell us

something more about the material. The typical lateral extension of the bubbles in

our samples is ≈1.5 nm. This is significantly lower than in semiconductors where,

for example, the typical extension of bubbles due to Si donors in GaAs is ≈10 nm.

Among the factors that can influence the extension of the bubbles are the tip radius,

the concentration of free carriers and the material’s electrical permittivity. We can

exclude that the tip radius is the cause for the small extension of the bubbles, as one

would need to have an unrealistically small tip radius to reproduce the bubbles. We

identify two factors that could be responsible for the reduced lateral extension of the

bubbles: (i) the resistivity in (Sr1-xLax )2IrO4 is lower in the ab-crystal plane than

along the c-axis [129], although with diminishing strength upon doping [91]; (ii) the

electrical permittivity of Sr2IrO4 is anisotropic [129]. We can only speculate that the

small extension of the bubbles is related to these effects; in any case it is evidence for

the strongly anisotropic electronic structure of the material.

5.5 Conclusions

In this chapter, we showed that electric field penetration in materials with poor elec-

tronic screening can strongly influence STM results.

It is important to be aware of the possibility to encounter TIBB when performing

experiments on lightly doped Mott insulators and other materials with poor electronic

screening (including topological materials [136] and van der Waals heterostructure;

magic-angle superconducting graphene [137] would likely be affected by this effect).

The presence of TIBB could be difficult to identify, and one has to be extra careful

when measuring such materials. The appearance of bubbles in the conductance layer

can and should be used as an indication for the presence of TIBB in the sample.

In particular, we showed that the incompatibilities between STM and other tech-

niques in the gap value measured on (Sr1-xLax )2IrO4 for x < 4% are caused by field

penetration. We developed a model to correct for this effect that can generally be

applied to lightly doped Mott insulators. We showed that, after correcting the data
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5.5 Conclusions

according to this model, our STM results reconcile with literature. We would like

to emphasize that what is discussed in this chapter does not influence the findings

of chapter 4. Even though the gap values for the low doping samples as reported in

chapter 4 do not correspond to the intrinsic values, our interpretation of the physics

of the material is not affected.
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6 Quasiparticle interference in the correlated metal Sr2RhO4

6.1 Introduction

SI-STM directly probes real space, but in metals or superconductors with sharp quasi-

particles, it can also provide information about momentum space. This is possible by

imaging the interference of standing waves that are caused by the scattering of quasi-

particles. A general introduction to this technique, called quasiparticle interference

imaging, is given in chapter 2, Sec. 2.3.

The most popular probe to access momentum space information is angle-resolved

photoemission spectroscopy (ARPES), also a surface-sensitive technique. ARPES

directly measures photon-induced quasiparticle excitations, resolving both energy and

momentum. It can therefore measure the band structure of materials.

Because both STM and ARPES have advantages and disadvantages related to their

experimental realizations, it is recommendable to combine their results in order to ob-

tain a better understanding of the underlying physics. ARPES has the clear advantage

of probing momentum space directly, while STM measures the scattering vectors of

quasiparticles. However, ARPES probes only states below the Fermi level, and its best

energy resolution is a few meV, limited by temperature. STM, on the other hand, can

probe states both above and below the Fermi level, and because it can be performed

at much lower temperatures, the energy resolution can be lower. For example, at

250 mK, the energy resolution is ∆ESTM ∼ 75 µeV (see Sec. 2.5 for details). Thanks

to its superior energy resolution, STM has been able, for instance, to detect k-space

anisotropy in iron-based superconductors previously invisible to ARPES [138, 139],

and to image the band structure of heavy fermions materials where ARPES cannot

access the energy scales [37, 38]. Quasiparticle interference imaging also brought

enormous insights in the superconducting phase of cuprate high-Tc superconductors

[18, 34]. However, in general QPI imaging is a difficult experimental technique, and

its theoretical understanding is still in progress [140, 141].

Both STM and ARPES measure quantities proportional to the quasiparticle spectral

function, as explained in section 2.3.1. Because the two techniques in principle have

access to the same physical information, it is natural to try to compare their results.

However, the comparison between the two is not always simple. While they generally

agree on the main observed features, they very often differ in the details, as it was

shown for example for cuprates [45–47], and for the normal state of Sr2RuO4 [43].

In both these systems, the two techniques obtain very similar Fermi surfaces, but

different slopes in the energy-momentum dispersions. Discrepancies could be caused

by measurements effects in both techniques, i.e., the tunneling/photoemission matrix

elements, tip-induced effects, and photon energy and polarization, however they could

also be related to more intrinsic factors.
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Here, we use quasiparticle interference to study the electronic structure of the cor-

related metal Sr2RhO4, which is an example of an almost perfect Fermi liquid [68].

This material has very sharp quasiparticles and a simple band structure, and it is

therefore relatively easy to study with quasiparticle interference. This makes it a

good candidate to better understand how STM QPI can be related to ARPES re-

sults. Additionally, we study samples belonging to the same batch used in published

ARPES and quantum oscillation studies [68, 69], which makes the comparison more

sound.

We start with an introduction to the material and to the relevant literature, and

then proceed with the presentation of our experimental results. Finally, we compare

our data to ARPES results. The data that we show here is the first data that we

acquire with our home-built microscope, described in chapter 3. While the data

quality is good enough to have some preliminary conclusions, further measurements

are needed and planned in order to confirm our findings. We will come back to this

while discussing the results and in the conclusions.

6.2 The correlated metal Sr2RhO4

The rhodate Sr2RhO4 has a tetragonal crystal structure isostructural to the cuprate

La2CuO4. The RhO6 octahedra are additionally rotated of 11◦ around the c-axis,

as shown in Fig. 6.1a. Sr2RhO4 has therefore an identical structure to the iridate

Sr2IrO4 that has been discussed in chapter 4.

The octahedra rotation causes the formation of a new orthorhombic unit cell and,

consequently, a reduction of the first Brillouin zone, as illustrated in Fig. 6.1b-c. The

lattice parameters of the new orthorhombic cell are a∗ =
√

2a = 5.45 Å and c∗ = 2c =

25.7 Å, where a and c are the lattice parameters of the undistorted structure [142].

In the periodic table, Rh belongs to 4d transition metals. With its odd number of elec-

trons per unit cell (electronic configuration 4d5), Sr2RhO4 is a metal, as it is expected

from simple band structure considerations. Nevertheless, Coulomb correlations U and

spin-orbit coupling λ are present in this material as well, and only by taking them

into account can the experimentally observed Fermi surface be reproduced by LDA

calculations [69, 143, 144].

The most studied 4d transition metal oxides are probably the ruthenates Sr2RuO4 and

Sr3Ru2O7. In particular, Sr2RuO4 is famous for showing spin-triplet superconductiv-

ity below 1.5 K [145]. In the normal state, Sr2RuO4 is also a strongly two-dimensional

Fermi liquid, with a Fermi surface characterized by three cylindrical sheets, called α

(which is hole like), β and γ (which are electron like), as shown in Fig 6.2a. Calcula-

tions show that α and β are strongly one-dimensional and are derived from the Ru
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Figure 6.1: a, Crystal structure. b, Top view of the crystal structure showing the orthorhombic

distortion. c, First Brillouin zone and reduced BZ due to orthorhombicity. The high symmetry

directions Γ, X and M are indicated for both undistorted and distorted structure.

4dxz,yz orbitals, while γ is dominantly two-dimensional, derived from the 4dxy orbital

[145].

Rhodium has just one atom more than ruthenium, but its electronic structure is

quite different. In a näıve picture, one could think to obtain the Fermi surface of

Sr2RhO4 simply by shifting the Sr2RuO4 band structure to accommodate the extra

electron of Rh. However, spectroscopic studies, later confirmed by theory, show that

Sr2RhO4 has only two bands at the Fermi level [69, 143], respectively the α and β

bands. In addition, they are back-folded due to the first Brillouin zone reduction

caused by the octahedra rotation1, as shown in Fig. 6.2b. It has been shown that

the octahedra rotation is also responsible for the absence of the γ band from the

Fermi surface: the structural distortion combined with the folding of the bands causes

an additional hybridization of the occupied dxy orbital with the unoccupied dx2−y2

orbital, which mixes the bands and opens a gap between the two, pushing the dxy
band below the Fermi level [143]. The physics of the material is therefore governed by

the three electrons per Rh atom that are left at the Fermi level, distributed between

the α and β bands.

We will now introduce a brief summary of the most prominent experimental studies

that have been performed on the rhodate Sr2RhO4, with a focus on photoemission

1Sr2RuO4 has an undistorted crystal structure, with a normal tetragonal unit cell. Upon cleaving

it shows a surface reconstruction with the octahedra rotating by 11◦ in the top layer only, as for

example shown by Ref. [43].
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Figure 6.2: a, Fermi surface of Sr2RuO4, reproduced from Ref. [146]. b, Fermi surface of

Sr2RhO4 as obtained by LDA+SOC+U calculations, reproduced from Ref. [144]. c, Fermi surface

of Sr2RhO4 measured with ARPES at 10 K, reproduced from Ref. [69]. d, ARPES spectra along

the ΓM direction of the orthorhombic Brillouin zone, reproduced from Ref. [69].

spectroscopy. Later in the chapter, we will compare our STM experimental results to

these studies.

We start with crystal growth and transport properties, which have mainly been re-

ported in Ref. [68]. Sr2RhO4 single crystals can be grown by the floating zone tech-

nique, with the formation of big crystals up to 1.5 cm long. Subsequent annealing

in O2 atmosphere is necessary to improve the quality of the crystals, leading to low-

temperature in-plane resistivities ρab < 7 µΩ cm. The out of plane resistivity ρc is

about three orders of magnitude higher, confirming the strongly two-dimensional na-

ture of the electronic structure. The low in-plane residual resistivity is a hallmark of

extremely high purity crystals, similar to what is achieved in Sr2RuO4. This allows

the measurement of quantum oscillations, that are unobservable in most oxide metals

due to signal suppression from impurity scattering [68].

Angle-resolved photemission spectroscopy (ARPES) provides an essential contribu-

tion to the understanding of the electronic structure of Sr2RhO4 [68, 69, 143]. In

Fig. 6.2c-d, we reproduce ARPES data from Ref. [69]. The Fermi surface clearly

shows the slightly asymmetric hole-like α band and electron-like β band, as well

as their copies that are back folded along the orthorhombic zone boundary (dashed

line in Fig. 6.2c). A closer investigation of the data reveals that a small gap opens at

the crossing of the β band with its back folded copy at the orthorhombic zone bound-
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ary, causing the formation of three different pockets at the Fermi surface: the central

hole pocket (α), the lens-shaped electron pockets around the M point (βM ) and the

square-shaped hole pockets around the X point (βX). The volume of the pockets as

extracted from the ARPES data leads to a total Luttinger volume2 of three electrons

per Rh atom, confirming the picture of a fully occupied γ band.

6.3 SI-STM quasiparticle interference measurements

The sharpness of the quasiparticles that are measured on Sr2RhO4 by ARPES and

quantum oscillations makes the material a very good candidate for the imaging of

quasiparticle interference with STM [70]. In the following, we report our SI-STM

measurements on the same Sr2RhO4 samples of which growth and measurements

are reported in Ref. [68, 69] and summarized in section 6.2. This allows for a direct

comparison with ARPES results.

A general explanation of the techniques of quasiparticle interference imaging and

Fourier transform STM is given in section 2.3, where we introduce many concepts

that are used in the present chapter.

The measurements shown here have been performed with our home-built STM de-

scribed in chapter 3. The samples are about 2−3 mm in lateral size, and cleave very

easily. They are cleaved in situ at ≈20 K, and immediately transferred to the STM

head. STM measurements are performed at the base temperature of 4.3 K with a

chemically etched tungsten tip that has been previously prepared by field emission

on a gold surface. STM topographs are taken in the constant current mode, and

the dI/dV spectra are collected using a standard lock-in technique with modulation

frequency f = 863 Hz.

While the data quality we achieve from the very first measurement is confirming the

exceptional performance of the microscope in terms of signal-to-noise ratio, it is not

yet ideal. In particular, the tip apex shape is not perfect, and we encountered an

asymmetry of the piezotube polarization. We can partially remove these effects by

post-processing the data, as we explain throughout the chapter. However, to confirm

our findings and accumulate more statistics, additional measurements are planned.

In Fig. 6.3a, we show a STM topograph acquired on Sr2RhO4. The material, similarly

to Sr2IrO4, cleaves between SrO layers, and the Sr atoms are visible on the surface

with spacing a = 3.85 Å. Two different types of defects are visible, and are identified

based on Ref. [147]: (i) square-shaped defects, corresponding to a missing Sr atom;

(ii) cross-shaped defects, centered at the position of an O atom and corresponding to

2Luttinger’s theorem states that the volume enclosed by a material’s Fermi surface is directly

proportional to the particle density. Importantly, this is not changed by the presence of electron-

electron interactions.
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Figure 6.3: Quasiparticle interference in real space. a, Topograph on Sr2RhO4 on a field of

view of 15×15 nm2. The setup conditions are (Vb= −20 meV, It= 600 pA). b, Conductance

layer at E= −20 meV acquired simultaneously to the topograph in panel a with bias modulation

amplitude dV= 2 meV.

a chemisorbed CO molecule, where the carbon atom gets incorporated in the surface

by replacing the apical oxygen atom. The cross-shaped defects show two possible

orientations, depending on the rotation of the octahedra to which they are bound.

In Fig. 6.3b, we show the conductance layer at −20 meV acquired simultaneously to

the topograph in Fig. 6.3a, where quasiparticle interference is imaged in real space.

The lattice defects obviously act as scattering centers, creating an interference pat-

tern between the quasiparticles standing waves. Such an image contains quantitative

information about the quasiparticles momenta and, therefore, the band structure,

as already introduced in chapter 2.3. The easiest way to access this information is

by taking two-dimensional Fourier transforms of the conductance layers, to create

momentum space images of the quasiparticle scattering vectors q.

In order to obtain high quality q-space images (i.e. high signal-to-noise ratio and

resolution), one needs to scan over a bigger field of view than the one showed in

Fig. 6.3, eventually reducing the real space resolution. We show an example of a

spectroscopic map that is optimized for Fourier space analysis in Fig. 6.4. The field

of view is 55×55 nm2 and it is measured with 288×288 pixels. Several lattice defects

are visible on the topograph. They create a very rich QPI pattern in the conductance

layers, as shown for the energy layer corresponding to the Fermi level in Fig. 6.4b.

In Fig. 6.4c, we plot the two-dimensional Fourier transform of Fig. 6.4b. The field

of view is rotated by 45◦ in order to have the same orientation of ARPES data and

theoretical calculations. Several features can be observed. The Bragg peaks corre-
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Figure 6.4: Spectroscopic map on Sr2RhO4. Field of view 55×55 nm2, 288×288 pixels. Setup

conditions (Vb= −50 meV, It= 500 pA). a, Topograph. b, Conductance layer at E=0 meV, show-

ing QPI in real space (raw data). c, Fourier transform of panel b, rotated by 45◦ (raw data).

The Bragg peaks corresponding to the orthorhombic unit cell and to the Sr lattice periodicity

are indicated with red and blue circles, respectively.

sponding to both the orthorhombic unit cell and the surface Sr lattice are indicated

by the red and the blue circles, respectively. All the other features stem from quasi-

particles scattering between high density of states areas of the Fermi surface, and

their origin will be discussed in the rest of the chapter.

The image shown in Fig. 6.4c shows the raw Fourier transform. It is slightly distorted

due to an asymmetry in the piezotube polarization and a slightly double tip, combined

with a minimal thermal drift. Before extracting quantitative information from the

data, we correct the images for the distortions. Additionally, we four-fold symmetrize

the Fourier-transformed images, to remove residual asymmetries and improve the

signal-to-noise ratio3.

3To get an idea of how much distortion corrections and symmetrization change the Fourier trans-

formed images, Fig. 6.4c (raw) should be compared with Fig. 6.6e (corrected).
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6.4 Identification of scattering vectors: comparison with

simulations

In order to analyze the origin of the features seen in the QPI measurements, we

compute the autocorrelation of the Fermi surface, following the joint density of states

(JDOS) approach introduced in section 2.3. In autocorrelation images, high intensity

corresponds to scattering vectors that connect parallel regions of the Fermi surface,

allowing a direct comparison with the STM q-space images.

To reproduce the Fermi surface measured with ARPES in Ref. [69], we compute the

band structure from a minimal 2D tight-binding model adapted from Ref. [148]. It

includes only the bands derived from the dxz and dyz orbitals, neglecting the γ band

deriving from the dxy orbital. The model uses two sublattices A,B to reproduce

the band folding due to the octahedra rotation, and ignores next-nearest-neighbors

hopping processes. The resulting 4×4 tight-binding hamiltonian is:

H =

HSO HAB

H†AB HSO

 , (6.1)

where the on-site spin-orbit interaction HSO and the nearest-neighbor hopping HAB

are given by

HSO =

 0 iλ/2

−iλ/2 0

 , HAB =

 εyz εrot

−εrot εxz

 . (6.2)

Here, λ is the spin-orbit coupling constant, and it plays the role of mixing the dxz
and dyz orbitals. The hopping is governed by the dispersions εyz, εxz, εrot, that are

given by:

εyz = −2tπcos(ky)− 2tδcos(kx), (6.3)

εxz = −2tπcos(kx)− 2tδcos(ky), (6.4)

εrot = −2tpcos(ky)− 2tpcos(kx). (6.5)

Here, the terms tπ and tδ represent hopping between identical orbitals on neigh-

boring Rh sites (respectively, yz → yz and xz → xz), while tp allows hopping

between different orbitals (e.g. yz → xz) due to the octahedra rotation. The

model has five parameters: the three hopping terms, the spin-orbit coupling and

the Fermi energy: (tπ, tδ, tp, λ, EF ). We optimize the parameters in order to re-

produce the ARPES band structure from Ref. [69], to obtain (tπ, tδ, tp, λ, EF ) =

(0.104, 0.012, 0.0314, 0.14, 0.155).

By diagonalizing the hamiltonian in Eq. (6.1) with the given parameters, we obtain

the tight-binding band structure. From the tight-binding constant energy contours,
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Figure 6.5: a, Simulated Fermi surface computed using the tight-binding model discussed in the

main text. b, Autocorrelation of the Fermi surface in panel a. The main scattering vectors are

indicated with the same color coding in both panels. Note the different axes.

we generate a rough simulated A(k, ω). To reproduce ARPES experimental energy

and momentum resolution, we add energy layers in an energy window corresponding

to the ARPES energy resolution and we apply a Lorentzian smoothing in k-space.

The resulting simulated Fermi surface is shown in Fig. 6.5a. The most prominent

scattering vectors are indicated by arrows. The main scattering vectors correspond

to the α − α (red) and β − β (yellow) intraband scatterings and to two possibilities

for the α−β interband scattering (orange and blue). In addition, we indicate vectors

connecting the backfolded copies of the bands, within the lens-shaped βM pocket

(purple) and within the square-shaped βX pocket (green).

In Fig. 6.5b, we show the computed autocorrelation from Fig. 6.5a, where the scat-

tering vectors from the Fermi surface are identified by the same color coding. The

autocorrelation shows much more details than the STM QPI data in Fig. 6.4c. This

is probably because the simplistic autocorrelation approach neglects scattering prob-

abilities due to matrix elements. It is, nevertheless, useful for the identification of the

features seen in QPI data.

In order to have a more complete overview of the energy evolution, we show in Fig. 6.6

a selection of layers from the same spectroscopic map shown in Fig. 6.4. The data,
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a b c

d e f
-15meV -9meV -6meV

-3meV 0meV 6meV

β - β α - α
βX - shortα - β βM,   - lens Т

Scattering
vectors:

Figure 6.6: a-f Fourier transform of selected conductance layers of the same spectroscopic map

shown in Fig. 6.4. The field of view is 55×55 nm2, with 288×288 pixels. The setup conditions

are (Vb= −50 meV, It= 500 pA), and the map has 11 energy layers between -15 meV and 15 meV

spaced by 3 meV intervals. The real space data is corrected for drift and other distortions and

the Fourier transform is 4-fold symmetrized to ease the visualization of the features.

here, is corrected for drift and piezotube miscalibration and additionally four-fold

symmetrized to ease the identification.

From a careful comparison of the scattering vectors, we can identify several features in

the QPI data in Fig. 6.6. The biggest circular feature corresponds to the β − β intra-

band scattering. It grows in diameter with increasing energy, indicating its electron-

like character. We can also identify the smaller α − β interband scattering (blue),

while the bigger α − β interband scattering (orange arrow in Fig. 6.5) is completely

absent from the QPI data. At small q, we find the scattering vectors corresponding

to the lens-shaped βM electron pockets (magenta dot), also growing with increasing

energy. The scattering vectors within the hole-like features (α and βX pockets) are

instead more difficult to identify. There is a clear signal of a hole-like feature along the

ΓX direction that shrinks with energy. However it is not possible to discern whether

it belongs to the α (red) or to the βX (green) hole pocket, since along this direction
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6 Quasiparticle interference in the correlated metal Sr2RhO4

both pockets have very similar sizes, and where their shapes start to differ, the signal

is partially hidden from the lens-shaped βM pockets. We show in Sec. 6.5 that the

two hole pockets can be distinguished along the ΓM direction.

6.5 Extraction of dispersions and Fermi vectors

To better characterize the dispersion of the scattering vectors, we take (E, q) cuts

along the high symmetry directions ΓX and ΓM, as shown in Fig. 6.7 for two different

measurements. Before taking the cuts, the Fourier transformed data is additionally

smoothed with a small Gaussian window. The two maps have the same size and

number of pixels (55×55 nm2, 288×288 pixels), and are acquired on two different field

of views about 100 nm apart from each other. They have different setup conditions

(Vb, It) and energy ranges: (50 meV, 500 pA) and [−50 meV; 50 meV] for Fig. 6.7a-b

versus (−50 meV, 500 pA) and [−15 meV; 15 meV] for Fig. 6.7c-d4.

The main features in the cuts can be recognized as the dispersing scattering vectors

that we identified in Sec. 6.4. In order to extract quantitative information, we indi-

vidually plot every dispersion as intensity vs. momentum curves for all energies, as

shown in Fig. 6.7f for the βX scattering from Fig. 6.7c. This leads to the STM anal-

ogous of ARPES momentum distribution curves (MDCs). We can then fit the data

with a gaussian curve summed with a linear background, to extract the peak position.

The dispersion of all the scattering vectors extracted by fitting the peak positions are

plotted in Fig. 6.7g-h for both the datasets in the two different directions. Sometimes

the signal is not very clear, causing a considerable uncertainty in the determination

of the peak position. This mostly happens when two dispersions cross each other or

when they flatten out.

By fitting the dispersions with a linear curve (or with a parabolic curve for the α

and βX hole pockets), we can extract the magnitude qF of all the q-vectors at the

Fermi level. Moreover, for scattering within one single band, the Fermi velocity can

be obtained from the slope of the fit. In the next section, we will compare both

quantities with photoemission data.

4The cuts in Fig. 6.7c-d are extracted from the same measurement of which we showed conductance

layers and Fourier transforms in Fig. 6.4 and Fig. 6.6.
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Figure 6.7: a-b, Cuts of a spectroscopic map with (Vb, It) = (50 meV, 500 pA) and energy range

[-50 meV, 50 meV], along ΓX and ΓM directions. c-d, Cuts of a spectroscopic map with (Vb,

It) = (-50 meV, 500 pA) and energy range [-15 meV, 15 meV], along ΓX and ΓM directions. e,

Fermi surface from tight-binding model with identification of the main scattering vectors. f,

Example of a gaussian fit to the QPI MDCs for the βX scattering from panel c. The energies

are indicated in meV units. g-h, Dispersions extracted from panels a-b (in red) and c-d (in blue)

through fits analogous to the one shown in panel f. The error bars are the quadratic sum of the

standard deviations extracted from the fit and the size of the smoothing window.
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6 Quasiparticle interference in the correlated metal Sr2RhO4

6.6 Comparison with ARPES

In Table 6.1, we compare the values obtained from STM data for qF and vF with

the corresponding values obtained with ARPES in Ref. [69]. In general, we find very

good agreement for what concerns the magnitude of the scattering vectors at the Fermi

level, while the Fermi velocities agree less well. The values for the Fermi velocities

obtained in the ΓM direction are not very reliable, due to poor S/N. However, also in

the ΓX direction, where the STM signal is clear, the ARPES-derived value is about

10% larger.

In Fig. 6.8, we plot the superposition of our STM results with ARPES results from

Ref. [68, 69], in order to have a further visual comparison. The STM q-axis are rescaled

by a factor two, to coincide with the ARPES data.

In Fig. 6.8a, we compare the Fermi surfaces derived from ARPES and STM. We can

obtain the Fermi surface for the β band from the STM data shown in Fig. 6.6e by

fitting intensity profiles radially for several angles between ΓX and ΓM. We plot the

values of kF extracted in this way as datapoints above the measured ARPES Fermi

surface. The two colors correspond to the two different measurements, with the

respective standard deviations. The agreement is good in all directions.

STM ARPES

qF (Å-1)

αX 0.32* 0.32

αM 0.38 0.35

βX large 1.29 1.28

βM large 1.37 1.36

βX short 0.32* 0.34

βX long 0.53 0.52

βM lens 0.66 0.63

α− β 0.56 0.52

vF (eV Å)

αX 0.39* 0.41

αM 0.35** 0.41

βX short 0.39* 0.55

βX - large 0.46 0.55

βM - large 0.50** 0.61

Table 6.1: Comparison of scattering vectors qF and velocities vF at the Fermi level as obtained

from STM (this study) and ARPES (Ref. [69]). The STM values, when possible, are averaged

between the two datasets. The single asterisk indicates that the identification of the STM feature

is uncertain, and could belong to both the αX pocket and the βX square pocket. The double

asterisk indicates that the STM data is not fully reliable due to poor data quality.
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Figure 6.8: Comparison of STM and ARPES results. a, STM-derived Fermi surface (in circles)

plotted over the ARPES Fermi surface (Ref. [69]). The STM points are obtained from radial

cuts of the Fourier-transformed QPI signal between the ΓX and ΓM directions. The two STM

datasets are given with different colors, and the shaded areas indicate the standard deviations.

b-c, Superposition of the ARPES dispersions (adapted from Ref. [68]) and the STM dispersions

in the ΓX and ΓM directions, respectively. The data points are indicated by circles with different

colors for the two datasets, and the white dash lines are fits to the STM data. The STM

dispersions are renormalized by dividing the k-axis by a factor two.

In Fig. 6.8b-c, we plot the comparison of the dispersions. For the STM data, we plot

both the peak positions as in Fig. 6.7g-h and the linear or parabolic fits (white dashed

lines) from which we extract the Fermi velocities. As already anticipated by the values

in Table 6.1, the STM-derived dispersions are generally flatter than the ones obtained

with ARPES. For what concerns the α band, the dispersions agree better, however,

mostly in the ΓM direction, the STM dispersion is a bit displaced with respect to the

ARPES data. For the β band, the dispersions clearly deviate from each other, with

most differences visible along ΓM. As we already indicated before, along this direction

the STM signal is suppressed, resulting in worse data quality.

A good agreement of the Fermi surface, but flatter STM dispersions with respect to

the ARPES ones, have been encountered before, for instance on Sr2RuO4 [43] (which

is a very similar system to Sr2RhO4) and on cuprates [18, 47]. For cuprates, some

efforts have been made to understand the discrepancies [47]. It has been suggested

that both tunneling and photoemission matrix elements could play a role. Indeed,
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6 Quasiparticle interference in the correlated metal Sr2RhO4

the dispersions agree better when ARPES experiments are performed with a photon

polarization that suppresses states in the same direction as they are suppressed in

STM [47].

To bring the comparison with ARPES further, one could try to extract the self en-

ergy from QPI data, as it is proposed in Ref. [149]. To do so, one needs to fit the

STM MDCs with Lorentzian curves, and extract the position of the peaks and their

width. However, data of outstanding quality is necessary for this type of analysis.

We preliminary extracted the self energy for the β band, leading to results that are in

rough agreement with ARPES. However, a more detailed analysis on better quality

datasets is needed in order to draw firm conclusions.

6.7 Conclusions

We are certain that it is important to be able to compare STM with ARPES results.

Both techniques have their own strengths, and combining their complementary results

can lead to crucial insights into the understanding of quantum materials. However,

we think that this combination is reliable only if the techniques deliver similar results

when they measure the same quantities on simple materials, or if we understand well

where possible discrepancies come from.

In this chapter, we show QPI measurements on the correlated metal Sr2RhO4, which

seems like a good candidate to test the comparison between STM and ARPES. While

the data quality and statistics is not yet good enough to come to sound conclusions,

we obtain some promising, preliminary results.

We are able to identify all the features observed with STM as scattering between

different areas of the Fermi surface, and we obtain very good agreement for the mag-

nitude of the scattering vectors at the Fermi level. The values obtained for the Fermi

velocities are instead agreeing less well with ARPES results. Interestingly, a compa-

rable disagreement for the Fermi velocity is reported for Sr2RuO4 [43], which in many

ways is a very similar system to Sr2RhO4. This might indicate a deeper origin for the

disagreement, and further investigations on both systems could, for instance, indicate

if they are due to the nature of the scatterers or to the measurement technique.

The quality of the Sr2RhO4 data presented here is possibly still affected by some mea-

surement artifacts, and hence, we cannot yet infer the origin of this disagreement. We

are planning further measurements that should lead to better results, in addition to

more statistics. This will be achieved, for instance, by setting up the measurements at

negative biases to avoid artifacts (following the suggestions of Ref. [150]), by reducing

the energy resolution to 1.5 meV (best resolution achievable at 4.3 K), and eventually
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by exploring a bigger negative energy range. Moreover, a better tip quality should

help to get clearer data.
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7
Conclusions and outlook

This thesis is dedicated to the study of strongly-correlated electron systems using

spectroscopic-imaging scanning tunneling microscopy (SI-STM), with a focus on the

physics of lightly doped Mott insulators.

We are convinced that the improvement of scientific apparatus is the foundation

of new experimental discoveries. Thus, we designed and built a SI-STM (named

Dome) that proofs to be the stiffest reported to date (chapter 3), which has direct

consequences on the data quality in terms of signal-to-noise ratio. This makes the

instrument particularly suited for sensitive quasiparticle interference measurements,

as we show in chapter 6 on the correlated metal Sr2RhO4.

In parallel to the construction of this microscope, we studied the electron-doped

iridate (Sr1-xLax )2IrO4 using a different, commercial STM. Our results, described in

chapter 4 and 5, add important contributions to the understanding of the physics of

lightly doped Mott insulators. In particular, we show that a pseudogap phase with

inhomogeneous electronic order appears upon doping, similar to what it is observed

in cuprates. It is the first time that these phenomena are observed in a material

different that cuprates, and it shows that they are not unique to the copper oxide

planes, but belong to a wider class of quasi two-dimensional Mott insulators. Based

on this advanced comparison between iridates and cuprates, we support the claim that

iridates should also show unconventional superconductivity at higher doping [87, 88].

Quasiparticle interference (QPI) lead to many insights into the understanding of both

the pseudogap and the superconducting phase of cuprates [35, 151]. During our

investigation of the iridates, we tried to get momentum space information, with the
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goal to observe q-space signatures of the inhomogeneous charge order and, eventually,

QPI. We were not successful, but we could identify two possible reasons: either the

pseudogap puddles are too small, or the commercial STM that we used to measure the

iridates cannot resolve those features since it is not very suited for QPI measurements.

After having developed and tested a dedicated instrument such as Dome, it seems

natural to bring the investigation on the iridates further by trying to detect QPI

signatures on the iridates with Dome. The much higher signal-to-noise ratio could,

in fact, reveal information that we were previously not able to resolve.

This is just one example of which type of measurements could be performed in the

near future with Dome. To conclude this thesis, we give in the following other three

more specific examples of experiments that could exploit the microscope’s potential.

The ideas we present are based on the two qualities that make the microscope ‘spe-

cial’: first, the extreme stability that allows high-quality quasiparticle-interference

measurements (as shown in chapter 3 and chapter 6), and, second, the high-frequency

compatibility of the STM head (discussed in Sec. 3.2.1).

Investigation of the strange metal phase in cuprates

The strange metal phase in cuprates is still largely not understood, and much theo-

retical and experimental effort has been dedicated to its study in the recent years. In

particular, theoretical work predicts STM QPI patterns in the strange metal phase

both in the framework of Fermi-liquid and marginal-Fermi-liquid theory1 in the pres-

ence of disorder [141].

SI-STM experiments as suggested in Ref. [141] are a good way to understand whether

these descriptions are valid or not. In the case one observed the predicted pattern

due to QPI, very precise measurements would be needed in order to distinguish the

subtle effects that differentiate the proposed theoretical interpretations. On the other

hand, observation of a completely different QPI pattern (or of no pattern at all),

would indicate that this phase of matter is beyond the marginal Fermi-liquid descrip-

tion. This would point towards other theoretical interpretations, possibly involving

quantum criticality and the absence of quasiparticle-like excitations. In recent years,

a completely different approach based on holographic methods2 was used to describe

the properties of the strange metal phase [153, 154]. In general, however, more ex-

perimental data is needed to support any of the theoretical scenarios.

We believe that with our microscope we could contribute to a better understanding

of the strange metal phase, given the high quality QPI measurements that we can

achieve. In order to access the strange metal phase, one needs both to have sam-

1The phenomenological marginal Fermi liquid theory was first introduced by Varma et al. [152]

and it successfully describes many of the unusual properties seen in the normal state of cuprates.
2These methods, indeed, do not involve quasiparticles.
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ples in the right doping range and to raise the temperature above Tc. Since STM

energy resolution gets worse at higher temperatures (see Sec. 2.5), and, in general,

measurements become more challenging, we propose to study Bi2Sr2Cu2O6+δ, the

single layer compound of the BSCCO family. This material has a lower Tc at optimal

doping (Tc ≈ 20 K) than other members of the BSCCO family, which would make

the strange metal phase accessible more easily. Our sample stage includes a resistive

heater that we have already tested. We could measure 24h-long spectroscopic maps

at 30 K without the observation of significant drift. This makes the exploration of the

strange metal phase in Bi2Sr2Cu2O6+δ, in principle, experimentally possible.

Other insights into the strange metal phase could come from the analysis of the self

energies extracted from STM QPI data [155]. This method has been theoretically

proposed [149], but has not been applied to data yet. We plan to first develop and

apply the proposed data analysis methods onto the simpler system of Sr2RhO4 (de-

scribed in chapter 6), and, if successful, proceed with STM self-energy analysis in

cuprates, at low temperature and, eventually, in the strange metal phase.

Scanning noise spectroscopy

The other experiments we want to propose is based on the technique of scanning noise

spectroscopy. This technique has recently been developed in our group, and, when

first applied on cuprate high-Tc superconductors, it lead to interesting insights on the

insulating nature of the material along the perpendicular ‘c-axis’ direction [59]. The

technique is based on the development and construction of a new, low-temperature,

high-frequency amplifier that allows us to measure the tunneling current in the MHz

regime, simultaneously to conventional DC STM measurements [58]. This gives access

to information about the current fluctuations (i.e., the noise) that are typically hidden

in the ‘averaged’ DC current signal. Most prominently, it allows us to measure shot

noise, which gives an indication of the nature of the charge carriers.

The amplifier has been developed in our group, and, to date, it has been optimized

and used on a commercial STM from Unisoku [58]. We are currently at the last stages

of construction and testing of a second generation amplifier that will be installed in

Dome. One of the hindering factors for the quality of the high-frequency signal is the

tip-to-ground capacitance. This number, on the order of 30 pF for the Unisoku system,

can be reduced with a smart design of the tip holder (in fact, its origin mostly lies

in the geometry of the latter). When designing the STM head for Dome, we worked

towards achieving a very low tip-to-ground capacitance, as described in Sec. 3.2.1.

This, combined with the superior stability of the microscope, should increase the

signal-to-noise ratio of high-frequency measurements for Dome by a factor of three

with respect to the Unisoku commercial system. This would enable noise spectroscopy

measurements at much lower tunneling current (≈ 50 pA) than it is now possible,
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7 Conclusions and outlook

making these experiments applicable to many more quasi two-dimensional layered

materials.

In addition to further exploring cuprate high-Tc superconductors with scanning noise

spectroscopy, we propose to apply this technique to the iridates described in chapter

4. Here, shot noise measurements could additionally reveal different behaviors in the

Mott and pseudogap phases, bringing further insights on the nature of the carriers in

both phases. In particular, in the Mott regime, an enhancement of the shot noise at

the dopant locations could indicate charge trapping, confirming our proposed scenario

of frozen electrons.

Shaking the condensate

The last experiment we want to propose regards the exploration of non-equilibrium

superconductivity in cuprates. In other words, how is the superconducting state

affected when the condensate is moving?

Our idea is based on a proposal by Semenov et al. [156], where they theoretically

investigate the effect of applying a microwave field to BCS superconductors. At

very low temperatures and with a microwave energy lower than the energy gap (to

avoid direct Cooper pair breaking from microwaves), they find that the microwave

field would lead to coherent, excited Cooper pairs with an oscillating center of mass

motion. This would create a substantial modification of the single-particle density of

states, that could be detected by tunneling spectroscopy experiments. We are excited

by the possibility to investigate a similar scenario in cuprates.

Dome is provided with semirigid coaxial cables that allow for high-frequency measure-

ments (up to a few GHz). Therefore it is technically possible and relatively simple to

apply a microwave excitation to the sample while performing standard spectroscopic

STM measurements. We investigated this possibility, and simulations predict that,

with minor changes to the experimental setup, we would be able to induce the desired

oscillating current densities in the sample. A closer look at the numbers reveals that

we would need temperatures much lower than 4 K to observe the effect predicted by

Ref. [156]. However, at 4 K, there could still be some detectable effect of microwaves

on the coherence peaks of the superconducting gap. If we are able to detect this

signature, it would be extremely interesting to see how its magnitude changes locally,

given the electronically inhomogeneous landscape of cuprates. A different effect of

microwaves on different areas would give insights on how the condensate is moving

inside the material.

102



Bibliography

[1] N. W. Ashcroft, N. Mermin. Solid State Physics. Holt, Rinehart and Winston,

New York (1976).

[2] J. Schrieffer. What is a quasi-particle? J. Res. Natl. Bur. Stand. Sect. A Phys.

Chem. 74A, 537 (1970).

[3] P. W. Anderson. More Is Different. Science 177, 393–396 (1972).

[4] K. Fujita, M. Hamidian, I. Firmo, S. Mukhopadhyay, C. K. Kim, H. Eisaki, S.-I.

Uchida, J. C. Davis. Spectroscopic Imaging STM: Atomic-Scale Visualization

of Electronic Structure and Symmetry in Underdoped Cuprates. In Theor.

Methods Strongly Correl. Syst., chap. 3, 73–109. Springer Berlin Heidelberg

(2015).

[5] N. F. Mott. Metal-Insulator Transitions. Taylor & Francis, London (1990).

[6] M. Imada, A. Fujimori, Y. Tokura. Metal-insulator transitions. Rev. Mod. Phys.

70, 1039–1263 (1998).

[7] D. I. Khomskii. Transition metal compounds. Cambridge University

Press(2014).

[8] G. Kotliar, D. Vollhardt. Strongly Correlated Materials: Insights From Dynam-

ical Mean-Field Theory. Phys. Today 57, 53–59 (2004).

[9] P. A. Lee, N. Nagaosa, X.-G. Wen. Doping a Mott insulator: Physics of high-

temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

[10] J. Bednorz, K. Müller. Possible High-Tc Superconductivity in the BaLaCu0

System. Z.Phys.B-Condensed Matter 64, 189–193 (1986).

[11] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, J. Zaanen. From quantum

matter to high-temperature superconductivity in copper oxides. Nature 518,

179–186 (2015).

[12] N. P. Armitage, P. Fournier, R. L. Greene. Progress and perspectives on

electron-doped cuprates. Rev. Mod. Phys. 82, 2421–2487 (2010).

[13] E. Fradkin, S. A. Kivelson, J. M. Tranquada. Colloquium: Theory of intertwined

orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482

(2015).

103



BIBLIOGRAPHY

[14] N. E. Hussey, K. Takenaka, H. Takagi. Universality of the Mott–Ioffe–Regel

limit in metals. Philos. Mag. 84, 2847–2864 (2004).

[15] C. Howald, P. Fournier, A. Kapitulnik. Inherent inhomogeneities in tunneling

spectra of Bi2Sr2CaCu2O8−x crystals in the superconducting state. Phys. Rev.

B 64, 100504 (2001).

[16] K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida,

J. C. Davis. Imaging the granular structure of high-Tc superconductivity in

underdoped Bi2Sr2CaCu2O8+δ. Nature 415, 412–416 (2002).

[17] K. McElroy. Atomic-Scale Sources and Mechanism of Nanoscale Electronic

Disorder in Bi2Sr2CaCu2O8+δ. Science 309, 1048–1052 (2005).

[18] J. E. Hoffman. Imaging Quasiparticle Interference in Bi2Sr2CaCu2O8+δ. Science

297, 1148–1151 (2002).

[19] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri,

M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J. C. Davis. An

Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Un-

derdoped Cuprates. Science 315, 1380–1385 (2007).

[20] M. J. Lawler, K. Fujita, J. Lee, A. R. Schmidt, Y. Kohsaka, C. K. Kim,

H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, E.-A. Kim. Intra-unit-cell

electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature

466, 347–351 (2010).

[21] D. Griffiths. Introduction to quantum mechanics. Cambridge University Press,

second ed. (2016).

[22] G. Binnig, H. Rohrer. Scanning Tunneling Microscopy - from Birth to Adoles-

cence (Nobel Lecture). Angew. Chemie Int. Ed. English 26, 606–614 (1987).

[23] R. M. Feenstra, J. Stroscio, A. Fein. Tunneling spectroscopy of the Si(111)2×1

surface. J. Vac. Sci. Technol. B 5, 295–306 (1987).

[24] M. Crommie, C. Lutz, D. Eigler. Imaging standing waves in a 2D electron gas.

Nature 363, 524–527 (1993).

[25] L. Petersen, P. T. Sprunger, P. Hofmann, E. Lægsgaard, B. G. Briner, M. Do-

ering, H.-P. Rust, A. M. Bradshaw, F. Besenbacher, E. W. Plummer. Direct

imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys.

Rev. B 57, R6858–R6861 (1998).

[26] S. H. Pan, E. W. Hudson, J. C. Davis. Vacuum tunneling of superconducting

quasiparticles from atomically sharp scanning tunneling microscope tips. Appl.

Phys. Lett. 73, 2992–2994 (1998).

[27] S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, J. C. Davis.

Imaging the effects of individual zinc impurity atoms on superconductivity in

Bi2Sr2CaCu2O8. Nature 403, 746–750 (2000).

[28] E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, J. C.

Davis. Interplay of magnetism and high-Tc superconductivity at individual Ni

impurity atoms in Bi2Sr2CaCu2O8+δ. Nature 411, 920–924 (2001).

104



BIBLIOGRAPHY

[29] C. J. Chen. Introduction to Scanning Tunneling Microscopy. Oxford University

Press, first ed. (2000).

[30] J. E. Hoffman. Spectroscopic scanning tunneling microscopy insights into Fe-

based superconductors. Reports Prog. Phys. 74, 124513 (2011).

[31] H. Bruus, K. Flensberg. Many-body quantum theory in condensed matter

physics. Oxford University Press, New York (2004).

[32] P. Coleman. Introduction to many-body physics. Cambridge University Press

(2015).

[33] P. Abbamonte, E. Demler, J. Séamus Davis, J.-C. Campuzano. Resonant soft

X-ray scattering, stripe order, and the electron spectral function in cuprates.

Phys. C Supercond. 481, 15–22 (2012).

[34] K. McElroy, R. W. Simmonds, J. E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki,

S. Uchida, J. C. Davis. Relating atomic-scale electronic phenomena to wave-

like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ. Nature 422,

592–596 (2003).

[35] K. Fujita, C. K. Kim, I. Lee, J. Lee, M. H. Hamidian, I. A. Firmo, S. Mukhopad-

hyay, H. Eisaki, S. Uchida, M. J. Lawler, E.-A. Kim, J. C. Davis. Simultaneous

Transitions in Cuprate Momentum-Space Topology and Electronic Symmetry

Breaking. Science 344, 612–616 (2014).

[36] M. P. Allan, K. Lee, A. W. Rost, M. H. Fischer, F. Massee, K. Kihou, C.-H. Lee,

A. Iyo, H. Eisaki, T.-M. Chuang, J. C. Davis, E.-A. Kim. Identifying the ’finger-

print’ of antiferromagnetic spin fluctuations in iron pnictide superconductors.

Nat. Phys. 11, 177–182 (2015).

[37] B. B. Zhou, S. Misra, E. H. Da Silva Neto, P. Aynajian, R. E. Baumbach,

J. D. Thompson, E. D. Bauer, A. Yazdani. Visualizing nodal heavy fermion

superconductivity in CeCoIn5. Nat. Phys. 9, 474–479 (2013).

[38] M. P. Allan, F. Massee, D. K. Morr, J. Van Dyke, A. W. Rost, A. P. Mackenzie,

C. Petrovic, J. C. Davis. Imaging Cooper pairing of heavy fermions in CeCoIn5.

Nat. Phys. 9, 468–473 (2013).

[39] P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella,

M. Z. Hasan, R. J. Cava, A. Yazdani. Topological surface states protected from

backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

[40] H. Inoue, A. Gyenis, Z. Wang, J. Li, S. W. Oh, S. Jiang, N. Ni, B. A. Bernevig,

A. Yazdani. Quasiparticle interference of the Fermi arcs and surface-bulk con-

nectivity of a Weyl semimetal. Science 351, 1184–1187 (2016).

[41] A. Gyenis, H. Inoue, S. Jeon, B. B. Zhou, B. E. Feldman, Z. Wang, J. Li,

S. Jiang, Q. D. Gibson, S. K. Kushwaha, J. W. Krizan, N. Ni, R. J. Cava, B. A.

Bernevig, A. Yazdani. Imaging electronic states on topological semimetals using

scanning tunneling microscopy. New J. Phys. 18, 105003 (2016).

[42] P. Sessi, V. M. Silkin, I. A. Nechaev, T. Bathon, L. El-Kareh, E. V. Chulkov,

P. M. Echenique, M. Bode. Direct observation of many-body charge density

105



BIBLIOGRAPHY

oscillations in a two-dimensional electron gas. Nat. Commun. 6, 8691 (2015).

[43] Z. Wang, D. Walkup, P. Derry, T. Scaffidi, M. Rak, S. Vig, A. Kogar,

I. Zeljkovic, A. Husain, L. H. Santos, Y. Wang, A. Damascelli, Y. Maeno,

P. Abbamonte, E. Fradkin, V. Madhavan. Quasiparticle interference and strong

electron–mode coupling in the quasi-one-dimensional bands of Sr2RuO4. Nat.

Phys. 13, 799–805 (2017).

[44] A. Damascelli, Z. Hussain, Z.-X. Shen. Angle-resolved photoemission studies of

the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

[45] R. S. Markiewicz. Bridging k and q space in the cuprates: Comparing angle-

resolved photoemission and STM results. Phys. Rev. B 69, 214517 (2004).

[46] U. Chatterjee, M. Shi, A. Kaminski, A. Kanigel, H. M. Fretwell, K. Terashima,

T. Takahashi, S. Rosenkranz, Z. Z. Li, H. Raffy, A. Santander-Syro, K. Kad-

owaki, M. R. Norman, M. Randeria, J. C. Campuzano. Nondispersive

Fermi Arcs and the Absence of Charge Ordering in the Pseudogap Phase of

Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 96, 107006 (2006).

[47] K. McElroy, G.-H. Gweon, S. Y. Zhou, J. Graf, S. Uchida, H. Eisaki, H. Takagi,

T. Sasagawa, D.-H. Lee, A. Lanzara. Elastic Scattering Susceptibility of the

High Temperature Superconductor Bi2Sr2CaCu2O8+δ: A Comparison between

Real and Momentum Space Photoemission Spectroscopies. Phys. Rev. Lett. 96,

067005 (2006).

[48] R. M. Feenstra, J. Y. Lee, M. H. Kang, G. Meyer, K. H. Rieder. Band gap of

the Ge(111)c(2×8) surface by scanning tunneling spectroscopy. Phys. Rev. B

73, 035310 (2006).

[49] R. M. Feenstra, Y. Dong, M. P. Semtsiv, W. T. Masselink. Influence of tip-

induced band bending on tunneling spectra of semiconductor surfaces. Nan-

otechnology 18, 044015 (2007).

[50] M. Weimer, J. Kramar, J. Baldeschwieler. Band bending and the apparent

barrier height in scanning tunneling microscopy. Phys. Rev. B 39, 5572 (1989).

[51] R. Feenstra. SEMITIP v6 (2011).

[52] S. C. White, U. R. Singh, P. Wahl. A stiff scanning tunneling microscopy head

for measurement at low temperatures and in high magnetic fields. Rev. Sci.

Instrum. 82, 113708 (2011).

[53] S. H. Pan, E. W. Hudson, J. C. Davis. 3He refrigerator based very low temper-

ature scanning tunneling microscope. Rev. Sci. Instrum. 70, 1459–1463 (1999).

[54] F. Pobell. Matter and Methods at Low Temperatures. Springer Berlin Heidel-

berg, 3rd ed. (2007).

[55] R. J. Hussey, J. Wilson. Advanced Technical Ceramics Directory and Databook.

Springer (2012).

[56] A. L. Woodcraft, A. Gray. A low temperature thermal conductivity database.

In Low Temp. Detect. LTD 13, 681–684 (2009).

106



BIBLIOGRAPHY

[57] NIST. NIST online cryogenic database. Tech. rep., National Institute of Stan-

dards and Technology (2018).

[58] K. M. Bastiaans, T. Benschop, D. Chatzopoulos, D. Cho, Q. Dong, Y. Jin,

M. P. Allan. Amplifier for scanning tunneling microscopy at MHz frequencies.

Rev. Sci. Instrum. 89, 093709 (2018).

[59] K. M. Bastiaans, D. Cho, T. Benschop, I. Battisti, Y. Huang, M. S. Golden,

Q. Dong, Y. Jin, J. Zaanen, M. P. Allan. Charge trapping and super-Poissonian

noise centres in a cuprate superconductor. Nat. Phys. 14, 1183–1187 (2018).

[60] COMSOL AB. COMSOL Multiphysics 5.2 (2015).

[61] J. H. Kindt, G. E. Fantner, J. A. Cutroni, P. K. Hansma. Rigid design of fast

scanning probe microscopes using finite element analysis. Ultramicroscopy 100,

259–265 (2004).

[62] C. R. Ast, M. Assig, A. Ast, K. Kern. Design criteria for scanning tunneling

microscopes to reduce the response to external mechanical disturbances. Rev.

Sci. Instrum. 79, 093704 (2008).
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spectroscopy of moiré-induced electronic structure in gate-tunable twisted bi-

layer graphene. Phys. Rev. B 92, 155409 (2015).

[120] M. Morgenstern, V. Gudmundsson, R. Dombrowski, C. Wittneven, R. Wiesen-

danger. Nonlocality of the exchange interaction probed by scanning tunneling

spectroscopy. Phys. Rev. B 63, 201301 (2001).

[121] F. Marczinowski, J. Wiebe, F. Meier, K. Hashimoto, R. Wiesendanger. Effect

of charge manipulation on scanning tunneling spectra of single Mn acceptors in

InAs. Phys. Rev. B 77, 115318 (2008).

[122] F. Herbert, A. Krishnamoorthy, K. Van Vliet, B. Yildiz. Quantification of

electronic band gap and surface states on FeS2(100). Surf. Sci. 618, 53–61

(2013).

[123] A. Sabitova, P. Ebert, A. Lenz, S. Schaafhausen, L. Ivanova, M. Dähne, A. Hoff-

mann, R. E. Dunin-Borkowski, A. Förster, B. Grandidier, H. Eisele. Intrinsic

111



BIBLIOGRAPHY

bandgap of cleaved ZnO(110) surfaces. Appl. Phys. Lett. 102, 021608 (2013).

[124] K. Teichmann, M. Wenderoth, S. Loth, R. G. Ulbrich, J. K. Garleff, A. P.

Wijnheijmer, P. M. Koenraad. Controlled Charge Switching on a Single Donor

with a Scanning Tunneling Microscope. Phys. Rev. Lett. 101, 076103 (2008).

[125] A. P. Wijnheijmer, J. K. Garleff, K. Teichmann, M. Wenderoth, S. Loth, P. M.

Koenraad. Single Si dopants in GaAs studied by scanning tunneling microscopy

and spectroscopy. Phys. Rev. B 84, 125310 (2011).

[126] S. Loth, M. Wenderoth, L. Winking, R. G. Ulbrich, S. Malzer, G. H. Döhler.
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Samenvatting

De elektronische eigenschappen van de meeste materialen om ons heen kunnen met

het vrije-elektronenmodel worden beschreven. Dit betekent dat de elektronen in het

materiaal bijna geen afstotende Coulombkracht voelen, en dat ze vrijwel onafhankelijk

van elkaar behandeld kunnen worden.

De afstotende Coulombkracht is echter in sommige bijzondere materialen niet ver-

waarloosbaar. Deze materialen worden ‘sterk gecorreleerde elektronensystemen’ ge-

noemd. De interacties tussen de elektronen leiden tot nieuw emergent, collectief

gedrag, dat niet te verklaren is als een som van het gedrag van individuele elektronen.

Gecorreleerde elektronen veroorzaken veel bijzondere verschijnselen in de fysica van

de gecondenseerde materie. Een van de beroemdste voorbeelden hiervan is hogetem-

peratuursupergeleiding. Nog steeds begrijpen natuurkundigen niet helemaal hoe dit

fenomeen werkt, en er is meer experimenteel en theoretisch onderzoek nodig om dit

probleem helemaal te doorgronden.

Dit proefschrift beschrijft mijn bijdrage aan een beter begrip van sterk gecorreleerde

elektronensystemen en bestaat uit twee delen. Eerst wordt het ontwerp en de con-

structie beschreven van een nieuwe, ‘state-of-the-art’ scanning tunneling microscoop

(STM) om hogere datakwaliteit te bereiken. Dit is nodig om de allerkleinste details

van sterk gecorreleerd elektronensystemen beter te kunnen meten. Daarna bestuderen

we met scanning tunneling microscopie hoe de elektronische eigenschappen van een

Mott-isolator veranderen als we extra elektronen aan het materiaal toevoegen door

te doteren.

De techniek van scanning tunneling microscopie en spectroscopie wordt in hoofdstuk

2 beschreven. Met een STM kunnen we de toestandsdichtheid van de elektronen met

atomaire resolutie meten. Dit is erg belangrijk bij sterk gecorreleerde elektronensyste-

men, omdat de elektronische structuur vaak op de nanoschaal varieert. Mede hierdoor

heeft STM in de afgelopen twintig jaar bijgedragen aan cruciale ontdekkingen in het

gebied van sterk gecorreleerde elektronsystemen. Toch is STM een moeilijke techniek;
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de microscoop is heel gevoelig voor trillingen die de meting kunnen bëınvloeden door

het signaal in de ruis te verbergen.

In hoofdstuk 3 van dit proefschrift beschrijf ik het ontwerp, de constructie en de

prestatie van onze STM die we Dome noemen. Dome opereert bij de lage temperatuur

van 4 Kelvin, en is extreem stijf. Een stijvere STM heeft als gevolg dat externe

trillingen de meting minder bëınvloeden, en dus dat we makkelijker door de ruis heen

kunnen kijken. Door gebruik te maken van stijve materialen, zoals saffier, en dit te

combineren met eindige-elementenmethode om het ontwerp te verbeteren, hebben we,

voor zover nu bekend, de stijfste lage temperatuur STM ter wereld gebouwd.

In hoofdstuk 4 en 5 bestuderen we het iridaat Sr2IrO4 met een andere STM. Dit

materiaal is een Mott isolator door de sterke spin-baan koppeling. Mott isolatoren

zijn een simpel voorbeeld van sterk gecorreleerde elektronensystemen. Als gevolg van

de sterke afstotende Coulombkracht, zitten elektronen in dit soort materialen vast op

hun atomen in het kristalrooster. Ze zijn dan ‘bevroren’, en het materiaal gedraagt

zich als een elektrische isolator. In sommige Mott isolatoren kunnen de elektronen

‘ontdooid’ worden door extra elektronen aan het materiaal toe te voegen door middel

van doteren. Echter zorgt het ‘smelten’ van de elektronen voor nieuwe exotische

eigenschappen die nog niet helemaal begrepen worden omdat de sterke interacties

tussen de elektronen nog steeds een grote rol spelen. Cupraten, bijvoorbeeld, kunnen

door dotering van Mott isolatoren in hogetemperatuursupergeleiders veranderen.

In hoofdstuk 4 bestuderen we de licht gedoteerde Mott isolator (Sr1-xLax )2IrO4 (stron-

tium lanthanum iridaat), waarin 2% tot 5% van de Sr-atomen door La-atomen zijn

vervangen. Dit is in principe een compleet ander materiaal dan de cupraat-hogetem-

peratuursupergeleiders. Desondanks nemen we in dit materiaal dezelfde elektronische

fasen waar die in cupraten bij lage doteringsniveaus gevonden zijn, namelijk ‘pseudo-

gap’ en ‘charge order’. Deze fasen zijn tot nu toe in geen enkel ander materiaal dan

cupraten gevonden, en onze ontdekking toont aan dat ze universele eigenschappen zijn

van een klasse van Mott isolatoren. Vervolgens bestuderen we hoe het smeltingsproces

van de bevroren Mott fase precies plaats vindt. We vinden dat de extra elektronen

tot een bepaald doteringsniveau geen invloed op de Mott isolator hebben. Pas boven

deze drempel beginnen de bevroren elektronen te smelten. Bovendien gebeurt dit

smeltingsproces plaatselijk in kleine ‘pseudogap-plassen’ van enkele nanometers rond

de doteringsatomen. Aangezien de eigenschappen van de iridaten lijkt op die van de

cupraten, voorspellen we dat als er een hoog genoeg doteringsniveau bereikt wordt,

de iridaten ook supergeleiders zullen worden.

Tijdens het bestuderen van de iridaten stuitten we ook op een ander bijzonder ver-

schijnsel. We zien hier dat bij een doteringspercentage van onder de 4%, strontium

lanthanum iridaat geen goede geleider is. In hoofstuk 5, bestuderen we de oorzaak

van dit verschijnsel. We zien hier dat het elektrisch veld bij de naald van de STM
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het materiaal kan penetreren vanwege slechte afscherming door de elektronen. Dit

verschijnsel is bekend in halfgeleiders onder de naam ‘tip-induced band bending’. Het

begrip van dit verschijnsel is belangrijk, aangezien het invloed zou kunnen hebben

op het resultaat van de meting. Dit kan bijvoorbeeld resulteren in een verandering

van de gemeten breedte van de ‘Mott gap’. Bij lage doteringsniveaus meten we bij de

iridaten een ‘Mott gap’ die afwijkt van eerder gepubliceerd onderzoek. We ontwik-

kelen een model dat voor ‘tip-induced band bending’ in Mott isolatoren corrigeert,

waarmee we de echte breedte van de Mott gap in licht gedoteerd Sr2IrO4 terugkrijgen.

Bovendien is ons model ook geschikt voor andere licht gedoteerde Mott isolatoren.

In hoofdstuk 6 presenteren we data van het rhodaat Sr2RhO4 dat met onze nieuwe

zelfgebouwde STM Dome gemeten is. Dit materiaal is een goede geleider waarin

de elektronen gecorreleerd zijn, en heeft goed gedefinieerde quasideeltjes. De quasi-

deeltjes worden verstrooid door atomaire defecten in het materiaal, en vormen een

interferentiepatroon in de toestandsdichtheid. Met STM maken we een beeld van

het interferentiepatroon, en door Fouriertransformatie van deze beelden krijgen we

informatie over de elektronische bandstructuur in de impulsruimte. We vergelijken

onze STM data met ARPES data op hetzelfde preparaat. In het algemeen vinden

we een goede overeenkomst tussen de twee technieken, maar er zijn kleine verschillen

tussen de Fermi-snelheden. Deze verschillen zouden door artefacten van de technieken

veroorzaakt kunnen worden, maar zouden ook op een fundamenteel verschil tussen

de technieken kunnen duiden. We denken dat het belangrijk is om de oorzaak van de

verschillen te vinden, maar om dat beter te bestuderen zijn verdere metingen nodig.

Ten slotte stellen we in hoofdstuk 7 drie experimenten voor die in de toekomst met

Dome gedaan kunnen worden: het bestuderen van de vreemde-metaalfase in de cu-

praten, ruis-spectroscopie op sterk gecorreleerde elektronsystemen en de studie van

de supergeleidingsfase van cupraten als we deze met microgolven exciteren.
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