
ar
X

iv
:1

90
4.

09
20

3v
3

 [
cs

.F
L

]
 1

2
D

ec
 2

01
9

Linear-Bounded Composition of

Tree-Walking Tree Transducers:

Linear Size Increase and Complexity∗

Joost Engelfriet† Kazuhiro Inaba‡ Sebastian Maneth§

Abstract

Compositions of tree-walking tree transducers form a hierarchy with
respect to the number of transducers in the composition. As main tech-
nical result it is proved that any such composition can be realized as a
linear-bounded composition, which means that the sizes of the interme-
diate results can be chosen to be at most linear in the size of the output
tree. This has consequences for the expressiveness and complexity of the
translations in the hierarchy. First, if the computed translation is a func-
tion of linear size increase, i.e., the size of the output tree is at most linear
in the size of the input tree, then it can be realized by just one, deter-
ministic, tree-walking tree transducer. For compositions of deterministic
transducers it is decidable whether or not the translation is of linear size
increase. Second, every composition of deterministic transducers can be
computed in deterministic linear time on a RAM and in deterministic lin-
ear space on a Turing machine, measured in the sum of the sizes of the
input and output tree. Similarly, every composition of nondeterministic
transducers can be computed in simultaneous polynomial time and linear
space on a nondeterministic Turing machine. Their output tree languages
are deterministic context-sensitive, i.e., can be recognized in deterministic
linear space on a Turing machine. The membership problem for composi-
tions of nondeterministic translations is nondeterministic polynomial time
and deterministic linear space. All the above results also hold for com-
positions of macro tree transducers. The membership problem for the
composition of a nondeterministic and a deterministic tree-walking tree
translation (for a nondeterministic IO macro tree translation) is log-space
reducible to a context-free language, whereas the membership problem for
the composition of a deterministic and a nondeterministic tree-walking
tree translation (for a nondeterministic OI macro tree translation) is pos-
sibly NP-complete.

∗Published at https://link.springer.com/article/10.1007/s00236-019-00360-8
†LIACS, Leiden University, P.O. Box 9512, 2300 RA Leiden, the Netherlands; email:

j.engelfriet@liacs.leidenuniv.nl
‡Google Japan G.K., Tokyo, Japan; email: kinaba@google.com
§Department of Mathematics and Informatics, Universität Bremen, P.O. Box 330 440,

28334 Bremen, Germany; email: maneth@uni-bremen.de

1

http://arxiv.org/abs/1904.09203v3

Contents

1 Introduction 3

2 Preliminaries 8

3 Tree-Walking Tree Transducers 12

4 Regular Look-Around 19

5 Composition 23

6 Macro and MSO 27

6.1 Macro Tree Transducers . 28
6.2 MSO Tree Transducers . 29

7 Functional Nondeterminism 30

8 Productivity 32

8.1 Nondeterministic Productivity 33
8.2 Deterministic Productivity . 38

9 Linear Size Increase 39

10 Deterministic Complexity 41

11 Nondeterministic Complexity 45

12 Translation Complexity 48

13 Forest Transducers 57

14 Conclusion 62

2

1 Introduction

Tree transducers are used, e.g., in compiler theory or, more generally, the theory
of syntax-directed semantics of context-free languages [39], and in the theory
of XML queries and XML document transformation [69, 47]. One of the most
basic types of tree transducer is the top-down tree transducer (in short tt↓).
It is a finite-state device that walks top-down on the input tree, from parent
to child, possibly branching into parallel copies of itself at each step (thus al-
lowing the transducer to visit all children of the parent). During this process,
the output tree is generated top-down. The tt↓ has been generalized in two
different ways. By allowing it to walk also bottom-up, from child to parent, still
possibly branching at every step and still generating the output tree top-down,
one obtains the tree-walking tree transducer (in short, tt).1 On the other hand,
restricting its walk to be top-down but allowing its states to have parameters of
type output tree, one obtains the macro tree transducer (in short, mt). In gen-
eral we consider nondeterministic transducers, with deterministic transducers
as an important special case (abbreviated as dtt↓, dtt, and dmt).

To turn the tt↓ into a more flexible model of tree transformation, it was
enhanced with the feature of regular look-ahead, which means that it can test
whether or not the subtree at the current node of the input tree belongs to a
given regular tree language. The mt already has the ability to implement regular
look-ahead. Since both the enhanced tt↓ and the mt process the input tree
top-down, they can also implement “regular look-around”, which means that
they can test arbitrary regular properties of the current node of the input tree.
More precisely, they can test whether the input tree, in which the current node is
marked, belongs to a given regular tree language. Such regular look-around tests
are also called mso tests, because they can be expressed by formulas of monadic
second-order logic with one free node variable. The tt, as defined in [63], does
not have regular look-ahead or look-around. One of the drawbacks of this is
that the tt cannot recognize all regular tree languages without branching [9].
Hence, from now on, we assume that the tt (and the tt↓) is enhanced with
regular look-around, i.e., with regular tests of the current input node. The
resulting tt formalism is a quite robust, flexible, and intuitive model of tree
transformation.

The tt and mt, generalizations of the tt↓, are closely related, in particu-
lar in the deterministic case. In fact, every dtt can be simulated by a dmt,
whereas every dmt can be simulated by a composition of two dtt’s. Thus, every
composition of dtt’s can be realized by a composition of dmt’s, and vice versa.
Compositions of dtt’s form a proper hierarchy, in an obvious way. A single dtt

is at most of exponential size increase, which means that the size of the output
tree is at most exponential in the size of the input tree. However, a composition
of two dtt’s can be of double exponential size increase. In general, composi-
tions of k dtt’s are at most, and can be, of k-fold exponential size increase.
Compositions of dmt’s form a proper hierarchy by a similar argument. For
nondeterministic tt’s and mt’s the situation is similar but more complicated.

1The name “tree-walking tree transducer” was introduced in [26]. The adjective “tree-
walking” stands for the fact that the transducer walks on the input tree (just as the tree-
walking automaton of [2]). The tt is the generalization to trees of the two-way finite-state
string transducer, which walks on its input string in both directions and produces the output
string one-way from left to right. Note that “tree-walking” and “two-way” alliterate.

3

Every mt can be simulated by a composition of two tt’s. However, as opposed
to tt’s, mt’s are always finitary, which means that for every given input tree
an mt computes finitely many output trees.

In this paper we investigate compositions of tt’s (and hence of mt’s) with
respect to their expressivity and their complexity. Our main technical result is
that every composition of tt’s can be realized by a linear-bounded composition
of tt’s, which means that, when computing an output tree from an input tree,
the intermediate results can be chosen in such a way that their sizes are at
most linear in the size of the output tree. More precisely, a composition of
two transducers (for simplicity) is linear-bounded if there is a constant c such
that for every pair (t, s) of an input tree t and output tree s in the composed
translation there is an intermediate tree r (meaning that (t, r) and (r, s) are
in the first and second translation, respectively) such that the size of r is at
most c times the size of s. Intuitively, to compute s from t there is no need to
consider intermediate results that are much larger than s. If both transducers
are deterministic it means that for every input tree t in the domain of the
composed translation the size of the unique intermediate tree r is at most linear
in the size of the unique output tree s.

To prove that every composition of two tt’s can be realized by a linear-
bounded composition of two tt’s, we first show that every tt can be decom-
posed into a tt↓ that “prunes” the input tree, followed by a tt that is “pro-
ductive” on at least one of the intermediate trees generated by the tt↓, which
means that it uses each leaf and each monadic node of that intermediate tree in
order to generate the output tree. Productivity guarantees that the composition
of these two transducers is linear-bounded. We also prove that the composition
of an arbitrary tt with a “pruning” top-down tt can be realized by one tt.
Thus, when two tt’s are composed, the second tt can split off the pruning
tt↓ (to the left), which can be absorbed (to the right) by the first tt. The
composition of the resulting two tt’s is then linear-bounded. This also holds
for deterministic transducers, in which case the pruning tt is also determinis-
tic. Similar results were presented for macro tree transducers in [58, Section 3]
and [51, Section 4].

Thus, roughly speaking, our main technical result provides a method to im-
plement compositions of tt’s in such a way that the generation of superfluous
nodes, i.e., nodes on which a tt just walks around without producing any out-
put, is avoided by pruning those superfluous parts from the intermediate trees.
As such it can be viewed as a static garbage collection procedure, and leads, in
principle, to algorithms for automatic compiler and XML query optimization.
Since tt’s are essentially finite-state automata walking on trees, it is not really
surprising that only a linearly bounded amount of intermediate information is
useful to the final output. However, proving this rigorously requires quite some
effort. In particular, the subcomputations of the tt during which it does not
produce output will be determined by regular look-around.

The above method can be used to obtain results on both the expressivity
and the complexity of compositions of tt’s, as discussed in the next paragraphs.

Expressivity. We have seen above that compositions of tt’s can be of k-fold
exponential size increase. However, many real world tree transformations are
of linear size increase. We prove that the hierarchy of compositions of deter-
ministic tt’s collapses when restricted to translations of linear size increase:

4

every composition of dtt’s that is of linear size increase can be realized by just
one dtt. We also show that it is decidable whether or not a composition of dtt’s
is of linear size increase. This means that a compiler or XML query, no matter
how inefficiently programmed in several phases, can be realized in one efficient
phase, provided it is of linear size increase. In fact, as we will see below, that
single phase can be executed in linear time. More theoretically, we additionally
prove that a function that can be realized by a composition of nondeterminis-
tic tt’s, can also be realized by a composition of deterministic tt’s, and hence
by one deterministic tt if that function is of linear size increase. Thus, the only
(functional) tree transformations that can be realized by a composition of tt’s
but not by a single tt, are tree transformations of superlinear size increase.

The proof of the collapse of the hierarchy of compositions of dtt’s is based
on the known fact that every dtt of linear size increase can be realized by a dtt

that is “single-use”, which means that it never visits a node of the input tree
twice in the same state. In fact, it is proved in [29, 32] that even dmt’s of linear
size increase can be realized by single-use dtt’s. Vice versa, it is obvious that
every single-use dtt is of linear size increase. In [7] it is shown that single-use
dtt’s have the same power as deterministic mso tree transducers, which use
formulas of monadic second-order logic to define the output tree in terms of the
input tree (see [13, 14]).

By our main technical result, we may always assume that a composition
of two dtt’s is linear-bounded. If the composition is of linear size increase,
then the first dtt is obviously also of linear size increase, and can therefore be
realized by a single-use dtt. We also prove that the composition of a single-
use dtt with an arbitrary dtt can be realized by one dtt. Thus, altogether, if
the composition of two dtt’s is of linear size increase, then it can be realized by
a single-use dtt. This argument can easily be turned into an inductive proof
for a composition of any number of dtt’s.

Complexity. We first consider deterministic tt’s. The translation realized by
a deterministic tt can be computed on a RAM in linear time, in the sum of
the sizes of the input and output tree. With respect to space, we prove that
it can be computed on a deterministic Turing machine in linear space (again,
in the sum of the sizes of the input and output tree). Since we may assume
by our main technical result that the sizes of the intermediate results are at
most linear in the size of the output tree, it should be clear that these facts also
hold for compositions of dtt’s. We also consider output tree languages, i.e.,
the images of a regular tree language under a composition of dtt’s. Since the
regular tree languages are closed under prunings, our technical decomposition
result now implies that these output languages are in DSPACE(n), i.e., can be
recognized by a Turing machine in deterministic linear space (or, in other words,
are deterministic context-sensitive). Since the yield of a tree can be computed
by a dtt (representing it by a monadic tree), the output string languages,
which are the yields of the output tree languages, are also in DSPACE(n). The
languages in the well-known io-hierarchy are examples of such output languages.
For compositions of top-down tree transducers (even nondeterministic ones) this
result on output languages was proved in [4], using a technical result very similar
to ours.

Our results on nondeterministic tt’s (and their proofs) are very similar
to those for dtt’s. The translation realized by a composition of tt’s can be

5

computed by a nondeterministic Turing machine in simultaneous polynomial
time and linear space (in the sum of the sizes of the input and output tree). The
corresponding output languages can be recognized by such a Turing machine
and hence are in NPTIME. Using the results on the membership problem for
compositions of tt’s discussed in the next paragraph, we generalize the result
of [4] and prove that these output languages are even in DSPACE(n), which
means that they are deterministic context-sensitive. The languages in the well-
known oi-hierarchy are examples of such output languages.

Finally, we consider the membership problem for compositions of tt’s, which
asks whether or not a given pair (t, s) of input tree t and output tree s belongs
to the composed translation. It follows easily from the above complexity results
that for (non)deterministic tt’s the problem is decidable in (non)deterministic
polynomial time and in (non)deterministic linear space. For the special case
of the composition of a nondeterministic tt with a deterministic tt we prove
that the problem is even in LOGCFL, i.e., log-space reducible to a context-free
language, and hence in PTIME and DSPACE(log2 n). From this we conclude
that for nondeterministic tt’s the problem is even decidable in deterministic
linear space. However, for the special case of the composition of a deterministic
tt with a nondeterministic one, the problem can be NP-complete. From the
two special cases we obtain that the membership problem for a (single) nonde-
terministic macro tree transducer is in LOGCFL for io macro tree transducers
(strengthening the result in [52] where it was shown to be in PTIME), whereas
it can be NP-complete for oi macro tree transducers.

Structure of the paper. The reader is assumed to be familiar with the basics
of formal language theory, in particular tree language theory, and complexity
theory. The only formalisms used are tree-walking tree transducers (tt’s, of
course), top-down tree transducers (tt↓’s, as a special case of tt’s), context-
free grammars, regular tree grammars, and finite-state tree automata. Results
on macro tree transducers are taken from the literature.

The main results are proved in Sections 8 to 12. Section 2 contains a num-
ber of preliminary notions, in particular linear-bounded composition, linear size
increase, and regular look-around. In Section 3 we define the tree-walking tree
transducer (with regular look-around), together with some of its special cases
such as top-down and single-use. A tt that does not use regular look-around
tests is called “local”. A “pruning” tt is a tt↓ that, roughly speaking, removes
or relabels each node of the input tree and possibly deletes several of its chil-
dren (together with their descendants). After giving two examples we present
the composition hierarchy of dtt’s and end the section with some elementary
syntactic properties of tt’s. In Section 4 it is shown how to separate the reg-
ular look-around from a tt and incorporate it into another tt. For instance,
every tt can be decomposed into a deterministic pruning tt↓ that just relabels
the nodes of the input tree (and hence does not really “prune”), followed by a
local tt. We also state the fact that the domain of a tt is a regular tree lan-
guage. Consequently, it is possible to define the regular tests of a tt as domains
of other tt’s, which is a convenient technical tool. Section 5 contains three com-
position results. We prove that the composition of a tt with a pruning tt↓ can
be realized by a tt (such that determinism is preserved). Together with the
above-mentioned decomposition, this implies for instance that in a composition
of two tt’s, the second tt can always be assumed to be local: the second tt

6

splits off a pruning tt↓ that is absorbed by the first tt. In the deterministic
case, we even prove that the composition of a dtt with an arbitrary dtt↓ can
be realized by a dtt, and we also prove that the composition of a single-use dtt

with a dtt can be realized by a dtt. Section 6 presents the known fact that ev-
ery dtt of linear size increase can be realized by a single-use dtt, and discusses
the relationship between tt’s, macro tree transducers, and mso tree transduc-
ers. In Section 7 we show that a (partial) function that can be realized by a
composition of nondeterministic tt’s, can also be realized by a composition of
deterministic tt’s. To prove this we first prove a lemma: for every tt↓ there
is a deterministic tt↓ that realizes a “uniformizer” of the translation realized
by the given tt↓, i.e., a function that is a subset of that translation, with the
same domain. Section 8 contains our main technical result: every tt can be
decomposed into a pruning tt and another tt such that the composition is
linear-bounded. It implies (by splitting and absorbing) that a composition of
tt’s can always be assumed to be linear-bounded. The “uniformizer” lemma of
the previous section is applied to the pruning tt↓, proving the same result for
deterministic tt’s. Section 9 presents the main results on linear size increase,
and Sections 10 and 11 present the main results on the complexity of composi-
tions of deterministic and nondeterministic tt’s, respectively. In Section 12 we
prove the main results on the complexity of the membership problem for the
composition of two tt’s. Finally, in Section 13 we show (in a straightforward
way) that all main results also hold for transducers that transform unranked
trees, or forests, which are a natural model of XML documents.

The reader who is interested only in complexity can disregard all results on
single-use tt’s, and skip Sections 6.2 and 9. The reader who is interested only
in expressivity can just skip Sections 10, 11, and 12.

Remarks on the literature. Top-down tree transducers were introduced
in [66, 72]; regular look-ahead was added in [20]. Macro tree transducers
were introduced in [15, 34]. Tree-walking tree transducers were introduced
in [63] (where they are called 0-pebble tree transducers), and studied in, e.g.,
[31, 26, 62]. They were already mentioned in [24, Section 3(7)] (where they
are called RT(Tree-walk) transducers). Regular look-around was added to tt’s
in [14, Section 8.2] (where they are called ms tree-walking transducers); for
tree-walking automata that was already done in [6]. However, formal models
similar to the tt were introduced and studied before. The tree-walking au-
tomaton of [2] translates trees into strings. As explained in [24, Section 3(7)]
and [31, Section 3.2], the tt is closely related to the attribute grammar [53],
which is a well-known model of syntax-directed semantics (and a compiler con-
struction tool). An attribute grammar translates derivation trees of an underly-
ing context-free grammar into arbitrary values. Tree-valued attribute grammars
were considered, e.g., in [27]. The attributed tree transducer, introduced in [38],
is an operational version of the tree-valued attribute grammar, without under-
lying context-free grammar. Regular look-around was added to the attributed
tree transducer in [7] (where it is called look-ahead). Attributed tree transduc-
ers are a special type of tt’s, of which the states are viewed as attributes of the
nodes of the input tree. By definition a deterministic attributed tree transducer
(like an attribute grammar) has to be noncircular, which means that it should
generate an output tree whenever it is started in any state on any node of an
input tree. Thus, it is total in a strong sense. This is natural from the point of

7

view of syntax-directed semantics, but quite restrictive and inconvenient from
the operational point of view of tree transformation. Several of the auxiliary
results in Sections 3 to 5 are closely related to (and generalizations of) well-
known results on attributed tree transducers (see, e.g., [39]). As an example,
it is proved in [38, Theorem 4.3] that, for deterministic transducers, the com-
position of an attributed tree transducer with a top-down tree transducer can
be realized by an attributed tree transducer. That does not immediately imply
that the same is true for a dtt and a dtt↓, which we show in Section 5, because
dtt’s are not necessarily total and they have regular look-around. Moreover,
we wanted such results also to be understandable for readers unfamiliar with
attribute grammars and attributed tree transducers.

The main results of this paper were first presented at FSTTCS ’02 [58] (on
the complexity of compositions of deterministic mt’s), at FSTTCS ’03 [59] (on
compositions of mt’s that realize functions of linear size increase), at FSTTCS
’08 [51] (on the complexity of compositions of nondeterministic mt’s), at PLAN-
X ’09 [52] (on the complexity of the membership problem for mt’s), and in the
Ph.D. Thesis of the second author [48] (on the last two subjects).

2 Preliminaries

Convention: All results stated and/or proved in this paper are effective.

Sets, strings, and relations. The set of natural numbers is N = {0, 1, 2, . . .}.
For m,n ∈ N, we denote the interval {k ∈ N | m ≤ k ≤ n} by [m,n]. The
cardinality or size of a set A is denoted by #(A). The set of strings over A
is denoted by A∗. It consists of all sequences w = a1 · · · am with m ∈ N and
ai ∈ A for every i ∈ [1,m]. The length m of w is denoted by |w|. The empty
string (of length 0) is denoted by ε. The concatenation of two strings v and w
is denoted by v · w or just vw. Moreover, w0 = ε and wk+1 = w · wk for k ∈ N.

The domain and range of a binary relation R ⊆ A × B are denoted by
dom(R) and ran(R), respectively. For A′ ⊆ A, R(A′) = {b ∈ B | (a, b) ∈
R for some a ∈ A′}. The composition of R with a binary relation S ⊆ B × C
is R ◦ S = {(a, c) | ∃ b ∈ B : (a, b) ∈ R, (b, c) ∈ S}. The inverse of R is R−1 =
{(b, a) | (a, b) ∈ R}. Note that dom(R ◦ S) = R−1(dom(S)) and ran(R ◦ S) =
S(ran(R)). If A = B then the transitive-reflexive closure of R is R∗ =

⋃
k∈N

Rk

where R0 = {(a, a) | a ∈ A} and Rk+1 = R◦Rk. The composition of two classes
of binary relations R and S is R ◦ S = {R ◦ S | R ∈ R, S ∈ S}. Moreover,
R1 = R and Rk+1 = R ◦ Rk for k ≥ 1. The relation R is finitary if R(a) is
finite for every a ∈ A, where R(a) denotes R({a}). It is a (partial) function
from A to B if R(a) is empty or a singleton for every a ∈ A, and it is a total
function if, moreover, dom(R) = A.

Trees. An alphabet is a finite set of symbols. A ranked alphabet Σ is an
alphabet together with a mapping rankΣ : Σ → N (of which the subscript Σ will
be dropped when it is clear from the context). The maximal rank of elements
of Σ is denoted mxΣ. For every m ∈ N we denote by Σ(m) the elements of Σ
that have rank m.

Trees over Σ are recursively defined to be strings over Σ, as follows. For
every m ∈ N, if σ ∈ Σ(m) and t1, . . . , tm are trees over Σ, then σ t1 · · · tm is
a tree over Σ. For readability we also write the tree σ t1 · · · tm as the term

8

σ(t1, . . . , tm). The set of all trees over Σ is denoted TΣ; thus TΣ ⊆ Σ∗. For an
arbitrary finite set A, disjoint with Σ, we denote by TΣ(A) the set TΣ∪A, where
each element of A has rank 0.

As usual trees are viewed as directed labeled graphs. The nodes of a tree t
are indicated by Dewey notation, i.e., by elements of N∗, which are strings of
natural numbers. The root of t is indicated by the empty string ε, but will also
be denoted by roott for readability. The i-th child of a node u of t is indicated
by ui, and there is a directed edge from the parent u to the child ui. Formally,
the set N (t) of nodes of a tree t = σ t1 · · · tm over Σ can be defined recursively
by N (t) = {ε} ∪ {iu | i ∈ [1,m], u ∈ N (ti)}. Thus, N (t) ⊆ [1,mxΣ]

∗. The
root of t = σt1 · · · tm has label σ, and the node iu of t has the same label as the
node u of ti. The rank of node u is the rank of its label, i.e., the number of its
children. A leaf is a node of rank 0, and a monadic node is a node of rank 1.
Every node of t has a child number: each node ui has child number i, and the
root ε is given child number 0 for technical convenience. For a node u of t the
subtree of t with root u is denoted t|u; thus, t|ε = t and t|iu = ti|u. A node v of t
is a descendant of a node u of t, and u is an ancestor of v, if there exists w ∈ N∗

such that w 6= ε and v = uw (thus, u is not a descendant/ancestor of itself).
The size of a tree t is |t|, i.e., its length as a string. Note that |t| = #(N (t))
because the nodes of t correspond one-to-one to the positions in the string t,
i.e., for every σ ∈ Σ, each occurrence of σ in t corresponds to a node of t with
label σ. The left-to-right linear order on N (t) according to this correspondence
is called the pre-order of the nodes of t. The yield of t is the string of labels
of its leaves, in pre-order. The height of t is the number of edges of a longest
directed path from the root of t to a leaf; thus, it is the maximal length of its
nodes (which are strings over N).

A tree language L is a set of trees over Σ, for some ranked alphabet Σ, i.e.,
L ⊆ TΣ. A tree translation τ is a binary relation between trees over Σ and trees
over ∆, for some ranked alphabets Σ and ∆, i.e., τ ⊆ TΣ × T∆.

Linear-bounded composition. Let Σ, ∆, and Γ be ranked alphabets. For
tree translations τ1 ⊆ TΣ × T∆ and τ2 ⊆ T∆ × TΓ, we say that the pair (τ1, τ2)
is linear-bounded if there is a constant c ∈ N such that for every (t, s) ∈ τ1 ◦ τ2
there exists r ∈ T∆ such that (t, r) ∈ τ1, (r, s) ∈ τ2, and |r| ≤ c · |s|. Thus, the
intermediate result r can be chosen such that its size is linear in the size of the
output s. Note that if τ1 and τ2 are functions, this means that |r| ≤ c · |τ2(r)|
for every r ∈ ran(τ1) ∩ dom(τ2).

For classes T1 and T2 of tree translations, we define T1 ∗ T2 to consist of all
translations τ1 ◦ τ2 such that τ1 ∈ T1, τ2 ∈ T2, and (τ1, τ2) is linear-bounded.

Lemma 1 Let T1, T2, and T3 be classes of tree translations. Then

T1 ◦ (T2 ∗ T3) ⊆ (T1 ◦ T2) ∗ T3 and (T1 ∗ T2) ∗ T3 ⊆ T1 ∗ (T2 ◦ T3).

Proof. Let τi ∈ Ti for i ∈ {1, 2, 3}. If the pair (τ2, τ3) is linear-bounded then
so is the pair (τ1 ◦ τ2, τ3), with the same constant c. If (τ1, τ2) and (τ1 ◦ τ2, τ3)
are linear-bounded with constant c1 and c2, respectively, then (τ1, τ2 ◦ τ3) is
linear-bounded with constant c1 · c2. ✷

A function τ : TΣ → T∆ is of linear size increase if there is a constant c ∈ N

such that |τ(t)| ≤ c · |t| for every t ∈ dom(τ). The class of functions of linear
size increase will be denoted by LSIF.

9

Lemma 2 Let τ1 : TΣ → TΓ and τ2 : TΓ → T∆ be functions such that ran(τ1) ⊆
dom(τ2). If τ1 ◦ τ2 ∈ LSIF and (τ1, τ2) is linear-bounded, then τ1 ∈ LSIF.

Proof. It follows from ran(τ1) ⊆ dom(τ2) that dom(τ1 ◦ τ2) = dom(τ1). Since
(τ1, τ2) is linear-bounded, there is a c such that |τ1(t)| ≤ c · |τ2(τ1(t))| for every
t ∈ dom(τ1). Since τ1 ◦ τ2 ∈ LSIF, there is a c′ such that |τ2(τ1(t))| ≤ c′ · |t| for
every t ∈ dom(τ1). Hence |τ1(t)| ≤ c · c′ · |t| for every t ∈ dom(τ1), which means
that τ1 ∈ LSIF. ✷

Grammars and automata. Context-free grammars and, in particular, regular
tree grammars will be used to define the computations of tree-walking tree
transducers, and to define the “regular look-around” used by these transducers.
A context-free grammar is specified as a tuple G = (N, T,S, R), where N is
the nonterminal alphabet, T the terminal alphabet (disjoint with N), S ⊆ N
the set of initial nonterminals, and R the finite set of rules, where each rule is
of the form X → ζ with X ∈ N and ζ ∈ (N ∪ T)∗. A sentential form of G
is a string v ∈ (N ∪ T)∗ such that S ⇒∗

G v for some S ∈ S, where ⇒G is
the usual derivation relation of G: if X → ζ is in R, then v1Xv2 ⇒G v1ζv2
for all v1, v2 ∈ (N ∪ T)∗. The language L(G) generated by G is the set of all
terminal sentential forms, i.e., L(G) = {w ∈ T ∗ | ∃S ∈ S : S ⇒∗

G w}. To
formally define the derivation trees of G as ranked trees, we need to subscript
its nonterminals with ranks because G can have rules X → ζ1 and X → ζ2
with |ζ1| 6= |ζ2|. Let N be the ranked alphabet consisting of all symbols Xm, of
rank m, such that G has a rule X → ζ with |ζ| = m. The terminal symbols in T
are given rank 0. Then the derivation trees of G are generated by the context-
free grammar Gder = (N ′, N ∪ T,S ′, Rder) such that N ′ = {X ′ | X ∈ N},
S ′ = {S′ | S ∈ S}, and if R contains a rule X → ζ, then Rder contains
the rule X ′ → Xmζ′ where m = |ζ| and ζ′ is obtained from ζ by changing
every nonterminal Y into Y ′. Note that we only consider derivation trees that
correspond to derivations S ⇒∗

G w with S ∈ S and w ∈ T ∗. Such a derivation
tree has yield w, because when taking the yield of a derivation tree we skip the
leaves with label X0. Moreover, when considering a derivation tree of G, we
will disregard the subscripts of the nonterminals and we will say that a node
has label X rather than Xm. As an example, if G has the rules S → aXY b,
X → aY , Y → ba, and Y → ε, then Gder has the rules S′ → S4aX

′Y ′b,
X ′ → X2aY

′, Y ′ → Y2ba, and Y ′ → Y0. The string aabab is generated by G,
and the derivation tree S4aX2aY0Y2bab = S4(a,X2(a, Y0), Y2(ba), b) is generated
by Gder; the nodes of this tree are labeled by S, X , Y , a, and b, and its yield is
aabab.

A context-free grammar is ε-free if it does not have ε-rules, i.e., rules X → ε.
We will mainly deal with ε-free context-free grammars.

A context-free grammar G is finitary if L(G) is finite. We need the following
elementary lemma on finitary context-free grammars.

Lemma 3 Let G = (N, T,S, R) be a finitary context-free grammar. For every
string w ∈ L(G) there exists a derivation tree d ∈ L(Gder) such that the yield
of d is w and the height of d is at most #(N).

Proof. Let d be a derivation tree with yield w and suppose that a node u
of d and a descendant v of u have the same nonterminal label (disregarding the
ranking subscripts). Then the tree d can be pumped in the usual way. But since

10

L(G) is finite, the yield of the pumped tree remains the same. Hence we can
remove the pumped part from d. Repeating this, we obtain a derivation tree as
required. ✷

A context-free grammar G = (N, T,S, R) is forward deterministic if S is
a singleton and distinct rules have distinct left-hand sides.2 Such a grammar
generates at most one string in T ∗ and has at most one derivation tree. If
L(Gder) = {d}, then the height of d is at most #(N) by Lemma 3.

A regular tree grammar is a context-free grammarG = (N,Σ,S, R) such that
Σ is a ranked alphabet, and ζ ∈ TΣ(N) for every rule X → ζ in R. A regular
tree grammar generates trees over Σ, i.e., L(G) ⊆ TΣ. Note that every regular
tree grammar is ε-free. Note also that for every context-free grammar G, the
grammar Gder is a regular tree grammar. If, in particular, G is itself a regular
tree grammar, as above, then it should be noted that the elements of Σ all have
rank 0 in Gder. As an example, if G has the rules S → σ(X,Y), X → τ(Y),
Y → τ(a), and Y → a, where σ, τ , and a have ranks 2, 1 and 0, respectively,
then Gder has the rules S′ → S3(σ,X

′, Y ′), X ′ → X2(τ, Y
′), Y ′ → Y2(τ, a), and

Y ′ → Y1(a). The tree σ(τ(τ(a)), a) is generated by G, and the derivation tree
S3(σ,X2(τ, Y2(τ, a)), Y1(a)) by Gder.

A (total deterministic) bottom-up finite-state tree automaton is specified as
a tuple A = (Σ, P, F, δ) where Σ is a ranked alphabet, P is a finite set of states,
F ⊆ P is the set of final states, and δ is the state transition function such
that δ(σ, p1, . . . , pm) ∈ P for every σ ∈ Σ and p1, . . . , pm ∈ P , where m is the
rank of σ. For every t ∈ TΣ, we define the state δ(t) in which A arrives at the
root of t recursively by δ(σ t1 · · · tm) = δ(σ, δ(t1), . . . , δ(tm)). The tree language
recognized by A is L(A) = {t ∈ TΣ | δ(t) ∈ F}.

A regular tree language is a set of trees that can be generated by a regular
tree grammar, or equivalently, recognized by a bottom-up finite-state tree au-
tomaton. The class of regular tree languages will be denoted by REGT. The
basic properties of regular tree languages can be found in, e.g., [43, 44, 11, 19].

Regular look-around. Let Σ be a ranked alphabet. A node test over Σ is a
set of trees over Σ with a distinguished node, i.e., it is a subset of the set

T •
Σ = {(t, u) | t ∈ TΣ, u ∈ N (t)}.

Intuitively it is a property of a node of a tree.
We introduce a new ranked alphabet Σ×{0, 1}, such that the rank of (σ, b)

equals that of σ in Σ. For a tree t over Σ and a node u of t we define mark(t, u)
to be the tree over Σ × {0, 1} that is obtained from t by changing the label σ
of u into (σ, 1) and changing the label σ of every other node into (σ, 0). Thus,
mark(t, u) is t with one “marked” node u. A regular (node) test over Σ is a
node test T ⊆ T •

Σ such that its marked representation is a regular tree language,
i.e., mark(T) ∈ REGT. Note that ∅ and T •

Σ are regular tests, and that the class
of regular tests over Σ is closed under the boolean operations complement,
intersection, and union, because REGT is closed under those operations. Hence
every boolean combination of regular tests is again a regular test.

2That is as opposed to a “backward deterministic” context-free grammar in which dis-
tinct rules have distinct right-hand sides, see, e.g., [26]. A forward deterministic context-free
grammar that generates a string is also called a “straight-line” context-free grammar.

11

For a tree language L ⊆ TΣ we define the node test

T (L) = {(t, u) ∈ T •
Σ | t|u ∈ L}

over Σ. Intuitively it is a property of the distinguished node that only depends
on the subtree at that node. Clearly, if L is regular then T (L) is regular. A
regular test of the form T (L) with L ∈ REGT will be called a regular sub-test.
Note that T (TΣ) = T •

Σ and T (∅) = ∅. Note also that for regular tree languages
L and L′ over Σ, T (L) ∩ T (L′) = T (L ∩ L′) and T •

Σ \ T (L) = T (TΣ \ L). This
shows that the class of regular sub-tests over Σ is also closed under the boolean
operations complement, intersection, and union.

For a given node test T over Σ, we also wish to be able to apply T to a
node v of a tree mark(t, u), where v need not be equal to u. Thus, we define the
node test µ(T) over Σ×{0, 1} to consist of all (mark(t, u), v) such that (t, v) ∈ T
and u ∈ N (t). The test µ(T) just disregards the marking of t. It is easy to see
that if T is regular, then so is µ(T).

The reader familiar with monadic second-order logic (abbreviated mso logic)
should realize that it easily follows from the result of Doner, Thatcher and
Wright [18, 73] that a node test is regular if and only if it is mso definable
(see [6, Lemma 7]). A node test T over Σ is mso definable if there is an mso

formula ϕ(x) over Σ, with one free variable x, such that T = {(t, u) | t |= ϕ(u)},
where t |= ϕ(u) means that the formula ϕ(x) holds in t for the node u as value
of x. The formulas of mso logic on trees over Σ use the atomic formulas labσ(x)
and downi(x, y), for every i ∈ [1,mxΣ], meaning that node x has label σ ∈ Σ,
and that y is the i-th child of x, respectively. In the literature, regular tests are
also called mso tests.

3 Tree-Walking Tree Transducers

In this section we define tree-walking tree transducers, with and without regular
look-around, and discuss some of their properties.

A tree-walking tree transducer (with regular look-around), in short tt, is a
finite state device with one reading head that walks from node to node over
its input tree following the edges in either direction. In addition to testing
the label and child number of the current node, it can even test any regular
property of that node. The output tree is produced recursively, in a top-down
fashion. When the transducer produces a node of the output tree, labeled by an
output symbol of rank k, it branches into k copies of itself, which then proceed
independently, in parallel, to produce the subtrees rooted at the children of that
output node.

The tt is specified as a tuple M = (Σ,∆, Q,Q0, R), where Σ and ∆ are
ranked alphabets of input and output symbols, Q is a finite set of states, Q0 ⊆ Q
is the set of initial states, and R is a finite set of rules. The rules are divided into
move rules and output rules. Each move rule is of the form 〈q, σ, j, T 〉 → 〈q′, α〉
such that q, q′ ∈ Q, σ ∈ Σ, j ∈ [0,mxΣ], T is a regular test over Σ (specified in
some effective way), and α is one of the following instructions :

stay,
up provided j 6= 0, and
downi with 1 ≤ i ≤ rankΣ(σ).

12

Each output rule is of the form 〈q, σ, j, T 〉 → δ(〈q1, α1〉, . . . , 〈qk, αk〉) such that
the left-hand side is as above, δ ∈ ∆(k), q1, . . . , qk ∈ Q, and α1, . . . , αk are
instructions as above. A rule 〈q, σ, j, T 〉 → ζ with T = T •

Σ will be written
〈q, σ, j〉 → ζ. The tt M is deterministic, in short a dtt, if Q0 is a singleton,
and T ∩ T ′ = ∅ for every two distinct rules 〈q, σ, j, T 〉 → ζ and 〈q, σ, j, T ′〉 → ζ′

in R. A dtt with initial state q0 will be specified as M = (Σ,∆, Q, q0, R).
A configuration 〈q, u〉 of the tt M on a tree t over Σ is given by the current

state q of M and the current position u of the head of M on t. Formally, q ∈ Q
and u ∈ N (t). The set of all configurations of M on t is denoted Con(t), i.e.,
Con(t) = Q×N (t). A rule 〈q, σ, j, T 〉 → ζ is applicable to a configuration 〈q′, u〉
of M on t if q′ = q and u satisfies the tests σ, j, and T , i.e., σ and j are the label
and child number of u, and (t, u) ∈ T . For a node u of t and an instruction α
we define the node α(u) of t as follows: if α is stay, up, or downi, then α(u)
equals u, is the parent of u, or is the i-th child of u, respectively.

For every input tree t ∈ TΣ we define the regular tree grammar GM,t =
(N,∆,S, RM,t) where N = Con(t), S = {〈q0, roott〉 | q0 ∈ Q0} and RM,t is
defined as follows. Let 〈q, u〉 be a configuration of M on t and let 〈q, σ, j, T 〉 → ζ
be a rule of M that is applicable to 〈q, u〉. If ζ = 〈q′, α〉 then RM,t contains the
rule 〈q, u〉 → 〈q′, α(u)〉, and if ζ = δ(〈q1, α1〉, . . . , 〈qk, αk〉) then RM,t contains
the rule 〈q, u〉 → δ(〈q1, α1(u)〉, . . . , 〈qk, αk(u)〉). The derivation relation ⇒GM,t

will be written as ⇒M,t. The translation realized by M , denoted τM , is defined
as τM = {(t, s) ∈ TΣ × T∆ | s ∈ L(GM,t)}. In other words, τM = {(t, s) ∈
TΣ × T∆ | ∃ q0 ∈ Q0 : 〈q0, roott〉 ⇒∗

M,t s}. Two tt’s M and N are equivalent if
τM = τN .

The domain of M , denoted by dom(M), is defined to be the domain of the
translation τM , i.e., dom(M) = dom(τM) = {t ∈ TΣ | ∃ s ∈ T∆ : (t, s) ∈ τM}.
The tt M is total if dom(M) = TΣ.

The tt M is finitary if τM is finitary, which means that τM (t) is finite (or
equivalently, that GM,t is finitary) for every input tree t ∈ TΣ. All classical
top-down tree transducers (with or without regular look-ahead) and all macro
tree transducers are finitary.

If M is deterministic, then at most one rule of M is applicable to a given
configuration. Hence GM,t is forward deterministic and L(GM,t) is either empty
or a singleton. Thus, τM is a partial function from TΣ to T∆ (and a total function
if M is total). For every (t, s) ∈ τM the context-free grammar GM,t has exactly
one derivation tree, with root label 〈q0, roott〉 and yield s.

Intuitively, the derivation relation ⇒M,t of the grammar GM,t formalizes
the computation steps of the tt M on the input tree t, the derivations of GM,t

are the sequential computations of M on t, and the derivation trees of GM,t,
generated by the regular tree grammar Gder

M,t, model the parallel computations
of the independent copies of M on t. If M is deterministic and t ∈ dom(M),
then M has exactly one parallel computation on t.

A sentential form of GM,t will be called an output form of M on t. It is a
tree s ∈ T∆(Con(t)) such that 〈q0, roott〉 ⇒∗

M,t s for some q0 ∈ Q0. Intuitively,
such an output form s consists on the one hand of ∆-labeled nodes that were
produced by M previously in the computation, using output rules, and on the
other hand of leaves that represent the independent copies of M into which the
computation has branched previously, due to those output rules, where each leaf
is labeled by the current configuration of that copy. An output form is initial if
it is the configuration 〈q0, roott〉 for some q0 ∈ Q0, where roott is the root of t,

13

and it is final if it is in T∆, which means that all copies of M have disappeared.
Intuitively, the computation steps of M lead from one output form to an-

other, as follows. Let s be an output form and let v be a leaf of s with label
〈q, u〉 ∈ Con(t). If 〈q, u〉 → 〈q′, α(u)〉 is a rule of GM,t, resulting from a move
rule 〈q, σ, j, T 〉 → 〈q′, α〉 of M that is applicable to configuration 〈q, u〉, as de-
fined above, then s ⇒M,t s

′ where s′ is obtained from s by changing the label
of v into 〈q′, α(u)〉. Thus, this copy of M just changes its configuration. More-
over, if 〈q, u〉 → δ(〈q1, α1(u)〉, . . . , 〈qk, αk(u)〉) is a rule of GM,t, resulting from
an output rule 〈q, σ, j, T 〉 → δ(〈q1, α1〉, . . . , 〈qk, αk〉) of M , as defined above,
then s ⇒t,M s′ where s′ is obtained from s by changing the label of v into δ
and adding children v1, . . . , vm with labels 〈q1, α1(u)〉, . . . , 〈qm, αm(u)〉, respec-
tively. Thus, M outputs δ, and for each child vi it branches into a new process,
a copy of itself started in state qi at the node αi(u). In the particular case that
k = 0, s′ is obtained from s by changing the label of v into δ; thus, the copy
of M corresponding to the node v of s disappears. The translation τM realized
by M consists of all pairs of trees t over Σ and s over ∆ such that M has a
sequential computation on t that starts with an initial output form and ends
with the final output form s.

Before giving an example of a tree-walking tree transducer, we define six
properties of tt’s that will be used throughout this paper.

The tt M is sub-testing, abbreviated tt
s, if the regular tests used by M

are regular sub-tests, i.e., only test the subtree at the current node. Formally,
for every rule 〈q, σ, j, T 〉 → ζ there is a regular tree language L over Σ such
that T = T (L). Recall that T (L) = {(t, u) | t|u ∈ L}. Thus, informally, M is
sub-testing if it uses regular look-ahead rather than the more general regular
look-around.

The tt M is local, abbreviated tt
ℓ, if it does not use regular tests, i.e.,

T = T •
Σ (= {(t, u) | t ∈ TΣ, u ∈ N (t)}) for every rule 〈q, σ, j, T 〉 → ζ. So all its

rules are written 〈q, σ, j〉 → ζ. Recall that T •
Σ = T (TΣ); thus, every local tt

is sub-testing. Note that in the formalism of the (non-local) tt the tests on
σ and j could be dropped from a rule 〈q, σ, j, T 〉 → ζ, because they can be
incorporated in the regular test T .

The tt M is top-down, abbreviated tt↓, if it does not use the up-instruction
in the right-hand sides of its rules. Due to the use of stay-instructions, a tt↓

need not be finitary. It is straightforward to show that the finitary (determinis-
tic) tt s

↓ and tt
ℓ
↓ are equivalent to the classical nondeterministic (deterministic)

top-down tree transducer, with and without regular look-ahead, respectively;
see the end of this section. Note that in the rules of a tt

s
↓ or ttℓ

↓ the test on
the child number j could be dropped, because j can be stored in the finite state
if necessary.

The tt M is single-use, abbreviated ttsu, if it is deterministic and never
visits a node of the input tree twice in the same state. Formally, it should
satisfy the following property: for every t ∈ TΣ, s

′ ∈ T∆(Con(t)), s ∈ T∆, and
〈q, u〉 ∈ Con(t), if 〈q0, roott〉 ⇒∗

M,t s′ ⇒∗
M,t s then 〈q, u〉 occurs at most once

in s′. In other words, for every t ∈ dom(M), no nonterminal occurs twice in
the (unique) derivation tree d of the context-free grammar G = GM,t. Note
that, as discussed in the proof of Lemma 3 (and the paragraph following it),
the configuration 〈q, u〉 cannot occur at two distinct nodes on a path from the
root of d to a leaf. The single-use property also forbids 〈q, u〉 to occur at two
independent nodes of d. It was introduced for attribute grammars in [40, 41, 45].

14

The tt M is pruning, abbreviated ttpru, if it is a top-down tt of which
each move rule is of the form 〈q, σ, j, T 〉 → 〈q′, downi〉, and each output rule is
of the form 〈q, σ, j, T 〉 → δ(〈q1, downi1〉, . . . , 〈qk, downik〉) such that 1 ≤ i1 <
· · · < ik ≤ rank(σ). Intuitively, a pruning tt is a tt↓ without stay-instructions
that, when arriving at an input node u, either removes u and all its children
except one (together with the descendants of those children), or relabels u and
possibly removes some of its children (together with their descendants). Since
a ttpru does not use the stay-instruction, it is finitary (and single-use if it is
deterministic). Every tt

s
pru and tt

ℓ
pru is equivalent to a classical linear top-

down tree transducer, with and without regular look-ahead, but not vice versa
because the latter transducer can generate an arbitrary finite number of output
nodes at each computation step, rather than zero or one.

The tt M is relabeling, abbreviated ttrel, if every rule of M is an out-
put rule of the form 〈q, σ, j, T 〉 → δ(〈q1, down1〉, . . . , 〈qm, downm〉) where m =
rankΣ(σ) = rank∆(δ). Thus, the label σ is replaced by the label δ. Obviously,
every relabeling tt is pruning.

We use the notation TT for the class of translations realized by tree-walking
tree transducers, and f TT and dTT for the subclasses realized by finitary and
deterministic tt’s, respectively. Thus, dTT ⊆ f TT ⊆ TT. The subclasses of
TT, f TT, and dTT realized by tt’s with the above six properties (and their
combinations) are indicated by the superscripts ‘s’ and ‘ℓ’, and the subscripts
‘↓’, ‘su’, ‘pru’, and ‘rel’, as above. For instance, dTT s

↓ denotes the class of
translations realized by deterministic tree-walking tree transducers that are both
sub-testing and top-down. Note that TTℓ is a proper subclass of TT s, because
a local tt of which all output symbols have rank 0 can be viewed as a tree-
walking automaton, which cannot recognize all regular tree languages by the
result of [9].

By [14, Section 8.4], the tt is equivalent to the ms tree-walking transducer
of [14, Section 8.2]. As discussed in the Introduction, the tt

ℓ generalizes the
attributed tree transducer of [38], which is required to be noncircular and hence
finitary; the deterministic attributed tree transducer is also required to be total.3

In the same way the deterministic tt generalizes the (deterministic) attributed
tree transducer with look-ahead of [7]. In [26] all tree-walking tree transducers
are local.

Example 4 Let Σ = {σ, e} with rankΣ(σ) = 2 and rankΣ(e) = 0, and let
∆ = {σ, e} ∪ [1,mxΣ] with rank∆(σ) = 2, rank∆(e) = 0, and rank∆(j) = 0 for
every j ∈ [1,mxΣ] = {1, 2}. Moreover, let T be an arbitrary regular node test
over Σ. For simplicity we assume that T is not satisfied at the leaves of t, i.e.,
if (t, u) ∈ T then u is not a leaf of t. For instance, T consists of all (t, u) ∈ T •

Σ

such that u has at least one ancestor that has exactly one child that is a leaf,
and at least one descendant with that same property. We consider a total
deterministic tt M = (Σ,∆, Q, q0, R) that performs T as a query, i.e., for every
input tree t it outputs all nodes of t that satisfy T , in pre-order. More precisely, if

3The tt M is circular if there exist t ∈ TΣ, u ∈ N (t), q ∈ Q, and s ∈ T∆(Con(t)) such that
〈q, u〉 ⇒∗

M,t
s and 〈q, u〉 occurs in s. Thus, M is noncircular if and only if GM,t is nonrecursive

for every t ∈ TΣ, which implies that L(GM,t) is finite. Note that a total deterministic tt is
noncircular if and only if for every t ∈ TΣ, u ∈ N (t), and q ∈ Q there exists s ∈ T∆ such that
〈q, u〉 ⇒∗

M,t
s. It can be shown that for every finitary tt there is an equivalent noncircular

tt, but that will not be needed in this paper.

15

u1, . . . , un are the nodes u of t such that (t, u) ∈ T , in pre-order, then M outputs
the tree s = σ(s1, σ(s2, . . . σ(sn, e) · · ·)) where si = σ(· · ·σ(σ(e, j1), j2) . . . , jk)
if ui = j1j2 · · · jk with j1, j2, . . . , jk ∈ [1,mxΣ]. Note that the yield of s is
eu1eu2 · · · eune. The transducer M performs a left-to-right depth-first traversal
of the input tree t and applies the test T to every node of t, in pre-order.
Whenever M finds a node ui that satisfies the test, it branches into two copies.
The first copy outputs the tree si with yield eui, walking from u to the root,
and the second copy continues the traversal.

Formally, M has the set of states Q = {d, u1, u2, p, p
′} and initial state

q0 = d. Intuitively, d stands for ‘down’, uj for ‘up from the j-th child’, and p for
‘print’. It has the following rules, where j′ ∈ [0,mxΣ], j ∈ [1,mxΣ], T

c = T •
Σ\T ,

and τ ∈ Σ:

〈d, σ, j′, T c〉 → 〈d, down1〉 〈d, e, j〉 → 〈uj , up〉

〈d, σ, j′, T 〉 → σ(〈p, stay〉, 〈d, down1〉) 〈d, e, 0〉 → e

〈u1, σ, j
′〉 → 〈d, down2〉 〈p, τ, j〉 → σ(〈p, up〉, j)

〈u2, σ, j〉 → 〈uj , up〉 〈p, τ, 0〉 → e

〈u2, σ, 0〉 → e

where the rule 〈p, τ, j〉 → σ(〈p, up〉, j) abbreviates the two rules

〈p, τ, j〉 → σ(〈p, up〉, 〈p′, stay〉) and 〈p′, τ, j〉 → j.

The tt M does not have any of the six properties defined above. Note that
M is not single-use because it pays n visits to the root of t in state p. For the
example test T it is not clear whether there is a local tt equivalent to M , but
that does not seem likely. ✷

Example 5 Let Σ = {σ, e} as in Example 4. We consider a total deterministic
local tt Mexp that translates each tree t with n leaves into the full binary tree
of height n with 2n leaves. As in Example 4, it performs a depth-first left-
to-right traversal of t, and branches into two copies whenever it visits a leaf
of t. Formally, Mexp = (Σ,Σ, Q, q0, R) with Q = {d, u1, u2, q} and q0 = d. Its
rules are similar to those of M in Example 4. In particular, the three rules for
states u1 and u2 are the same. The rules for state d are the following, with
j′ ∈ [0,mxΣ] and j ∈ [1,mxΣ]:

〈d, σ, j′〉 → 〈d, down1〉

〈d, e, j〉 → σ(〈uj , up〉, 〈uj , up〉)

〈d, e, 0〉 → σ(e, e)

where the last rule abbreviates the two rules 〈d, e, 0〉 → σ(〈q, stay〉, 〈q, stay〉)
and 〈q, e, 0〉 → e. ✷

An elementary property of the translation realized by a deterministic tt is
that it is of “linear size-height increase”, as stated in the next lemma. Since
the size of a tree is at most exponential in its height, this implies that it is of
exponential size increase. This is well known for attributed tree transducers [38,
Lemma 4.1] (see also [39, Lemma 5.40]) and for local tt’s [31, Lemma 7], and
obviously also holds for tt’s. If, moreover, the tt is single-use, then it is of
linear size increase.

16

Lemma 6 For every τ ∈ dTT there is a constant c such that for every (t, s) ∈ τ
the height of s is at most c · |t|. Moreover, dTTsu ⊆ LSIF.

Proof. Let M = (Σ,∆, Q, q0, R) be a dtt and let (t, s) ∈ τM . Let d be the
unique derivation tree generated by Gder

M,t. Clearly, since each rule of M outputs
at most one node of s, the height of s is at most the height of d. By Lemma 3
the height of d is at most #(Con(t)), which equals #(Q) · |t|. Thus, we can take
c = #(Q).

It should also be clear that the size of s is at most the number of nodes of d
that are labeled by a configuration. If M is single-use, then no configuration
occurs twice in d. Hence |s| ≤ #(Q) · |t|, i.e., the function τM is of linear size
increase. ✷

Example 5 and Lemma 6 imply that compositions of deterministic tt’s form
a proper hierarchy. This was proved for attributed tree transducers in [38,
Corollary 4.1] (see also [39, Theorem 5.45]), and the proof for tt’s is exactly
the same.

Proposition 7 For every k ≥ 1, dTTk (dTTk+1.

Proof. Let τexp be the translation realized by the dtt Mexp of Example 5.
Then τexp ◦ τexp translates each tree t with n leaves into the full binary tree of
height 2n with 22

n

leaves. Since |t| = 2n − 1, it follows from Lemma 6 that
τexp ◦ τexp is not in dTT. Hence dTT (dTT2. In a similar way it can be shown

that τk+1
exp is not in dTTk. Since the size of a tree is at most exponential in its

height, it follows from Lemma 6 that for every τ ∈ dTT2 there is a constant
c such that for every (t, s) ∈ τ the height of s is at most 2c·|t|. Similarly for
τ ∈ dTTk, the height of s is at most (k − 1)-fold exponential in |t|. ✷

Thus, in terms of size increase, a composition of k dtt’s can create at most a
k-fold exponentially large output tree, whereas a composition of k+1 dtt’s can
naturally create an output tree of (k+1)-fold exponential size. In Section 7 we
will prove that compositions of nondeterministic tt’s also form a hierarchy, with
the same counter-examples. One of our aims is to show that these hierarchies
collapse for functions of linear size increase, i.e., that TTk ∩ LSIF ⊆ dTT for
every k ≥ 1.

We end this section by discussing some syntactic properties of tt’s. First,
for an arbitrary tt it may always be assumed that its output rules only use
the stay-instruction: an output rule 〈q, σ, j, T 〉 → δ(〈q1, α1〉, . . . , 〈qk, αk〉) can
be replaced by the output rule 〈q, σ, j, T 〉 → δ(〈p1, stay〉, . . . , 〈pk, stay〉) and
the move rules 〈pi, σ, j, T 〉 → 〈qi, αi〉 for every i ∈ [1, k], where p1, . . . , pk are
new states. This replacement preserves determinism and the sub-testing, local,
top-down, and single-use properties (but not pruning or relabeling).

Second, we may always assume that the regular tests of a tt are disjoint.
For a tt M , let TM be the set of regular tests in the left-hand sides of the rules
of M .

Lemma 8 For every tt M there is an equivalent tt M ′ such that the tests
in TM ′ are mutually disjoint. The construction preserves determinism and the
sub-testing, local, top-down, single-use, pruning, and relabeling properties.

17

Proof. If T, T ′ ∈ TM and T ∩ T ′ 6= ∅, then every rule 〈q, σ, j, T 〉 → ζ can be
replaced by the two rules 〈q, σ, j, T ∩ T ′〉 → ζ and 〈q, σ, j, T \ T ′〉 → ζ. The
transducer M ′ is obtained by repeating this procedure. ✷

Third, we can extend the definition of a tt M = (Σ,∆, Q, q0, R) by allowing
“general rules”, which can generate any finite number of output nodes, cf. [31,
Lemma 2]. Simple examples of general rules are 〈p, τ, j〉 → σ(〈p, up〉, j) in
Example 4 and 〈d, e, 0〉 → σ(e, e) in Example 5. Formally, a general rule is of the
form 〈q, σ, j, T 〉 → ζ such that ζ is a tree in T∆(Q× Iσ,j), where Iσ,j is the usual
set of instructions: stay, up (provided j 6= 0), and downi with i ∈ [1, rank(σ)].
If this rule is applicable to a configuration 〈q, u〉 of M on t ∈ TΣ, then GM,t has
the rule 〈q, u〉 → ζu, where ζu is obtained from ζ by changing every label 〈q′, α〉
into 〈q′, α(u)〉. It is easy to see that a general rule can be replaced by the set
of ordinary rules defined as follows. Let pu be a new state for every u ∈ N (ζ).
Then the rules are 〈q, σ, j, T 〉 → 〈pε, stay〉, where ε is the root of ζ, and all rules
〈pu, σ, j, T 〉 → λ(〈pu1, stay〉, . . . , 〈puk, stay〉) where λ is the label of u in ζ and
k is its rank. The first rule is a move rule that just changes state, and the latter
rules output the ∆-labeled nodes of ζ one by one (λ ∈ ∆), and then make the
required moves (λ ∈ Q×Iσ,j). This construction preserves determinism and the
sub-testing, local, top-down, and single-use properties. Note that the classical
top-down tree transducer has general rules.

If we allow general rules, then the stay-instruction is not needed any more
in finitary tt’s. Let us say that a tt is stay-free if it does not use the stay-
instruction in its rules. For every tt M (with general rules) we can construct
an equivalent stay-free tt Msf with general rules, with possibly infinitely many
rules but such that the right-hand sides of rules with the same left-hand side
form a regular tree language. If M is finitary, then we can transformMsf into an
equivalent stay-free tt with finitely many rules. The construction is as follows,
where we may assume that the node tests in TM are mutually disjoint, by (the
proof of) Lemma 8.

For every left-hand side 〈q, σ, j, T 〉 of a rule ofM = (Σ,∆, Q,Q0, R) we define
a regular tree grammar Gq,σ,j,T that simulates the computations of M , starting
in a configuration 〈q, u〉 to which 〈q, σ, j, T 〉 is applicable, without leaving the
current node u, i.e., executing stay-instructions only. Its set of nonterminals is
{〈q′, stay〉 | q′ ∈ Q} with initial nonterminal 〈q, stay〉. Its set of terminals is
∆ ∪ Dσ,j, where Dσ,j = Q × (Iσ,j \ {stay}) each element of which has rank 0.
Finally, if 〈q′, σ, j, T 〉 → ζ is a rule of M (with q′ ∈ Q and the same σ, j, and T),
then Gq,σ,j,T has the rule 〈q′, stay〉 → ζ.

We now defineMsf = (Σ,∆, Q,Q0, Rsf) where Rsf consists of all general rules
〈q, σ, j, T 〉 → ζ such that ζ ∈ L(Gq,σ,j,T), for every left-hand side 〈q, σ, j, T 〉 of
a rule of M . Even if Msf has infinitely many rules, it should be clear that (with
all the definitions as in the finite case) Msf is equivalent to M .

Note that if M is deterministic, then so is Msf , because Gq,σ,j,T is forward
deterministic and hence L(Gq,σ,j,T) is empty or a singleton. Thus, Msf has
finitely many rules.

Assume now that M , and hence Msf , is finitary. Let 〈q, σ, j, T 〉 be the left-
hand side of a rule of M , and let D ⊆ Dσ,j. If Msf has infinitely many rules
〈q, σ, j, T 〉 → ζ with ζ ∈ T∆(D), then we remove those rules from Rsf . In fact,
if Msf would have a computation 〈q0, roott〉 ⇒∗

Msf ,t
s with q0 ∈ Q0 in which

one of those rules is applied, then it would have a similar computation (with

18

the same q0 and t, but, in general, another s) in which any other of those
rules is applied. Since s contains at least as many occurrences of symbols in ∆
as ζ, that would contradict the finitariness of Msf . Removing all these rules, for
every D ⊆ Dσ,j , we are left with an equivalent version of Msf with finitely many
rules. The construction is effective because L(Gq,σ,j,T)∩T∆(D) is a regular tree
language and hence its finiteness can be decided.

The above constructions also preserve the sub-testing, local, top-down, and
single-use properties. Note that if M is a finitary tt

s
↓ or tt

ℓ
↓, then Msf is a

classical top-down tree transducer (after incorporating the child number in its
finite state), with or without regular look-ahead, respectively.

4 Regular Look-Around

In this section we discuss some basic properties of tt’s with respect to the
feature of regular look-around. We start with the simple fact that the domain
of a tt can always be restricted to a regular tree language, except when the tt

is local.

Lemma 9 For every tt M and every L ∈ REGT there is a tt M ′ such that
τM ′ = {(t, s) ∈ τM | t ∈ L}. The construction preserves determinism and the
sub-testing, top-down, single-use, pruning, and relabeling properties.

Proof. The tt M ′ simulatesM , but additionally verifies that the input tree t is
in L, by using the regular sub-test T (L) at the root of t. Formally,M ′ is obtained
from M by changing every rule 〈q0, σ, 0, T 〉 → ζ into 〈q0, σ, 0, T ∩ T (L)〉 → ζ,
for every initial state q0. ✷

In the remainder of this section we show how to separate the regular look-
around from a tt, by incorporating it into another tt. We first prove that
every tt M can be decomposed into a deterministic relabeling tt N and a
local tt M ′. The relabeling tt N preprocesses the input tree t by adding to
the label of each node u of t the truth values of the regular tests of M at that
node. This allows M ′, during its simulation of M , to inspect the new label of u
instead of testing u. The idea is similar to that of removing regular look-ahead
in [20, Theorem 2.6]. The translation realized by N is called an mso relabeling
in [7, 14] and [29, Section 4].

Lemma 10 TT ⊆ dTTrel ◦ TTℓ, i.e., for every tt M there are a deterministic
relabeling tt N and a local tt M ′ such that τN ◦ τM ′ = τM . The construction
preserves determinism, the top-down property, and the pruning property.

Proof. Let M = (Σ,∆, Q,Q0, R) be a tt, and let T be the set of regular
tests in the left-hand sides of the rules in R. By Lemma 8 we may assume that
the tests in T are mutually disjoint. Now let T⊥ = T ∪ {⊥} where ⊥ is the
intersection of the complements of the tests in T . Thus, for every t ∈ TΣ and
u ∈ N (t), (t, u) belongs to a unique node test in T⊥. Let Σ× T⊥ be the ranked
alphabet such that 〈σ, T 〉 has the same rank as σ.

We define the relabeling tt N = (Σ,Σ×T⊥, {p}, p, RN) such that for every
σ ∈ Σ, j ∈ [0,mxΣ], and T ∈ T⊥, the output rule

〈p, σ, j, T 〉 → 〈σ, T 〉(〈p, down1〉, . . . , 〈p, downm〉)

19

is in RN , where m is the rank of σ. Additionally we define the local tt M ′ =
(Σ × T⊥,∆, Q,Q0, R

′) with the following rules. If 〈q, σ, j, T 〉 → ζ is a rule
in R, then R′ contains the rule 〈q, 〈σ, T 〉, j〉 → ζ. Note that N is total and
deterministic. Also, if M is deterministic, then so is M ′. It should be clear that
τM ′(τN (t)) = τM (t) for every t ∈ TΣ, i.e., τN ◦ τM ′ = τM . ✷

We will also need a variant of this lemma, for nondeterministic tt’s only.

Lemma 11 TT s ⊆ TTℓ
rel ◦ TT

ℓ and TT s
pru ⊆ TTℓ

rel ◦ TT
ℓ
pru.

Proof. Let M = (Σ,∆, Q,Q0, R) be a sub-testing tt, and let T be the set of
regular tests in the left-hand sides of the rules in R. As in the proof of Lemma 10
we may assume that the tests in T are mutually disjoint (by Lemma 8), and
we define T⊥ = T ∪ {⊥} as in that proof. Let T⊥ = {T (L1), . . . , T (Ln)}
where L1, . . . , Ln are regular tree languages. Clearly, there is a bottom-up
finite-state tree automaton A = (Σ, P, F, δ) (where F is irrelevant) and a par-
tition {F1, . . . , Fn} of P such that for every t ∈ TΣ and i ∈ [1, n], t ∈ Li

if and only if δ(t) ∈ Fi. We define the local relabeling tt N = (Σ,Σ ×
T⊥, P, P,RN) such that it nondeterministically simulates A top-down. For
every σ ∈ Σ of rank m, every sequence of states p1, . . . , pm ∈ P , and ev-
ery j ∈ [0,mxΣ], if δ(σ, p1, . . . , pm) = p ∈ Fi, then RN contains the rule
〈p, σ, j〉 → 〈σ, T (Li)〉(〈p1, down1〉, . . . , 〈pm, downm〉). The local tt M ′ is de-
fined as in the proof of Lemma 10. ✷

The next lemma is based on the folklore technique of computing the states
of a bottom-up finite-state tree automaton that are “successful” at the current
node (see, e.g., the proofs of [7, Theorem 10] and [6, Theorem 8]). The lemma
shows that every top-down tt is equivalent to one that is sub-testing, and
hence to a classical top-down tree transducer with regular look-ahead if it is
finitary. It is a slight generalization of the fact that every mso relabeling can
be computed by a top-down tree transducer with regular look-ahead, as shown
in [7, Theorem 10] and [31, Theorem 4.4].

Lemma 12 TT↓ = TT s
↓. The construction preserves determinism, pruning,

and relabeling.

Proof. Let M = (Σ,∆, Q,Q0, R) be a tt↓ that uses a regular test T over Σ
in its rules. For simplicity we first assume that M uses T in each of its rules.
Let A = (Σ × {0, 1}, P, F, δ) be a bottom-up finite-state tree automaton that
recognizes mark(T). We identify the symbols (σ, 0) and σ; thus, A can also
handle trees over Σ. For every tree t ∈ TΣ and every node u ∈ N (t), we
define the set succt(u) of successful states of A at u to consist of all states
p ∈ P such that A recognizes t when started at u in state p. To be precise,
succt(roott) = F and if u has label σ ∈ Σ(m) and i ∈ [1,m], then succt(ui) is
the set of all states p ∈ P such that δ(σ, p1, . . . , pi−1, p, pi+1, . . . , pm) ∈ succt(u),
where pj = δ(t|uj), i.e., pj is the state in which A arrives at the j-th child of u,
for every j ∈ [1,m] \ {i}. Obviously, mark(t, u) is recognized by A if and only if
δ((σ, 1), δ(t|u1), . . . , δ(t|um)) ∈ succt(u).

For every σ ∈ Σ(m) and every sequence of states p1, . . . , pm ∈ P let Lσ,p1,...,pm

be the regular tree language consisting of all trees σ(t1, . . . , tm) ∈ TΣ such that
δ(ti) = pi for every i ∈ [1,m]. Thus, the regular sub-test T (Lσ,p1,...,pm

) verifies
that A arrives at the i-th child of the current node in state pi for every i ∈ [1,m].

20

We construct a sub-testing tt↓ M ′ = (Σ,∆, Q′, Q′
0, R

′) that is equivalent
to M . It keeps track of succt(u) in its finite state. Its set of states is Q′ =
Q × {S | S ⊆ P} with set of initial states Q′

0 = {(q0, F) | q0 ∈ Q0}. The set
of rules R′ is defined as follows. Let 〈q, σ, j, T 〉 → ζ be a rule in R, let S ⊆ P ,
and let p1, . . . , pm ∈ P such that δ((σ, 1), p1, . . . , pm) ∈ S where m = rankΣ(σ).
Then R′ contains the rule 〈(q, S), σ, j, T (Lσ,p1,...,pm

)〉 → ζ′ where ζ′ is obtained
from ζ by changing every 〈q′, stay〉 into 〈(q′, S), stay〉 and every 〈q′, downi〉 into
〈(q′, Si), downi〉 with Si = {p ∈ P | δ(σ, p1, . . . , pi−1, p, pi+1, . . . , pm) ∈ S}.

In the general case where M uses regular tests T1, . . . , Tn, the transducer M
′

must keep track of succt(u) for each of the corresponding bottom-up finite-state
tree automata A1, . . . , An. ✷

The proof of Lemma 12 also shows that in a rule 〈q, σ, j, T (L)〉 → ζ of a
sub-testing tt↓ we may assume that L is of the form L = σ(L1, . . . , Lm) =
{σ(t1, . . . , tm) | t1 ∈ L1, . . . , tm ∈ Lm} for regular tree languages L1, . . . , Lm

(where m = rank(σ)). This is how regular look-ahead is usually defined for
classical top-down tree transducers.

By Lemmas 10 and 12, dTT ⊆ dTT s
↓ ◦ dTT

ℓ. It is proved in [28, Lemmas 49

and 50] that even dTT ⊆ dTTℓ
↓ ◦ dTTℓ, but this will not be needed in what

follows.4 Using Lemmas 10 and 12 we can now prove three essential properties
of tt’s, based on well-known results from the literature.

Lemma 13 The regular tree languages are closed under inverses of tt trans-
lations, i.e., if L ∈ REGT and τ ∈ TT, then τ−1(L) ∈ REGT.

Proof. Since the inverse of a composition is the composition of the inverses, it
suffices to show this for dTT s

rel and TTℓ by Lemmas 10 and 12. For dTT s
rel it

follows from [20, Theorem 2.6 and Lemma 1.2], and for TTℓ it is proved in [26,
Lemma 3].5 ✷

Corollary 14 The domain of a tt M is regular, i.e., dom(M) ∈ REGT. More
generally, for every k ≥ 1, if τ ∈ TTk then dom(τ) ∈ REGT.

Corollary 14 was proved for (nondeterministic) attributed tree transducers
in [5], from which it is easy to conclude that Lemma 13 holds for attributed tree
transducers, as explained in [26, Lemma 3].

Lemma 15 The regular tree languages are closed under pruning tt transla-
tions, i.e., if L ∈ REGT and τ ∈ TTpru, then τ(L) ∈ REGT.

Proof. By Lemma 12, TTpru = TT s
pru. As observed before, every τ ∈ TT s

pru

can be realized by a classical linear top-down tree transducer with regular look-
ahead. It is well known that, due to linearity, REGT is closed under such trans-
lations, see, e.g., [43, Corollary IV.6.7]. ✷

4In [28], dTT and dTTℓ are denoted by dTTmso and dTT, respectively.
5We note that an alternative proof is by Lemma 26 (in Section 6) and [34, Theorem 7.4]

(see also [65, Section 5]). For the reader familiar with mso translations, see [14], we note
that it is proved in [29, Section 4] that dTT s

rel
is the class of mso (tree) relabelings, and that

REGT, which is the class of mso definable tree languages, is closed under inverse mso (tree)
transductions by [14, Corollary 7.12].

21

Lemma 13, Corollary 14 and Lemma 15 are powerful technical tools because
they allow us to show that certain node tests of a tt M are regular by defining
them in terms of, e.g., the domains of other tt’s or of variants of M itself.
In other words, a tt can use tt’s “to look around”. For instance, Lemma 13
is used for this purpose in the proof of Lemma 16 below, where we show the
following.

In a composition of a dtt with a sub-testing tt the second transducer can
even be assumed to be local, because the first transducer can determine the
truth values of the regular sub-tests of the output tree by executing appropriate
regular tests on its input tree.

Lemma 16 dTT ◦ TT s ⊆ dTT ◦ TTℓ. The construction preserves determinism
(of the second transducer) and the top-down, single-use, pruning, and relabeling
properties of both transducers.

Proof. Let M1 = (Σ,∆, Q, q0, R) be a dtt and let M2 be a sub-testing tt

with input alphabet ∆. We will construct a dtt M ′
1 and a local tt M ′

2 that
simulate the composition of M1 and M2. The construction preserves the top-
down, single-use, pruning, and relabeling property of each transducer, i.e., if
M1 has one of these properties, then so has M ′

1, and similarly for M2 and M ′
2.

Moreover, if M2 is deterministic, then so is M ′
2.

Let (t, s) ∈ τM1
. The dtt M ′

1 simulates M1 on the input tree t. Simultane-
ously it executes the sub-tests of M2 at every node v of the output tree s and
preprocesses s by adding to the label of v the truth values of these sub-tests
at v, cf. the text before Lemma 10. This allows M ′

2, during its simulation of
M2 on s, to inspect the new label of v instead of sub-testing v.

Every node of s is produced by an output rule of M1 during its computation
on t. Let s̄ be an output form of M1 on t, and let v be a leaf of s̄ with
label 〈q, u〉. It should be clear that 〈q, u〉 ⇒∗

M1,t
s|v. Now let L be a regular

tree language over ∆ such that M2 uses the sub-test T ′ = T (L). We claim
that, in configuration 〈q, u〉, M ′

1 can test whether (s, v) ∈ T ′ by a regular test
invq(T

′). Note that (s, v) ∈ T (L) if and only if s|v ∈ L. Thus, invq(T
′)

should test whether the output tree generated by the configuration 〈q, u〉 is
in L. To prove that mark(invq(T

′)) is regular, we define a dtt Nq such that
mark(invq(T

′)) = τ−1
Nq

(L) and we use Lemma 13. The transducer Nq first uses

a regular test at the root to verify that the input tree is of the form mark(t, u).6

After that it walks to the (unique) marked node u, using move rules to execute
a depth-first search of the input tree, and then simulates M1 starting in state q
at u, producing the output tree s|v. During that simulation it treats each symbol
(σ, 0) or (σ, 1) as σ, and for each regular test T of M1 it instead uses the test
µ(T), which is the set of all (mark(t, u), v) such that (t, v) ∈ T and u ∈ N (t),
see Section 2.

The construction of M ′
1 and M ′

2 is similar to the construction of N and M ′

in the proof of Lemma 10. Let T be the set of regular tests in the left-hand
sides of the rules of M2. As in the proof of Lemma 10 we may assume that the
tests in T are mutually disjoint (by Lemma 8), and we define T⊥ = T ∪ {⊥}
as in that proof. Note that the elements of T⊥ are still regular sub-tests. Note
also that for every q ∈ Q, t ∈ dom(M1) and u ∈ N (t), (t, u) belongs to a unique
regular test in {invq(T ′) | T ′ ∈ T⊥}.

6To be precise, the regular sub-test T (mark(T •
Σ
)).

22

We define the dtt M ′
1 = (Σ,∆×T⊥, Q, q0, R

′) such that R′ contains all move
rules in R, and moreover, if 〈q, σ, j, T 〉 → δ(〈q1, α1〉, . . . , 〈qk, αk〉) is an output
rule in R, then R′ contains the rule

〈q, σ, j, T ∩ invq(T
′)〉 → 〈δ, T ′〉(〈q1, α1〉, . . . , 〈qk, αk〉)

for every T ′ ∈ T⊥. We define the local tt M ′
2 with input alphabet ∆ × T⊥

and the following rules. If 〈q, δ, j, T ′〉 → ζ is a rule of M2, then M ′
2 has the

rule 〈q, 〈δ, T ′〉, j〉 → ζ. It should now be clear that τM ′

2
(τM ′

1
(t)) = τM2

(τM1
(t))

for every t ∈ TΣ, i.e., τM ′

1
◦ τM ′

2
= τM1

◦ τM2
. If M1 is single-use, then M ′

1 is
also single-use, because M ′

1 visits the nodes of the input tree in the same states
as M1; the same is true for M2 and M ′

2. Preservation of the other properties
easily follows from the construction of M ′

1 and M ′
2. ✷

5 Composition

In this section we prove three composition results for tt’s. Our first aim is to
prove that dtt’s are closed under right-composition with top-down dtt’s, and
hence in particular with pruning dtt’s. As already mentioned at the end of the
Introduction, this generalizes the result of [38, Theorem 4.3] for attributed tree
transducers, because dtt’s need not be total and they have regular look-around.
By Lemma 12 we may assume that the top-down tt is sub-testing. It may even
be assumed to be local by Lemma 16.

Lemma 17 dTT ◦ dTTℓ
↓ ⊆ dTT. In particular

dTT↓ ◦ dTTℓ
↓ ⊆ dTT↓ and dTTpru ◦ dTTℓ

pru ⊆ dTTpru.

Proof. Since the domain of a tt can always be restricted to dom(M1) by
Lemma 9 and Corollary 14, it suffices to show that for every dtt M1 and
every local top-down dtt M2, a dtt M can be constructed such that τM (t) =
τM2

(τM1
(t)) for every input tree t ∈ dom(M1). For the case where M1 is also

local this construction was presented in the proof of [28, Theorem 55], which
can easily be adapted to the general case. We repeat it here for completeness
sake, and because the proofs of the other two composition closure results will
be based on it.

The transducer M is obtained by a straightforward product construction.
For every (t, s) ∈ τM1

, M simulates M1 on the input tree t until M1 uses an
output rule that generates a node v of s. Then M switches to the simulation of
M2 on v, as long as M2 executes stay-instructions. When M2 executes a downi-
instruction, M switches again to the simulation of M1 in order to generate the
i-th child of v.

Formally, let M1 = (Σ,∆, P, p0, R1) and M2 = (∆,Γ, Q, q0, R2). To simplify
the construction of M we assume that M1 keeps track in its finite state of the
child number of the output node to be generated. To be precise, we assume that
there is a mapping χ : P → [0,mx∆] such that for every output form s′ and every
leaf v of s′ that is labeled by a configuration 〈p, u〉, the child number of v in s′

is χ(p). That is possible because the output tree is generated top-down. If M1

does not satisfy this assumption, then we change M1 as follows. The new set of
states is P × [0,mx∆], and we define χ(p, i) = i. The new initial state is (p0, 0),

23

because M1 starts by generating the root of the output tree. Each move rule
〈p, σ, j, T 〉 → 〈p′, α〉 of M1 is changed into the rules 〈(p, i), σ, j, T 〉 → 〈(p′, i), α〉
and each output rule 〈p, σ, j, T 〉 → δ(〈p1, α1〉, . . . , 〈pk, αk〉) into 〈(p, i), σ, j, T 〉 →
δ(〈(p1, 1), α1〉, . . . , 〈(pk, k), αk〉), for every i ∈ [0,mx∆]. For the sake of the proof
of Lemma 22 we note that this transformation of M1 preserves the single-use
property, because we have only added information to the states of M1.

The dtt M has input alphabet Σ and output alphabet Γ. Its states are of
the form (p, q) or (ρ, q), where p ∈ P , q ∈ Q, and ρ is an output rule ofM1, i.e., a
rule of the form 〈p, σ, j, T 〉 → δ(〈p1, α1〉, . . . , 〈pk, αk〉). Its initial state is (p0, q0).
A state (p, q) is used by M to simulate the computation of M1 that generates
the next current node of M2 when M2 moves down (keeping the state q of M2

in memory). Initially M simulates the computation of M1 that generates the
root of the output tree. A state (ρ, q) is used by M to simulate the computation
of M2 on the node that M1 has generated with rule ρ. The rules of M are
defined as follows.

First, rules that simulate M1. Let ρ : 〈p, σ, j, T 〉 → ζ be a rule in R1. If
ζ = 〈p′, α〉, then M has the rules 〈(p, q), σ, j, T 〉 → 〈(p′, q), α〉 for every q ∈ Q.
If ρ is an output rule, then M has the rules 〈(p, q), σ, j, T 〉 → 〈(ρ, q), stay〉 for
every q ∈ Q.

Second, rules that simulate M2. Let 〈q, δ, i〉 → ζ be a rule in R2 and let
ρ : 〈p, σ, j, T 〉 → δ(〈p1, α1〉, . . . , 〈pk, αk〉) be an output rule in R1, with the same δ
and with χ(p) = i. ThenM has the rule 〈(ρ, q), σ, j, T 〉 → ζ′ where ζ′ is obtained
from ζ by changing every 〈q′, stay〉 into 〈(ρ, q′), stay〉, and every 〈q′, downℓ〉 into
〈(pℓ, q′), αℓ〉. Note that the test on σ, j, and T is actually superfluous, because
that was already tested when M included ρ in its state.

It is easy to see that τM (t) = τM2
(τM1

(t)) for every input tree t ∈ dom(M1).
If the rules of M2 do not contain stay-instructions, then M does not need the
states (ρ, q). Its rules can then be simplified as follows. Let 〈p, σ, j, T 〉 → ζ be
a rule in R1. As above, if ζ = 〈p′, α〉, then M has the rules 〈(p, q), σ, j, T 〉 →
〈(p′, q), α〉 for every q ∈ Q. If ζ = δ(〈p1, α1〉, . . . , 〈pk, αk〉) and 〈q, δ, i〉 → ζ′

is a rule in R2, with the same δ and with χ(p) = i, then M has the rule
〈(p, q), σ, j, T 〉 → ζ′′ where ζ′′ is obtained from ζ′ by changing every 〈q′, downℓ〉
into 〈(pℓ, q′), αℓ〉. This shows that if both M1 and M2 are pruning, then M is
pruning too. ✷

We obtain our first composition closure result from Lemmas 12, 16, and 17.
Note that the closure under composition of dTT↓ already follows from Lemma 12
and [20, Theorem 2.11(2)].

Theorem 18 dTT ◦ dTT↓ ⊆ dTT. In particular, dTT↓ and dTTpru are closed
under composition.

Theorem 18 can be used to show that in a composition of two dtt’s we may
always assume that the second one is local (thus strengthening Lemma 16): by
Lemma 10 the second tt can be decomposed into a top-down tt and a local tt,
and then (by Theorem 18), the top-down one can be absorbed by the first tt.
Hence dTT ◦ dTT ⊆ dTT ◦ dTT↓ ◦ dTT

ℓ ⊆ dTT◦ dTTℓ. This was already proved
in [28, Theorem 53] by means of pebble tree transducers.

Our second composition result generalizes Theorem 18 to nondeterministic
tt’s, restricted to right-composition with pruning tt’s. The proof of the next
lemma is similar to that of Lemma 17.

24

Lemma 19 TT ◦ TTℓ
pru ⊆ TT. In particular

TT↓ ◦ TTℓ
pru ⊆ TT↓ and TTpru ◦ TTℓ

pru ⊆ TTpru.

Proof. Let M1 = (Σ,∆, P, P0, R1) be a tt and M2 = (∆,Γ, Q,Q0, R2) a local
pruning tt. The construction of the transducer M such that τM = τM1

◦ τM2

is a straightforward variant of the one in the last paragraph of the proof of
Lemma 17. This time, we do not verify at the start that the input tree is in
the domain of M1, because it has to be checked at each step of M that M1 can
produce an output tree, in particular when M2 deletes part of that output tree
(cf. the proof of [20, Lemma 2.9]).

We define M = (Σ,Γ, P × Q,P0 × Q0, R) as follows. As in the proof of
Lemma 17 we assume that M1 keeps track in its finite state of the child number
of the output node to be generated, through a mapping χ : P → [0,mxΣ]. Let
〈p, σ, j, T 〉 → ζ be a rule in R1. As before, if ζ = 〈p′, α〉, then M has the rules
〈(p, q), σ, j, T 〉 → 〈(p′, q), α〉 for every q ∈ Q. If ζ = δ(〈p1, α1〉, . . . , 〈pk, αk〉) and
〈q, δ, i〉 → ζ′ is a rule in R2, with the same δ and with χ(p) = i, then M has the
rule 〈(p, q), σ, j, T∩T ′〉 → ζ′′ where ζ′′ is obtained (as before) from ζ′ by changing
every 〈q′, downℓ〉 into 〈(pℓ, q′), αℓ〉, and the node test T ′ consists of all (t, u) such
that for every ℓ ∈ [1, k] there exists a computation 〈pℓ, αℓ(u)〉 ⇒∗

M1,t
sℓ for some

sℓ ∈ T∆. Thus, the only difference with the proof of Lemma 17 is the additional
test T ′. In fact, it suffices that T ′ tests every ℓ ∈ [1, k] for which downℓ does
not occur in ζ′. That guarantees the existence of an output tree of M1 on which
M2 is simulated by M . It should be clear that T ′ is regular by Corollary 14: it
can be written as

⋂
ℓ∈[1,k] T

′
ℓ where mark(T ′

ℓ) is the domain of a tt that walks

to node αℓ(u) and then simulates M1 starting in state pℓ.
We note that this construction does not work for an arbitrary top-down M2

without stay-instructions. If some downℓ occurs twice in ζ′, then there are two
occurrences 〈(pℓ, q′), αℓ〉 and 〈(pℓ, q′′), αℓ〉 in ζ′′ and it is not guaranteed (as it
should) that from both occurrences the same output subtree of M1 is generated
by M . We finally note that, as in the proof of Lemma 17, if both M1 and M2

are pruning, then so is M . ✷

We obtain our second composition result from Lemma 12, the second inclu-
sion of Lemma 11, and two applications of Lemma 19 (taking into account that
TTℓ

rel ⊆ TTℓ
pru).

Theorem 20 TT◦TTpru ⊆ TT. In particular TT↓◦TTpru ⊆ TT↓, and TTpru is
closed under composition.

Hence, also in a composition of two nondeterministic tt’s we may always
assume that the second one is local: TT ◦ TT ⊆ TT ◦ dTTrel ◦ TTℓ ⊆ TT ◦ TTℓ

by Lemma 10 and Theorem 20, respectively.
The range of a deterministic tt M can be restricted to a regular tree lan-

guage L by restricting its domain to τ−1
M (L), using Lemmas 9 and 13. For a

nondeterministic tt we can use the next corollary.

Corollary 21 The translation τ ′ = {(t, s) ∈ τ | s ∈ L} is in TT for every
τ ∈ TT and L ∈ REGT. If τ is in TT↓ or TTpru, then so is τ ′.

25

Proof. Let Σ be the output alphabet of τ and let A = (Σ, P, F, δ) be a bottom-
up finite-state tree automaton such that L(A) = L. Obviously τ ′ = τ ◦τL where
τL is the identity on L, and obviously τL ∈ TTℓ

rel: it is realized by the local
relabeling tt (Σ,Σ, P, F,R) where R consists of all rules

〈p, σ, j〉 → σ(〈p1, down1〉, . . . , 〈pm, downm〉)

such that δ(σ, p1, . . . , pm) = p. By Theorem 20, τ ′ satisfies the requirements.
✷

Our third composition result is that deterministic tt’s are closed under left-
composition with (deterministic) single-use tt’s. This is a variant of one of the
main results of [40, 41, 45] for (a variant of) attribute grammars, cf. the last
paragraph of [7]. It is proved for attributed tree transducers in [56, Theorem 3]
(see also [55, Satz 6.5]).

Lemma 22 dTTsu ◦ dTTℓ ⊆ dTT.

Proof. Let M1 = (Σ,∆, P, p0, R1) and M2 = (∆,Γ, Q, q0, R2) be a single-use
dtt and a local dtt, respectively. We extend the proof of Lemma 17 to the
case that M2 is an arbitrary local dtt. Thus, we have to deal with the fact
that now M2 can also move up on the output tree of M1. Let (t, s) ∈ τM1

, and
let d be the derivation tree of the computation 〈p0, roott〉 ⇒∗

M1,t
s. Since M1 is

single-use, we can identify each node of d that is labeled by a configuration with
that configuration, because a configuration 〈p, u〉 of M1 occurs at most once
in d. Suppose that M1, in configuration 〈p, u〉 on t, has generated a node v of s.
When M2 executes an up-instruction at node v, the new transducer M has to
backtrack on the computation of M1, back to the moment that the parent of v
in s was generated by M1. Thus, starting with the configuration 〈p, u〉 of M1,
M has to determine the ancestors of 〈p, u〉 in d, and stop at the first ancestor
that is a configuration generating an output node. Since M1 is single-use, each
configuration 〈p, u〉 has a unique parent configuration 〈p′, u′〉 in d. That allows
us to find 〈p′, u′〉 by a regular test, as follows.

For every p, p′ ∈ P and every instruction α of M1, we will define a regular
test Tp,p′,α such that for every t ∈ dom(M1) and u ∈ N (t), (t, u) ∈ Tp,p′,α

if and only if 〈p′, α(u)〉 is the parent of 〈p, u〉 in the derivation tree of the
computation 〈p0, roott〉 ⇒∗

M1,t
τM1

(t).7 We will construct a tt N and define
Tp,p′,α = {(t, u) | mark(t, u) ∈ dom(N)}. Then Tp,p′,α is regular by Corollary 14.
To be able to describe N , we change notation and consider the node test Tp̄,p̄′,ᾱ

for p̄, p̄′ ∈ P and instruction ᾱ.
Let M ′

1 = (Σ,∅, P, {p0}, R′
1) be the nondeterministic tt obtained from M1

by changing every output rule 〈p, σ, j, T 〉 → δ(〈p1, α1〉, . . . , 〈pk, αk〉) into the
move rules 〈p, σ, j, T 〉 → 〈pi, αi〉 for every i ∈ [1, k]. Intuitively, for an input
tree t ∈ dom(M1), the tree-walking automaton M ′

1 follows an arbitrary path in
the unique derivation tree d ∈ L(Gder

M1,t
), from the root of d down to the leaves.

Whenever M1 branches, M ′
1 nondeterministically follows one of those branches.

The transducer N , which is a variant of M ′
1, has states (p, p′, α) with p, p′, α

as above. The initial state is (p0,−,−), with the second and third component
fixed, but irrelevant (e.g., (p0, p0, stay)). On a tree mark(t, u), N uses the state
(p, p′, α) to simulate the computations of M ′

1 in state p on t, but additionally

7For the definition of α(u) see Section 3.

26

keeps the previous configuration of M ′
1 in its finite state, as the pair (p′, α).

When it arrives at the marked node u in state (p̄, p̄′, ᾱ), it outputs a symbol of
rank 0. Formally, let 〈p, σ, j, T 〉 → ζ be a rule in R′

1, let p′ ∈ P , let α be an
instruction, and let b ∈ {0, 1}. Then N has the rule 〈(p, p′, α), (σ, b), j, µ(T)〉 →
ζ′ where 〈p̃, downi〉′ = 〈(p̃, p, up), downi〉, 〈p̃, up〉′ = 〈(p̃, p, downj), up〉, and
〈p̃, stay〉′ = 〈(p̃, p, stay), stay〉 for every p̃ ∈ P and i ∈ [1, rank(σ)]. Additionally,
N has the rule 〈(p̄, p̄′, ᾱ), (σ, 1), j, µ(T)〉 → ⊤, where ⊤ is its unique output
symbol, of rank 0. Thus, if the tree-walking automaton N arrives in state
(p̄, p̄′, ᾱ) at the marked node u, it can accept mark(t, u). Hence, for every
t ∈ dom(M1), N accepts mark(t, u) if and only if 〈p̄′, ᾱ(u)〉 is the parent of
〈p̄, u〉 in the derivation tree of the computation 〈p0, roott〉 ⇒

∗
M1,t

τM1
(t).

The transducer M is an extension of the one in the proof of Lemma 17. It
additionally has states back1p,q and back∗p,q to simulate the first and the follow-
ing backward steps of the computation of M1. Its rules are obtained as follows.
First, it has the same rules that simulate (the forward computation of) M1.
Second, the rules of M that simulate M2 are extended in such a way that, to ob-
tain ζ′ from ζ, one has to change additionally every 〈q′, up〉 into 〈back1p,q′ , stay〉.
Third, M additionally has rules that simulate the backward computation ofM1.
For each state back1p,q it has all rules 〈back1p,q, σ, j, Tp,p′,α〉 → 〈back∗p′,q, α〉

(where the tests on σ and j are irrelevant, because M arrived in state back1p,q
by a stay-instruction). For each state back∗p,q it has the following rules. Let
ρ : 〈p, σ, j, T 〉 → ζ be a rule of M1. If ρ is a move rule, then M has all rules
〈back∗p,q, σ, j, T ∩Tp,p′,α〉 → 〈back∗p′,q, α〉. If ρ is an output rule, then M has the
rule 〈back∗p,q, σ, j, T 〉 → 〈(ρ, q), stay〉. ✷

Theorem 23 dTTsu ◦ dTT ⊆ dTT.

Proof. It follows from Lemmas 10, 12, and 16 that

dTTsu ◦ dTT ⊆ dTTsu ◦ dTT
ℓ
rel ◦ dTT

ℓ.

Thus, by Lemma 22, it suffices to show that dTTsu ◦ dTTℓ
rel ⊆ dTTsu. For a

single-use dtt M1 and a local relabeling dtt M2, consider the construction of
the dtt M in the last paragraph of the proof of Lemma 17. It should be clear
that M is single-use: if M1 visits an input node in state p, then M visits that
node in state (p, q) for some q. ✷

It can be proved that dTTsu is closed under composition, which also follows
from Proposition 29 in the next section. The inclusion dTTsu ◦ dTTℓ

rel ⊆ dTTsu

in the previous proof is a special case of that.

6 Macro and MSO

In this section we collect some results on the connection between tt’s, macro
tree transducers (in short mt’s) and mso tree transducers. They are taken from
the literature or can easily be proved using results from the literature. This
section can be skipped on first reading, except that the reader interested in
linear size increase should glance at Corollaries 32 and 33.

27

6.1 Macro Tree Transducers

Let MT denote the class of translations realized by mt’s, with unrestricted
or outside-in (oi) derivation mode, let dMT denote the subclass realized by
deterministic mt’s, and let dtMT denote the class of total translations in dMT

(see [34] where they are denoted by MToi, DMToi, and DtMT, respectively). We
first consider the relationship between deterministic tt’s and mt’s.

It is proved in [28, Lemma 49 and Corollary 51] that dTT ⊆ dMT, and in [14,
Theorem 8.22] (see also [28, Corollary 51]) that dMT = dTTℓ

↓ ◦ dTT
ℓ. Here we

prove the following variant.

Lemma 24 dTT ⊆ dMT = dTT↓ ◦ dTT.

Proof. We first show that dTT↓ ◦ dMT ⊆ dMT. By Lemma 12 it suffices to
show that dTT s

↓ ◦ dMT ⊆ dMT. The inclusion dTTℓ
↓ ◦ dMT ⊆ dMT is proved

in [34, Theorem 7.6(3)]. As also argued before [32, Theorem 7.5], this implies
the inclusion dTT s

↓ ◦ dMT ⊆ dMT as follows. By [20, Theorem 2.6] dTT s
↓ ⊆

DBQREL ◦ dTTℓ
↓, where DBQREL is the class of deterministic bottom-up finite-

state relabelings. Hence dTT s
↓ ◦ dMT ⊆ DBQREL ◦ dMT. Since dMT is closed

under regular look-ahead by [34, Theorem 6.15], it is straightforward to prove
that DBQREL ◦ dMT ⊆ dMT, similar to the proof of [34, Lemma 6.17].

By Lemma 10, dTT ⊆ dTT↓◦dTTℓ. It is proved in [31, Theorem 35 for n = 0]
that dTTℓ ⊆ dMT.8 Hence dTT ⊆ dTT↓ ◦ dTTℓ ⊆ dTT↓ ◦ dMT ⊆ dMT, which
implies that dTT↓ ◦ dTT ⊆ dTT↓ ◦ dMT ⊆ dMT. It now remains to show that
dMT ⊆ dTT↓ ◦ dTT. It is proved in [31, Section 5.5] that dtMT ⊆ dTTℓ

↓ ◦ dTT
ℓ.

As shown in [34, Theorem 6.18], every translation τ ∈ dMT is the restriction to
a regular tree language L of a translation τ ′ ∈ dtMT. Hence τ ′ ∈ dTTℓ

↓ ◦ dTT
ℓ

and so τ ∈ dTT↓ ◦ dTTℓ, because the first tt can start by verifying that the
input tree is in L with a regular test at the root of t, by Lemma 9. ✷

From Lemma 24, together with Theorem 18, we obtain the following corol-
lary on compositions.

Corollary 25 For every k ≥ 1, dTTk ⊆ dMTk = dTT↓ ◦ dTT
k ⊆ dTTk+1.

The above two inclusions are proper, cf. [39, Lemma 6.54] and [34, Theo-
rem 4.16]. In fact, the macro tree transducer is, and can be, of exponential
height increase [34, Theorem 3.24]. Hence τk+1

exp is not in dMTk, cf. the proof of

Proposition 7. Also, τkM is not in dTTk where M is an mt that translates τna
into τ2

n

a (with τ of rank 1 and a of rank 0).
The relationship between nondeterministic tt’s and mt’s is less straightfor-

ward. On the one hand, even TT↓ is not included in MT because all macro tree
translations are finitary. But we can express every tt as a composition of two
top-down tt’s and an mt.

Lemma 26 TT ⊆ TT↓ ◦ TT↓ ◦MT.

8By mistake, [31, Theorem 35] is stated for n ≥ 1 only. It also holds for n = 0 by [31,
Lemma 34 and Theorem 31].

28

Proof. By Lemma 10, TT ⊆ TT↓◦TTℓ. It follows from [31, Lemmas 34 and 27]
that TTℓ ⊆ MON ◦MT, where MON is a specific simple subclass of TTℓ

↓ defined
before [31, Lemma 27].

We note that by Lemma 10, TT ⊆ dTTrel ◦ TTℓ and that it is easy to prove
that dTTrel ◦ TTℓ

↓ ⊆ TT↓. Hence we even obtain that TT ⊆ TT↓ ◦MT. ✷

On the other hand, every mt can still be realized by a composition of two
(finitary) tt’s.

Lemma 27 MT ⊆ dTT↓ ◦ dTT ◦ TTpru ⊆ dTT↓ ◦ f TT.

Proof. By [34, Theorem 6.10], MT = dtMT ◦ SET, and by the proof of [34,
Theorem 6.10], SET ⊆ TTℓ

pru. Hence MT ⊆ dtMT◦TTℓ
pru ⊆ dTT↓ ◦dTT◦TTpru

by Lemma 24. That is included in dTT↓ ◦ f TT by Theorem 20. ✷

It can be shown that f TT ⊆ MT = dTT↓ ◦ f TT, thus generalizing Lemma 24
to the finitary case, but that will not be needed in what follows.

Finally, let MTio denote the class of translations realized by mt’s with inside-
out (io) derivation mode (see [34]), and let mrMTio denote the class of trans-
lations realized by the multi-return macro tree transducers of [49, 50], which
generalize io macro tree transducers.

Lemma 28 MTio ⊆ mrMTio ⊆ f TT↓ ◦ dTT.

Proof. It is shown in [34, Lemma 5.5] that MTio ⊆ f TTℓ
↓ ◦ YIELD, and in [31,

Lemma 36] that YIELD ⊆ dTTℓ, and so MTio ⊆ f TTℓ
↓◦dTT. It follows from [50,

Lemma 4] that mrMTio ⊆ dTTℓ
↓ ◦MTio ◦ dTT

ℓ
↓. Hence

mrMTio ⊆ dTTℓ
↓ ◦ f TT

ℓ
↓ ◦ dTT ◦ dTT↓

which is included in f TT s
↓ ◦ dTT by [20, Theorem 2.11(2)] and Theorem 18. ✷

6.2 MSO Tree Transducers

Let dMSOT denote the class of deterministic mso tree translations (see [14,
Chapter 8], where it is denoted DMSOT, and where mso tree translations are
called ms-transductions of terms). The next result is a variant of the main result
of [7], which concerns attributed tree transducers with look-ahead instead of
tt’s. In its present form it is proved in [14, Theorems 8.6 and 8.7].

Proposition 29 dMSOT = dTTsu.

The next proposition is the main result of [32].

Proposition 30 dtMT ∩ LSIF ⊆ dMSOT.

This can be extended to arbitrary deterministic oi macro tree translations
as follows.

Lemma 31 dMT ∩ LSIF ⊆ dMSOT.

29

Proof. Since the domain L of any mt M is regular ([34, Theorem 7.4]), and
dMT is closed under regular look-ahead ([34, Theorem 6.15]), there is a total
mt M ′ that extends M by the identity on the complement of L. Clearly, τM ′

is of linear size increase if and only if τM is. Hence, by Propositions 29 and 30,
if τM is of linear size increase, then τM ′ is in dTTsu. And so τM , which is the
restriction of τM ′ to the regular tree language L, is also in dTTsu by Lemma 9.
✷

From Lemma 24, Lemma 31, Proposition 29, and Lemma 6 we obtain the
following corollary.

Corollary 32 dTT ∩ LSIF = dTTsu.

It is also shown in [32] that it is decidable for a total deterministic mt

whether or not it is of linear size increase. That also holds for arbitrary deter-
ministic mt’s by the proof of Lemma 31, and hence also for dtt’s by Lemma 24.

Corollary 33 It is decidable for a deterministic tt whether or not it is of
linear size increase.

Note that since Corollary 32 is effective, if the dtt is indeed of linear size
increase, then an equivalent ttsu can be constructed. One of our aims is to
extend Corollaries 32 and 33 to arbitrary compositions of dtt’s.

7 Functional Nondeterminism

In this section we prove that for every nondeterministic top-down tt M a de-
terministic top-down tt M ′ can be constructed that realizes a “uniformizer”
of τM , i.e., a subset of τM with the same domain. This is a generalization
of [21, Lemma], where it is proved for classical nondeterministic top-down tree
transducers. Note that, as opposed to the deterministic case, the nondetermin-
istic top-down tt is more powerful than the classical nondeterministic top-down
tree transducer with regular look-ahead, because, due to the stay-instructions,
it may not be finitary, i.e., it possibly translates one input tree into infinitely
many output trees.

A uniformizer of a tree translation τ is a function f such that f ⊆ τ and
dom(f) = dom(τ). Intuitively, f selects for every input tree t ∈ dom(τ) one of
the elements of τ(t).

Lemma 34 Every τ ∈ TT↓ has a uniformizer τ ′ ∈ dTT↓. If τ ∈ TTpru, then
τ ′ ∈ dTTpru.

Proof. Let M = (Σ,∆, Q,Q0, R) be a nondeterministic tt↓. Without loss of
generality we assume that M has exactly one initial state q0, i.e., Q0 = {q0}.
We have to construct a deterministic tt↓ M ′ that computes one possible output
tree in τM (t) for every t ∈ dom(M). The idea of the proof of [21, Lemma] is to
pick, at the current node of t, one of the rules that lead to the generation of an
output tree (which can be checked by a regular test). However, that idea does
not work here, because M may have an infinite computation on t (see [24, New
Observation 5.10]). Thus, we have to be more careful. Note that an infinite
computation is entirely due to the stay-instructions in the rules of M .

30

The stay-instructions can be removed fromM by constructing the equivalent
stay-free tt Msf = (Σ,∆, Q, {q0}, Rsf), with general rules, as we did at the end
of Section 3. Recall that we assume that the regular tests in TM are mutually
disjoint, and that the setRsf consists of all general rules 〈q, σ, j, T 〉 → ζ such that
ζ ∈ L(Gq,σ,j,T), for every left-hand side 〈q, σ, j, T 〉 of a rule of M . In this case
Msf is a top-down tt, with possibly infinitely many rules. Since its rules do not
contain stay-instructions any more, it does not have infinite computations on the
trees in its domain. Thus, the idea above can be applied to Msf , which means
that for every q, σ, j, and T we have to pick one general rule 〈q, σ, j, T 〉 → ζ
from Rsf , under the condition that its application leads to the generation of an
output tree. This condition can be checked by a regular sub-test, as follows.
Note that ζ ∈ T∆(Dσ) where Dσ = {〈q′, downi〉 | q′ ∈ Q, i ∈ [1, rankΣ(σ)]}.

For every σ ∈ Σ, q′ ∈ Q, and i ∈ [1, rank(σ)], let Tσ,q′,i be the node test
over Σ consisting of all (t, u) such that u has label σ in t and there is a compu-
tation 〈q′, ui〉 ⇒∗

M,t s for some s ∈ T∆. This node test is regular by Corollary 14
because mark(Tσ,q′,i) is the domain of a tt Mq′,i that on input mark(t, u) walks
to the marked node u, checks that its label is σ, moves to the i-th child of u,
and then simulates M on t, starting in state q. For every σ ∈ Σ and D ⊆ Dσ,
let Tσ,D be the regular node test that is the intersection of all Tσ,q′,i such that
〈q′, downi〉 ∈ D and all T •

Σ \ Tσ,q′,i such that 〈q′, downi〉 /∈ D. Obviously the
node tests Tσ,D are mutually disjoint.

We now define the deterministic tt↓ M ′ = (Σ,∆, Q, q0, R
′), where R′ con-

sists of the following general rules. For every left-hand side 〈q, σ, j, T 〉 of a rule of
M and every D ⊆ Dσ, if L(Gq,σ,j,T)∩T∆(D) 6= ∅, then R′ contains the general
rule 〈q, σ, j, T ∩ Tσ,D〉 → ζ where ζ is a fixed element of L(Gq,σ,j,T) ∩ T∆(D).

It should be clear that M ′ satisfies the requirements, i.e., it has the same
domain as Msf and it realizes a subset of τMsf

. Note that M ′ can be constructed
effectively, because L(Gq,σ,j,T)∩T∆(D) is a regular tree language, and hence its
nonemptiness can be decided and, if so, an element can be computed. Finally,
the general rules of M ′ can be replaced by ordinary rules, as discussed after
Lemma 8. ✷

At the end of this section we prove that any function that is realized by a
composition of nondeterministic tt’s can also be realized by a composition of
deterministic tt’s. That will (only) be used to show that the results of Section 9
also hold for nondeterministic tt’s and mt’s. Let F be the class of all partial
functions from trees to trees.

Theorem 35 For every k ≥ 1, (TT↓ ◦ TT
k) ∩ F ⊆ dTT↓ ◦ dTT

k.

Proof. By Lemmas 26 and 27, TT ⊆ TT↓ ◦ TT↓ ◦ dTT↓ ◦ dTT ◦ TT↓. Now let

τ ∈ (TT↓ ◦ TTk) ∩ F . Then τ = τ1 ◦ · · · ◦ τm where m = 5k + 1, τ 5j ∈ dTT

for every j ∈ [1, k], and τi ∈ TT↓ for every i ∈ [1,m] \ {5j | j ∈ [1, k]}. By
Corollary 14, the domain of a translation in TT is regular. Hence, we may
assume that ran(τi) ⊆ dom(τi+1) for every i ∈ [1,m−1]. If not, then we change
τi into τ̄i for i = m, . . . , 1 inductively as follows. First, τ̄m = τm. Second, for
i < m we obtain τ̄i from τi by restricting its range to dom(τ̄i+1), see Corollary 21
and the paragraph preceding it.

Since τ is a function, it should be clear that τ = τ ′1 ◦· · ·◦τ
′
m where τ ′i ∈ dTT↓

is the uniformizer of τi that exists by Lemma 34 if τi ∈ TT↓, and τ ′i = τi if

31

τi ∈ dTT. Thus, τ ∈ dTT↓ ◦ (dTT↓ ◦ dTT↓ ◦ dTT↓ ◦ dTT ◦ dTT↓)
k and so, by

Theorem 18, τ ∈ dTT↓ ◦ dTT
k. ✷

Corollary 36 For every k ≥ 1, MTk ∩ F ⊆ dMTk.

Proof. By the same argument as in the proof of Theorem 35, using Lemma 27
only, we obtain that MTk ∩F ⊆ (dTT↓ ◦ dTT ◦ dTT↓)

k. By Theorem 18 that is

included in dTT↓ ◦ dTT
k, which equals dMTk by Corollary 25. ✷

Since the inclusions in Corollary 25 are proper, as discussed after that corol-
lary, Theorem 35 and Corollary 36 imply that TTk and MTk are also proper
hierarchies, i.e., TTk (TTk+1 and MTk (MTk+1 for every k ≥ 1.

8 Productivity

In this section we prove that every tt can be decomposed into a pruning tt

and another tt such that the composition is linear-bounded. It implies that we
may always assume that a composition of two tt’s is linear-bounded. Recall
from Section 2 that the composition of tree translations τ1 ⊆ TΣ × T∆ and
τ2 ⊆ T∆ × TΓ is linear-bounded if there is a constant c ∈ N such that for
every (t, s) ∈ τ1 ◦ τ2 there exists r ∈ T∆ such that (t, r) ∈ τ1, (r, s) ∈ τ2, and
|r| ≤ c · |s|. Formally we say that the pair (τ1, τ2) is linear-bounded. Recall also
that for classes T1 and T2 of tree translations, the class T1 ∗ T2 consists of all
translations τ1 ◦ τ2 such that τ1 ∈ T1, τ2 ∈ T2, and (τ1, τ2) is linear-bounded.
Two elementary properties of this class operation were stated in Lemma 1. We
will prove the following theorem.

Theorem 37 TT ⊆ TTpru ∗ TT and dTT ⊆ dTTpru ∗ dTT.

Since pruning tt’s can be absorbed to the right by arbitrary tt’s (by The-
orems 20 and 18), Theorem 37 can be generalized to compositions of tt’s. It
implies that we may always assume that a composition of a tt with any number
of tt’s is linear-bounded.

Corollary 38 Let k ≥ 1.

(1) TTk ⊆ TTpru ∗ TT
k and TT ◦ TTk = TT ∗ TTk, and

(2) dTTk ⊆ dTTpru ∗ dTT
k and dTT ◦ dTTk = dTT ∗ dTTk.

Proof. (1) The proof of the inclusion is by induction on k. For k = 1 it is
Theorem 37. The induction step is proved as follows:

TT ◦ TTk ⊆ TT ◦ (TTpru ∗ TT
k)

⊆ (TT ◦ TTpru) ∗ TT
k

⊆ TT ∗ TTk

⊆ (TTpru ∗ TT) ∗ TT
k

⊆ TTpru ∗ (TT ◦ TTk)

where the first inclusion is by the induction hypothesis and the remaining in-
clusions are by Lemma 1, Theorem 20 (which says that TT ◦ TTpru ⊆ TT),

32

Theorem 37, and Lemma 1 again. The equation now follows from the inclusions
above.

(2) The proof is exactly the same as in (1), using Theorem 18 instead of
Theorem 20. ✷

The remainder of this section is devoted to the proof of Theorem 37. It is
essentially a variant of the proof of [25, Lemma 4.1], which is the key lemma
of [25] and concerns the removal of “superfluous computations” in attribute
grammars. In its turn, that proof generalized the proof of [4, Lemma 1] where
this was done for top-down tree transducers (and strangely enough, the author
of [25] did not mention that).

To prove Theorem 37 it suffices, by Lemma 10, Lemma 1, and Theorems 20
and 18, to consider local tt’s, i.e., to prove that TTℓ ⊆ TTpru ∗ TT and that
dTTℓ ⊆ dTTpru ∗ dTT. We prove the first and second inclusion in a first and
second subsection, respectively. In the first subsection we additionally take care
that the construction preserves the determinism of the given tt.

8.1 Nondeterministic Productivity

Let M = (Σ,∆, Q,Q0, R) be a tt. For a pair (t, s) ∈ τM and a computation
〈q0, roott〉 ⇒∗

M,t s with q0 ∈ Q0, we say that a node u of t is productive (in
that computation) if there is a q ∈ Q such that an output rule is applied to
the configuration 〈q, u〉 in the computation. Obviously, the size of s is at least
the number of productive nodes of t. For i ∈ {0, 1} we define the computation
to be i-productive if all nodes of t of rank i are productive.9 Moreover, the
computation is productive if it is both 0-productive and 1-productive, i.e., all
leaves and monadic nodes of t are productive. Finally, we define τ0M to consist of
all (t, s) ∈ τM for which there is a 0-productive computation 〈q0, roott〉 ⇒

∗
M,t s

for some q0 ∈ Q0, and we define τ01M to consist of all (t, s) ∈ τM for which there
is a productive computation of that form. Since the size of t is at most twice
the number of leaves plus the number of monadic nodes of t,10 it follows that
|t| ≤ 2 · |s| for every (t, s) ∈ τ01M .

To prove that TTℓ ⊆ TTpru ∗ TT, our goal is to construct, for a given
tt

ℓ M , a pruning tt N and a tt
ℓ M ′ in such a way that τN ◦ τM ′ ⊆ τM and

τM ⊆ τN ◦τ01M ′ . This obviously implies that τN ◦τM ′ = τM . The second inclusion
says that for every (t, s) ∈ τM there exists a tree t′ such that (t, t′) ∈ τN and
(t′, s) ∈ τ01M ′ . Thus, as observed above, |t′| ≤ 2 · |s|, and hence (τN , τM ′) is
linear-bounded (for the constant c = 2).

To this aim, N will remove sufficiently many unproductive nodes from the
input tree, and add state transition information of M to the labels of the re-
maining nodes, thus allowing M ′ to simulate M without having to visit those
unproductive nodes. Since productivity of a node of the input tree t depends
on the computation of M on t, N nondeterministically guesses which nodes to
remove, and uses its regular tests to determine the possible behaviour of M
on the remaining nodes. To reduce the technical complexity of the proof, the
construction of N and M ′ will be done in two steps, removing unproductive
leaves and monadic nodes in the first and second step, respectively.

9Recall from Section 2 that the rank of a node is the rank of its label, i.e., the number of
its children.

10To be precise, |t| ≤ (2 · |t|0 − 1) + |t|1 where |t|0 and |t|1 are the number of leaves and
monadic nodes of t, respectively.

33

Lemma 39 For every tt
ℓ M there are a ttpru N and a tt

ℓ M ′ such that

τN ◦ τM ′ ⊆ τM ⊆ τN ◦ τ0M ′ .

If M is deterministic, then so is M ′.

Lemma 40 For every tt
ℓ M there are a ttpru N and a tt

ℓ M ′ such that

τN ◦ τM ′ ⊆ τM and τ0M ⊆ τN ◦ τ01M ′ .

If M is deterministic, then so is M ′.

It is easy to see that applying these lemmas one after the other, we have
obtained the goal above; note that pruning tt’s are closed under composition
by Theorem 20. It remains to prove the two lemmas. The constructions in
their proofs are similar to the removal of ε-rules and chain rules from a context-
free grammar, respectively. As is well known, one should not remove these
rules in the reverse order, because the removal of ε-rules can create new chain
rules. Similarly in our case, we should remove unproductive leaves and monadic
nodes in that order, because the removal of unproductive leaves can create new
unproductive monadic nodes. Note also that removing ε-rules and chain rules
in one construction is technically more complex.

Proof of Lemma 39. Let M = (Σ,∆, Q,Q0, R) be a tt
ℓ. As discussed in

the second paragraph after Proposition 7 (in Section 3), we may assume that the
output rules ofM only use the stay-instruction. Let us consider (t, s) ∈ τM and a
computation 〈q0, roott〉 ⇒∗

M,t s with q0 ∈ Q0. The idea of the construction of the

ttpru N and tt
ℓ M ′ is thatN (nondeterministically) preprocesses t by removing

the maximal subtrees of t that consist of unproductive nodes only, and that M ′

simulates M on the rest of t. Let us say that a node u of t is superfluous (in
this computation) if it is unproductive and all its descendants are unproductive.
Note that the root of t is not superfluous. Thus, N changes t into t′ by pruning
all superfluous nodes of t. Moreover, it adds state transition information of M
to the labels of the remaining nodes to allow M ′ on t′ to simulate the above
computation of M on t. In the resulting computation of M ′ on t′, the input
tree t′ of M ′ has no superfluous nodes, which means in particular that all its
leaves are productive. Note that, due to the removal of the superfluous nodes,
each remaining node loses its superfluous children. Since the pruning tt N
does not know which nodes are going to be superfluous in M ’s computation, it
just nondeterministically removes subtrees of the input tree t and adds to the
label of each remaining node all possible state transitions of M in computations
on the removed subtrees that use move rules only. Whereas N just guesses the
superfluous nodes, it uses its regular tests to determine the state transitions
of M on those nodes.

As intermediate alphabet we use the ranked alphabet Γ consisting of all
symbols 〈σ, (i1, . . . , in), γ〉 such that σ ∈ Σ, n ∈ [0, rank(σ)], 1 ≤ i1 < i2 <
· · · < in ≤ rank(σ), and γ ⊆ Q × Q. The rank of 〈σ, (i1, . . . , in), γ〉 is n. In
the case where M is deterministic we require γ to be a partial function from
Q to Q. Intuitively, a node u of t with label σ that is not removed by N , will
be relabeled by 〈σ, (i1, . . . , in), γ〉 such that the subtrees at its children ui with
i /∈ {i1, . . . , in} are removed by N and γ is the set of all (q, q̄) such that M has

34

a computation from 〈q, u〉 to 〈q̄, u〉 (using move rules only) that visits one of the
removed subtrees.

Formally, we define N = (Σ,Γ, {p}, {p}, RN) with one state p. For every
symbol 〈σ, (i1, . . . , in), γ〉 in Γ and every j ∈ [0,mxΣ], it has the rule

〈p, σ, j, T 〉 → 〈σ, (i1, . . . , in), γ〉(〈p, downi1〉, . . . , 〈p, downin〉)

where T is defined as follows. Let t ∈ TΣ and let u ∈ N (t). The state transition
relation γ is uniquely determined by (i1, . . . , in), and is expressed by T . Let us
say that a node v ∈ N (t) is a ghost if v = uiw for some i /∈ {i1, . . . , in} and
w ∈ N∗. Moreover, let us say that a computation

〈q1, u1〉 ⇒M,t 〈q2, u2〉 ⇒M,t · · · ⇒M,t 〈qm, um〉,

m ≥ 3, is a ghost computation from 〈q1, u1〉 to 〈qm, um〉 if uj is a ghost for every
j ∈ [2,m − 1]. Note that such a computation is due to move rules only, that
it visits at least one ghost, and that the ghosts u2, . . . , um−1 all belong to a
subtree at the same child ui. Finally, for states q, q̄ ∈ Q we will write q →֒ q̄ if
there is a ghost computation from 〈q, u〉 to 〈q̄, u〉. We now define T to consist
of all (t, u) such that γ = {(q, q̄) ∈ Q × Q | q →֒ q̄}. Note that γ is indeed
a partial function if M is deterministic. The test T is regular because it is a
boolean combination of tests Tq,q̄ = {(t, u) | q →֒ q̄}, which are regular because
the tree language {mark(t, u) | q →֒ q̄} is regular for every (q, q̄) ∈ Q × Q by
Corollary 14: it is the domain of a tt that first walks to u, then simulates a
ghost computation of M on t from 〈q, u〉 to 〈q̄, u〉, and finally outputs a symbol
of rank 0.

We define M ′ = (Γ,∆, Q,Q0, R
′) with the following rules. Let ρ : 〈q, σ, j〉 →

ζ be a rule in R, and let 〈σ, (i1, . . . , in), γ〉 be an element of Γ (with the same σ).
If ρ is an output rule or ζ = 〈q′, α〉 with α ∈ {up, stay}, then R′ contains the rule
〈q, 〈σ, (i1, . . . , in), γ〉, j〉 → ζ. If ζ = 〈q′, downik〉 with k ∈ [1, n], then R′ contains
the rule 〈q, 〈σ, (i1, . . . , in), γ〉, j〉 → 〈q′, downk〉. Otherwise (i.e., ζ = 〈q′, downi〉
with i /∈ {i1, . . . , in}), R′ contains the rule 〈q, 〈σ, (i1, . . . , in), γ〉, j〉 → 〈q̄, stay〉
for every (q, q̄) ∈ γ. Note that if M is deterministic, then so is M ′.

It should be clear that τN ◦ τM ′ ⊆ τM , because for every t′ ∈ τN (t) the
computations of M ′ on t′ simulate computations of M on t.

To understand that τM ⊆ τN◦τ0M ′ , consider a computation 〈q0, roott〉 ⇒∗
M,t s

with q0 ∈ Q0, and let t′ ∈ τN (t) be such that all superfluous nodes of t (in this
computation) are removed. Then it should be clear that the computation of M
on t can be simulated by a computation 〈q0, roott′〉 ⇒∗

M ′,t′ s of M ′ on t′. In
fact, if M visits a superfluous child of the current (non-superfluous) node u of t,
then M ′ just stays in the node v corresponding to u in t′ and changes its state
to the one in which M returns to u. For a completely formal correctness proof
one would have to formalize the obvious bijective correspondence f between
the non-superfluous nodes of t and the nodes of t′. In fact, f(ε) = ε, and if u
is non-superfluous and ui1, . . . , uin are all the non-superfluous children of u,
then f(uik) = f(u)k for every k ∈ [1, n]. Note that u and f(u) have the
same child number. However, the correctness of the construction should be
clear without such a proof. The configurations 〈q, u〉 of M on t, for every non-
superfluous node u, are simulated by the configurations 〈q, f(u)〉 of M ′ on t′.
Finally, the above computation of M ′ on t′ is 0-productive, because each leaf
f(u) of t′ corresponds to a non-superfluous node u of t of which all descendants

35

are superfluous, i.e., to a productive node. Since M ′ simulates M , it follows
that f(u) is a productive node of t′. This ends the proof of Lemma 39.

Proof of Lemma 40. This proof is similar to the previous one. Let
M = (Σ,∆, Q,Q0, R) be a tt

ℓ. Again, we assume that the output rules of M
only use the stay-instruction. And again, let us consider (t, s) ∈ τM and a
computation 〈q0, roott〉 ⇒∗

M,t s with q0 ∈ Q0. This time we define a node of t
to be superfluous if it is unproductive (in this computation) and has rank 1.
As before, N changes t into t′ by pruning all superfluous nodes of t, and adds
information to the labels of the remaining nodes to allow M ′ on t′ to simulate
the above computation of M on t. Whereas in the previous case, M ′ had to
shortcut the subcomputations of M on maximal subtrees of superfluous nodes,
in the present case M ′ has to shortcut the subcomputations of M on maximal
sequences u1, . . . , un of superfluous nodes (n ≥ 1), where ui+1 is the unique
child of ui for every i ∈ [1, n − 1]. For such a sequence, the unique child un+1

of un is non-superfluous, and either u1 is the root of t, or the parent u0 of u1 is
non-superfluous. In the second case, a subcomputation of M on u1, . . . , un is as
follows. When it moves from u0 down to u1, it either returns to u0, or it walks
to un+1. And when it moves from un+1 up to un, it either returns to un+1, or it
walks to u0. In the first case, M can only move from un+1 up to un and return
to un+1. Thus, to the label of every non-superfluous node u of t we have to add
information both on trips to superfluous nodes above u and trips to superfluous
nodes below u. In the first case, un+1 will be the root of t′. In the second case,
un+1 will be the i-th child of u0 in t′, where i is the child number of u1 in t.
Thus, the child number of un+1 changes from 1 to 0, or from 1 to i, respectively.

As in the previous proof, the pruning tt N does not know in advance which
nodes are going to be superfluous in M ’s computation. Thus, it just nondeter-
ministically removes monadic nodes of the input tree t and adds to the label
of each remaining node all possible state transitions of M in subcomputations
on the removed nodes that use move rules only. Rather than constructing N
directly, it is more convenient to realize this pruning of t by two consecutive
pruning tt’s N1 and N2, and use Theorem 20. The local relabeling tt N1 non-
deterministically marks monadic nodes of t, by possibly changing the label σ of
a monadic node into σ̂. The (deterministic) tt N2 then removes the marked
nodes, and relabels the unmarked nodes, adding the appropriate state transi-
tions of M (determined by regular tests). Since it is easy to construct N1, we
only discuss N2.

The intermediate alphabet Γ now consists of all symbols 〈σ, j, U, γ〉 such that
σ ∈ Σ, j ∈ [0,mxΣ)], U ⊆ {up}∪{downi | i ∈ [1, rank(σ)]}, and γ ⊆ Q×(Q×I),
where I is the set of all possible instructions. The rank of 〈σ, j, U, γ〉 is the rank
of σ. As before, in the case where M is deterministic we require γ to be a
partial function from Q to Q × I. Intuitively, a node u of t with label σ that
is not marked by N1, will be relabeled by 〈σ, j, U, γ〉 such that j is its child
number in t, α ∈ U if and only if α(u) is marked by N1, and γ is the set of all
(q, 〈q̄, β〉) such that the following holds: M has a computation from 〈q, u〉 to
〈q̄, ū〉 (using move rules only) that visits a maximal sequence of marked nodes,
for some unmarked node ū such that β(v) = v̄, where v and v̄ are the nodes
corresponding to u and ū in the tree t′.

We define N2 = (Σ∪Σ̂,Γ, P, p0, R2), where Σ̂ = {σ̂ | σ ∈ Σ(1)}, P = {pj | j ∈
[0,mxΣ]}, and R2 is defined as follows. For every σ ∈ Σ(1) and j, j′ ∈ [0,mxΣ]

36

the transducer N2 has the rule 〈pj , σ̂, j′〉 → 〈pj , down1〉. Moreover, for every
〈σ, j, U, γ〉 ∈ Γ and j′ ∈ [0,mxΣ] it has the rule

〈pj , σ, j
′, T 〉 → 〈σ, j, U, γ〉(〈p1, down1〉, . . . , 〈pm, downm〉)

where m = rank(σ) and T is defined as follows. Let t̂ be a tree over Σ ∪ Σ̂ and
let u ∈ N (t̂). We define π(t̂) to be the tree over Σ that is obtained from t̂
by changing every label σ̂ into σ. Both U and γ are uniquely determined, and
they are expressed by T . Let us say that a node v ∈ N (t̂) is a ghost if its label

is in Σ̂. A ghost computation is defined as in the previous proof, for t = π(t̂);
note that N (t) = N (t̂). And let us write 〈q, u〉 →֒ 〈q̄, ū〉 if there is a ghost
computation from 〈q, u〉 to 〈q̄, ū〉. We now define T to consist of all (t̂, u) such
that

• up ∈ U if and only u has a parent and that parent is a ghost,

• downi ∈ U if and only if ui is a ghost,

• (q, 〈q̄, stay〉) ∈ γ if and only if 〈q, u〉 →֒ 〈q̄, u〉,

• (q, 〈q̄, up〉) ∈ γ if and only if 〈q, u〉 →֒ 〈q̄, ū〉 for some ancestor ū of u,

• (q, 〈q̄, downi〉) ∈ γ if and only if 〈q, u〉 →֒ 〈q̄, ū〉 for some descendant ū
of ui.

As before, if M is deterministic, then γ is indeed a partial function. It is
straightforward to prove, using Corollary 14, that T is regular; we leave that to
the reader.

We define M ′ = (Γ,∆, Q,Q0, R
′) with the following rules. Let ρ : 〈q, σ, j〉 →

ζ be a rule of M , and let 〈σ, j, U, γ〉 be in Γ (with the same σ and j). If
ρ is an output rule or ζ = 〈q′, α〉 with α /∈ U , then R′ contains the rule
〈q, 〈σ, j, U, γ〉, j′〉 → ζ for every j′ ∈ [0,mxΣ] (except j′ = 0 when α = up).
If ζ = 〈q′, α〉 with α ∈ U , then R′ contains the rule 〈q, 〈σ, j, U, γ〉, j′〉 → 〈q̄, β〉
for every (q, 〈q̄, β〉) ∈ γ and every j′ ∈ [0,mxΣ] (except j

′ = 0 when β = up).
Let τ = τN1

◦ τN2
. It should be clear that τ ◦ τM ′ ⊆ τM , as in the previous

proof. To understand that τ0M ⊆ τ ◦ τ01M ′ , consider a 0-productive computation
〈q0, roott〉 ⇒∗

M,t s with q0 ∈ Q0, and let t′ ∈ τ(t) be obtained from t by removing
all superfluous nodes of t. As in the previous proof, there is an obvious bijective
correspondence f between the non-superfluous nodes of t and the nodes of t′.
For a node u of t we define g(u) = u if u is non-superfluous, and g(u) is the first
(i.e., shortest) non-superfluous descendant of u otherwise. Then f(g(ε)) = ε,
and if u is non-superfluous and ui is a child of u, then f(g(ui)) = f(u)i. And as
before, there is a computation 〈q0, roott′〉 ⇒∗

M ′,t′ s of M ′ on t′ that simulates
the computation of M on t, such that the configurations 〈q, u〉 of M , for every
non-superfluous node u of t, are simulated by the configurations 〈q, f(u)〉 of M ′.
Since τ does not remove leaves of t, the computation of M ′ is still 0-productive.
Moreover, it is also 1-productive because all unproductive monadic nodes were
removed by τ . This ends the proof of Lemma 40.

Remark 41 In the Introduction we observed that our main technical result can
be viewed as a static garbage collection procedure, which leads, in principle, to
algorithms for automatic compiler and XML query optimization. For practical

37

applicability our proof of this result is, however, of restricted value because the
sizes of the involved transducers are blown up exponentially. This is due to the
fact that, in the proof of Lemmas 39 and 40, the pruning tt N uses regular
tests to determine the relevant state transition information γ ⊆ Q × Q (or
γ ⊆ Q×(Q×I)) of the given ttM , due to its ghost computations. These regular
tests are constructed through Corollary 14, applied to variants of M . Naturally,
the number of states of the finite-state tree automaton recognizing the domain
of such a variant is exponential in the number #(Q) of states of M , cf. the
proof of [26, Lemma 1]. If one now considers the proof of TT◦TT ⊆ TT∗TT in
Corollary 38 (in which the pruning tt N for the second tt M is incorporated
in the first tt by Theorem 20), it can be seen that the number of states of
the first constructed tt is 2-fold exponential in the number of states of M .
The additional exponential jump is due to Lemma 12, which turns the pruning
tt N into one that is sub-testing. This implies that in the construction for the
inclusion TT ◦TTk ⊆ TT ∗TTk of Corollary 38, the size of the first constructed
tt can be 2(k − 1)-fold exponential in the size of the last given tt. This will
also hold for the deterministic version. ✷

8.2 Deterministic Productivity

Let M = (Σ,∆, Q, q0, R) be a deterministic tt. For t ∈ dom(M) we say that a
node u of t is productive if it is productive in the computation 〈q0, roott〉 ⇒∗

M,t

τM (t), and we say that t is productive (forM) if that computation is productive,
i.e., if all leaves and monadic nodes of t are productive.11 We define LM,prod to
be the set of all productive trees t ∈ dom(M). Note that τ01M is the restriction
of τM to LM,prod. The next lemma shows that the set of productive input trees
is a regular tree language.

Lemma 42 Let M = (Σ,∆, Q, q0, R) be a deterministic tt.

(1) There is a regular test TM,prod over Σ such that for every t ∈ dom(M)
and u ∈ N (t), (t, u) ∈ TM,prod if and only if u is productive.

(2) LM,prod is a regular tree language over Σ.

Proof. (1) Let M ′ = (Σ × {0, 1}, {⊤}, Q, {q0}, R′) be the nondeterministic tt

such that ⊤ has rank 0, and R′ is defined as follows. If 〈q, σ, j, T 〉 → 〈q′, α〉
is a move rule in R, then 〈q, (σ, b), j, µ(T)〉 → 〈q′, α〉 is a rule in R′ for every
b ∈ {0, 1}. If 〈q, σ, j, T 〉 → δ(〈q1, α1〉, . . . , 〈qk, αk〉) is an output rule in R, then
R′ contains the rules 〈q, (σ, 0), j, µ(T)〉 → 〈qi, αi〉 for every i ∈ [k] and it also
contains the rule 〈q, (σ, 1), j, µ(T)〉 → ⊤. Intuitively, for an input tree mark(t, u)
with t ∈ dom(M), the tree-walking automaton M ′ follows an arbitrary path
in the unique derivation tree d ∈ L(Gder

M,t), from the root of d down to the
leaves (cf. M ′

1 and N in the proof of Lemma 22). Whenever M branches
at an unmarked node, M ′ nondeterministically follows one of those branches.
It accepts mark(t, u) when an output rule is applied to the marked node u. It
should be clear that TM,prod = mark−1(dom(M ′)) satisfies the requirements.
It is regular by Corollary 14.

11There are several such computations, but they all have the same unique derivation tree
in L(Gder

M,t). The definition of productivity clearly does not depend on the particular choice
of the derivation.

38

(2) Let M ′′ be a dtt that performs a depth-first left-to-right traversal of
the input tree t ∈ TΣ and verifies that (t, u) ∈ TM,prod for every leaf and
monadic node u of t. Then LM,prod = dom(M)∩dom(M ′′), which is regular by
Corollary 14. ✷

For a given deterministic tt M there are a nondeterministic pruning tt N
and a deterministic tt

ℓ M ′ such that τN ◦ τM ′ = τM and τM ⊆ τN ◦ τ01M ′ , by
Lemmas 39 and 40. Our aim is to transform N and M ′ in such a way that
N becomes deterministic. We basically do this by applying Lemma 34 to τN ,
replacing it by one of its uniformizers. But to preserve the above two properties
we first restrict the domain of M ′ to productive input trees and then restrict
the range of N to the new domain, as follows.

By Lemma 42, the tree language LM ′,prod is regular. Let M ′′ be the dtt

that is obtained from M ′ by restricting its domain to LM ′,prod, see Lemma 9.
Hence, τM ′′ = τ01M ′ and so τN ◦ τM ′′ = τM . Since M ′′ behaves in the same way
as M ′, every tree t′ ∈ dom(M ′′) is productive (for M ′′). Next, we change N
into the nondeterministic pruning tt N ′ by restricting its range to dom(M ′′),
by Corollary 21. Now τN ′ ◦ τM ′′ = τM and ran(τN ′) ⊆ dom(τM ′′). Finally, we
define τ ∈ dTTpru to be the uniformizer of τN ′ according to Lemma 34. Then
τ ◦ τM ′′ = τM . Now consider (t, s) ∈ τM . Then s = τM ′′(r) for r = τ(t). Since
r is productive for M ′′, it follows that |r| ≤ 2 · |s| as observed at the end of the
second paragraph of Section 8.1. Hence (τ, τM ′′) is linear-bounded, which shows
that τM ∈ dTTpru ∗ dTT.

9 Linear Size Increase

In this section we show our first main result: the hierarchy of tt’s collapses for
functions of linear size increase.

Theorem 43 For every k ≥ 1, dTTk ∩ LSIF = dTTsu.

Proof. The proof is by induction on k. For k = 1 it is Corollary 32. To
prove that dTTk+1 ∩ LSIF ⊆ dTTsu, let τ ∈ dTTk and let M be a dtt such that
τM ◦τ ∈ LSIF. By Corollary 38(2) we may assume that (τM , τ) is linear-bounded.
Moreover, by restricting the domain of M to dom(τM ◦ τ) we may assume
that ran(τM) ⊆ dom(τ), see Lemma 9 and Corollary 14. Hence τM ∈ LSIF

by Lemma 2 and so τM ∈ dTTsu by Corollary 32. Then τM ◦ τ ∈ dTTk by
Theorem 23. Hence τM ◦ τ ∈ dTTsu by induction. ✷

Theorem 44 It is decidable for a composition of deterministic tt’s whether or
not it is of linear size increase.

Proof. The proof is, again, by induction on k, the number of dtt’s in the
composition. It goes along the lines of the proof of Theorem 43, using Corol-
lary 33 instead of Corollary 32 for the case k = 1. Assuming that we have an
algorithm Ak for a composition of k dtt’s, we construct Ak+1 as follows. Let
M,M1, . . . ,Mk be dtt’s, k ≥ 1, and let τ = τM1

◦ · · · ◦ τMk
. Since all our

results are effective, we may assume as in the proof of Theorem 43 that (τM , τ)
is linear-bounded and ran(τM) ⊆ dom(τ). To decide whether or not τM ◦ τ is of
linear size increase, we first decide whether or not τM is of linear size increase

39

by Corollary 33. If not, then τM ◦ τ is not of linear size increase, by Lemma 2.
If so, then a dtt M ′

1 that realizes τM ◦ τM1
can be constructed by Corollary 32

and Theorem 23, and we apply Ak to M ′
1,M2, . . . ,Mk. ✷

Together with Lemma 24 and Proposition 29 in Section 6, Theorems 43
and 44 imply the following two corollaries on macro tree transducers.

Corollary 45 For every k ≥ 1, dMTk ∩ LSIF = dMSOT = dTTsu ⊆ dMT.

Corollary 46 It is decidable for a composition of deterministic mt’s whether
or not it is of linear size increase.

For the class dMTio of translations realized by deterministic macro tree trans-
ducers with inside-out (io) derivation mode, we obtain that dMTk

io
∩ LSIF ⊆

dTTsu for every k ≥ 1, for the simple reason that dMTio is a (proper) sub-
class of dMT by [34, Theorem 7.1(1)]. For the same reason Corollary 46 is also
valid for those transducers. However, dTTsu is not included in dMTio, because
not every regular tree language is the domain of a deterministic io macro tree
transducer (see [34, Corollary 5.6]).

Since LSIF ⊆ F , it follows from Theorems 43 and 35 that Theorem 43 also
holds for nondeterministic tt’s, i.e., TTk ∩ LSIF = dTTsu for every k ≥ 1.12

Similarly, it follows from Corollaries 45 and 36 that Corollary 45 also holds
for nondeterministic mt’s, i.e., MTk ∩ LSIF = dMSOT = dTTsu ⊆ dMT for
every k ≥ 1. This even holds for the so-called stay-macro tree transducers that
can use stay-instructions, introduced in [31, Section 5.3], because it is shown
in [31, Lemma 37] that the stay-macro tree translations are in TT4. For the
class MTio of nondeterministic io macro tree translations we also obtain that
MTk

io
∩ LSIF ⊆ dTTsu for every k ≥ 1, because MTio ⊆ TT2 by Lemma 28; the

same is true for multi-return macro tree transducers.
The k-pebble tree transducer was introduced in [63] as a model of XML

document transformation. It is a tt that additionally can use k distinct pebbles
to drop on, and lift from, the nodes of the input tree. The life times of these
pebbles must be nested. The tt is the 0-pebble tree transducer. It is shown
in [31, Theorem 10] that every (deterministic) k-pebble tree translation can be
realized by a composition of (deterministic) k + 1 tt’s. Hence Theorems 43
and 44 also hold for deterministic k-pebble tree transducers, while Theorem 43
additionally holds for the nondeterministic case. In [28, Theorems 5 and 55]
this is extended to k-pebble tree transducers that, in addition to the k distinct
“visible” pebbles, can use an arbitrary number of “invisible” pebbles, still with
nested life times: they can be realized by a composition of k + 2 tt’s. Thus,
Theorems 43 and 44 also hold for such transducers, cf. [28, Theorem 57].13

The high-level tree transducer was introduced in [35] as a generalization of
both the top-down tree transducer and the macro tree transducer. It is proved
in [35, Theorem 8.1(b)] that nondeterministic high-level tree transducers can

12We do not know whether Theorem 44 holds for nondeterministic tt’s, i.e., whether it is
decidable for a composition of nondeterministic tt’s whether or not it realizes a translation
in LSIF.

13A “visible” pebble can be observed by the transducer during its entire life time (as usual
for pebbles), whereas an “invisible” pebble p cannot be observed during the life time of a
pebble p′ of which the life time is nested within the one of p; thus, such a pebble p′ “hides”
the pebble p.

40

be simulated by compositions of nondeterministic mt’s. Since every determin-
istic high-level tree transducer realizes a partial function (as should be clear
from the proof of [35, Lemma 5.7]), it follows from Corollary 36 that, similarly,
deterministic high-level tree transducers can be simulated by compositions of de-
terministic mt’s. Consequently, Corollaries 45 and 46 also hold for deterministic
high-level tree transducers, and Corollary 45 additionally for the nondetermin-
istic case.

10 Deterministic Complexity

Our first main complexity result says that a composition of deterministic tt’s
can be computed by a RAM program in linear time, more precisely in time O(n)
where n is the sum of the sizes of the input and the output tree.

Theorem 47 For every k ≥ 1 and every τ ∈ dTTk there is an algorithm that
computes, given an input t, the output s = τ(t) in time O(|t|+ |s|).

Proof. The proof is by induction on k. We first prove the case k = 1, which
is a slight generalization of the well-known fact for attribute grammars that
the attribute evaluation of an input tree takes linear time (see, e.g., [17, 23]).
Let τ ∈ dTT and let t be an input tree of τ . By Corollary 14, dom(τ) is
regular and hence can be recognized by a bottom-up finite-state tree automaton.
Thus, we can decide whether or not t ∈ dom(τ) in time O(|t|) by running that
automaton on t. By Lemmas 10 and 12, τ = τ1 ◦ τ2 with τ1 ∈ dTT s

rel and
τ2 ∈ dTTℓ. As observed in Section 3, τ1 can be realized by a classical linear
deterministic top-down tree transducer with regular look-ahead. Thus, by (the
proof of) [20, Theorem 2.6], it can be realized by a deterministic bottom-up
finite-state relabeling (DBQREL) and a local relabeling tt. To run these two
relabelings on t ∈ dom(τ) obviously takes time O(|t|). Thus, it remains to
consider the case that τ ∈ dTTℓ. Let M be a local dtt that realizes τ . To
compute τM (t), we first construct the regular tree grammar GM,t in time O(|t|),
the number of configurations of M on t. Then we remove the chain rules from
the context-free grammar GM,t, i.e., the rules 〈q, u〉 → 〈q′, u′〉 resulting from
the move rules of M . Since GM,t is forward deterministic, this can also be done
in time O(|t|), as follows. Viewing the chain rules as edges of a directed graph
with configurations as nodes, we compute an evaluation order of the graph by
topological sorting, in time O(|t|). Then we compute the new rules by traversing
this order from right to left, again in time O(|t|). For an edge 〈q, u〉 → 〈q′, u′〉,
if the (old or new) rule for 〈q′, u′〉 is 〈q′, u′〉 → δ(〈q1, u1〉, . . . , 〈qk, uk〉), then the
new rule for 〈q, u〉 is 〈q, u〉 → δ(〈q1, u1〉, . . . , 〈qk, uk〉). Finally, we use this new
regular tree grammar, equivalent to GM,t, to generate s = τM (t), which takes
time O(|s|) because each rule generates a node of s.

Now let τ = τ1 ◦ τ2 such that τ1 ∈ dTT and τ2 ∈ dTTk, k ≥ 1. By
Corollary 38(2) we may assume that (τ1, τ2) is linear-bounded. Let t be an
input tree of τ . Since dom(τ) is regular by Corollary 14, we can check that
t ∈ dom(τ) in linear time, as above. By the case k = 1, the intermediate tree
r = τ1(t) can be computed in time O(|t| + |r|), and by induction the output
tree s = τ(t) = τ2(r) can be computed in time O(|r| + |s|). Since (τ1, τ2) is
linear-bounded, there is a constant c ∈ N such that |r| ≤ c · |s|, i.e., |r| = O(|s|).
Hence the total time is O(|t|+ |r|) +O(|r| + |s|) = O(|t| + |s|). ✷

41

It should be noted that the constant in the time complexity O(|t| + |s|)
can be large in terms of the size of the given transducers due to the use of
linear-boundedness, cf. Remark 41.

Since deterministic macro tree transducers, pebble tree transducers, and
high-level tree transducers can be realized as compositions of deterministic tt’s
(see Section 9), Theorem 47 also holds for such transducers. For k-pebble tree
transducers this improves the result of [63, Proposition 3.5], where the time
bound is O(|t|k + |s|).

Before we proceed, we need an elementary lemma on leftmost derivations of
context-free grammars. For a context-free grammarG = (N, T,S, R), a leftmost
sentential form is a string v ∈ (N ∪ T)∗ such that S ⇒∗

G,lm v for some S ∈ S,
where ⇒G,lm is the usual leftmost derivation relation of G: if X → ζ is in R,
then v1Xv2 ⇒G,lm v1ζv2 for all v1 ∈ T ∗ and v2 ∈ (N ∪ T)∗.

Lemma 48 Let G = (N, T,S, R) be an ε-free context-free grammar, and let
G′ = (N ′, T,S, R′) be the equivalent context-free grammar such that N ′ =
N∪{Z} and R′ = {X → ζZ | X → ζ ∈ R}∪{Z → ε}, where Z is a new nonter-
minal. Let v be a leftmost sentential form of G′, and let S ⇒∗

G′,lm v ⇒∗
G′,lm w

be a leftmost derivation of G′ with S ∈ S and w ∈ L(G). Moreover, let d be the
derivation tree corresponding to that derivation. Then the number of occurrences
of Z in v is at most the height of d.14

Proof. Each occurrence of a nonterminal Y ∈ N ′ in v corresponds to a node
of d with label Y in a well-known way. Let u be the node of d corresponding to
the leftmost occurrence of Z in v. Clearly the number of occurrences of Z in v
is equal to the number of edges on the path from u to the root of d. ✷

By [64, Theorem 2.5] it follows from Theorem 47 that a composition of
deterministic tt’s can be computed by a deterministic Turing machine in cubic
time, more precisely in time O(n3) where n is the sum of the sizes of the input
and the output tree. Our second complexity result says that a composition
of deterministic tt’s can be computed by a deterministic multi-tape Turing
machine N in linear space (in the sum of the sizes of the input and output tree).
On a work tape of N we will represent the input tree t over Σ by the string ϕ(t)
over Σ∪{(,)}, where {(,)} is the set consisting of the left- and right-parenthesis,
defined such that if ϕ(t1) = t′1, . . . , ϕ(tm) = t′m then ϕ(σt1 · · · tm) = σ(t′1 · · · t

′
m).

In other words, we formally insert the parentheses (but not the commas) that
are always used informally to denote trees. The parentheses allow N to walk on
the tree t, from node to node, because it can recognize a subtree of t by checking
that the numbers of left- and right-parentheses in the corresponding substring
of ϕ(t) are equal. In particular, it can determine the child number of a node of t
by counting the number of its younger siblings. Obviously, the mapping ϕ is
injective, and can be computed in linear space (simulating a one-way push-down
transducer). In what follows we identify t and ϕ(t).

Theorem 49 For every k ≥ 1 and every τ ∈ dTTk there is a deterministic
Turing machine that computes, given an input t, the output s = τ(t) in space
O(|t|+ |s|).

14Note that there is a straightforward one-to-one correspondence between the leftmost
derivations of G and G′, and between their derivation trees. Since G is ε-free, the deriva-
tion trees have the same height.

42

Proof. Again, we first show this for k = 1. Let M = (Σ,∆, Q, q0, R) be
a dtt, and let t ∈ TΣ be an input tree. As usual we assume that the output
rules of M only contain stay-instructions. We describe a deterministic multi-
tape Turing machine N that computes τM in linear space. By Corollary 14,
dom(M) is a regular tree language and hence a context-free language, which
can be recognized in deterministic linear space. Thus, N starts by deciding
whether or not t ∈ dom(M). Now assume that t ∈ dom(M). To compute s =
τM (t), the machine N simulates the (unique) leftmost derivation of the forward
deterministic context-free grammar GM,t. Every leftmost sentential form of
GM,t is of the form w〈q1, u1〉 · · · 〈qn, un〉 with w ∈ ∆∗ and 〈qi, ui〉 ∈ Con(t). If
one views the states of M as recursive procedures with one parameter of type
‘node of t’, then 〈q1, u1〉 · · · 〈qn, un〉 corresponds to the contents of the stack in
the usual implementation of recursive procedures: each configuration 〈qi, ui〉 is
a call of procedure qi with actual parameter ui. The machine N uses a one-way
output tape on which it prints w (which will finally be s), a work tape with the
input tree t (or rather ϕ(t)), and a work tape that contains a stack representing
〈q1, u1〉 · · · 〈qn, un〉, with the top of the stack to the left. At each moment of time,
a reading head of N is at node u1 of t, and another reading head is at the top
of the stack. Note that n ≤ |s| because every configuration 〈qi, ui〉 will generate
at least one symbol of s. If N would represent the parameters u2, . . . , un by
their Dewey notation, the size of the stack could be |s| · |t|, which is too much.
Thus, we need a more compact representation of the nodes u2, . . . , un. In a
rule of GM,t with left-hand side 〈q, u〉, every node u′ in the right-hand side is
a neighbour of u, or u itself, and so, the “difference” between u and u′ can be
expressed by an instruction in I = {up, stay} ∪ {downi | i ∈ [1,mxΣ]}. This
allows us to represent 〈q1, u1〉 · · · 〈qn, un〉 by the node u1 and a stack of the form
q1γ1q2γ2 · · · qnγn where γi ∈ I∗ is a sequence of instructions that leads from ui

to ui+1 (with un+1 = roott). Let us now consider in detail how N simulates the
leftmost derivation of GM,t.

At each moment of time, the current node of t and the current contents
of the output tape and the stack tape represent a leftmost sentential form of
GM,t, which is an element of ∆∗ · Con(t)∗. The stack tape contains a string
in (Q ∪ I)∗⊥, where ⊥ is the bottom stack symbol and I is as above. The
current node u of t and the current contents w ∈ ∆∗ and ξ ∈ (Q ∪ I)∗⊥ of
the output tape and stack tape, respectively, represent the leftmost sentential
form w · µ(u, ξ), where the string µ(u, ξ) ∈ Con(t)∗ is defined as follows (for
every q ∈ Q and β ∈ I): µ(u, qξ) = 〈q, u〉 · µ(u, ξ), µ(u, βξ) = µ(β(u), ξ), and
µ(⊥) = ε. Initially, N starts at the root of t, with empty output tape and
with stack tape q0⊥, representing the initial output form 〈q0, roott〉. If the top
symbol of the stack is ⊥, then N halts. Otherwise, to compute the next leftmost
sentential form, N first pops the top symbol off the stack. If that symbol was
q ∈ Q, and the current node u of t has label σ and child number j, then N
selects the unique rule 〈q, σ, j, T 〉 → ζ that is applicable to 〈q, u〉. Note that it
can test in linear space whether or not (t, u) ∈ T , because mark(T) is a context-
free language. If ζ = 〈q′, α〉, then N moves to node α(u) of t and pushes the
string q′β on the stack where β is defined as follows: if α is up, stay, or downi,
then β is downj , stay, or up, respectively. If ζ = δ(〈q1, stay〉, . . . , 〈qk, stay〉),
then N outputs δ, and pushes q1 · · · qk on the stack (if k > 0). It is easy to
check that in both these cases the resulting configuration of N represents the
next leftmost sentential form of GM,t. If the top symbol of the stack was β ∈ I,

43

the machine N moves to node β(u) of t. This does not change the represented
leftmost sentential form. Thus, after applying a rule 〈q, σ, j, T 〉 → δ (with δ
of rank 0), N removes instructions from the stack (and moves its reading head
on t accordingly) until the top of the stack is a state again. When N halts, the
output tape contains s.

It remains to show that the length of the stack is linear in |t|+ |s|. As men-
tioned above, since every configuration 〈q, u〉 will generate at least one symbol
of s, the number of occurrences of states in the stack is at most |s|. To estimate
the number of occurrences of instructions in the stack, we use Lemma 48. In the
above case where q is the top stack symbol and 〈q, σ, j, T 〉 → 〈q′, α〉 is the rule
applicable to 〈q, u〉, the machine N does not apply the rule 〈q, u〉 → 〈q′, α(u)〉
of GM,t, but rather the rule 〈q, u〉 → 〈q′, α(u)〉β where β is defined as above.
Moreover, when β is the top stack symbol, N applies the rule β → ε. From
this it should be clear that, by Lemma 48 and footnote 14, the number of oc-
currences of instructions in the stack is at most the height of the derivation
tree corresponding to the derivation 〈q0, roott〉 ⇒∗

M,t s of GM,t. As observed
in Section 2 after Lemma 3, that height is at most #(Con(t)), i.e., #(Q) · |t|.
Thus, the length of the stack is indeed O(|s|+ |t|).

The induction step can be proved in exactly the same way as in the proof of
Theorem 47, with ‘time’ replaced by ‘space’. ✷

For a class T of tree translations and a class L of tree languages, we denote
by T (L) the class of tree languages τ(L) with τ ∈ T and L ∈ L. The elements
of T (REGT) are called the output tree languages (or surface languages) of T .
Since dTT ⊆ dMT by Lemma 24, it follows from the proof of [34, Theorem 7.5]
that the output tree languages of dTTk are recursive. From Theorem 49 we
now obtain that they are in DSPACE(n), i.e., can be recognized by a Turing
machine in deterministic linear space. This was shown for classical top-down
tree transducers in [4].

Theorem 50 For every k ≥ 1, dTTk(REGT) ⊆ DSPACE(n).

Proof. Let L ∈ REGT and τ ∈ dTTk. By Corollary 38(2), τ = τ1 ◦ τ2 such that
τ1 ∈ dTTpru, τ2 ∈ dTTk, and (τ1, τ2) is linear-bounded for some constant c. Let
L′ = τ1(L), and note that τ(L) = τ2(L

′) and that L′ ∈ REGT by Lemma 15.
It is straightforward to show that for every s ∈ τ(L) there exists t ∈ L′ such
that (t, s) ∈ τ2 and |t| ≤ c · |s|. To check whether a given tree s is in τ(L),
a deterministic Turing machine systematically enumerates all input trees t (of
τ2) such that |t| ≤ c · |s|. For each such t it first checks that t ∈ L′ in space
O(|t|). Then it uses the algorithm of Theorem 49 to compute τ2(t) in space
c′ · (|t|+ |τ2(t)|), but rejects t as soon as the computation takes more than space
c′ · (|t| + |s|); thus, the space used is O(|t| + |s|) = O(|s|). Clearly, s ∈ τ(L) if
and only if τ2(t) = s for some such t. ✷

For a tree t we denote its yield by yt, for a tree language L we define yL =
{yt | t ∈ L}, and for a class L of tree languages we define yL = {yL | L ∈ L}.
For a class T of tree translations, the languages in yT (REGT) are called the
output string languages (or target languages) of T .

Corollary 51 For every k ≥ 1, ydTTk(REGT) ⊆ DSPACE(n).

44

Proof. For an alphabet ∆, let Γ = ∆ ∪ {e} be the ranked alphabet such that
e has rank 0 and every element of ∆ has rank 1. For a string w over ∆ we define
mon(w) = we ∈ TΓ. It is easy to see that for every ranked alphabet Σ there is
a dttℓ M such that τM (t) = mon(yt). From this and Theorem 50 the result
follows. ✷

We observe here, for k = 1, that dTT(REGT) and ydTT(REGT) are included
in LOGCFL, the class of languages that are log-space reducible to a context-free
language. This will be proved in Corollaries 64 and 65. Note that LOGCFL ⊆
DSPACE(log2 n).

We also observe that Theorem 50 and Corollary 51 also hold for nondeter-
ministic tt’s, as will be proved in Theorem 67 (and was proved for classical
top-down tree transducers in [4]).

As before, Theorems 49 and 50 and Corollary 51 also hold for deterministic
macro tree transducers, pebble tree transducers, and high-level tree transducers.
It is proved in [30, Theorem 23] that composition of deterministic mt’s yields
a proper hierarchy of output string languages (called the ydMT-hierarchy), i.e.,
that ydMTk(REGT) (ydMTk+1(REGT) for every k ≥ 1. The io-hierarchy con-
sists of the classes of string languages IO(k) generated by level-k grammars,
with the inside-out (io) derivation mode (see, e.g., [16]). By [33, Theorem 7.5]
the io-hierarchy can be defined as output string languages of tree transforma-
tions: IO(k) = yYIELDk(REGT). Since YIELD ⊆ dTT by [31, Lemma 36], we
obtain that IO(k) ⊆ ydTTk(REGT). Thus, the next corollary is immediate from
Corollary 51. Note that it was already proved in [37, Theorem 3.3.8] that the
io languages (i.e., the languages in IO(1)) are in NSPACE(n); in [3] this was
improved to LOGCFL. It was proved in [16, Corollary 8.12] that the languages
in the io-hierarchy are recursive.

Corollary 52 For every k ≥ 1, IO(k) ⊆ DSPACE(n).

Note that by [30, Theorem 36] the EDTOL control hierarchy is included in
the io-hierarchy.

By Corollary 25, ydTTk(REGT) ⊆ ydMTk(REGT) ⊆ ydTTk+1(REGT). It
is proved in [30, Theorem 32] that there exists a language in IO(k + 1) that
is not in ydMTk(REGT). Since IO(k + 1) ⊆ ydTTk+1(REGT), that implies the
following stronger version of Proposition 7.

Corollary 53 For every k ≥ 1, ydTTk(REGT) (ydTTk+1(REGT).

11 Nondeterministic Complexity

We now turn to the complexity of compositions of nondeterministic tt’s. We
first consider the case where all the transducers in the composition are finitary.
The next lemma shows that Theorem 37 and Corollary 38 also hold for f TT.

Lemma 54 f TTk ⊆ TTpru ∗ f TTk and f TT ◦ f TTk = f TT ∗ f TTk for every
k ≥ 1.

Proof. To show that f TT ⊆ TTpru ∗ f TT, let τ ∈ f TT. By Theorem 37,
τ = τ1 ◦ τ2 such that τ1 ∈ TTpru, τ2 ∈ TT, and (τ1, τ2) is linear-bounded. Since

45

ran(τ1) ∈ REGT by Lemma 15, we may assume that dom(τ2) ⊆ ran(τ1) by
Lemma 9. Then τ2 is finitary too.

Theorem 20 implies that f TT ◦ TTpru ⊆ f TT, because the composition of
two finitary translations is finitary. The remainder of the proof is now entirely
similar to the one of Corollary 38. ✷

We will prove that a composition of tt’s can be computed by a nondeter-
ministic Turing machine in linear space and polynomial time (in the sum of the
sizes of the input and output tree), which generalizes Theorem 49. In the next
lemma we consider the case where all tt’s are finitary.

Lemma 55 For every k ≥ 1 and every τ ∈ f TTk there is a nondeterministic
Turing machine that computes, given an input t, any output s ∈ τ(t) in space
O(|t|+ |s|) and in time polynomial in |t|+ |s|.

Proof. For the case k = 1 the proof is exactly the same as that of Theorem 49
except, of course, that the Turing machine N nondeterministically simulates
any leftmost derivation of GM,t, selecting nondeterministically a rule of M to
compute a next leftmost sentential form. It follows from Lemmas 48 and 3 that
the number n of occurrences of instruction symbols in the stack is O(|t|). In
fact, since M is finitary, it suffices by Lemma 3 to simulate leftmost derivations
of GM,t for which the corresponding derivation tree in L(Gder

M,t) has height at
most #(Q) · |t|. As in the proof of Theorem 49, Lemma 48 implies that n is at
most that height, i.e., at most #(Q) · |t|. Thus, N works in space O(|t| + |s|).
Moreover, it works in time O(|t|2 · |s|), because the size of such a derivation tree
(and hence the length of the leftmost derivation) is at most #(Q) · |t| · |s|, and
each step in the leftmost derivation takes time O(|t|). Note that regular tree lan-
guages (which are context-free languages) can be recognized in nondeterministic
linear time.

Now let τ = τ1 ◦ τ2 such that τ1 ∈ f TT and τ2 ∈ f TTk, k ≥ 1. We may
assume by Lemma 54 that (τ1, τ2) is linear-bounded. So, there is a constant
c ∈ N such that for every (t, s) ∈ τ there exists a tree r such that (t, r) ∈ τ1,
(r, s) ∈ τ2, and |r| ≤ c · |s|. By the case k = 1, the intermediate tree r can be
computed from t in nondeterministic space O(|t| + |r|), and by induction, the
output tree s can be computed from r in nondeterministic space O(|r| + |s|).
Hence, since |r| = O(|s|), s can be computed from t in nondeterministic space
O(|t|+ |s|). The time is polynomial in |t|+ |r| and |r|+ |s|, and hence polynomial
in |t|+ |s|. ✷

By Lemma 27, MT ⊆ f TT2. Consequently Lemma 55 also holds for every
τ ∈ MTk.

We now turn to the output languages of f TTk. By NSPACE(n)∧NPTIME we
will denote the class of languages that can be recognized by a nondeterministic
Turing machine in simultaneous linear space and polynomial time. Trivially,
NSPACE(n) ∧ NPTIME is included in both NSPACE(n) and NPTIME.

Lemma 56 For every k ≥ 1, f TTk(REGT) ⊆ NSPACE(n) ∧ NPTIME.

Proof. The proof is similar to the one of Theorem 50. Let L ∈ REGT and
τ ∈ f TTk. By Lemma 54, τ = τ1 ◦ τ2 where τ1 ∈ TTpru, τ2 ∈ f TTk, and (τ1, τ2)
is linear-bounded for some constant c. Let L′ = τ1(L). Then s ∈ τ(L) if and
only if there exists t ∈ L′ such that (t, s) ∈ τ2 and |t| ≤ c · |s|. To check whether

46

a given tree s is in τ(L), a nondeterministic Turing machine guesses an input
tree t such that |t| ≤ c · |s|, it checks that t ∈ L′ in time and space O(|t|)
(because L′ is a context-free language), and then computes any s′ ∈ τ(t) with
|s′| ≤ |s| in space O(|t| + |s′|) and time polynomial in |t| + |s′|, by Lemma 55.
Finally it checks that s′ = s in time and space O(|s|). Thus the space used is
O(|t|+ |s|) = O(|s|), and the time is polynomial in |s|. ✷

Although mt’s are finitary, whereas tt’s need not be finitary, it is proved
in [31, Theorem 38 and Corollary 39] that compositions of mt’s have the same
output languages as compositions of (local) tt’s. This implies that Lemmas 56
and 55 also hold for TTk.

Theorem 57 For every k ≥ 1, TTk(REGT) ⊆ NSPACE(n) ∧ NPTIME, and
moreover, MTk(REGT) ⊆ NSPACE(n) ∧ NPTIME.

Proof. By Lemma 27, MT ⊆ f TT2. Thus, by Lemma 56, MTk(REGT) ⊆
NSPACE(n)∧NPTIME. From Lemma 10 and Theorem 20 it follows (by induction
on k) that TTk ⊆ dTTrel ◦ (TTℓ)k and hence TTk(REGT) ⊆ (TTℓ)k(REGT) by
Lemma 15. Finally, by [31, Theorem 38 and Corollary 39], (TTℓ)k(REGT) ⊆
MTm(REGT) for some m ≥ 1. Hence TTk(REGT) ⊆ NSPACE(n)∧NPTIME, by
the above. ✷

As observed already after Corollary 51, the space part of Theorem 57 will
be strengthened to DSPACE(n) in Theorem 67.

Theorem 58 For every k ≥ 1 and every τ ∈ TTk there is a nondeterministic
Turing machine that computes, given an input t, any output s ∈ τ(t) in space
O(|t|+ |s|) and in time polynomial in |t|+ |s|. The same holds for τ ∈ MTk.

Proof. For τ ∈ MTk this was already observed after Lemma 55. Now let
τ ∈ TTk with input alphabet Σ. Let Σ̄ = {σ̄ | σ ∈ Σ} with rank(σ̄) = rank(σ)
be a set of new symbols, and let t̄ ∈ TΣ̄ be obtained from t ∈ TΣ by changing
each label σ into σ̄. Finally, let # be a new symbol of rank 2. It is easy to
show that the tree language Lτ = {#(t̄, s) | (t, s) ∈ τ} is in TTk(REGT): the
first transducer additionally copies the input to the output (with bars), and
each other transducer copies the first subtree of the input to the output. By
Theorem 57, there is a nondeterministic Turing machine N that recognizes Lτ

in linear space and polynomial time. We construct the nondeterministic Turing
machine N ′ that, on input t, guesses a possible output tree s, writing #(t̄, s)
on a worktape, uses N as a subroutine to verify that (t, s) ∈ τ , and outputs s.
Clearly, N ′ satisfies the requirements. ✷

Since io (multi-return) macro tree translations, pebble tree translations,
and high-level tree translations can be realized by compositions of tt’s (see
Section 9), Theorems 57 and 58 also hold for those translations.

By the proof of Corollary 51, we additionally obtain from Theorem 57 that
yTTk(REGT) ⊆ NSPACE(n) ∧ NPTIME for every k ≥ 1, and the same is true
for yMTk(REGT). The oi-hierarchy consists of the classes of string languages
OI(k) generated by level-k grammars, with the outside-in (oi) derivation mode
(see, e.g., [16, 33]). It was shown in [37, Theorem 4.2.8] that OI(1) equals the
class of indexed languages of [1], and hence that OI(1) ⊆ NSPACE(n) by [1,
Theorem 5.1]. Moreover, it was shown in [67, Proposition 2] that OI(1) ⊆

47

NPTIME. In [16, Corollary 7.26] it was proved that the languages in the oi-
hierarchy are recursive. As observed in the last paragraph of [35], OI(k) is
included in yMTm(REGT) for some m.

Corollary 59 For every k ≥ 1, OI(k) ⊆ NSPACE(n) ∧ NPTIME.

It is shown in [67] that there is an NP-complete language in both OI(1)
and yf TT↓(REGT), and it is shown in [74] that there even is one in the class
ETOL, which is a subclass of both OI(1) and yf TT↓(REGT). Note that by [75,
Theorem 14] the ETOL control hierarchy is included in the oi-hierarchy.

It will be shown in Corollary 68 that OI(k) ⊆ DSPACE(n).

12 Translation Complexity

In this section we study the time and space complexity of the membership
problem of the tree translations in TTk, i.e., for a fixed tree translation τ ⊆
TΣ × T∆ we want to know, for given trees t ∈ TΣ and s ∈ T∆, how hard it
is to decide whether or not (t, s) ∈ τ . To formalize this, we denote by Lτ the
string language {#ts | (t, s) ∈ τ}, where # is a new symbol. For simplicity,
and without loss of generality, we assume that Σ ∩ ∆ = ∅. Otherwise, we
replace Σ by Σ̄ = {σ̄ | σ ∈ Σ} as in the proof of Theorem 58. So, Lτ is
a tree language over Σ ∪ ∆ ∪ {#}, where # has rank 2. For a class T of
tree translations and a complexity class C, we will write T ⊆ C to mean that
Lτ ∈ C for every τ ∈ T . As usual, we denote the class of languages that are
accepted by a deterministic Turing machine in polynomial time by PTIME, and
the class of languages that are log-space reducible to a context-free language
by LOGCFL. Note that every regular tree language is a context-free language
and hence is in LOGCFL. Note also that LOGCFL ⊆ PTIME (see [68]) and
LOGCFL ⊆ DSPACE(log2 n) (see [57, 68] and [46, Theorem 12.7.4]).

If τ ∈ dTTk then, on input #(t, s), we can compute τ(t) according to The-
orems 47 and 49 (rejecting the input when the computation takes more than
time or space c · (|t|+ |s|) for the given constant c) and then verify that τ(t) = s,
cf. the proof of Theorem 50. Thus, Lτ can be accepted by a RAM program in
linear time and by a deterministic Turing machine in linear space. This means
that dTTk ⊆ PTIME and dTTk ⊆ DSPACE(n). If τ ∈ TTk, then, as mentioned
in the proof of Theorem 58, the tree language Lτ is in the class of output lan-
guages TTk(REGT), and hence in NSPACE(n) ∧ NPTIME by Theorem 57. This
means that TTk ⊆ NPTIME and TTk ⊆ NSPACE(n). Due to the presence of
both the input tree and the output tree in Lτ , one would expect that better
upper bounds can be shown. Indeed, we will prove that TTk ⊆ DSPACE(n).

Our main aim in this section is to prove that TT ◦ dTT ⊆ LOGCFL. We
follow the approach of [25], using multi-head automata.

A multi-head tree-walking tree transducer M = (Σ,∆, Q,Q0, R) (in short,
mhtt) is defined in the same way as a tt, but has an arbitrary, fixed number
of reading heads. Each of these heads can walk on the input tree, independent
of the other heads. It can test the label and child number of the node that it is
currently reading, and additionally apply a regular test to that node. Moreover,
we assume that the heads are “sensing”, which means that M can test which
heads are currently scanning the same node. Thus, if M has ℓ heads, then its

48

move rules are of the form

〈q, σ1, j1, T1, . . . , σℓ, jℓ, Tℓ, E〉 → 〈q′, α1, . . . , αℓ〉

where E ⊆ [1, ℓ] × [1, ℓ] is an equivalence relation. A configuration of M on
input tree t is of the form 〈q, u1, . . . , uℓ〉, to which the rule is applicable if M
is in state q, each ui satisfies the tests σi, ji, and Ti, and ui = uj for every
(i, j) ∈ E. After application the new configuration is 〈q′, α1(u1), . . . , αℓ(uℓ)〉.
The output rules are defined in a similar way. Initially all reading heads are at
the root of the input tree. This is all similar to how multi-head automata on
strings are defined.

We will use the mhtt M as an acceptor of its domain. We will say that it
accepts dom(M) in polynomial time if there is a polynomial p(n) such that for
every t ∈ dom(M) there is a computation 〈q0, roott〉 ⇒∗

M,t s of length at most
p(|t|) for some q0 ∈ Q0 and s ∈ T∆. Note that we consider nondeterministic
mhtt’s only.

Lemma 60 For every multi-head tt M , dom(M) ∈ PTIME. Moreover, if M
accepts dom(M) in polynomial time, then dom(M) ∈ LOGCFL.

Proof. After this paragraph we will show that the domain of a multi-head tt

can be accepted by an alternating multi-head finite automaton (in short, amfa),
in a straightforward way. Moreover, we will show that if the mhtt accepts in
polynomial time, then the corresponding amfa accepts in polynomial tree-size.
That proves the lemma because PTIME is the class of languages accepted by
amfa’s (see [10, 12]) and LOGCFL is the class of languages accepted by amfa’s
in polynomial tree-size (see [68, 71]).

It is well known that the domain of a classical local tt can be accepted by an
alternating (one-head) tree-walking automaton, see, e.g., [70], [24, Section 4],
and [63, Section 4], and the same is true for the multi-head case. Let M =
(Σ,∆, Q,Q0, R) be an mhtt. The amfa M ′ that accepts dom(M) simulates M
on the input t ∈ TΣ, without producing output. The reading heads of M are
simulated by reading heads of M ′ in the obvious way. Every (initial) state q
of M is simulated by the existential (initial) state q of M ′, and a move rule of M
is simulated by a transition of M ′ in an obvious way. If M applies an output
rule in state q, then M ′ first goes into a universal state q′ and then branches
in the same way as M , going into existential states. A regular test T of M
is simulated by M ′ in a side branch, using an amfa subroutine that accepts
the context-free language mark(T), with additional reading heads. Note that
since the heads are sensing, the node to be tested is “marked” by a reading
head. Similarly, to move a head h from a parent u to its i-th child ui, M ′ first
moves an auxiliary head h′ nondeterministically to a position to the right of u,
then checks in a side branch that the string between h and h′ belongs to the
context-free language T i−1

Σ , and finally moves h to h′. In a similar way M ′ can
move from ui to u, and can determine the child number of u.

IfM accepts t in time m, then the size of the corresponding computation tree
ofM ′ is polynomial in m, because each computation step ofM takes polynomial
tree-size. Thus, if M accepts in polynomial time, then M ′ accepts in polynomial
tree-size.

Note that if we assume that the simulation of a step of M takes constant
tree-size, and we assume moreover that M only uses output rules (by eventually

49

replacing the right-hand side ζ of each move rule by δ(ζ), where δ has rank 1),
then the output tree of M can be viewed both as the derivation tree of the
computation of M and as the computation tree of M ′, roughly speaking. ✷

Thus, to prove that TT ◦ dTT ⊆ LOGCFL it suffices to show, for every
τ = τ1 ◦ τ2 with τ1 ∈ TT and τ2 ∈ dTT, that Lτ can be accepted by a multi-
head tt M in polynomial time. Let M1 and M2 be tt’s that realize τ1 and τ2.
For an input tree t and an output tree s of τ , M will simulateM1 on t, generating
an intermediate tree r, and verify that M2 translates r into s. Since M cannot
store its output tree r, it must verify the translation of r into s on the fly,
i.e., while generating r. That can be done because the context-free grammar
GM2,r is forward deterministic, and hence its reduced version has a unique fixed
point: during the generation of the nodes v of r, M can guess the values of the
nonterminals 〈q, v〉 of GM2,r (which are subtrees of s) and check the fixed point
equations for them. However, since GM2,r need not be reduced, we have to be
more careful.

Let G = (N,∆, {S}, R) be a forward deterministic context-free grammar,
and let # be a symbol not in N ∪∆ (which stands for ‘undefined’). A string
homomorphism h : N → ∆∗ ∪ {#} is a fixed point of G if (1) h(S) 6= #,
(2) h(X) is a substring of h(S) for every X ∈ N such that h(X) 6= #, and
(3) h(X) = h(ζ) for every rule X → ζ in R such that h(X) 6= #, where h is
extended to ∆ by defining h(a) = a for every a ∈ ∆. In the special case that G
is a regular tree grammar, a tree fixed point of G is a fixed point h of G such
that h(X) ∈ T∆ ∪{#} for every X ∈ N and h(X) is a subtree of h(S) for every
X ∈ N such that h(X) 6= #.

Lemma 61 Let G = (N,∆, {S}, R) be a forward deterministic context-free
grammar such that L(G) 6= ∅. For every w ∈ ∆∗, L(G) = {w} if and only
if there is a fixed point h of G such that h(S) = w. If G is a regular tree
grammar, then the same statement holds for w ∈ T∆ and h a tree fixed point.

Proof. Let L(G) = {w}, and define hG(X) to be the unique string generated
by X , if that exists and is a substring of w, and otherwise hG(X) = #. It is
easy to see that h = hG satisfies the requirements.

Let h be a fixed point of G such that h(S) = w. Then h(v) = w for every
sentential form v of G. Since L(G) 6= ∅, this shows that L(G) = {w}. ✷

Theorem 62 TT ◦ dTT ⊆ LOGCFL.

Proof. Let M1 = (Σ,Ω, P, P0, R1) be a tt, and let M2 = (Ω,∆, Q, q0, R2) be
a dtt. We will denote τM1

and τM2
by τ1 and τ2, respectively. Since it is easy

to prove (as in the proof of Corollary 38) that TT ◦ dTT = TT ∗ dTT, we may
assume that (τ1, τ2) is linear-bounded. We may also assume, by Lemma 10 and
Theorem 20, that M2 is local. That does not change the linear-boundedness of
the composition: if (τ1, τ

′
2◦τ

′′
2) is linear-bounded and τ ′2 ∈ TTrel, then (τ1◦τ ′2, τ

′′
2)

is linear-bounded because τ ′2 is size-preserving. Similarly, we may assume that
ran(τ1) ⊆ dom(τ2) by Corollaries 14 and 21. Finally we assume (as in the proofs
of Lemmas 17 and 19) that M1 keeps track in its finite state of the child number
of the output node to be generated, through a mapping χ : P → [0,mxΣ].

On the basis of Lemma 60, we will describe a multi-head tt M that ac-
cepts Lτ in polynomial time, where τ = τ1 ◦ τ2. Initially M verifies by a regular

50

test that the input tree is of the form #(t, s) with t ∈ TΣ and s ∈ T∆. We
will denote the root of #(t, s) by its label #. As mentioned before, on in-
put #(t, s) the transducer M simulates M1 on t generating an output tree r
of M1, which is in the domain of M2 because ran(τ1) ⊆ dom(τ2). It keeps the
state p of M1 in its finite state, uses one of its heads to point at a node of t
(which it initially moves to the root of t), and instead of a regular test T applies
the regular test {(#(t, s), 1u) | (t, u) ∈ T }.15 While generating r it guesses a
tree fixed point h : Con(r) → T∆∪{#} of the regular tree grammar GM2,r such
that h(〈q0, rootr〉) = s. If that fixed point can be guessed, then τ2(r) = s by
Lemma 61, and hence (t, s) ∈ τ .

Initially, M guesses the values under h of the configurations in Con(r) that
contain the root of r, in linear time. For each q ∈ Q the value of 〈q, rootr〉
is guessed by nondeterministically moving a reading head named (q, stay) to a
node x of s, i.e., node 2x of #(t, s), meaning that h(〈q, rootr〉) = s|x, or to
node #, meaning that h(〈q, rootr〉) = # (i.e., that h(〈q, rootr〉) is “undefined”).
In particular, the head (q0, stay) is moved to the root of s, thus guessing that
τ2(r) = s.

Suppose that M is going to produce a node v of r with label ω, by simulating
an output rule 〈p, σ, j, T 〉 → ω(〈p1, α1〉, . . . , 〈pk, αk〉) of M1. In such a situation,
M has already guessed the values under h of the configurations in Con(r) that
contain v, and also of those that contain the parent v′ of v (if it has one). For
each q ∈ Q the value of 〈q, v〉 is stored using the reading head named (q, stay),
as explained above for v = rootr, and the value of 〈q, v′〉 is stored in a similar
way using a reading head named (q, up). Now M guesses the values of the
configurations that contain the children of v, in linear time. For every q ∈ Q
and i ∈ [1, k], the value h(〈q, vi〉) is guessed by nondeterministically moving
a reading head named (q, downi) to some node of s or to #. Then M checks
that these values satisfy requirement (3) of a fixed point of GM2,r as follows, in
linear time. If 〈q, ω, χ(p)〉 → 〈q′, α〉 is a move rule of M2 such that head (q, stay)
does not point to #, then M checks that the heads (q, stay) and (q′, α) point
to nodes with the same subtree. It can do this using two auxiliary heads that
simultaneously perform a depth-first left-to-right traversal of those subtrees.
Similarly, if 〈q, ω, χ(p)〉 → δ(〈q1, α1〉, . . . , 〈qm, αm〉) is an output rule of M2 such
that head (q, stay) does not point to #, then M checks that it points to a
node with label δ and that the subtree at the i-th child of that node equals the
subtree at the head (qi, αi), for every i ∈ [1,m]. After checking the fixed point
requirement (3), M outputs the node v and branches in the same way as M1. In
the i-th branch (apart from simulating M1’s rule in the obvious way) it moves
head (q, up) to the position of head (q, stay) and then moves head (q, stay) to
the position of head (q, downi), for every q ∈ Q, in linear time.

This ends the description of M . It should be clear that τM is the set of all
pairs (#(t, s), r) such that (t, r) ∈ τ1 (because M simulates M1) and τ2(r) = s
(because M computes a tree fixed point h of GM2,r such that h(〈q0, rootr〉) = s).
Hence dom(M) = {#(t, s) | ∃ r : (t, r) ∈ τ1, τ2(r) = s} = Lτ . It remains to
show that M accepts Lτ in polynomial time.

There is a computation of M1 of length at most #(P)·|t|·|r| that translates t
into r, because if the number of move rules applied between two output rules

15Note that a node of t has the same label and child number in t and #(t, s), except when
it has child number 1 in #(t, s) in which case it has child number 0 or 1 in t, depending on
whether or not its parent in #(t, s) has label #.

51

is more than the number of configurations of M1 on t, then there is a loop in
the computation that can be removed. Since (τ1, τ2) is linear-bounded, we may
assume that the size of r is at most linear in the size of s. Hence the length
of that computation is polynomial in |t| and |s|, and hence in |#(t, s)|. Since
M simulates M1, and each simulated computation step takes linear time (as
shown above), M accepts #(t, s) in polynomial time. ✷

From Theorem 62 and Lemma 28, which says that mrMTio ⊆ f TT↓ ◦ dTT,
we obtain the following corollary. Note that TT◦dTT is larger than f TT↓ ◦dTT
in two respects. First, it contains non-finitary translations. Second, it contains
total functions for which the height of the output tree can be double exponential
in the height of the input tree, viz. τ2exp in the proof of Proposition 7, whereas
that is at most exponential for total functions in TT↓ ◦ dTT by Theorem 35,
Lemma 24, and the paragraph after Corollary 25.

Corollary 63 MTio ⊆ mrMTio ⊆ LOGCFL.

As another corollary we even obtain an upper bound on the complexity of
the output languages of dTT that improves the one of Theorem 50. It was
proved for attribute grammars in [25].

Corollary 64 dTT(REGT) ⊆ LOGCFL.

Proof. Let L be a regular tree language over Ω and let τ2 ⊆ TΩ × T∆ be
in dTT. Let Σ = {e} with rank(e) = 0, and let τ1 = {(e, r) | r ∈ L}. The
one-state tt

ℓ with rules 〈p, e, 0〉 → ω(〈p, stay〉, . . . , 〈p, stay〉) for every ω ∈ Ω
realizes the translation {(e, r) | r ∈ TΩ}, and hence τ1 ∈ TT by Corollary 21. Let
τ = τ1 ◦ τ2. Then Lτ = {#(e, s) | ∃r : r ∈ L, τ2(r) = s} = {#(e, s) | s ∈ τ2(L)}.
By Theorem 62 Lτ ∈ LOGCFL, and hence τ2(L) ∈ LOGCFL because τ2(L) is
log-space reducible to Lτ . ✷

Theorem 62 and Corollary 64 can be extended to deal with the yields of
the output trees, as also proved in [25] for attribute grammars (generalizing
the proof in [3] of IO(1) ⊆ LOGCFL). For a ranked alphabet Σ we define the
mapping yΣ : TΣ → (Σ(0))∗ such that yΣ(t) = yt, the yield of t. Let yield be
the class of all such mappings yΣ. In what follows we will identify each string w
with the monadic tree mon(w) as defined in the proof of Corollary 51. Hence,
as mentioned in that proof, yield ⊆ dTTℓ. This even holds if we assume the
existence of special symbols in Σ(0) that are skipped when taking the yield of t
(such as the symbols X0 in the derivation trees of context-free grammars with
ε-rules, cf. Section 2).

Corollary 65 TT ◦ dTT ◦ yield ⊆ LOGCFL and ydTT(REGT) ⊆ LOGCFL.

Proof. It is straightforward to show that yield ⊆ dTTpru ∗ yield. In fact,
the deterministic pruning tt removes all nodes of rank 1 and, using regular
look-ahead, all subtrees of which the yield is the empty string ε (due to the
special symbols mentioned above). Consequently, as in the proof of Corollary 38,
TT ◦ dTT ◦ yield = TT ∗ (dTT ◦ yield). This allows us to repeat the proof of
Theorem 62, this time with respect to the forward deterministic context-free
grammar G′

M2,r
that generates the yields of the trees generated by GM2,r: if

X → ζ is a rule of GM2,r, then X → yζ is a rule of G′
M2,r

. Thus, this time

52

the mhtt M guesses a fixed point h of G′
M2,r

, rather than a tree fixed point.
To do this it uses two heads 〈q, stay, left〉 and 〈q, stay, right〉 instead of the one
head 〈q, stay〉, to guess the left- and right-end of the substring generated by the
configuration 〈q, v〉, and similarly for up and downi. It should be clear that
the fixed point requirement (3) can easily be checked, showing that one such
substring equals another one or is the concatenation of several other ones. ✷

The inclusion TT◦dTT ⊆ LOGCFL of Theorem 62 has consequences for both
space and time complexity. We first consider space complexity.

Since LOGCFL ⊆ DSPACE(n), we obtain that TT ⊆ DSPACE(n) from Theo-
rem 62. This can easily be generalized to arbitrary compositions of tt’s.

Theorem 66 For every k ≥ 1, TTk ⊆ DSPACE(n).

Proof. The proof is by induction on k, with an induction step similar to the
one in the proof of Theorem 47.

Let τ = τ1 ◦ τ2 such that τ1 ∈ TT and τ2 ∈ TTk, k ≥ 1. For a given input
string #ts it has to be checked whether (t, s) ∈ τ . By Corollary 38(1) we may
assume that (τ1, τ2) is linear-bounded. Hence there is a constant c ∈ N such that
for every (t, s) ∈ τ there is an intermediate tree r such that |r| ≤ c · |s|. To check
whether (t, s) ∈ τ a deterministic Turing machine systematically enumerates all
trees r such that |r| ≤ c · |s| (cf. the proof of Theorem 50). For each such r it
can check in linear space whether (t, r) ∈ τ1 by the case k = 1. Moreover, by
induction it can check in linear space whether (r, s) ∈ τ2. Thus it uses space
O(|t|+ |r|) +O(|r| + |s|) = O(|t| + |s|). ✷

This result allows us to prove one of our main results, viz. that the output
languages of TTk are in DSPACE(n), originally proved in [48]. It generalizes the
main result of [4] from classical top-down tree transducers to tree-walking tree
transducers and macro tree transducers.

Theorem 67 For every k ≥ 1,

TTk(REGT) ⊆ DSPACE(n) and MTk(REGT) ⊆ DSPACE(n).

Proof. The proof is similar to the one of Theorem 50. Let L ∈ REGT and
τ ∈ TTk. By Corollary 38(1), τ = τ1 ◦ τ2 such that τ1 ∈ TTpru, τ2 ∈ TTk,
and (τ1, τ2) is linear-bounded for some constant c. Let L′ = τ1(L), and note
that τ(L) = τ2(L

′) and that L′ ∈ REGT by Lemma 15. It is straightforward
to show that for every s ∈ τ(L) there exists t ∈ L′ such that (t, s) ∈ τ2 and
|t| ≤ c · |s|. To check whether a given tree s is in τ(L), a deterministic Turing
machine enumerates all input trees t (of τ2) such that |t| ≤ c · |s|. For each such t
it first checks that t ∈ L′ in space O(|t|) = O(|s|). Then it uses the algorithm
of Theorem 66 to check that (t, s) ∈ τ2 in space O(|t|+ |s|) = O(|s|).

The inclusion for MTk is now immediate from Lemma 27. ✷

As before, Theorems 66 and 67 also hold for io (multi-return) macro tree
translations, pebble tree translations, and high-level tree translations, which can
be realized by compositions of tt’s (see Section 9).

By the proof of Corollary 51, Theorem 67 implies that

yTTk(REGT) ⊆ DSPACE(n) and yMTk(REGT) ⊆ DSPACE(n)

for every k ≥ 1. Hence the oi-hierarchy is also contained in DSPACE(n), cf.
Corollaries 59 and 52.

53

Corollary 68 For every k ≥ 1, OI(k) ⊆ DSPACE(n).

Next we consider time complexity. Since LOGCFL ⊆ PTIME, it follows from
Theorem 62 that TT ◦ dTT ⊆ PTIME. This result can be generalized as follows.

One way to increase the power of the tt is to give it a more powerful
feature of look-around. For a class L of tree or string languages, we define
the tt with L look-around by allowing the tt to use node tests T such that
mark(T) ∈ L. Similarly we obtain the mhtt with L look-around. We now
consider in particular the case where L = PTIME. Obviously, (the proof of) the
first sentence of Lemma 60 is still valid for a multi-head tt M with PTIME look-
around. Thus, the domain of an mhtt with PTIME look-around is in PTIME,
and hence, in particular, the domain of a tt with PTIME look-around is in
PTIME. This implies that Lemma 19, and hence Theorem 20, also holds if the
first transducer has PTIME look-around. From the proof of Theorem 62 it now
easily follows that TTP◦dTT ⊆ PTIME, where the feature of PTIME look-around
is indicated by a superscript P. This, in its turn, implies the following variant
of Corollary 63 for (multi-return) io macro tree transducers with PTIME look-
around (appropriately defined): MTP

io
⊆ mrMTP

io
⊆ PTIME. Examples of tree

languages in PTIME that can be used as look-around are those in dTT(REGT),
by Corollary 64, and the tree languages defined by bottom-up tree automata
with equality and disequality constraints ([8]), which can obviously be accepted
by a multi-head tt.

In the remainder of this section we show that there are translations in
dTT ◦ TT, even in dTT↓◦TT, for which the membership problem is NP-complete.
We will use a reduction of SAT, the satisfiability problem of boolean formulas
(see, e.g., [42]), to such a membership problem.

Let ∆ = {∨,∧,¬, v, e} with ∆(2) = {∨,∧}, ∆(1) = {¬, v}, and ∆(0) = {e}.
Let B be the set of all trees over ∆ generated by the regular tree grammar
with nonterminals F and V , initial nonterminal F , and rules F → ∨(F, F),
F → ∧(F, F), F → ¬(F), F → V , V → v(V), and V → v(e). Thus, B is the
set of all boolean formulas that use boolean variables of the form vℓe for ℓ ≥ 1.
For a boolean formula ϕ we define ν(ϕ) to be the nesting-depth of its boolean
operators, i.e., ν(ϕ) = 0 if ϕ is a variable, ν(∨(ϕ1, ϕ2)) = ν(∧(ϕ1, ϕ2)) =
max{ν(ϕ1), ν(ϕ2)}+1, and ν(¬(ϕ)) = ν(ϕ)+1. For every m ≥ 0 and n ≥ 1, let
B(m,n) be the set of all formulas ϕ ∈ B such that ν(ϕ) ≤ m, and ℓ ∈ [1, n] for
every vℓe that occurs in ϕ. Thus, the formulas in B(m,n) have nesting-depth
at most m and use at most the variables ve, vve, . . . , vne.

The proof of the next lemma is essentially a variant of the one of [74, The-
orem 3.1]. Let Σ = {c, d, 0, 1, a} with Σ(1) = {c, d, 0, 1} and Σ(0) = {a}.

Lemma 69 There is a translation τ ∈ f TTℓ
↓ such that, for every m ≥ 0 and

every string w ∈ {0, 1}∗ of length n ≥ 1, the set τ(dmcwa) consists of all boolean
formulas ϕ ∈ B(m,n) such that ϕ is true when the value of vℓe is the ℓ-th symbol
of w for every ℓ ∈ [1, n].

Proof. We construct the top-down local tt M = (Σ,∆, {q0, q1}, {q1}, R). Note
that the initial state is q1. The boolean operations i∨ j, i∧ j, and ¬ i on {0, 1}
are defined as usual, where 0 stands for ‘false’ and 1 for ‘true’. Since the child
numbers of the nodes of the input tree will be irrelevant, we omit them from
the left-hand sides of the rules of M . The only instruction used in the right-
hand sides of the rules is α = down1. The rules are the following, for every

54

i, j ∈ {0, 1}.

〈qi∨j , d〉 → ∨(〈qi, α〉, 〈qj , α〉) 〈qi, c〉 → v(〈qi, α〉)

〈qi∧j , d〉 → ∧(〈qi, α〉, 〈qj , α〉) 〈qi, j〉 → v(〈qi, α〉)

〈q¬ i, d〉 → ¬(〈qi, α〉) 〈qi, i〉 → e

〈qi, d〉 → 〈qi, α〉

Let u be the node of the input tree t = dmcwa with label c. After consuming dm,
the tt M has nondeterministically generated any output form that is a boolean
formula ϕ of nesting-depth at most m and with the two configurations 〈qi, u〉
as variables, such that ϕ is true when the value of 〈qi, u〉 is i. For instance, in
the first step of that computation M consumes d and changes the initial output
form 〈q1, roott〉 into one of the output forms ∨(〈q1, x〉, 〈q0, x〉), ∨(〈q0, x〉, 〈q1, x〉),
∨(〈q1, x〉, 〈q1, x〉), ∧(〈q1, x〉, 〈q1, x〉), ¬(〈q0, x〉), or 〈q1, x〉, where x is the child of
roott. After that, each 〈qi, u〉 generates any variable vℓe such that the ℓ-th
symbol of w is i. Note that since i and j are not necessarily distinct, M has
in particular the rule 〈qi, i〉 → v(〈qi, α〉) for every i ∈ {0, 1}. Thus, qi can
nondeterministically choose any occurrence of i in w to output e and end the
computation. ✷

Applying the translation τ of Lemma 69 to the regular tree language L
consisting of all trees dmcwa such that m ≥ 0 and w is a nonempty string
over {0, 1}, produces the set τ(L) of all satisfiable formulas in B. Thus, since
the membership problem for that set is NP-complete, we obtain the follow-
ing corollary that was proved in [67], as already mentioned after Corollary 59.
Note that it is easy to prove that f TT↓(REGT) ⊆ yf TT↓(REGT): just change
every output rule 〈q, σ, j, T 〉 → δ(〈q1, α1〉, . . . , 〈qk, αk〉) into the (general) rule
〈q, σ, j, T 〉 → ωk+1(δ, 〈q1, α1〉, . . . , 〈qk, αk〉) where ωk+1 has rank k + 1 (and δ
now has rank 0).

Corollary 70 There is an NP-complete language in f TT↓(REGT), and hence
there is one in yf TT↓(REGT).

We now prove the existence of a translation in dTT↓ ◦ TT for which the
membership problem is NP-complete. Recall that, for a tree translation τ , we
denote by Lτ the tree language {#(t, s) | (t, s) ∈ τ}.

Theorem 71 There is a translation τ ∈ dTTℓ
↓ ◦ dTTℓ ◦ TTℓ

pru ⊆ dTT↓ ◦ f TT

such that Lτ is NP-complete.

Proof. The inclusion dTTℓ ◦ TTℓ
pru ⊆ f TT is immediate from Lemma 19.

We first describe a translation τ ∈ dTTℓ
↓ ◦ f TT

ℓ such that Lτ is NP-complete.

Let Γ = {a, b, c, d, e} with Γ(1) = {a, b, c, d} and Γ(0) = {e}. The translation
τ ⊆ TΓ × T∆ transforms each tree t = abncdme into all satisfiable boolean
formulas in B(m,n). This will be realized by the composition of two tt’s M1

and M2 such that the deterministic tt M1 transforms t into a tree s of which
the path language16 consists of all strings awcdme with w ∈ {0, 1}∗ of length n,
and M2 nondeterministically chooses a leaf of s and then walks back to the

16The path language of a tree s ∈ TΩ consists of all strings in Ω∗ that are obtained by
walking along a path from the root of s to one of its leaves, writing down the labels of the
nodes of that path from left to right.

55

root of s while simulating the transducer M of (the proof of) Lemma 69 on the
tree dmcwa ∈ TΣ. Thus, M1 provides all possible valuations of the variables
ve, vve, . . . , vne and M2 chooses one such valuation and produces all formulas in
B(m,n) that are true for that valuation.

Let Ω = {a, 0, 1, c, d, e} with Ω(2) = {a, 0, 1}, Ω(1) = {c, d}, and Ω(0) = {e}.
We define τ = τM1

◦ τM2
⊆ TΓ × T∆ where M1 and M2 are the following tt’s.

The deterministic ttℓ
↓ M1 = (Γ,Ω, {q, q0, q1, p}, {q}, R1) has the following rules,

for i ∈ {0, 1} and α = down1.

〈q, a, 0〉 → a(〈q0, α〉, 〈q1, α〉) 〈p, d, 1〉 → d(〈p, α〉)

〈qi, b, 1〉 → i(〈q0, α〉, 〈q1, α〉) 〈p, e, 1〉 → e

〈qi, c, 1〉 → c(〈p, α〉)

It should be clear that for an input tree abncdme, with m ≥ 0 and n ≥ 1,
the path language of the tree τM1

(abncdme) consists of all strings awcdme with
w ∈ {0, 1}∗ of length n.

The tt
ℓ M2 = (Ω,∆, Q,Q0, R2) has states Q = {q2, q0, q1} and Q0 = {q2}.

On an input tree τM1
(abncdme), it walks nondeterministically in state q2 from

the root to some leaf (without producing output), moves to the parent of that
leaf, and then simulates the transducer M of Lemma 69 on the tree dmcwa ∈ TΣ

while walking back to the root. It starts that simulation in the state q1 of M ,
and then uses the rules of M with α = up.

With this definition of M1 and M2, it follows from Lemma 69 that the
set τ(abncdme) consists of all boolean formulas ϕ ∈ B(m,n) such that ϕ is
satisfiable. Thus, for a formula ϕ ∈ B(m,n), ϕ is satisfiable if and only if
#(abncdme, ϕ) is in Lτ . This shows that satisfiability is reducible to membership
in Lτ , because the nesting-depth m of ϕ and the number n of variables it uses,
can easily be computed from any ϕ ∈ B in polynomial time.

We finally show that τM2
∈ dTTℓ ◦ TTℓ

pru, by a standard technique (see,

e.g., [34, Section 6.1]). In fact, we will show that τM2
∈ dTTℓ ◦ SET, cf. the

proof of Lemma 27. Let + be a new symbol of rank 2, and θ a new symbol of
rank 0. Let M ′

2 be the deterministic ttℓ with output alphabet ∆∪{+, θ} that is
obtained from M2 as follows. For every triple 〈q, ω, j〉 such that q ∈ Q, ω ∈ Ω,
and j ∈ [0,mxΩ], if 〈q, ω, j〉 → ζ1, . . . , 〈q, ω, j〉 → ζr are all the rules of M2

with left-hand side 〈q, ω, j〉, then M ′
2 has the rule 〈q, ω, j〉 → +(ζ1,+(ζ2, ζ3))

if r = 3, the rule 〈q, ω, j〉 → +(ζ1, ζ2) if r = 2, the rule 〈q, ω, j〉 → ζ1 if
r = 1, and the rule 〈q, ω, j〉 → θ if r = 0. Let M3 be the pruning tt with one
state p and rules 〈p, δ, j〉 → δ(〈p, down1〉, . . . , 〈p, downk〉) for every δ ∈ ∆(k),
plus the rules 〈p,+, j〉 → 〈p, down1〉 and 〈p,+, j〉 → 〈p, down2〉 (for every child
number j). Since M2 first moves from the root to a leaf, and then moves back
to the root, it does not have infinite computations. From that it should be clear
that τM2

= τM ′

2
◦ τM3

. ✷

Corollary 72 There is a translation τ ∈ MT such that Lτ is NP-complete.

Proof. By Lemma 24, dTTℓ
↓◦dTT

ℓ ⊆ dMT. Moreover, by [34, Theorem 7.6(3)],

dMT ◦ TTℓ
pru ⊆ MT. Hence the translation τ of Theorem 71 is in MT. ✷

Since MT ⊆ MT2
io

by [34, Theorem 6.10], this also shows that there is a
translation τ ∈ MT2

io
such that Lτ is NP-complete, cf. Corollary 63.

56

13 Forest Transducers

Whereas we have considered ranked trees until now, i.e., trees over a ranked
alphabet, XML documents naturally correspond to unranked trees or forests,
over an ordinary unranked alphabet. For that reason we now consider trans-
ducers that transform forests into forests. Rather than generalizing the tt to
a “forest-walking forest transducer”, we take the equivalent, natural approach
of letting the tt transform representations of forests by (ranked) trees, cf. [63]
and [28, Section 11].

For an ordinary (unranked) alphabet Σ the set FΣ of forests over Σ is the
language generated by the context-free grammar with nonterminals F and T ,
initial nonterminal F , set of terminals Σ∪{[,]}, where {[,]} is the set consisting
of the left and right square bracket, and rules F → ε, F → TF , and T → σ[F]
for every σ ∈ Σ. Thus, intuitively, a forest is a sequence of unranked trees, and
an unranked tree is of the form σ[t1 · · · tn] where each ti is an unranked tree.
Note that every forest f ∈ FΣ can be uniquely written as f = σ[f1]f2 with
σ ∈ Σ and f1, f2 ∈ FΣ.

As usual, forests can be encoded as binary trees. With Σ we associate the
ranked alphabet Σe = Σ ∪ {e} where e has rank 0 and every σ ∈ Σ has rank 2.
The mapping encΣ : FΣ → TΣe

is defined as follows. The encoding of the empty
forest is encΣ(ε) = e, and recursively, the encoding of a forest f = σ[f1]f2 is
encΣ(f) = σ(encΣ(f1), encΣ(f2)). The mapping encΣ is a bijection, and the
inverse decoding is denoted by decΣ. Let enc and dec denote the classes of
encodings encΣ and decodings decΣ, respectively, for all alphabets Σ. We define
FT = enc ◦ TT ◦ dec to be the class of tt forest translations. Thus, a tt forest
translation is of the form τ = encΣ◦τM ◦dec∆ where Σ and ∆ are alphabets and
M is a tt with input alphabet Σe and output alphabet ∆e, which in this context
can be called a tt forest transducer. We first restrict attention to deterministic
tt forest transducers, i.e., to the class dFT = enc ◦ dTT ◦ dec.

The next simple lemma shows that the encodings of compositions are the
compositions of encodings (of deterministic tt’s).

Lemma 73 For every k ≥ 1, dFTk = enc ◦ dTTk ◦ dec.

Proof. The inclusion dFTk ⊆ enc ◦ dTTk ◦ dec is obvious, because dec∆ ◦ enc∆
is the identity on T∆e

for every (unranked) alphabet ∆. To show that enc ◦
dTTk ◦ dec ⊆ dFTk, it suffices to prove that dTT ◦ dTT ⊆ dTT ◦ dec ◦ enc ◦
dTT. Let Γ be the (ranked) output alphabet of a first transducer, which is
also the input alphabet of the second, and let idΓ be the identity on TΓ. By
the composition results of Theorems 18 and 23, it now suffices to show that
idΓ ∈ dTTℓ

↓ ◦ dec ◦ enc ◦ dTTℓ
su. We do this by encoding the trees over Γ as

binary trees, similar to the transformation of the derivation trees of a context-
free grammar into those of its Chomsky Normal Form. Let ω be a new symbol,
and let ∆ be the unranked alphabet Γ∪{ω}. We encode the trees over Γ as trees
over the ranked alphabet ∆e, which are the usual encodings of forests over ∆.
The encoding h : TΓ → T∆e

is defined as follows: for every γ ∈ Γ(k), if h(ti) = t′i
for every i ∈ [1, k], then h(γ(t1, t2, . . . , tk)) = γ(e, ω(t′1, ω(t

′
2, . . . ω(t

′
k, e) · · ·))).

It should be clear that h is an injection. It should also be clear that h ∈ dTTℓ
↓

(in fact, h is a tree homomorphism, which can be realized by a classical top-
down tree transducer). Finally, it is also easy to construct a local top-down

57

single-use tt M such that τM (h(t)) = t for every t ∈ TΓ. It has the set of states
Q = {qi | i ∈ [0,mxΓ]} with initial state q0, and the following rules (where
γ ∈ Γ(k), j ∈ [0, 2], and qi ∈ Q, i 6= 1):

〈q0, γ, j〉 → γ(〈q1, down2〉, . . . , 〈qk, down2〉)

〈q1, ω, 2〉 → 〈q0, down1〉

〈qi, ω, 2〉 → 〈qi−1, down2〉

Note that γ and ω have rank 2 in ∆e. ✷

We now wish to show that our main results also hold for deterministic tt

forest translations. Let us first consider the complexity results of Section 10.
It is easy to see that for every alphabet Σ, the mappings encΣ and decΣ can
be computed by a deterministic Turing machine in linear time and space, sim-
ulating a one-way pushdown transducer.17 This implies, by Lemma 73, that
Theorems 47 and 49 also hold for dFTk. We define a set of forests L ⊆ FΣ to be
a regular forest language if encΣ(L) ∈ REGT, and we denote the class of regular
forest languages by REGF. Then, for every k ≥ 1, the class dFTk(REGF) of out-
put forest languages is included in the class dec(dTTk(REGT)) by Lemma 73.
Let L ∈ REGT and τ ∈ dTTk with output alphabet ∆e. Then a forest f over ∆
is in dec∆(τ(L)) if and only if enc∆(f) is in τ(L). That implies that Theorem 50
also holds for dFTk, in the sense that dFTk(REGF) ⊆ DSPACE(n).

Next we consider the results of Section 9, and extend the class LSIF in the
obvious way to forest translations. Since it is easy to show that for every forest
f ∈ FΣ, we have |encΣ(f)| =

2
3 |f | + 1 (see footnote 17), a translation τ ′ =

encΣ ◦ τ ◦ dec∆ is of linear size increase if and only if τ is of linear size increase.
Thus, since dFTk = enc ◦ dTTk ◦ dec by Lemma 73, it is decidable for a given
composition of deterministic tt forest transducers whether or not it is of linear
size increase. And if so, an equivalent deterministic tt forest transducer can be
constructed: dFTk ∩LSIF = enc◦ (dTTk ∩LSIF)◦dec = enc◦dTTsu ◦dec ⊆ dFT.
Intuitively, enc ◦ dTTsu ◦ dec is the class of translations realized by “single-use
forest-walking forest transducers”. Since dTTsu = dMSOT by Proposition 29,
it is also the class enc ◦ dMSOT ◦ dec. Viewing forests as graphs, and hence as
logical structures, in the obvious way (just as trees), every encoding encΣ and
every decoding decΣ is a deterministic (i.e., parameterless) mso translation, as
defined in [14, Chapter 7]. Hence, by the closure of mso translations under
composition [14, Theorem 7.14], enc ◦ dMSOT ◦ dec equals the (natural) class of
deterministic mso translations from forests to forests.

As observed in [65] for macro tree transducers, whereas the encoding of
forests as binary trees is quite natural for the input forest of a tt, for the
output forest it is less natural, because it forces the tt to generate the out-
put forest f in its unique form f = σ[f1]f2. It is more natural to additionally
allow the tt to generate f as a concatenation f1f2 of two forests f1 and f2.
To formalize this, as in [26, Section 7] and in accordance with [65], we as-
sociate with an alphabet ∆ the ranked alphabet ∆@ = ∆ ∪ {@, e} where
@ has rank 2, e has rank 0, and every δ ∈ ∆ has rank 1. The mapping
flat∆ : T∆@

→ F∆ is a “flattening” defined as follows (for t1, t2 ∈ T∆@
and

δ ∈ ∆): flat∆(e) = ε, flat∆(@(t1, t2)) = flat∆(t1)flat∆(t2), the concatenation of

17In fact, encΣ can even be computed without pushdown: for every forest f ∈ FΣ, encΣ(f)
can be obtained from f by removing all left-brackets, changing each right-bracket into e, and
adding one e at the end.

58

flat∆(t1) and flat∆(t2), and flat∆(δ(t1)) = δ[flat∆(t1)]. The mapping flat∆ is
surjective but, in general, not injective. Let flat denote the class of flattenings
flat∆, for all alphabets ∆. We define FT@ = enc ◦ TT ◦ flat to be the class
of extended tt forest translations. An extended tt forest tree transducer is a
tt with input alphabet Σe and output alphabet ∆@. Again, we first restrict
attention to deterministic transducers, i.e., to the class dFT@ = enc ◦ dTT ◦ flat.

Let us show that there is an extended tt forest translation in dFT@ that is
not in dFT. That was shown for macro tree transducers in [65, Theorem 8] by
a similar argument. Let Γ = {σ} and Ω = {δ} be alphabets, and let us identify
the forest σ[] with the symbol σ, and similarly δ[] with δ. Then Γ∗ ⊆ FΓ

and Ω∗ ⊆ FΩ. There is a deterministic extended tt forest transducer that
translates the string σn into the string δ2

n+1

for every n ∈ N. In fact, let M be
the dtt (with general rules) that is obtained from the dtt Mexp of Example 5
by changing its output alphabet into Ω@ = {@, δ, e}, and changing σ into @ and
e into δ(e) in the right-hand sides of its rules. Note that the input alphabet Σ of
Mexp andM equals Γe. The input tree tn = encΓ(σ

n) = σ(e, σ(e, . . . σ(e, e) · · ·))
is translated by Mexp into the full binary tree sn over Σ with 2n+1 leaves.
Clearly, M translates tn into the tree s′n that is obtained from sn by changing

every σ into @ and every e into δ(e). Thus, flatΩ(s
′
n) = δ2

n+1

. This forest
translation is not in dFT, because |encΓ(σn)| = |tn| = 2n+ 1 but the height of

s′′n = encΩ(δ
2n+1

) is 2n+1, and so, by Lemma 6, there is no dtt that translates
tn into s′′n.

We will show that dFT ⊆ dFT@ ⊆ dFT2. A similar result was proved for
macro tree transducers in [65, Theorem 8 and Corollary 12]. To compare dFT

and dFT@, and their compositions, we establish two relationships between dec

and flat in the next lemma.

Lemma 74 dec ⊆ dTTℓ
↓ ◦ flat and flat ⊆ dTTℓ

su ◦ dec.

Proof. To show the first inclusion, let ∆ be an alphabet and define the mapping
h : T∆e

→ T∆@
such that h(e) = e and if h(t1) = t′1 and h(t2) = t′2, then

h(δ(t1, t2)) = @(δ(t′1), t
′
2). It is straightforward to prove that h ◦ flat∆ = dec∆.

It is also easy to show that h ∈ dTTℓ
↓ (as in the proof of Lemma 73, h is a tree

homomorphism, which can be realized by a classical top-down tree transducer).
Hence dec∆ ∈ dTTℓ

↓ ◦ flat.
For the second inclusion, let ∆ be an alphabet. The mapping flat∆ ◦ enc∆

can be realized by a local single-use dtt M = (∆@,∆e, Q, q0, R) that performs
a depth-first left-to-right tree traversal in a special way. Rather than performing
this traversal in one branch, it does so in all its branches together, each branch
performing a separate piece of the traversal. When M arrives from above at
a node u with label δ ∈ ∆, it outputs δ and splits into two branches. The
first branch traverses the subtree at u, and the second branch continues the
traversal after that subtree. Each branch outputs e when arriving from below
at a ∆-labeled node (or at the root, at the end of the traversal). Formally,
M has the state set Q = {d, u1, u2} with initial state q0 = d, cf. Examples 4
and 5. It has the following (general) rules, where j′ ∈ [0,mxΣ], j ∈ [1,mxΣ],

59

and δ ∈ ∆:

〈d,@, j′〉 → 〈d, down1〉 〈d, e, j〉 → 〈uj , up〉

〈d, δ, j〉 → δ(〈d, down1〉, 〈uj , up〉) 〈d, e, 0〉 → e

〈d, δ, 0〉 → δ(〈d, down1〉, e)

〈u1,@, j′〉 → 〈d, down2〉 〈u1, δ, j
′〉 → e

〈u2,@, j〉 → 〈uj , up〉

〈u2,@, 0〉 → e

Thus, since τM = flat∆ ◦ enc∆, it follows that flat∆ = τM ◦ dec∆ ∈ dTTℓ
su ◦ dec.

We note that the mapping flat∆ ◦ enc∆ is denoted ‘eval’ in [65, Section 4],
‘APP’ in [61], and ‘app’ in [26, Section 7]. For the reader familiar with mso

translations we observe that it is also easy to show that both flat∆ and enc∆ are
deterministic mso translations, and hence their composition is one. The second
inclusion then follows from Proposition 29. ✷

It follows from the first inclusion of Lemma 74 that dFT ⊆ dFT@. In fact,
enc ◦ dTT ◦ dec ⊆ enc ◦ dTT ◦ dTTℓ

↓ ◦ flat, which is included in enc ◦ dTT ◦ flat

by Theorem 18. It follows from the second inclusion that dFTk
@ ⊆ dFTk+1 for

every k ≥ 1. In fact, dFTk
@ = (enc ◦ dTT ◦ flat)k ⊆ (enc ◦ dTT ◦ dTTℓ

su ◦ dec)
k ⊆

enc ◦ (dTT ◦ dTTℓ
su)

k ◦ dec, which is included in enc ◦ dTTk ◦ dTTℓ
su ◦ dec by

Theorem 23 and hence in enc◦dTTk+1◦dec, which equals dFTk+1 by Lemma 73.

Corollary 75 dFTk ⊆ dFTk
@ ⊆ dFTk+1 for every k ≥ 1.

From the second inclusion we obtain that our main results also hold for
deterministic extended tt forest transducers. It is decidable whether or not a
composition of such transducers is of linear size increase, and

dFTk
@ ∩ LSIF = enc ◦ dTTsu ◦ dec ⊆ dFT ⊆ dFT@.

The complexity results of Theorems 47, 49, and 50 also hold for dFTk
@.

The class of deterministic macro forest translations of [65] can be defined
as dMFT@ = enc ◦ dMT ◦ flat. Since dTT ⊆ dMT ⊆ dTT2 by Lemma 24,
we conclude by similar arguments as for dFT@ that dMFTk

@ ⊆ dFT2k+1 and
hence our main results also hold for deterministic macro forest transducers. It
is decidable whether or not a composition of such transducers is of linear size
increase, and

dMFTk
@ ∩ LSIF = enc ◦ dTTsu ◦ dec ⊆ dFT ⊆ dFT@ ⊆ dMFT@.

The complexity results of Theorems 47, 49, and 50 also hold for dMFTk
@.

The main results of Sections 9 and 11 also hold for nondeterministic forest
transducers. Instead of Lemma 73 we use the obvious fact that TT ◦ dec ◦ enc ◦
TT ⊆ TT ◦ TT.18 This implies, together with Lemma 74, that it suffices to
prove that the results for TTk also hold for the class enc ◦ TTk ◦ dec. For the
nondeterministic version of Theorem 43 in Section 9, we note that a translation
encΣ ◦ τ ◦ dec∆ is a function if and only if τ is a function. Consequently,
(enc ◦TTk ◦ dec)∩F ⊆ enc ◦ (TTk ∩F) ◦ dec ⊆ enc ◦ dTTk+1 ◦ dec = dFTk+1 by

18It can be shown that the nondeterministic version of Lemma 73 also holds, but we will
not do that here.

60

Theorem 35 and Lemma 73. Hence (enc ◦TTk ◦ dec)∩ LSIF = enc ◦ dTTsu ◦ dec.
Obviously, the complexity results of Theorems 57 and 58 in Section 11 hold for
enc ◦ TTk ◦ dec, with the same proof as in the deterministic case. The class of
nondeterministic macro forest translations of [65] can be defined as MFT@ =
enc◦MT◦flat. From Lemmas 27 and 74 we obtain that MFTk

@ ⊆ enc◦TT3k ◦dec,
and hence all these results also hold for macro forest transducers.

We finally show that the results of Section 12 also hold for nondeterministic
forest transducers. We first consider enc◦TT◦dTT◦dec and enc◦TT◦dTT◦flat.
For a forest translation τ we define the forest language Lτ = {#[fg] | (f, g) ∈ τ}.
If τ = encΣ ◦ τ ′ ◦ dec∆ with τ ′ ∈ TT ◦ dTT, then #[fg] ∈ Lτ if and only if
#(encΣ(f), enc∆(g)) ∈ Lτ ′ . Since encΣ(f) can be computed by a deterministic
finite-state transducer (see footnote 17), and similarly for enc∆(g), Lτ is log-
space reducible to Lτ ′ . Hence enc ◦ TT ◦ dTT ◦ dec ⊆ LOGCFL by Theorem 62.
Similarly if τ ′ ∈ dTT, then g ∈ τ(L) if and only if enc∆(g) ∈ τ ′(encΣ(L)) for
every L ∈ REGF, and hence dFT(REGF) ⊆ LOGCFL by Corollary 64. To show
the same results for flat instead of dec, we need the following small lemma.

Lemma 76 flat ⊆ dTT↓ ◦ yield.

Proof. For an alphabet ∆, let Ω be the ranked alphabet ∆ ∪ {[,]} ∪ {λ,@, ω}
such that Ω(0) = ∆ ∪ {[,], λ}, Ω(2) = {@}, and Ω(4) = {ω}. We define the
deterministic tt

ℓ
↓ N = (∆@,Ω, {p}, p, R) with the following (general) rules.

〈p, j,@〉 → @(〈p, down1〉, 〈p, down2〉)

〈p, j, e〉 → λ

〈p, j, δ〉 → ω(δ, [, 〈p, down1〉,])

for every δ ∈ ∆. Assuming that the symbol λ is skipped when taking yields (cf.
the sentence before Corollary 65), it should be clear that flat∆(t) is the yield of
τN (t) for every t ∈ T∆@

. ✷

It follows from Lemma 76 and Theorem 18 that enc ◦ TT ◦ dTT ◦ flat ⊆
enc◦TT◦dTT◦yield and dFT@ = enc◦dTT◦flat ⊆ enc◦dTT◦yield. If τ is a forest
translation such that τ = encΣ ◦ τ ′ with τ ′ ∈ TT ◦ dTT ◦ yield, then #[fg] ∈ Lτ

if and only if #(encΣ(f), g) ∈ Lτ ′ . Hence enc ◦ TT ◦ dTT ◦ flat ⊆ LOGCFL by
Corollary 65. Similarly if τ ′ ∈ dTT ◦ yield, then τ(L) = τ ′(encΣ(L)) for every
L ∈ REGF, and so dFT@(REGF) ⊆ LOGCFL by Corollary 65. If we define the
class of io macro forest translations to be enc ◦ MTio ◦ flat, then that class is
included in enc ◦ TT ◦ dTT ◦ flat by Lemma 28 and hence in LOGCFL by the
above. Thus, Corollary 63 also holds for macro forest transducers.

For a forest translation τ = encΣ ◦ τ ′ ◦ dec∆ with τ ′ ∈ TTk it is easy
to prove that Lτ ∈ DSPACE(n) and that τ(L) ∈ DSPACE(n) for every L ∈
REGF, as we did above for τ ′ ∈ TT ◦ dTT and τ ′ ∈ dTT, respectively, thus
generalizing Theorems 66 and 67. That also holds for flat∆ instead of dec∆,
because enc ◦ TTk ◦ flat ⊆ enc ◦ TTk+1 ◦ dec by Lemma 74.

The NP-completeness results of Section 12 also hold for extended forest
translations. The translation τ of Theorem 71 can be changed into a trans-
lation in enc ◦ dTT↓ ◦ f TT ◦ flat as follows. First, change M1 in the proof of
Theorem 71 such that it obtains as input the encodings of the strings abncdm

(viewed as forests). Second, change M2 such that it outputs trees over ∆@

rather than ∆ (by changing the rule 〈qi∨j , d〉 → ∨(〈qi, α〉, 〈qj , α〉) of M in the

61

proof of Lemma 69 into the general rule 〈qi∨j , d〉 → ∨(@(〈qi, α〉, 〈qj , α〉)), and
similarly for ∧). As a result τ outputs boolean expressions as forests rather
than ranked trees. Thus we obtain an NP-complete extended forest translation
in enc ◦ dTT↓ ◦ f TT ◦ flat, and hence one in MFT@. In a similar way we also
obtain an NP-complete forest language in FT@(REGF). The details are left to
the reader. It is not clear whether these results hold for dec instead of flat.

14 Conclusion

Our main technical result transforms a composition of k tt’s into a linear-
bounded composition of k tt’s, cf. Corollary 38. As observed in Remark 41,
our proof of this result can involve a 2(k − 1)-fold blow-up of the sizes of the
transducers, which also influences the constants of their time and space com-
plexities, cf. the sentence after Theorem 47. We do not know whether this
transformation can be realized in a more efficient way.

Our main result on expressivity is that dTTk ∩ LSIF ⊆ dTT for every k ≥ 1,
i.e., that every composition of dtt’s that is of linear size increase can be realized
by one dtt. Moreover, it is decidable whether or not such a composition is of
linear size increase. Do similar results hold for polynomial size increase? For
instance, does there exist m ≥ 1 such that every translation in

⋃
k≥1 dTT

k of
quadratic size increase is in dTTm? The same question can be asked for ℓ-fold
exponential size increase, for each fixed ℓ ∈ N.

We have shown in Section 7 that even TTk ∩ LSIF ⊆ dTT for every k ≥ 1,
generalizing Theorem 43. Although this result is effective, we do not know
whether Theorem 44 can also be generalized, i.e., whether it is decidable for a
nondeterministic tt M whether or not τM is a function of linear size increase.
This would be solved if it was decidable whether or not τM is a function. But
that is also unknown, whereas it has been proved for classical top-down tree
transducers (with regular look-ahead) in [36, Theorem 8]. Note that deciding
functionality of τM also solves the equivalence problem for dtt’s, which is al-
ready a long standing open problem (cf. [22, 60]); in fact, τ1, τ2 ∈ dTT are the
same if and only if they have the same domain and τ1 ∪ τ2 is functional.

Another open question for nondeterministic tt’s is whether or not there
exists m ≥ 1 such that the inclusion TTk ∩ LSIR ⊆ TTm holds for every k ≥ 1,
where LSIR consists of all relations τ ⊆ TΣ × T∆ of linear size increase, which
means that there is a constant c ∈ N such that |s| ≤ c · |t| for every (t, s) ∈ τ . It
follows from (the proof of) [48, Theorem 3.21] (see also [49, 50]) that TT2∩LSIR

is not included in MT, and hence not in TT by the remark following Lemma 27.
Similar questions can be asked for macro tree transducers, i.e., for the classes

dMT and MT.
We have shown in Lemma 12 that dTT↓ = dTT s

↓, but we do not know
whether or not dTT = dTT s. In other words, we do not know whether for
every tt there is an equivalent sub-testing tt, in which the regular test of a
rule only inspects the subtree of the current node. Or even more informally, can
regular look-around be simulated by regular look-ahead?

We have shown in Corollary 59 that the string languages in the oi-hierarchy,
which are generated by high-level grammars, are in NSPACE(n)∧NPTIME, and
in Corollary 68 that they are in DSPACE(n). However, the languages of the
oi-hierarchy are generated by so-called “safe” high-level grammars, and it is

62

not known whether the same results hold for unsafe high-level grammars. It
is proved in [54] that the languages generated by unsafe level-2 grammars, the
unsafe version of OI(2), are in NSPACE(n).

In Section 12 we have shown that dTTk ⊆ PTIME, that TT ◦ dTT ⊆
LOGCFL ⊆ PTIME, and that dTT ◦ TT contains an NP-complete translation.
It remains to find out for k ≥ 2 whether TT ◦ dTTk ⊆ PTIME or whether it
contains an NP-complete translation.

Acknowledgements. We are grateful to the reviewers for their constructive
comments.

References

[1] Aho AV (1968) Indexed grammars - an extension of context-free grammars.
Journal of the ACM 15: 647–671

[2] Aho AV, Ullman JD (1971) Translations on a context-free grammar. Infor-
mation and Control 19: 439–475

[3] Asveld PRJ (1981) Time and space complexity of inside-out macro lan-
guages. International Journal of Computer Mathematics 10: 3–14

[4] Baker BS (1978) Generalized syntax-directed translation, tree transducers,
and linear space. SIAM Journal on Computing 7: 376–391

[5] Bartha M (1982) An algebraic definition of attributed transformations.
Acta Cybernetica 5: 409–421

[6] Bloem R, Engelfriet J (1997) Monadic second order logic and node rela-
tions on graphs and trees. In: Mycielski J, Rozenberg G, Salomaa A (eds)
Structures in Logic and Computer Science. Lecture Notes in Computer Sci-
ence 1261, Springer-Verlag, pp 144–161. A corrected version is available at
https://www.researchgate.net/publication/221350026

[7] Bloem R, Engelfriet J (2000) A comparison of tree translations defined by
monadic second order logic and by attribute grammars. Journal of Com-
puter and System Sciences 61: 1–50

[8] Bogaert B, Tison S (1992) Equality and disequality constraints on direct
subterms in tree automata. In: Finkel A, Jantzen M (eds) Proc. STACS’92,
Lecture Notes in Computer Science 577, Springer-Verlag, pp 161–171

[9] Bojańczyk M, Colcombet T (2008) Tree-walking automata do not recognize
all regular languages. Siam Journal on Computing 38: 658–701

[10] Chandra AK, Kozen DC, Stockmeyer LJ (1981) Alternation. Journal of the
ACM 28: 114–133

[11] Comon H et al Tree Automata Techniques and Applications. Available at
http://tata.gforge.inria.fr/

[12] Cook SA (1971) Characterizations of pushdown machines in terms of time-
bounded computers. Journal of the ACM 18: 4–18

63

[13] Courcelle B (1994) Monadic second-order definable graph translations: a
survey. Theoretical Computer Science 126: 53–75

[14] Courcelle B, Engelfriet J (2012) Graph Structure and Monadic Second-
Order Logic. Cambridge University Press

[15] Courcelle B, Franchi-Zannettacci P (1982) Attribute grammars and recur-
sive program schemes I, II. Theoretical Computer Science 17: 163–191,
235–257

[16] Damm W (1982) The IO- and OI-hierarchies. Theoretical Computer Sci-
ence 20: 95–207

[17] Deransart P, Jourdan M, Lorho B (1988) Attribute Grammars – Defini-
tions, Systems and Bibliography. Lecture Notes in Computer Science 323,
Springer-Verlag

[18] Doner J (1970) Tree acceptors and some of their applications. Journal of
Computer and System Sciences 4: 406–451

[19] Engelfriet J (1975) Tree automata and tree grammars. DAIMI FN-10 Lec-
ture Notes, Aarhus University. A slightly revised version is available at
arXiv:1510.02036

[20] Engelfriet J (1977) Top-down tree transducers with regular look-ahead.
Mathematical Systems Theory 10: 289–303

[21] Engelfriet J (1978) On tree transducers for partial functions. Information
Processing Letters 7: 170–172

[22] Engelfriet J (1980) Some open questions and recent results on tree trans-
ducers and tree languages. In: Book RV (ed) Formal Language Theory –
Perspectives and Open Problems, Academic Press, pp 241–286

[23] Engelfriet J (1984) Attribute grammars: attribute evaluation methods. In:
Lorho B (ed) Methods and Tools for Compiler Construction. Cambridge
University Press, pp 103–138

[24] Engelfriet J (1986) Context-free grammars with storage. Technical Re-
port 86-11, University of Leiden. A slightly revised version is available at
arXiv:1408.0683

[25] Engelfriet J (1986) The complexity of languages generated by attribute
grammars. SIAM Journal on Computing 15: 70–86

[26] Engelfriet J (2009) The time complexity of typechecking tree-walking tree
transducers. Acta Informatica 46: 139–154

[27] Engelfriet J, Filé G (1981) The formal power of one-visit attribute gram-
mars. Acta Informatica 16: 275–302

[28] Engelfriet J, Hoogeboom HJ, Samwel B (2018) XML navigation and trans-
formation by tree-walking automata and transducers with visible and in-
visible pebbles. Technical Report available at arXiv:1809.05730

64

[29] Engelfriet J, Maneth S (1999) Macro tree transducers, attribute grammars,
and MSO definable tree translations. Information and Computation 154:
34–91

[30] Engelfriet J, Maneth S (2002) Output string languages of compositions
of deterministic macro tree transducers. Journal of Computer and System
Sciences 64: 350–395

[31] Engelfriet J, Maneth S (2003) A comparison of pebble tree transducers
with macro tree transducers. Acta Informatica 39: 613–698

[32] Engelfriet J, Maneth S (2003) Macro tree translations of linear size increase
are MSO definable. SIAM Journal on Computing 32: 950–1006

[33] Engelfriet J, Schmidt EM (1978) IO and OI, Part II. Journal of Computer
and System Sciences 16: 67–99

[34] Engelfriet J, Vogler H (1985) Macro tree transducers. Journal of Computer
and System Sciences 31: 71–146

[35] Engelfriet J, Vogler H (1988) High level tree transducers and iterated push-
down tree transducers. Acta Informatica 26: 131–192

[36] Ésik Z (1980) Decidability results concerning tree transducers I. Acta Cy-
bernetica 5: 1-20

[37] Fischer MJ (1968) Grammars with Macro-Like Productions. Ph.D. Thesis,
Harvard University

[38] Fülöp Z (1981) On attributed tree transducers. Acta Cybernetica 5: 261–
279

[39] Fülöp Z, Vogler H (1998) Syntax-Directed Semantics – Formal Models
Based on Tree Transducers. Springer-Verlag

[40] Ganzinger H (1983) Increasing modularity and language-independency in
automatically generated compilers. Science of Computer Programming 3:
223–278

[41] Ganzinger H, Giegerich R (1984) Attribute coupled grammars. In: Proc.
SIGPLAN’84. SIGPLAN Notices 19: 157–170

[42] Garey MR, DS Johnson (1979) Computers and Intractability – A Guide to
the Theory of NP-Completeness. W. H. Freeman and Co.

[43] Gécseg F, Steinby M (1984) Tree Automata. Akadémiai Kiadó, Budapest.
A re-edition is available at arXiv:1509.06233

[44] Gécseg F, Steinby M (1997) Tree languages. In: Rozenberg G, Salomaa A
(eds) Handbook of Formal Languages, Volume 3. Springer-Verlag, Chapter 1

[45] Giegerich R (1988) Composition and evaluation of attribute coupled gram-
mars. Acta Informatica 25: 355–423

[46] Harrison MA (1978) Introduction to Formal Language Theory. Addison-
Wesley

65

[47] Hosoya H (2011) Foundations of XML Processing – The Tree-Automata
Approach. Cambridge University Press

[48] Inaba K (2009) Complexity and Expressiveness of Models of XML
Transformations, Ph.D. Thesis, The University of Tokyo. Available at
http://www.kmonos.net/pub/files/phd.pdf

[49] Inaba K, Hosoya H (2008) Multi-return macro tree transducers. In: Proc.
PLAN-X 2008.
Available at http://www.kmonos.net/pub/files/mrmtt08.pdf

[50] Inaba K, Hosoya H, Maneth S (2008) Multi-return macro tree transduc-
ers. In: Ibarra OH, Ravikumar B (eds) Proc. CIAA’08. Lecture Notes in
Computer Science 5148, Springer-Verlag, pp 102-111

[51] Inaba K, Maneth S (2008) The complexity of tree trans-
ducer output languages. In: Hariharan R, Mukund M,
Vinay V (eds) Proc. FSTTCS’08, pp 244–255. Available at
http://drops.dagstuhl.de/opus/volltexte/2008/1757

[52] Inaba K, Maneth S (2009) The complexity of translation membership
for macro tree transducers. In: Proc. PLAN-X’09. Also available at
arXiv:0910.2315

[53] Knuth DE (1968) Semantics of context-free languages. Mathematical Sys-
tems Theory 2: 127–145

[54] Kobayashi N, Inaba K, Tsukada T (2014) Unsafe order-2 tree languages are
context-sensitive. In: Muscholl A (ed) Proc. FOSSACS’14. Lecture Notes
in Computer Science 8412, Springer-Verlag, pp 149–163

[55] Kühnemann A (1997) Berechnungsstärken von Teilklassen primitiv-
rekursiver Programmschemata. Ph.D. Thesis, Technical University of Dres-
den, Shaker Verlag

[56] Kühnemann A (1998) Benefits of tree transducers for optimizing functional
programs. In: Arvind V, Ramanujam R (eds) Proc. FSTTCS’98. Lecture
Notes in Computer Science 1530, Springer-Verlag, pp 146-158

[57] Lewis PM, Stearns RE, Hartmanis J (1965) Memory bounds for the recog-
nition of context-free and context-sensitive languages. In: Proc. 6th An-
nual IEEE Symposium on Switching Circuit Theory and Logical Design,
pp 191–212

[58] Maneth S (2002) The complexity of compositions of deterministic tree
transducers. In: Agrawal M, Seth A (eds) Proc. FSTTCS’02. Lecture Notes
in Computer Science 2556, Springer-Verlag, pp 265–276

[59] Maneth S (2003) The macro tree transducer hierarchy collapses for func-
tions of linear size increase. In: Pandya PK, Radhakrishnan J (eds) Proc.
FSTTCS’03. Lecture Notes in Computer Science 2914, Springer-Verlag,
pp 326–337

66

[60] Maneth S (2015) A survey on decidable equivalence problems for tree
transducers. International Journal of Foundations of Computer Science 26:
1069–1100

[61] Maneth S, Berlea A, Perst T, Seidl H (2005) XML type checking with macro
tree transducers. In: Proc. PODS’05. ACM Press, pp 283–294. Technical
Report TUM-I0407 of the Technische Universität München (2004) is avail-
able at https://www.researchgate.net/publication/221559877

[62] Maneth S, Friese S, Seidl H (2012) Type checking of tree walking trans-
ducers. In: D’Souza D, Shankar P (eds) Modern Applications of Automata
Theory. IISc Research Monographs Series 2, World Scientific, pp 325–372

[63] Milo T, Suciu D, Vianu D (2003) Typechecking for XML transformers.
Journal of Computer and System Sciences 66: 66–97

[64] Papadimitriou CH (1994) Computational Complexity. Addison-Wesley

[65] Perst T, Seidl H (2004) Macro forest transducers. Information Processing
Letters 89: 141–149

[66] Rounds WC (1970) Mappings and grammars on trees. Mathematical Sys-
tems Theory 4: 257–287

[67] Rounds WC (1973) Complexity of recognition in intermediate-level lan-
guages. In: Proc. 14th Annual Symposium on Switching and Automata
Theory, pp 145–158

[68] Ruzzo WL (1980) Tree-size bounded alternation. Journal of Computer and
System Sciences 21: 218–235

[69] Schwentick T (2007) Automata for XML – A survey. Journal of Computer
and System Sciences 73: 289–315

[70] Slutzki G (1985) Alternating tree automata. Theoretical Computer Science
41: 305-318

[71] Sudborough IH (1978) On the tape complexity of deterministic context-free
languages. Journal of the ACM 25: 405–414

[72] Thatcher JW (1970) Generalized2 sequential machine maps, Journal of
Computer and System Sciences 4: 339–367

[73] Thatcher JW, Wright JB (1968) Generalized finite automata theory with
an application to a decision problem of second-order logic, Mathematical
Systems Theory 2: 57–81

[74] Van Leeuwen J (1975) The membership question for ETOL-languages is
polynomially complete. Information Processing Letters 3: 138–143

[75] Vogler H (1988) The OI-hierarchy is closed under control. Information and
Computation 78: 187–204

67

	1 Introduction
	2 Preliminaries
	3 Tree-Walking Tree Transducers
	4 Regular Look-Around
	5 Composition
	6 Macro and MSO
	6.1 Macro Tree Transducers
	6.2 MSO Tree Transducers

	7 Functional Nondeterminism
	8 Productivity
	8.1 Nondeterministic Productivity
	8.2 Deterministic Productivity

	9 Linear Size Increase
	10 Deterministic Complexity
	11 Nondeterministic Complexity
	12 Translation Complexity
	13 Forest Transducers
	14 Conclusion

