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Co-regulated gene expression of 
splicing factors as drivers of cancer 
progression
Esmee Koedoot1, Marcel Smid2, John A. Foekens2, John W. M. Martens   2, 
Sylvia E. Le Dévédec   1 & Bob van de Water1

Splicing factors (SFs) act in dynamic macromolecular complexes to modulate RNA processing. To 
understand the complex role of SFs in cancer progression, we performed a systemic analysis of the co-
regulation of SFs using primary tumor RNA sequencing data. Co-regulated SFs were associated with 
aggressive breast cancer phenotypes and enhanced metastasis formation, resulting in the classification 
of Enhancer- (21 genes) and Suppressor-SFs (64 genes). High Enhancer-SF levels were related to distinct 
splicing patterns and expression of known oncogenic pathways such as respiratory electron transport, 
DNA damage and cell cycle regulation. Importantly, largely identical SF co-regulation was observed in 
almost all major cancer types, including lung, pancreas and prostate cancer. In conclusion, we identified 
cancer-associated co-regulated expression of SFs that are associated with aggressive phenotypes. This 
study increases the global understanding of the role of the spliceosome in cancer progression and also 
contributes to the development of strategies to cure cancer patients.

To maintain the complexity of intracellular as well as extracellular homeostasis, cells require a vast number of 
well-controlled biological programs. To keep these programs in balance, a tight regulation of the transcription 
and translation of the various components of these programs is essential. One of the critical processes involved 
in this regulation is splicing: the exclusion of non-coding pre-messenger RNA (pre-mRNA) regions (or introns) 
resulting in a transcript that can be translated into a functional protein1. Moreover, by including or excluding 
specific exons, splicing can regulate the expression of different isoforms of the same gene, thereby providing a 
new layer of genetic control and diversity in biological gene function2. Splicing is characterized by a complex 
series of reactions involving different small nuclear ribonucleoproteins (snRNPs): RNA-protein complexes that 
can bind to pre-mRNA and various other proteins. These snRNPs comprise 5 small nuclear RNAs (snRNAs) and 
can associate with approximately 250 proteins that are also named splicing factors3.

Dysregulation of splicing is involved in a wide variety of diseases, such as muscular dystrophy, Parkinson’s 
disease and cardiac disease4. Furthermore, the flexibility to remodel the conformation and function of almost 
every cellular protein can be used by cancer cells in both tumor development and metastatic progression5,6. From 
this perspective, alternative splicing as well as single spliceosome components have been linked to apoptosis, 
regulation of oncogenes, invasion and metastasis, metabolism and angiogenesis in several cancer types, including 
breast cancer. For example, the splicing factor class that consists of heterogeneous nuclear ribonucleoproteins 
(hnRNPs) is known to control metastasis formation by regulating alternative splicing of the small GTPase Rac17, 
but also by affecting CD44 isoform expression which increases TGFβ signaling8. Other hnRNP group members 
hnRNPA1 and hnRNPA2 are involved in deregulating cellular energetics, necessary to feed the cancer cells during 
cell growth and division9,10. Finally, some splicing factors are highly mutated in cancer with SF3B1 being a driver 
gene in breast cancer11. Since the splicing machinery seems to play such a critical role in cancer development and 
progression, targeting specific splicing factors might provide a therapeutic window to combat cancer progression 
and improve patients survival rates12. So far, most of these studies focused on the role of single splicing factors. 
Yet, it should be kept in mind that splicing factors are assembled in macromolecular complexes that are dynamic 
in composition, time and space. Therefore, we hypothesized that subsets of splicing factors are likely co-regulated 
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Figure 1.  Co-regulation of splicing factors in human breast cancer. (A) The mean log2 fold changes between 
primary breast tumor and matched normal tissue was calculated for all splicing factors (n = 244) and visualized 
in a density plot. Log2 fold change > 0: factors were higher expressed in tumor tissue; log2 fold change < 0: 
factors were higher expressed in normal tissue. (B–D) Examples of splicing factors that are down (B) or 
upregulated (C,D) in tumor tissue compared to normal breast tissue. Dots represent single patients, matched 
patients are connected with a line (green = higher expressed in normal tissue, red = higher expressed in tumor 
tissue). (E) The mean log2 fold changes between primary breast tumor and matched metastatic tissue was 
calculated for all splicing factors (n = 244) and visualized in a density plot. Log2 fold change > 0: factors were 
higher expressed in metastatic tissue; log2 fold change < 0: factors were higher expressed in primary tumor 
tissue. (F–H) Example splicing factors that are down (F,G) or upregulated (H) in tumor tissue compared to 
metastatic tissue. Dots represent single patients, matched patients are connected with a line (green = higher 
expression in metastatic tissue, red = higher expression in primary tumor tissue). (I) Method used to calculate 
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in expression and, thereby, together act in driving the modulation of specific splicing events that would promote 
cancer progression.

To assess our hypothesis, we made advantage of large datasets of breast tumor-derived patient RNA 
sequencing-based gene expression (The Cancer Genome Atlas and BASIS11,13). Using the two independent 
RNA sequencing datasets, we correlated the expression of all combinations of splicing factors and identified 
two subclasses of splicing factors with distinct expression behavior, which we referred to as ‘Enhancer-SFs’ and 
‘Suppressor-SFs’. In breast cancer, high Enhancer-SF expression levels associate with a more aggressive tumor 
phenotype and higher risk of developing metastases. Remarkably, the Enhancer- and Suppressor-SF patterns are 
also observed in more than 30 other cancer types, including highly prevalent and aggressive cancer types such as 
pancreas and lung cancer. This study elicits an important role for splicing in cancer progression and might initiate 
the discovery of new biomarkers and treatments to combat this deadly disease.

Results
Co-regulated expression of splicing factors in human breast cancer.  In order to systematically 
evaluate the role of the complete spliceosome during breast cancer development and progression, we compared 
RNA expression levels of every single splicing factor (244 in total, derived from Hegele et al.3) between normal 
mammary gland tissue and matched primary breast tumor (Fig. 1A–D) and between primary breast tumor and 
metastatic tissue (Fig. 1E–H) using matched patient RNA sequencing data from 114 and 7 patients respectively, 
obtained from The Cancer Genome Atlas (TCGA). This analysis revealed that the spliceosome complex as a 
whole is not up- or downregulated during both breast cancer development (Fig. 1A) and progression (Fig. 1E). 
However, as expected, RNA expression levels of individual factors can be both positive and negatively related to 
tumor development (Suppl. Fig. 1A, Table 1) and metastasis formation (Suppl. Fig. 1B, Table 2). The splicing fac-
tor SEC. 31B was significantly lower expressed while LSM4 and ILF2 were significantly higher expressed in tumor 
versus matched normal mammary gland tissue (Fig. 1B–D). Similarly, ARGLU1 and CIRBP were lower expressed 
in tumor compared to metastatic tissue, while QKI was higher expressed (Fig. 1F–H). Given the strong associa-
tion for various splicing factors with high expression in tumor compared to normal tissue, we anticipated co-ex-
pression of splicing factors in association with cancer progression. To uncover the co-regulated gene expression of 
spliceosomal components, we calculated the Pearson correlation coefficient (PC) of RNA expression levels for all 
possible combinations of the 244 splicing factors using two independent RNA sequencing datasets acquired from 
primary breast tumor patient derived material: 1) the TCGA dataset comprising 1097 primary breast tumors and 
the BASIS dataset comprising 354 primary breast tumors11,13. Within both datasets all breast cancer subtypes and 
stages are represented, with one major difference in the proportion of HER2 positive samples (22.5% in TCGA 
dataset vs. 1.5% in the BASIS dataset, see Suppl. Table 3). By calculating the PCs between the transcript levels of 
all splicing factors (Fig. 1I), we identified pairs of factors positively (Fig. 1L) or negatively (Fig. 1M) correlating 
with each other. Unsupervised clustering of the PCs calculated using both RNA sequencing data from TCGA 
(Fig. 1J, Suppl. Fig. 2A) and BASIS (Fig. 1K, Suppl. Fig. 2B) revealed 2 separate main clusters (cluster 1 and cluster 
2) containing splicing factors that positively correlated within clusters (positive PC), while negatively correlated 
between clusters (negative PC). The strong correlation between these selected clusters was further validated by 
separate clusterings (Suppl. Fig. 3). Importantly, genes within the clusters derived from the analysis of the TCGA 
database showed strong overlap with clusters derived from the analysis of the BASIS database (Fig. 1N), providing 
high confidence in the actual co-regulation of these subsets of splicing factors in breast cancer. Moreover, these 
correlation clusters were largely validated in a third dataset consisting of microarray data of 867 primary tumors 
of untreated breast cancer patients (MA-867 dataset) (Suppl. Fig. 4). Even though the entire spliceosomal complex 
is not up- or downregulated in breast cancer development or progression (Fig. 1A,E), we discovered subgroups 
that seemed to be co-regulated with each other. Cluster 1 contained 61 overlapping genes, while cluster 2 con-
tained 24 overlapping genes (Fig. 1N, Suppl. Fig. 2). Although the splicing factors that overlapped in cluster 2 
contained 25% more core splicing factors3 compared to cluster 1 (Suppl. Fig. 5A,B), this was not related to enrich-
ment for a specific subclass of the spliceosome (Suppl. Fig. 5C,D). For the remaining of the study, only the 61 and 
24 overlapping factors will be used defining cluster 1 and 2 splicing factors, respectively.

Association of co-regulated splicing factors with clinical breast cancer phenotypes.  Next, we 
investigated whether the cluster 1 and cluster 2 splicing factors were related to a more aggressive breast cancer 
phenotype by examining clinical and pathological parameters such as tumor grading, mitotic score and survival. 
We performed an unsupervised clustering of median normalized log2 RNA expression levels of both groups of 
splicing factors in primary breast tumors derived from the BASIS dataset, as this dataset is rich in patient data. 
With just using the transcriptomic data of the identified 85 splicing factors belonging to either cluster 1 or 2, we 
could separate tumors based on clinical characteristics such as the basal PAM50 and AIMS subtype and hormone 

Pearson Correlation coefficients (PCs) between RNA expression levels of splicing factors. (J) Hierarchical 
clustering (Euclidean distance, complete linkage) of the correlation of splicing factor expression levels in TCGA 
RNA sequencing data (red = high positive correlation, green = high negative correlation). The optimal cluster 
number was determined using CIvalid43. (K) Same as J for BASIS RNA sequencing data (only expression 
data for 235 factors available). (L) Example of highly negatively correlating splicing factors in TCGA RNA 
sequencing data. Dots represent single patient tumors. (M) Same as K for highly positively correlating splicing 
factors. N. Number of genes that overlap between BASIS and TCGA hierarchical clusters shown in (J,K) 
*p < 0.05, **p < 0.01, ***p < 0.001. P-values were calculated with a paired t-test and corrected for multiple 
hypothesis testing using the Benjamini Hochberg method.
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receptor status (Fig. 2A), but not on known driver gene mutations (Suppl. Fig. 6A). Then we compared RNA 
expression levels of our set of splicing factors between tumors with different pleomorphism scores, mitotic scores 
and tumor grading. Compared to well differentiated grade 1 tumors, moderately differentiated grade 2 tumors 
showed slightly decreased levels of cluster 2 splicing factors (Fig. 2B). However, poorly differentiated grade 3 
tumors demonstrated the reverse effect exhibiting lower levels of cluster 1 factors, but higher cluster 2 factor levels 
compared to the low grade 1 tumors (Fig. 2B). Moreover, high pleomorphism and mitotic scores were associated 
with increased levels of cluster 2 factors and decreased levels of cluster 1 factors compared to low scored tumors 
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Figure 2.  Association of co-regulated splicing factors with clinical breast cancer phenotypes. (A) Hierarchical 
clustering of cluster 1 and 2 SF RNA expression levels in BASIS RNA sequencing data. SF expression was log2 
normalized, after which the for every SF the median was equalized to 0. (B) Cluster 1 and cluster 2 splicing 
factor expression levels in primary breast tumors with different tumor grades. SF expression compared to grade 
1 tumors was calculated. (C) Cluster 1 and cluster 2 splicing factor expression levels in primary breast tumors 
with different mitotic scores. Fold changes compared to mitotic score 1 were calculated for all splicing factors. 
(D) Log2 fold change in expression of cluster 1 and cluster 2 splicing factors comparing ER negative to ER 
positive primary breast tumors. (E) Cluster 1 and cluster 2 splicing factor expression in AIMS breast cancer 
subtypes. (F) Log2 fold change in expression of cluster 1 and cluster 2 splicing factors comparing primary tumor 
to normal breast tissue. (G) Log2 fold change in expression of cluster 1 and cluster 2 splicing factors comparing 
primary tumor to metastatic tissue. Groups are compared using a student’s t-test. *P < 0.05, **P < 0.01, 
***P < 0.001.

https://doi.org/10.1038/s41598-019-40759-4


5Scientific Reports |          (2019) 9:5484  | https://doi.org/10.1038/s41598-019-40759-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

(Fig. 2C, Suppl. Fig. 6D). Breast cancer invasiveness and progression is, amongst others, characterized by the 
subtype classification and hormone receptor status14. The estrogen receptor (ER) status has been demonstrated 
to be a favorable prognostic factor in breast cancer, especially in the first 5 years after diagnosis15. Confirming the 
observed tendency, cluster 1 splicing factors were slightly higher expressed in ER positive tumors, while cluster 
2 factors were slightly higher expressed in the more aggressive ER negative tumors, yet both differences were 
not significant (Fig. 2D). This pattern was confirmed in the TCGA RNA sequencing dataset (Suppl. Fig. 6B,C). 
Moreover, compared to the less aggressive luminal A subtype, cluster 2 factors were higher expressed in the 
more aggressive luminal B, basal-like and HER2 amplified tumors while lower expressed in normal-like tumors. 
In contrary, cluster 1 factors were lower expressed in the more aggressive tumor types (Fig. 2E, Suppl. Fig. 6E). 
Altogether our data demonstrate that cluster 2 splicing factors are associated with a more aggressive tumor type 
which is in general related to a poorer prognosis.

Our analysis demonstrated that by comparing primary tumor tissue with either normal breast tissue or meta-
static breast tissue, we did not observe differences in expression levels for all splicing factors comparing primary 
tumor tissue with either normal breast tissue or metastatic breast tissue (see Fig. 1A,E). Repeating this analysis for 
cluster 1 and 2 splicing factors independently also did not demonstrate a difference between primary tumor and 
normal breast tissue (Fig. 2F, Suppl. Fig. 7A). However, cluster 2 splicing factors were significantly overexpressed 
in metastatic tissue compared to primary tumor tissue (Fig. 2G, Suppl. Fig. 7B) suggesting an involvement of 
these factors in breast cancer metastasis formation.

Furthermore, the relation of cluster 1 and 2 splicing factor expression levels to survival of breast cancer patients 
was examined. Here, we selected all breast cancer subtypes, calculated the mean expression of all cluster splicing 
factors and split the patient cohort by the median expression level. Interestingly, a high average expression level of 
cluster 1 factors is associated with increased overall and relapse-free survival (Fig. 3, Suppl. Fig. 8A). In contrast, 
a high average expression of cluster 2 factors is associated with decreased metastasis-free survival (Fig. 3, Suppl. 
Fig. 8A). We obtained similar results in ER negative tumors: high expression of cluster 1 factors was associated 
with prolonged overall survival, while high expression of cluster 2 factors was linked to decreased metastasis free 
survival (Suppl. Fig. 8B). In ER positive tumors, cluster 1 splicing factors do not show an association with overall 
survival, while high cluster 2 levels are associated with a less favorable relapse-free and metastasis-free survival 
(Suppl. Fig. 8C). Furthermore, also in the MA-867 dataset the Hazard Ratio (HR) for metastasis development 
was increased for cluster 2 splicing factors, especially in ER positive tumors (Suppl. Fig. 8D). In conclusion, we 
propose that cluster 2 splicing factors are predictors of both a poor relapse- and metastasis-free survival. We will 
further refer to these as breast cancer enhancing splicing factors (“Enhancer-SF”). Since cluster 1 splicing factors 
may act to suppress or delay the progression of breast cancer, we will further refer to these as breast cancer sup-
pressing splicing factors (“Suppressor-SF”).

Breast cancer Enhancer-splicing factors are linked to isoform specific gene expression.  Given 
that we could discriminate our co-regulated splicing factors in on the one hand breast cancer Enhancer-SF and 
the other hand breast cancer Suppressor-SF, we anticipated that the expression of these splicing factors would 
also be related to specific isoform expression patterns that might determine cancer progression. Therefore, we 
correlated the expression levels of Suppressor-SFs and Enhancer-SFs to gene isoforms using the TCGA isoform 
expression data. Here, we selected genes expressing multiple isoforms of which the expression levels of the indi-
vidual isoforms are negatively correlated with each other (Fig. 4A). By performing the latter step, we selected 
genes that do switch isoforms comparing different primary tumors and remove isoforms that are only regulated 
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Figure 3.  Association of the expression of cluster 1 and cluster 2 splicing factors with breast cancer overall 
survival. Per patient, mean expression of all factors within one cluster was calculated. Based on this mean 
expression, the patient cohort was median-split in low and high expression of cluster 1 or 2 splicing factors and 
survival curves for overall survival, relapse-free survival and metastasis-free survival were generated.
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on total gene expression level. Notably, breast tumor samples hardly expressed intermediate levels of both iso-
forms of selected genes resulting in one isoform being highly expressed while the other is absent, or high expres-
sion levels of both isoforms (Suppl. Fig. 9A). Hierarchical clustering of PCs between spliceosomal components 
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and selected isoforms (Fig. 4B) allowed us to clearly discriminate between Suppressor-SFs and Enhancer-SFs, 
but also separated the isoforms in two clusters (Fig. 4B). Most of the selected genes had isoforms in both clusters 
(Fig. 4C, Suppl. Fig. 10) confirming that a switch in expression of splicing factors coincided with a downstream 
switch in splicing patterns. This could not be explained by a general increase in intron or exon inclusion, since 
the isoform length of isoforms in both clusters remained equal (Suppl. Fig. 9B). Interestingly, amongst the alter-
natively spliced genes were very well-known determinants of breast cancer progression, including integrin β1 
(ITGB1). In primary human breast tumors, the most common ITGB1 isoform 1 A was positively correlated to 
Suppressor-SFs such as DDX3X and DHX9 (Fig. 4D) while being negatively correlated to Enhancer-SFs such as 
CCDC12 and FAM50A (Fig. 4E). ITGB1 isoform 1D includes an alternative exon resulting in a prolonged and 
distinct C-terminus and is known to be specifically expressed in muscle tissue16,17. Here, we identified increased 
expression of isoform 1D in primary breast tumors in relation to high expression levels of Enhancer-SFs (Fig. 4E). 
Furthermore, also SMAD3 (Suppl. Fig. 9C) and NFKB2 (Suppl. Fig. 9D) showed alternative splicing patterns 
when comparing Enhancer-SF FAM50A with Suppressor-SF DHX9. Interestingly, SMAD3 and NFKB2 are 
implicated in survival signaling by regulating MCL-1, which has two well-known isoforms18. The common long 
MCL-1 isoform which has pro-survival activity positively related to Enhancer-SFs; the short MCL-1 isoform 
which mediates apoptosis was correlated to Suppressor-SF levels (Suppl. Fig. 9E)18. Furthermore, we also noticed 
that splicing factors regulate their own splicing pattern as was observed for HNRNPA1 (Suppl. Fig. 9F). Although 
the implication for most of these alternative splicing patterns has to be elucidated, we can conclude that differen-
tial expression of Enhancer-SFs and Suppressor-SFs results in distinct isoform patterns for many genes, including 
genes that have been implicated in cancer progression.

Breast cancer Enhancer-splicing factors are associated with the expression of mitochondrial 
electron transport, splicing, protein metabolism and decreased transcription.  As a next step, we 
studied whether the expression of the Enhancer-SF genes was linked to specific signaling networks and/or biologi-
cal programs. Therefore, we calculated the PC of the Enhancer-SFs and Suppressor-SFs to all the genes available in 
the TCGA RNA sequencing dataset, naturally excluding the splicing factors (Fig. 5A, Suppl. Table 4). Next, genes 
were ranked based on their mean correlation to Suppressor- and Enhancer-SFs, respectively. Over-representation 
analysis of the top 500 genes positively correlated with Suppressor-SFs were enriched in processes related to cell 
cycle and SUMOylation (Fig. 5B); top 500 genes that positively correlated with Enhancer-SFs were enriched in 
respiratory electron transport, mitochondrial translation, and also transcriptional elongation (Fig. 5C). Ranked 
Gene Set Enrichment Analysis (GSEA) confirmed the positive correlation of Suppressor-SFs with cell cycle, mito-
sis, RNA processing and transcription, while negatively correlating to genes linked with mitochondrial processes 
such as electron transport and oxidative phosphorylation, ribosomal pathways and protein metabolism (Fig. 5D). 
As expected, Enhancer-SFs show the opposite behavior, being positively related to mitochondrial respiration, 
splicing and protein metabolism and negatively related to transcriptional pathways (Fig. 5E). Since both anal-
yses demonstrated an important relation of splicing factors to cell cycle, sister chromatid cohesion, mitosis (all 
positively related to Suppressor-SFs), respiratory electron transport and mitochondrial translation (positively 
related to Enhancer-SFs), we investigated these pathways in greater detail. We first focused on the cell cycle and 
mitosis related pathways and observed a dual behavior, meaning that the majority of genes in these pathways were 
positively related to Suppressor-SFs, while a substantial fraction displayed a negative relation (Suppl. Fig. 11). A 
further detailed assessment of these pathways revealed that Suppressor-SFs were mainly associated with genes 
implicated in negative cell cycle regulation, such as cell cycle checkpoints and arrest (Suppl. Fig. 11); these genes 
involved amongst others BRCA1, ATM, ATR and RAD genes, which are related to inhibition of cell cycle progres-
sion in reaction to defects in DNA replication or DNA damage.

Co-regulation of gene networks in cell biology is likely driven by transcription factors that bind similar 
promoter regions19–22. Therefore, we aimed to uncover the transcription factor networks that contribute to the 
expression of Enhancer- and Suppressor-SFs and their directly co-regulated gene expression patterns. To answer 
this question, we performed a binding motif enrichment analysis using transcription factor binding motifs 
from the Jaspar database combined with the Pscan algorithm23 for Enhancer- and Suppressor-SFs separately. 
Interestingly, binding sites of the transcription factors CAMP responsive element binding protein 1 (CREB1), 
cyclic AMP (cAMP) response element modulatory protein (CREM) and activating transcription factor 1 (ATF1) 
were highly enriched in Suppressor-SFs, while hardly present in Enhancer-SFs (Suppl. Fig. 12A). CREB1, ATF1, 
and CREM are members of a subfamily of the basic leucine zipper transcription factors that altogether can bind 
either as homo –or heterodimers to cAMP response elements located in the promoter regions of target genes24. 
We then selected i) the top 100 tumor samples expressing the highest level Suppressor-SFs and the lowest level of 
Enhancer-SFs (HS-LE tumors) and ii) the top 100 tumor samples expressing the lowest level of Suppressor-SFs 
and highest level of Enhancer-SFs (LS-HE tumors). Interestingly, the HS-LE tumors show significantly higher 
levels of ATF1 and CREB1 compared to LS-HE tumors, suggesting that these transcription factors may regulate 
the transcription of Suppressor-SFs (Suppl. Fig. 12B). CREM levels were equal in both tumor groups (Suppl. 
Fig. 12B). As expected, we verified that CREB1 and ATF1 levels were positively correlated to Suppressor-SF levels, 
while being negatively correlated with Enhancer-SF levels (Suppl. Fig. 12C). Altogether, our analysis suggests that 
ATF1/CREB1 transcription factors play an important role in regulating the expression of Suppressor-SF genes.

Confirmation of genuine co-regulated expression of Enhancer-SF and Suppressor-SF gene 
sets in other cancer types.  So far, we entirely focused on breast cancer due to the wealth of detailed data-
sets and tools available. Yet, we anticipated that the underlying alternative splicing through co-expression of 
splicing factors into similar Enhancer and Suppressor subgroups is a general phenomenon that would likely 
also be observed in other cancer types present in the TCGA database. We calculated the PC between all pos-
sible combinations of Enhancer- and Suppressor-SFs using RNA sequencing data for 32 different cancer types 
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acquired from the TCGA database and performed unsupervised clustering on these datasets similar to the breast 
cancer dataset. We identified Enhancer- and Suppressor-SF gene expression correlations resembling the breast 
cancer dataset in almost all other cancer types, including common aggressive types such as lung, pancreas and 
prostate cancer, but not for testis and ovarian cancer (Fig. 6A, Suppl. Fig. 13). Importantly, also in other cancer 
types Enhancer-SF and Suppressor-SF expression were strongly correlated to genes involved in sister chromatid 
cohesion (SCC, Fig. 6B,C), activity of cell cycle, M-phase, mitochondrial translation and respiratory electron 
transport, similar as for the observations in breast cancer (Suppl. Fig. 14). Next, we examined the relation of 
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Suppressor- and Enhancer-SFs to survival of lung and ovarian cancer patients25,26. In lung cancer patients, high 
expression levels of Suppressor-SF genes were significantly associated with prolonged overall survival as well as 
post-progression survival, while high expression of Enhancer-SF genes correlated significantly with shorter over-
all and post-progression survival in lung cancer patients (Fig. 6D). This is in contrast to ovarian cancer patients, 
that did not exhibit the strong negative correlation between Enhancer- and Suppressor-SF expression levels and 
consequently, did lack the correlation regarding patient survival (Suppl. Fig. 15).

Discussion
RNA splicing is a complicated multistep process essential in multiple diseases amongst which cardiac disease, 
muscular dystrophy4 and cancer6. Common practice has been to define the role of single splicing factors in dis-
ease states27,28. Here, we took a bioinformatics approach to unravel splicing factor interactions at RNA expres-
sion levels in the context of cancer progression making advantage of the wealth of information provided by the 
TCGA and BASIS databases. By calculating PCs between the expression of all possible combinations of splicing 
factors in two independent human primary breast tumor RNA sequencing datasets, we identified two subgroups 
of splicing factors that are differentially co-expressed. One group of co-regulated splicing factors is particularly 
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highly expressed in a more aggressive cancer phenotype and associated with poor survival rates, suggesting that 
the co-regulated expression of these splicing factors as a group contributes to cancer progression; we refer to this 
group as Enhancer-SFs of breast cancer. The other group of co-regulated splicing factors, which we refer to as 
Suppressor-SFs of breast cancer, are higher expressed in tumors with a more favorable prognosis. Importantly, we 
identified that these differential expression levels are associated with completely different alternative splicing pat-
terns. In addition, expression of Enhancer-SF genes are negatively related to genes involved in negative cell cycle 
control and positively related to genes involved in mitochondrial respiration. We suggest that the poor clinical 
outcome of these high Enhancer-SF low Suppressor-SF patients might be caused by the combination of alternative 
splicing patterns, but also due to low expression levels of DNA damage repair genes as well as high levels of genes 
involved in oxidative phosphorylation. Importantly, we demonstrate that these relationships between splicing fac-
tors, pathways and survival outcome are not specific for breast cancer but are evident to most other cancer types, 
suggesting that the observed splicing factor co-regulation is a genuinely important driver in cancer progression.

At this stage, we cannot assign the causality of splicing factor subgroup co-expression in relation to cancer 
signaling networks and therefore it is too early to envision the implementation of the SF expression levels in clin-
ical decision making. For example, we found that high expression of Enhancer-SFs in breast cancer is associated 
with high expression of genes involved in respiratory electron transport and mitochondrial translation, as well as 
a more aggressive clinical phenotype. The rewiring of cellular metabolism in order to promote survival of cancer 
cells is a well-known phenomenon29. The most profound metabolic adjustment in cancer cells is the increased 
activity of the less efficient glycolysis pathway over the more efficient oxidative phosphorylation, also known as 
the Warburg effect30. However, latest results suggest that oxidative phosphorylation is not completely lost during 
tumor progression and might even be important in metastasis formation31. Metastatic breast cancer cells exhibit 
elevated activity of mitochondrial respiration and patients bearing tumors with high levels of oxidative phos-
phorylation show a poorer clinical outcome32,33. From our observations, we cannot conclude that the differential 
expression of Enhancer-SFs is causing metabolic rewiring of cancer cells. Alternatively, changed Enhancer-SFs 
levels could be an effect instead of the cause of the altered activity in mitochondrial respiration. This could then 
indicate that the altered mitochondrial activity causes cells to switch their splicing pattern and subsequently, that 
metabolic rewiring and altered splicing patterns are both necessary to drive aggressiveness and poor clinical out-
come. Further studies have to elucidate the causal link between splicing factors and the broad cellular transcrip-
tional reprogramming to identify potential new targets for treatment or decide on a currently applied treatment 
strategy. Here, it would be interesting to start investigating the transcription factors ATF1 and CREB1, since these 
are potential transcriptional activators of the splicing factor clusters.

In this study we mainly focused on the correlation of RNA expression of Enhancer- and Suppressor-SFs to 
cancer signaling networks. Validating these correlations at protein levels would be essential to confirm the direct 
role of these SFs in tumor progression. As a first attempt, we calculated Spearman correlation coefficients to quan-
tify the RNA and protein levels of 32 splicing factors in 77 primary tumors34 (Suppl. Fig. 16). The average corre-
lation coefficient of the assessed splicing factors (cor = 0.26) resembled the top RNA-protein correlations of ten 
cancer types observed by Kosti et al.35. We did not always observe a strong correlation between RNA and protein 
expression levels of our splicing factors, suggesting that for some of these splicing factors, post-transcriptional 
processes can also be important for protein regulation. Although these splicing factors might be less involved in 
mediating downstream alternative splicing events, their RNA expression levels can still be used as a biomarker 
for the broad transcriptional reprogramming and metastatic behavior associated with the splicing factor levels. 
Further work would be needed to systematically link RNA expression to protein levels and next test the functional 
role of the Enhancer-SF in modulating particular programs that drive cancer progression.

The splicing factors act functionally in several large well-defined specific spliceosome complexes3. Intriguingly, 
neither Enhancer-SFs nor Suppressor-SFs could be assigned to specific spliceosome complexes. This observa-
tion underscores the complexity when investigating the role of single factors in such big complexes such as the 
spliceosome in relation to cancer progression. Likely the entire pattern of different factors, e.g. Enhancer-SF, is 
regulating the overall activity and functionality of the spliceosome and, thereby, driving defined RNA processing 
programs that drive tumor cell biology and cancer progression. For example, the differential increased expres-
sion of Enhancer-SF genes is associated with differential splicing of several genes including ITGB1. In primary 
human breast tumors the most common ITGB1 isoform A1 was negatively correlated to Enhancer-SF genes, 
yet positively correlated to Suppressor-SF genes. ITGB1 isoform 1D includes an alternative exon resulting in a 
prolonged and distinct C-terminus and is known to be specifically expressed in muscle tissue16,17. In our hands, 
the expression of the ITGB1 isoform 1D in primary breast tumors was particular related to high expression of 
Enhancer-SFs. While ITGB1 is a critical promotor of breast cancer progression36,37, in particular isoform 1D is 
known to affect focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) activation38, both 
known for their prominent role in (breast) cancer progression and metastasis formation39,40. This supports the 
rationale that the co-regulated Enhancer-SF genes drive RNA splicing leading to the formation of isoforms that 
are more prominently involved in aggressive cancer cell phenotypes.

Our data also indicates that the differential co-regulation of Enhancer-SFs and Suppressor-SFs is not spe-
cific for breast cancer, as we observed this phenomenon in most cancer types. For some even stronger differen-
tial expression than in the breast cancer cohort was observed, i.e. eye cancer and prostate cancer. Enhancer-SFs 
were also associated with poor prognosis in lung cancer. We hypothesize that several critical drivers of cancer 
progression that are active in different cancer types may determine the expression of either Enhancer-SFs or 
Suppressor-SFs, potentially by modulating the activity of CREB and ATF1 activity. Further studies need to await 
the unraveling of the activity of Enhancer-SFs.

In conclusion, our current analyses demonstrate the differential co-regulated expression of a subset of splicing 
factors that are associated with cancer progression. While this work sheds light on the role of the differential reg-
ulation of the spliceosome in cancer, differential expression of splicing factors might also drive the progression of 
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other complex diseases. Furthermore, our bioinformatics approach may also be applied to the uncovering of the 
differential co-regulated expression of individual components that act in other large protein complexes that are 
critical in cancer progression, such as the translational machinery, respiratory or cell cycle systems or cell matrix 
adhesion complexes. This might illuminate unknown interactions, increasing the global understanding of these 
diseases and thereby contribute to the development of strategies to cure patients.

Materials and Methods
Data retrieval and normalization.  RNA sequencing data from The Cancer Genome Atlas (TCGA) were 
obtained by using the TCGA Assembler R package41 after the new release in January 2017. Both normalized total 
gene expression and isoform-gene specific expression were extracted from this dataset. Normalized reads were 
log2 transformed before further analyses were performed. For correlation analysis, only solid primary tumor 
tissue samples were used. Tissue types and number of samples are shown in Suppl. Table 5.

RNA sequencing data as well as clinical data of a total cohort of 354 patients from the BASIS cohort were 
previously published and are publicly available11. Log2 normalized read counts were retrieved from the public 
repository.

Microarray data of primary tumors of 867 untreated patients (MA-867 dataset) was previously published and 
publicly available (GSE2034, GSE5327, GSE2990, GSE7390 and GSE11121).

All data used in manuscript is publicly available.

Kaplan Meier survival curves.  Kaplan Meier (KM) survival curves were obtained by using KM plotter with 
the multiclassifier function calculating the mean expression of the selected probes42. Patients were split by median 
expression levels. Overall, relapse-free and distant-metastasis-free survival curves were obtained for all breast 
cancer subtypes combined, but also for estrogen receptor positive and negative breast cancer subtypes separately.

Hierarchical clustering.  Correlation clustering.  For the splicing factor correlation clusterings (Figs 1J,K, 
6A, Suppl. Figs 2, 13), gene expression data of splicing factors were extracted from the RNA sequencing datasets. 
Pearson correlation coefficients (PCs) were calculated for all possible combinations of splicing factors. PCs were 
clustered using unsupervised clustering based on Euclidean distance and complete linkage. A cIValid stability 
test43 was performed to determine the optimal number of clusters for the primary correlation TCGA clustering 
(Fig. 1J), using a cluster number between 2 and 6 clusters as input. 4 clusters were selected based on the highest 
stability and major group representation. For the validation using the BASIS RNA sequencing data, an equal 
cluster number was used.

For isoform-splicing factor clusterings (Fig. 4B, Suppl. Fig. 10) and splicing factor-other gene clusterings 
(Fig. 6C, Suppl. Figs 11, 14 the same method was used but now PCs were calculated for isoform-splicing factor or 
splicing factor-gene combinations respectively.

Clinical Clustering.  For the hierarchical clustering (Fig. 2A, Suppl. Fig. 6) linked to clinical data, log2 RNA 
expression values were median normalized per splicing factor across all patients. Normalized expression values 
were subjected to unsupervised clustering based on correlation and complete linkage.

Expression levels in normal, primary tumor and metastatic tissue.  Log2 fold change in expres-
sion levels of splicing factors (Suppl. Tables 1 and 2, Fig. 1A,E) were calculated using RNA sequencing data 
derived from the TCGA database (114 normal tissue samples and 7 metastatic tissue samples with matched pri-
mary tumor samples) using the following steps: (1) Calculation of the log2 fold change of splicing factor expres-
sion level between tumor and normal tissue (Suppl. Table 1) or tumor and metastatic tissue (Suppl. Table 2) per 
patient; tissue samples of the same patients were matched, (2) Calculation of the mean log2 fold change by taking 
the mean of all patients and (3) Significance determination by using a paired t-test. Adjusted p-value were cal-
culated using the Benjamini-Hochberg correction for multiple testing. Since these methods were not based on a 
generalized linear model (GLM), the log2 fold changes of our initial method were compared to log2 fold changes 
calculated from raw RNA sequencing counts and the DESeq2 R packages that uses built in GLMs for normaliza-
tion44. We observed a very strong and significant correlation between the log2 fold changes calculated with these 
two methods (Suppl. Fig. 17), suggesting that also the both methods are robust and reliable.

Pathway analysis.  To calculate the correlation between splicing factor expression levels and expression of 
other genes, PCs of Enhancer- and Suppressor-SFs with all other genes in the TCGA RNA sequencing data were 
calculated. For every gene, the average PC with Enhancer- and Suppressor-SFs was calculated. Based on PC, genes 
were ranked and subjected to pathway analysis.

Over-representation analysis.  The top 500 correlated genes with Enhancer- or Suppressor-SFs were used for 
over-representation analysis. Over-representation analysis was performed using ConsensusPathDb45 using the 
Reactome pathway database.

Gene Set Enrichment Analysis (GSEA).  Ranked GSEA was performed on the full ranked gene lists46. Results 
were visualized using the GSEA plugin in Cytoscape version 3.4.0.

Transcription factor analysis.  Enrichment for transcription factor binding motifs in splicing factor start 
site regions was performed using the Pscan algorithm23 for Enhancer- and Suppressor-SFs separately. Enrichment 
was determined −50–450 nucleotides from the splicing factor start site. All transcription factors in the JASPAR 
transcription factor database were included in the analysis.
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Statistical analysis.  Data were compared with Student’s t-test (two-tailed, equal variances) or one-way 
ANOVA (for comparison of more than 2 groups) using GraphPad Prism 6.0.
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