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Abstract 

In Alzheimer’s disease (AD), disturbances in the circadian rhythm and sleep-wake cycle are 

frequently observed. Both are controlled by the master clock: the suprachiasmatic nucleus 

(SCN), which was reported in post mortem studies of AD subjects to be compromised. 

However, the influence of age and gender on the biophysical integrity and subtle 

microstructural changes of SCN and mechanistic connections between SCN dysfunction and 

AD progression in vivo remain to be explored. In the present study, we utilized state-of-the-art 

in vivo magnetic resonance relaxation measurements in combination with 

immunohistochemistry to follow microstructural changes in SCN of the Tg2576 (TG) mouse 

model of AD. Longitudinal monitoring of in vivo T2 relaxation with age shows significant 

shortening of T2 values in the SCN of TG mice and more substantially in female TG than 

aged-matched controls (WT). Multiexponential T2 analysis detected a unique long T2 

component in SCN of TG mice which was absent in WT mice. Immunohistochemical 

examination revealed significantly elevated numbers of activated astrocytes and an increase in 

the astrocyte to neuron ratio in SCN of TG compared to WT mice. This increase was more 

substantial in female than in male TG mice. In addition, low GABA production in SCN of TG 

mice was detected. Our results offer a brief appraisal of SCN dysfunction in AD and 

demonstrate that inflammatory responses may be an underlying perpetrator for the changes in 

circadian rhythmicity and sleep disturbance in AD and could also be at the root of marked sex 

disparities observed in AD subjects. 

 

Keywords: Alzheimer's disease, gender difference, suprachiasmatic nucleus, T2 relaxation time, 

Tg2576 mouse model  
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INTRODUCTION 

The suprachiasmatic nucleus (SCN) is assigned as the master clock in mammals, which 

enables anticipation and adaptation to the day night cycle. Individual neurons of the SCN are 

capable to generate circadian rhythms in a cell autonomous manner, displaying cyclic 

expression of clock genes and proteins [1, 2]. The later lead to a rhythm in membrane 

excitability, in electrical activity and in a rhythmic release of humoral signals resulting in 

several rhythmic physiological processes [2]. The neurotransmitter γ-aminobutyric acid 

(GABA) is important for synchronization of tissue-level rhythms and intercellular signalling 

in the SCN [3-5], and is the only neurotransmitter that is produced and received by nearly all 

SCN neurons [6, 7]. GABA is densely distributed in the SCN and located in the majority of 

neuronal somata and synaptic terminals [8]. Nevertheless, the role of GABA in the SCN is 

still not well understood. 

The disruption of circadian rhythms and sleep wake cycle are common symptoms in 

Alzheimer´s disease (AD) and senescence [9-12]. Disturbances in circadian rhythms of 

human AD patients [13] and in several AD mouse models [14, 15] have been reported. The 

evidences for SCN abnormalities seen in AD mainly derived from post mortem studies. These 

studies reported an alteration in the neuronal structure and function of the SCN during 

senescence and AD [13-15]. The changes in biophysical integrity and subtle microstructural 

changes in SCN during AD in vivo and its role in disease onset and progression remain 

unclear. Emerging evidence suggests that females are at greater risk of developing AD 

dementia [16-18], but the molecular mechanism accounting for sex-related differences in AD 

remains unknown. A morphometric study of SCN in the human brain revealed that the shape 

of the SCN in healthy subjects is sexually dimorphic, although SCN volume and cell number 

were equal in men and women [11]. A decline in SCN volume and cell number occurs during 

senescence as well as in AD patients [12]. Vasoactive intestinal polypeptide (VIP) cell 
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number, in particular, decreases more significantly in pre-senile AD female patients than male 

patients [12]. Thus, the SCN shows gender differences in healthy subjects and AD patients. 

Up to now, no in vivo studies so far addressed whether and how sex differences in SCN is 

related with progression of AD pathology.   

The quantitative transverse relaxation time (T2) measurement has proven to be a powerful 

non-invasive magnetic resonance imaging (MRI) tool which provides specific information 

about changes in tissue microstructure such as demyelination, axonal injury, gliosis and iron 

deposition [19-22]. and can be used as a marker for the assessments of normal aging and a 

variety of brain diseases including AD [23-25]. In a long-term follow up traumatic brain 

injury study, a clear relationship was established between T2 relaxation time and the power 

spectrum of the electroencephalogram (EEG) [26]. Furthermore, multicomponent T2 

relaxation analysis is very sensitive to distinguish between various tissue water compartments 

and to distinguish the processes of inflammation and myelin loss [27]. Thus, monitoring in 

vivo T2 changes in SCN during AD progression and examining changes in multicomponent T2 

relaxation may provide evidence for dynamic microscopic changes in the SCN, yielding new 

insights into the biophysical complexity of the underlying circadian rhythm disturbances in 

AD. Studies using transgenic mouse models of AD have the potential to clarify these in vivo 

changes in SCN. Tg2576 is a widely used model of AD, which develops Aβ plaques (one of 

the main hallmarks of AD) and it shows a progressive learning and memory impairment [28]. 

Previous studies employing electroencephalography (EEG) have reported changes in the 

circadian rhythms and sleep abnormalities of the Tg2576 AD mouse model [29].  

In this study, in vivo T2 analysis along with immunohistochemistry has been applied to 

identify and characterize age and gender-specific changes in SCN during progression of AD 

pathology in the Tg2576 mouse model. Our results show that inflammatory responses 
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disturbed the biophysical integrity of SCN in Tg2576 mouse brain and a disruption of the 

SCN may be accountable for the gender-specific differences in the circadian rhythmicity that 

have been observed in AD patients. 

 

MATERIALS AND METHODS 

Mouse model 

The transgenic Tg2576 mice used in this study express as transgene the human amyloid 

precursor protein (APP695) carrying the Swedish double mutation [28]. The transgene is 

expressed in C57B6/SJL breeders. The N2 generation mice of both genders (10 male and 10 

female) were studied at ages between 10 and 18 months. Age-matched non-transgenic 

littermates (10 male and 10 female) served as controls. All animal experiments were approved 

by the Landesdirektion Sachsen (license T28/16) and UDEC commission Leiden University 

(license number 14199). All methods were carried out in accordance with the relevant 

guidelines and regulations. 

Brain Preparation and Histology 

Following in vivo MR measurements, mice were sacrificed by CO2 inhalation and 

transcardially perfused with phosphate-buffered saline (PBS, pH 7.4) followed by 4% 

buffered paraformaldehyde (Zinc Formal-Fixx, ThermoShandon, UK) through the left cardiac 

ventricle. After perfusion fixation the brain was dissected out and placed in the same fixative 

for 48 h. Following fixation, the brain was dehydrated and embedded in paraffin. 

Subsequently coronal sections (30 µm thick) were carefully cut using a vibratome while 

maintaining as much as possible the same spatial orientation of mouse brain as in the MR 

imaging experiments as described previously [30]. To stain activated astrocytes, brain 

sections were subjected to immunohistochemistry using a primary polyclonal anti-GFAP 
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(glial fibrillary acidic protein) antibody (DAKO) as described earlier [17]. Immunolabeling 

was visualized by using the ABC kit (Vectastain) according to the manufacturer’s 

instructions. Images of the histological sections were obtained using a Leica DM RE HC 

microscope, interfaced to a Leica DC500 3CCD digital camera.   

For preparing sections for fluorescent labelling, after perfusion brains were dissected and 

placed in the same fixative for 24 h at 4◦C. After cryoprotection in 30% sucrose in 0.1 M 

phosphate buffer for 3 days, coronal sections (30 µm) were cut on a sliding microtome and 

collected in 0.1 M phosphate buffer containing 0.025% sodium azide. For fluorescent 

labelling of Aβ deposition using thioflavin-S (ThS), sections were incubated with 1% ThS 

(Sigma) for 20 min, followed by 40 min incubation in 80% ethanol and a final rinse in 

distilled water, dehydrated in toluene and covered with coverslip using Entellan. For 

fluorescent immunolabeling, mouse brain slices were pretreated with 60% methanol (30 min), 

followed by washes in 0.1 M TBS and blocked in TBS containing 0.3% TitonX-100 and 5% 

goat serum for 30 min.  Subsequently slices were incubated overnight with a Cy3-conjugated 

mouse anti-GFAP antibody (for labelling of astrocytes) (1:1,000), mouse-anti-NeuN (for 

labelling of neuronal nuclei) (clone A60; 1:100; MAB 377, Millipore, Billerica, MA, USA) 

and rabbit anti-GAD antibody (for GABAergic neurons) (1:4,000). After washing in PBS 

three times, sections were incubation with corresponding fluorescence secondary antibodies 

(Dianova 1:400) for 1 h. 

Confocal laser scanning microscopy (LSM 510, Zeiss, Oberkochen, Germany) was performed 

to reveal co-localization of GFAP, NeuN, GAD and ThS staining. ThS (green fluorescence) 

was visualized by excitation with an argon laser at 488 nm and detection of emission at 510 

nm using a low-range band pass (505-530 nm). For Cy3-labelled antigens (red fluorescence), 

a helium–neon laser with 543 nm excitation was used and emission from Cy3 at 570 nm was 
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detected applying high-range band pass (560–615 nm). The Cy5-labelled antigens were 

visualized using excitation at 650 nm and emission at 670 nm. Specificity of primary antibody 

and immunoreaction was confirmed by omitting primary antibodies or changing probes of the 

secondary antibodies. 

MRI experiments 

All MRI measurements were performed using 750 MHz (17.6 T) vertical 89-mm bore 

magnets equipped with a 1 Tm-1 actively shielded imaging gradient insert (Bruker, Germany). 

A birdcage radio-frequency (RF) coil with an inner diameter 2 cm was used for excitation and 

detection. The system was interfaced to a Linux PC running Topspin 2.0 and ParaVision 5.0 

software (Bruker Biospin GmbH, Germany).  

For in vivo µMRI measurements the mice were anesthetized with 2% isoflurane (Forane, 

Abbott, UK) in air (0.3 L/min) and oxygen (0.3 L/min). During scanning the level of 

anesthetic was maintained between 1 and 1.5% to keep the breathing of the animal at a 

constant rate of ~50 breaths per minute and the respiration rate was constantly monitored 

using a respiration sensor, (placed on the animal’s abdomen) connected to a respiration unit. 

The respiration unit was connected to a computer with Bio-SAM respiration monitoring 

software (Bruker Biospin, Germany). The mouse’s body temperature was kept at a constant 

temperature by pumping warm water through the gradient system. Cooling of the gradient 

was performed by circulating water. 

T2 relaxation time were measured with the Multi-Slice, Multi-Echo (MSME) sequence which 

is based on the Carr-PurcellMeiboom-Gill (CPMG) sequence, where transverse magnetization 

of a 90º pulse is refocused by a train of 180º pulses generating a series of echoes [31, 32]. The 

following imaging parameters were used: Number of averages (NA) = 2; Number of slices 

(NS) = 10; Number of echoes = 12 with echo spacing = 6.064; A repetition time (TR) = 2 s 
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with an effective spectral bandwidth = 100 kHz; Field of view (FOV) = 2.0 x 2.0 cm; Matrix 

size= 256 x 256; This yields an effective in-plane resolution of 0.078 x 0.078 mm and a voxel 

resolution of 6.10 x 10-3 mm3. The total acquisition time for the experiment was 17 min and 2 

s. To study the dependence of T2 on the CPMG refocusing interpulse interval (t), the T2 

measurements were performed using the MSME sequence with 16 echo and 4 different 

refocusing interpulse intervals, namely 5.6, 8.5, 10, and 18 ms. The last 5 echo of 8.5 ms 

acquisition, the last 7 echo of 10 ms acquisition and the last 10 echo of 18 ms acquisition were 

discarded to provide comparable temporal sampling windows (namely, 5.6-91.04 ms, 8.5-

93.50 ms, 10-90 ms, 18-90 ms acquisitions, respectively). For the precise localization of 

regions of interest (ROIs) on the brain regions for T2 measurements, a pilot scan of a mouse 

brain was acquired with multi-slice rapid acquisition using the relaxation enhancement 

(RARE) sequence [33] and subsequently ROIs were transferred to T2 maps to ensure precise 

regional placement. The following imaging parameters were used for the RARE sequence: 

Echo time (TE) = 8.5 ms; TR = 2000 ms; NA = 1, rare factor = 6; NS = 10, with slice 

thickness 0.5 mm. To establish the test–retest reliability of T2 measurements and to check 

systematic errors, the same C57BL6/SJL mice (n = 5) were scanned twice on two subsequent 

days. 

Data Processing 

Estimation of T2 

For the estimation of T2 values, selected regions of interest (ROIs) were manually drawn on 

the images by using an image sequence analysis (ISA) tool package (Paravision 5, Bruker). 

Monoexponential fitting was then used to calculate T2 using a monoexponential fit function 

[y= A+C*exp (-t/ T2)], where A = Absolute bias, C = signal intensity, T2 = transverse 

relaxation time [22, 34]. ROIs were defined for the SCN, hippocampus, cingulate cortex and 

piriform cortex on a T2-weighted image using the “Allen Brain Atlas” with the brain explorer 
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program (http://mouse.brain-map.org) as the reference atlas. For all animals, the T2 was the 

mean of the ROIs drawn on the right and left sides of the brain.  

Nonnegative least-squares (NNLS) algorithm for T2 component analysis 

The T2 decay curve was also fitted to a multicomponent T2 model. Decay curves were 

decomposed into an arbitrary number of exponential components using the nonnegative least-

squares (NNLS) algorithm. The NNLS procedures were implemented using the MATLAB 

codes (MathWorks, Natick, MA) and carried out to analyze the optimum solution of the data 

from imaging experiments using the "lsqnonlin" function. The signal intensities as a function 

of the echo time in MRI methods can be written as:  

	

𝑦(𝑡%) =(𝑆*𝑒,-./012
3

*45

+ 𝐶,				𝑖 = 1,2,… . , 𝑁 

 
where N is the number of echoes, ti is the ith echo time, y(ti) is the signal intensity of the ith 

echo, M is the number of T2 components, Sj is the intensity of the jth T2 component, and C is a 

constant accounting for any offset of the signal. For both simulation and experimental data, 12 

(M=12) T2j values were used. One additional T2 value, which was set to infinity, was added to 

simulate the constant item in the equation above. A “least-square based constraint” rule was 

used to obtain a T2 distribution. The value of the regularization in the calculation was chosen 

in such a way that the estimated distribution of T2 is similar to that of the known T2 for 

experimentally calculated data. For each T2 spectrum from the NNLS calculation, any T2 

component with an intensity below a specific threshold (peak area less than 0.1% of the total 

area) or with the T2 value at the peak position lower or higher than a threshold (0.5 ms and 

300 ms, respectively) was ignored.  The NNLS procedure used in this work means that the 
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results were acquired without a priori assumptions about the number of T2 components and 

any initial guess of the solution. 

Image analysis of brain sections 

For quantitative analysis of histological images, the brain regions (SCN, cingulate cortex 

(CG), piriforn cortex (PIR) and hippocampus (HC)) were outlined according to the “Allen 

Brain Atlas” with the brain explorer program (http://mouse.brain-map.org) as the reference 

atlas from histological images using PhotoShop. Subsequently, the delineated brain regions 

were exported and analyzed in ImageJ software (ImageJ, USA). By using the plug-in color 

deconvolution, the colors were unmixed and the stained area was selected, and subsequently, 

the number of particles were calculated by using a plug-in called Image-based Tool for 

Counting Nuclei (ITCN). The percentage of the total Aβ area was calculated using analyze 

particles. The data were exported to Origin Pro v. 8 software for further analysis. For image 

co-registration, immunohistological images were matched with each other using common 

anatomical landmarks such as the ventricles, corpus callosum and hippocampal fissure using 

PhotoShop 7.0 (Adobe Systems, San Jose, CA). 

Statistics 

All statistical analyses (t-test and analysis of variance) of the MRI and histological 

quantifications were performed with Origin Pro v.8. The paired and/or unpaired Student’s t-

test was used to compare mean values. Statistical significance was assigned for values of P < 

0.05. Kolmogorov-Smirnov normality tests were performed which confirmed that the 

longitudinal T2 relaxation data were normally distributed for a particular age and genotype 

with a probability ranging from 0.5 to 0.9. A Kruskal-Wallis one-way analysis of variance 

along with rank test was implemented on the MR data to compare the median of T2 values for 

all group comparisons. This method confirms that samples come from the same population for 
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a particular age, sex, and genotype. Tests for homogeneity of variances between different ages 

(10, 12, 15 and 18 month) were also computed. No statistically significant change in variance 

was observed in particular age for any genotype. Subsequent Mann-Whitney tests were used 

to make pairwise comparisons between different mice groups. To assess the reliability of 

measurements, the intra-class correlation coefficient (ICC2,1) was computed using a two-way 

random effects analysis of variance (ANOVA) model and the absolute agreement definition 

[35, 36]. An ICC close to 1.0 indicates high reliability. The ICC can only be 1.0 if the 

measures are identical. 

 

RESULTS  

Prior to the longitudinal T2 study, the test-retest reliability of in vivo T2 measurements was 

analyzed by imaging the same mice with an interval of 5 days. Fig. 1A shows the ROIs used 

to quantify T2 relaxation time changes in SCN and three other brain regions (cingulate cortex, 

piriform cortex and hippocampus).  Fig. 1B shows test-retest reliability results of in vivo T2 

measurements in these brain regions of wild-type mice. Reliability was found to be very high 

for the SCN (ICC=0.73, P<0.05) as well as for cingulate cortex (ICC = 0.75, P < 0.05), 

piriform cortex (ICC = 0.72, P < 0.05) and hippocampus (ICC = 0.66, P < 0.05). No 

systematic error, as checked by a paired t-test (P> 0.05, n = 5) was observed between the 

measurements. The effect of CPMG refocusing interpulse interval (t) on T2 for the SCN and 

hippocampus regions was examined in order to rule out any influence of magnetic field 

disturbances on T2 changes. As shown in Fig. 1C, no statistically significant effect of the 

interpulse interval in the range of interest (6.6 and 12 ms) was observed on the T2 of the SCN 

as well as of the hippocampus. This data confirms that the changes observed in T2 values in 

these brain regions depend on variations in tissue properties rather than magnetic field 

disturbances.  
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The T2 values of SCN and other brain regions of male and female Tg2576 and wild-type mice 

are given in Figure 2. Clearly, the T2 values of the hippocampus, cingulate and piriform cortex 

of the 18 month old Tg2576 mice showed a significant decrease as compared to the age-

matched wild-type mice. The decline in hippocampal T2 relaxation time was more significant 

in female as compared to male Tg2576 mice [23, 30, 37]. In the thalamus region, T2 values 

did not show any significant change between wild-type and Tg2576 mice. In the SCN region, 

the T2 values of Tg2576 mice were significantly lower than wild-type mice. In addition, the 

decline in T2 in SCN of Tg2576 mice was clearly influenced by gender. In female Tg2576 

mice, the decline in T2 was considerably higher (P < 0.001) than in male Tg2576 mice (P < 

0.05). Aβ plaques were not detected in SCN of Tg2576 mice (Supplementary Fig. 1).  

 Fig. 3 shows results of longitudinal monitoring of T2 changes in the SCN of male and female 

Tg2576 and wild-type mice. In both wild-type male and wild-type female mice, there was no 

significant change in T2 relaxation time between 10 and 18 months of age. At 10 months of 

age, T2 values in the SCN of the wild-type and Tg2576 mice were not significantly different 

in both male and female mice. In male Tg2576 mice, the T2 relaxation times show a trend to 

decrease with age. However, the difference between wild-type and Tg2576 mice was evident 

only at the age of 18 months. In contrast, female Tg2576 mice show a significant T2 decrease 

in SCN as compared to wild-type mice at and above 12 month of age. The extent of decrease 

in T2 in the SCN region of female Tg2576 mice relative to wild-type mice was 5.3%, 8.5% 

and 12.3 % for 12, 15, and 18 months of age, respectively. 

Results for NNLS analysis of the experimental decay curves are presented in Fig. 4. In SCN 

from wild-type mice two distinct components were consistently detected with NNLS. These 

were: short T2 component (7.04 ± 0.1 ms in male and 5.47 ± 2.3 ms in female) constituting < 
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0.1% of the total fraction, and an intermediate T2 component (27.6 ± 0.94 ms in male and 

27.19 ± 1.02 in female) constituting > 99% of the fraction.  

Interestingly, in SCN of Tg2576 mice, NNLS analysis of the experimental decay curves 

shows three well-distinguished components, These are: short T2 components (17.43 ± 3.04 ms 

in male and 10.46 ± 2.38 ms in female) constituting < 3.5% of the fraction; intermediate T2 

components (25.49 ± 0.88 ms in male and 23.06 ± 1.67 in female) constituting ~ 80% of the 

fraction and a long T2 component (67.59 ± 6.26 ms in male and 81.66 ± 8.52 in female) 

constituting > 10-19% of the fraction. The intermediate component was reduced in Tg2576 

mice while long T2 component which is absent in SCN of wild-type mice is present in the 

SCN of Tg2576 mice.  

Immunohistological analyses of number of neurons and astrocytes in SCN of male and female 

Tg2576 and wild-type mice are quantified in Figure 5. GFAP staining demonstrated 

significantly high numbers of activated astrocytes and NeuN staining rvealed a significantly 

decreased number of neurons in SCN of 18 month old Tg2576 mice as compared to age-

matched wild-type mice (Fig. 5). Thus an increase in the astrocytes-to-neurons ratio in SCN 

was clearly observed in Tg2576 as compared to wild-type mice (Fig. 5). The increase in 

astrocyte to neuron ratio was more pronounced in female than male mice (Fig. 5B). 

The analysis of the expression level of glutamic acid decarboxylase (GAD), an enzyme 

involved in synthesizing GABA from glutamate in neurons is shown in Fig. 6. The level of 

GAD was significantly lower in the SCN of 18 month old Tg2576 mice as compared to aged-

matched wild-type mice (Fig. 6). The decline in GAD was more prominent in female as 

compared to male Tg2576 mice, and it was inversely allied with high number of astrocytes in 

SCN of female as compared to male mice (Fig. 5B).  

 



14 
 

DISCUSSION 

Several studies have suggested that loss of integrity and dysfunction of the SCN lies at the 

root of the circadian dysfunction which may be the cause or the consequence of AD 

pathogenesis. Knowledge on how and when these SCN integrity changes occur would help to 

find out whether the circadian dysfunction is the cause or the consequence of AD 

pathogenesis. Therefore, in this study, longitudinal magnetic resonance T2 relaxation 

measurements were used to probe subtle microstructural changes in the SCN in vivo.  

The T2 values of various grey matter regions such as the hippocampus, cingulate and piriform 

cortex of the 18 month old Tg2576 mice showed a significant decrease as compared to the 

age-matched wild-type mice. These results are in agreement with previous studies , which 

showed a prominent decrease in T2 for Aβ plaque-rich regions such as the hippocampus and 

cortex of Tg2576 mice as compared to age-matched wild-type mice. Although the source of 

the T2 reduction in various grey matter regions remains unclear, previous studies have 

suggested that iron-associated Aβ plaques may be involved in reducing the T2 in AD brain 

[23]. Interestingly, the decline in hippocampal T2 relaxation time was more significant in 

female as compared to male Tg2576 mice. These results are in line with higher Aβ plaque 

load in hippocampus of female mice as compared to male mice seen in our previous studies 

[37]. On the other hand, in the thalamus region, which was associated with very low Aβ 

deposition [30], no significant change in T2 values between wild-type and Tg2576 mice was 

observed. Interestingly, T2 values in the SCN region of Tg2576 mice were significantly lower 

than wild-type mice. In addition, the decline in T2 in SCN of Tg2576 mice was clearly 

influenced by gender. Unlike in hippocampus and cortex regions, Aβ plaques were not 

detected in SCN of Tg2576 mice (Supplementary Fig. 1). 
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To get further inside into the gender-specific effects on T2 in SCN, we performed a 

longitudinal in vivo study to follow the change in T2 time with age in wild-type and Tg2576 

mice. While there was no significant change in T2 relaxation time between 10 and 18 months 

of age in wild type mice, the T2 relaxation times show a trend to decrease with age in Tg2576 

mice. In males, the significant difference between wild-type and Tg2576 mice was evident 

only at the age of 18 months, however, in females, the difference between wild-type and 

Tg2576 mice was evident at 12 month of age already. 

T2 is influenced by the mobility of water molecules associated with various effective tissue 

compartments, defined by intracellular and extracellular macromolecular components, which 

would be expected to exhibit a distinct T2 [38]. In previous studies, multiexponential T2 

analysis has been successfully applied to detect and characterize multiple water compartments 

associated with tissue microstructures in normal and pathologic tissue [19, 27, 38-41]. 

Consistent with previous work in other tissues, we expect this approach to lead to an insight 

into water compartmentation in SCN and how they are influenced during disease progression. 

We further assume that the ability of multiexponential analysis to detect AD related changes 

in water compartmentation in SCN would support its use as a potential diagnostic approach in 

early sleep disturbance in AD. Therefore, in this work, we investigated water 

compartmentation in SCN under normal and AD-like conditions using multiexponential 

analysis of T2 relaxation data. This analysis was performed using nonnegative least squares 

(NNLS) algorithm. In SCN from wild-type mice two distinct components were detected 

which include a short T2 component constituting < 0.1% of the total fraction, and an 

intermediate T2 component constituting > 99% of the fraction. On the other hand, in SCN of 

Tg2576 mice, we observed three well-distinguished components namely: a short T2 

components constituting < 3.5% of the fraction; an intermediate T2 component constituting ~ 

80% of the fraction and a long T2 component constituting > 10-19% of the fraction.  
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The short T2 component with smallest contribution in the signal with T2 = 6 ms in wild-type 

and T2 = 13 ms in Tg2576 could be attributed to the protein bound water as has been proposed 

previously [42]. The amplitude of this fast relaxing component, calculated with NNLS 

algorithm, is higher in SCN of Tg2576 mice, suggesting an increase in the protein bound 

water. Intermediate T2 component with largest contribution in the signal can be assigned to 

the intra or extracellular water in the SCN region of the brain. Signal intensity, calculated with 

NNLS algorithm, of this component is largely reduced in Tg2576 mice and this reduction was 

more severe in female than male Tg2576 mice. The T2 value of the intermediate components 

was also decreased in Tg2576 mice as compared to wild-type mice, and this decrease was also 

more severe in female mice than male mice. 

Long T2 component was present only in Tg2576 but not in wild-type mice. The existence of 

this slow relaxing component in Tg2576 may either hints towards inflammation, axonal loss, 

and/or demyelination. However, since SCN contains small, densely packed neurons, and is 

largely devoid of myelinated fibers [43], the appearance of long T2 component in SCN of 

Tg2576 mice may not be a manifestation of demyelination. On the other hand, inflammation 

commonly occurs in a wide spectrum of nervous system diseases including AD. Inflammation 

has been known to results in an increase in extracellular water volume fraction. This in turn 

leads to an increase in long T2 component as described by Stanisz et al. [27]. In mice, it has 

been demonstrated that neuroinflammation plays a role in the functional and molecular 

changes that the SCN undergoes during senescence [44]. However, little evidence for 

neuroinflammatory processes in the SCN of AD patients is currently available [45]. 

In our study, histological analyses show significantly elevated numbers of activated astrocytes 

in SCN of Tg2576 mice. In contrast, the neuronal numbers were significantly decreased in 

SCN of 18 month old Tg2576 mice. Thus an increase in the ratio of astrocytes to neurons in 
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SCN was clearly observed in Tg2576 as compared to wild-type mice (Fig. 5). These results 

are in line with human brain studies where an increase in astrocyte to neuron ratio has been 

observed in SCN of AD subjects [46]. Interestingly, in our study, the increase in astrocyte to 

neuron ratio was more substantial in female than male mice (Fig. 5B). 

When glial cells are activated, common inflammatory agents such as pro-inflammatory 

cytokines and reactive oxygen species, secreted from these cells, can lead to inflammatory 

response and contribute to the disease progression [47]. Astrocytes play an important role in 

water homeostasis. When they are activated, the expression of astrocytic proteins such as 

aquaporin-4 (AQP4) is reduced which leads to abnormalities in membrane water transport 

[48, 49]. Subsequently, these abnormalities might lead to an increase in extracellular fluid 

leading to an increase in the long T2 component in SCN of Tg2576 mice, as observed in our 

study.  

The neurotransmitter γ-aminobutyric acid (GABA) and its receptors are widely expressed in 

the SCN where they mediate cell- cell communication [3, 6]. The role of GABA in inhibiting 

pro-inflammatory responses has been well recognized [50, 51]. To explore whether an 

increase in inflammatory response in SCN of transgenic mice may be associated with low 

levels of GABA production in neurons, we have analysed the expression level of glutamic 

acid decarboxylase (GAD), an enzyme involved in synthesizing GABA from glutamate in 

neurons [52, 53]. A significantly lower level of GAD was observed in SCN regions of 18 

month old Tg2576 mice as compared to aged-matched wild-type mice (Fig. 6). The decline in 

GAD was more significant in female as compared to male Tg2576 mice. which is inversely 

correlated with high number of astrocytes in SCN of female as compared to male mice (Fig. 

5B). These results indicate that low GABA production in SCN and consequently an 

inefficient GABA signaling may lead to proinflammatory cytokine production and 
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inflammatory responses which are reflected with an increase in long T2 components in SCN 

of Tg2576 mice. In other brain regions such as hippocampus and cortex, astrocytes and 

microglia become activated close to senile plaques (Supplementary Fig. 1) in order to 

internalize and degrade Aβ [54]. Since in SCN senile plaques were not present, the activated 

astrocytes were independent/unrelated with senile plaques. Future studies, on exploring 

GABA production specifically in activated astrocytes of SCN and its relation with AD 

progression would shed more light on the mechanism of SCN dysfunction in AD.  

In conclusion, our results suggest that gender-specific differences in inflammatory response, 

most likely manifested by low GABA production, occur in SCN of Tg2576 mice.  This may 

be an underlying perpetrator for the changes in circadian rhythmicity and sleep disturbance in 

AD and could also be at the root of marked sex disparities observed in AD subjects. Our 

results also demonstrate the ability of in vivo multiexponential T2 analysis to detect AD-

related subtle microstructural changes in SCN and support its use as a potential non-invasive 

diagnostic approach in early sleep disturbance in AD. 
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FIGURE LEGENDS 

Fig 1. (A) Anatomical T2 -weighted MR coronal slices of a mouse brain, showing various 

brain regions for T2 measurements acquired with the RARE sequence at 17.6 T. Scale bar, 

750 µm (B) Test-retest reliability of in vivo T2 measurements in a variety of brain regions 

performed by intra-class correlation coefficient (ICC2,1) using a 2-way random effects 

ANOVA (subject by session) and the absolute agreement definition. There is a one-day 

interval between session 1 and session 2 measurements performed on the same mice. T2 

values are presented as means from five subjects ± SD; Paired t-test results collected from the 

same mice in two sessions show no significant (NS) difference in all cases (P> 0.05, n = 5). 

(C) Effect of refocusing interpulse interval (τ) on T2 in the suprachiasmatic nucleus (SCN) 

and hippocampus (HC) regions. T2 values were measured using the multi-slice multi-echo 

sequence with 4 different τ values namely 6.1, 12.2, 18.3, 24.4, 30.5 and 36.6 ms. Values are 

expressed as mean T2 in ms ± standard deviation (error bars); n = 3. Abbreviations: cingulate 

cortex (CG), piriform cortex (PIR), hippocampus (HC) and suprachiasmatic nucleus (SCN). 

Fig. 2. In vivo T2 relaxation time changes in the cingulate cortex (CG), piriform cortex (PIR), 

hippocampus (HC) and suprachiasmatic nucleus (SCN) regions of a wild-type female (WT 

♀), wild-type male  (WT ♂), Tg2576 female (TG ♀) and Tg2576 male (TG ♂) at 18 months 

of age. Data represent the mean T2 in ms ± SD (error bars) (95% C.I.) of n=6, except for TG 

♂: n=4. Student t- test: *p <0.05, **p <0.01, #p < 0.001, statistically significant. 

Fig. 3. Gender-specific, age-dependent in vivo T2 changes of the suprachiasmatic nucleus 

(SCN) region of the wild-type (WT) and Tg2576 (TG) mice. Values are expressed as mean T2 

in ms ± SD (error bars) (95% C.I.). Two tailed student t- test show no significant difference 

observed between WT and TG mice at the age of 10 months (P > 0.05) in individual gender 

groups. Significant difference between WT and TG mice at the age of 12 months, 15 months 
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and 18 months were observed in female mice but in male mice decline in T2 relaxation is 

observed only at 18 month of age. However, female mice has steeper decline in T2 relaxation 

compared to TG male mice. Student t- test: *p <0.05, **p <0.01 

Fig. 4. Multicomponent analysis of the experimental T2 relaxation decay curves using a non-

negative least square based algorithm (NNLS). (A) NNLS least-squares spectra of SCN 

regions of a wild-type male (WT ♂), wild-type female (WT ♀), Tg2576 male (TG ♂) and 

Tg2576 female (TG ♀) at 18 months of age. Spectra show difference in the amplitude and 

time of various relaxation components between WT and TG which were also influenced by 

gender. (B) Time and amplitude of various T2 components are summarized in the table. 

Intermediate T2 components show largest contribution while short T2 components with 

smallest contribution in the signal. Long T2 component was only present in the SCN region of 

TG mice and was absent in the WT mice.  

Fig. 5. Immunohistochemical analyses of numbers of neurons and astrocytes in SCN of male 

and female Tg2576 and WT mice. (A) Representative confocal images of GFAP (red) and 

NeuN (cyan) stained sections through SCN of TG mice. Scale bar, 250 µm (and 60 µm in 

magnifications). (B) Quantitative analysis of neuronal cells (left), astrocytes (middle) and 

ratio of astrocytes to neuronal cells in SCN of 18 months old male (♂) and female (♀) WT 

and Tg2576 (TG) mice. **p < 0.05, *p < 0.05. Abbreviation: NeuN, Neuronal Nuclei; GFAP, 

glial fibrillary acidic protein.  

Fig. 6. Immunohistochemical analyses of GAD and GFAP staining in SCN of Tg2576 and 

WT mice. (A) Representative confocal images of GAD (blue) and GFAP (red) stained 

sections through SCN of 18 month old WT and TG mice. Scale bar, 250 µm (and 60 µm in 

magnifications). (B) Quantitative analysis of GAD staining  in SCN of 6 and 18 months old 
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male (♂) and female (♀) WT and Tg2576 (TG) mice. **p < 0.05, *p < 0.05. Abbreviation: 

GFAP, glial fibrillary acidic protein; GAD, glutamic acid decarboxylase. 
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Supplementary Fig. 1. Representative histological images of thioflavin-S (ThS) staining in the brain 
slices containing (A) cingulate cortex and SCN regions and (B) parietal cortex and hippocampus 
regions. Amyloid (Aβ) plaques were visible in various cortex and hippocampus regions, however no 
Aβ plaques were observed in SCN region.; (C) Double staining of ThS and GFAP showing Aβ 
plaques (arrow) surrounded by reactive astrocytes (arrow head). Scale bar: 500 µm (in A and B) and 
250 µm (in C). 

 

 

 

 

 


