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A very large part of space-time must be investigated,  

if reliable results are to be obtained. 

Alan Turing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Drug Discovery Maps visualizes 
and predicts kinome-inhibitor 

interaction landscapes 
 

 

 

 
 

 

 
Part of this research was published in A.P.A. Janssen et al., J. Chem. Inf. Model. acs.jcim.8b00640 (2018).  

 

 

Introduction 

Protein kinases are an important class of drug targets due to their key role in intracellular 

signal transduction processes involved in cancer, auto-immune diseases, and 

(neuro)inflammation.1,2 The therapeutic value of the protein kinase family is demonstrated 

by the 38 kinase inhibitors currently approved by the FDA and the plethora of molecules 

being tested in clinical trials for this enzyme family.3 It is anticipated that these clinically 

approved kinase inhibitors (KI) can serve as starting points to identify novel drug candidates 

for other kinases.  
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Most KIs interact with the structurally and functionally conserved ATP-binding site, 

present in all >500 human protein kinases. It is well established that KIs bind multiple 

members of the kinase family, and that this may affect their efficacy and toxicity.4 Detailed 

investigation of the target-interaction landscape of KIs is, therefore, important to 

understand their molecular mode of action and offers the opportunity to identify new 

starting points for other therapeutically interesting kinases. Many complex, high-

dimensional datasets with structure-activity relationships (SAR) of KIs over a broad 

selection of kinases have become available (Table 8.1).5–10 The wealth of data present in 

literature has spurred the development of several computational platforms to predict 

kinase activities of inhibitors.11,12 These reported highly specialised computational models 

which were able to predict, to some extent, the inhibition profiles of inhibitors against the 

kinome. 

Given the large amount of data available and the apparent success of previous attempts 

to use these datasets in a predictive manner it was expected that the strategies introduced 

in Chapter 7 could be applied to the field of kinase inhibitors. This approach was dubbed 

Drug Discovery Maps (DDM), a machine learning tool that allows the visualization and 

prediction of target-ligand interaction landscapes. 

 
Table 8.1 | Summary of large experimental (partially) public kinome screens for sets of kinase inhibitors. 

Numbers of inhibitors and kinases are as reported in original publications and include mutants, splicing 

variants and separate kinase domains from the same kinase. Coverage represents the percentage of possible 

kinase-inhibitor pairs for which a data point is reported. 

Set No. of inhibitors 
No. of 

kinases 
Dosage 

No. of 
data points 

Coverage 

Karaman et al. 38 317 Dose response** 12046 100% 

Metz et al. 3858 172 Dose response 258094 38.9% 

Anastassiadis et al. 178 300 Single dose 52834 98.9% 

Davis et al. 72 442 Dose response** 31824 100% 

Elkins et al. 367* 224 Two doses 81940 99.9% 

* contains duplicate molecules 
** only if activity is observed at initial 10 µM single dose screen 

 
t-SNE reliably reproduces human chemotype assignments 

In Chapter 7 it was demonstrated that t-SNE is able to visualize molecular similarity in a 

drug-like set of 2774 clinically applied molecules. For the current purposes, it had to be 

verified that t-SNE is still able to recognize molecular similarity within a smaller set of drug-

like molecules that is more homogenous and has higher molecular similarity. To this end, 

a t-SNE-mediated clustering on the molecules from the Published Kinase Inhibitor Set 

(PKIS) was performed.13 The PKIS is a 364-member library of molecules assembled by 

GlaxoSmithKline that are all classified as inhibitors of protein kinases. The PKIS set 

represents 31 manually annotated chemotypes and their activity has been measured and 

published for 200 kinases (Table 8.1, last entry).9 The resulting map of chemical space 

representing the KIs (Figure 8.1A) was coloured according to the manual chemotype 

attribution and showed clear co-localisation of chemotypes. A more in-depth analysis by the 

unsupervised cluster assignment algorithm DBSCAN confirmed the initial visual inspection 
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and shows high statistical correlation between the autonomously derived clustering and 

the human annotation.14 Of the 31 chemotypes annotated, 23 were fully comprised in one 

computationally assigned cluster. For example, the orange and gold clusters on the left of 

the map are completely isolated and comprise all compounds of those chemotypes (Figure 

8.1B). An enlargement of the cluster dominated by 3-amino-pyrazolopyridines (Figure 8.1B) 

showed that in fact three different chemotypes were included. Compounds 1-3 are 

examples of each, and they showed that indeed these compounds are highly similar, and 

perhaps arbitrarily assigned to different chemotypes. The ‘stray’ sky blue compound 4 is 

part of a chemotype that is less well defined in t-SNE space, but the similarities with 

compounds 1-3 are obvious. This analysis showed that t-SNE is capable to recognize and 

cluster molecular entities in a highly specific manner and that it allows the visual inspection 

of high-dimensional chemical structural data, or chemical space, in an easy and intuitive 

way.  

 

 
Figure 8.1 | A) t-SNE embedding of the Published Kinase Inhibitor Set. Embedding is based on the 4096-bit 

Morgan fingerprint. t-SNE settings: perplexity = 50, learning rate = 50, iterations = 10,000. Markers are 

coloured according to 31 manually attributed chemotypes. B) t-SNE embedding as in A) but including a 

background of the DBSCAN generated clustering, coloured by the dominant chemotype in that cluster (grey 

are singletons or duos). Markers are coloured according to the 31 chemotypes defined by Elkins et al. as in A). 
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t-SNE map of the kinase target space  

To generate a visualization of the target space, and to quantify the similarity of kinases, 

first an alignment of the amino acid sequences of the whole kinase domains containing the 

ATP-binding pocket was created. This was translated to a fingerprint based on physico-

chemical properties of the amino acids, analogous to the methods used in Chapter 7.15 

These fingerprints were used to create a two-dimensional map of the target space by the 

t-SNE algorithm. The resulting embedding (Figure 8.2A) is remarkable, as it almost 

seamlessly recreates the phylogenetic tree published by Manning et al. in 2002.16 To assign 

the kinases to clusters, the coordinates of the t-SNE embedding were fed into the DBSCAN 

algorithm. All ten assigned clusters were significantly (P < 0.0001, Hypergeometric test) 

enriched for a specific kinase group as assigned by Manning et al. (Figure 8.2A). Closer 

inspection of some of the kinases unassigned by DBSCAN reveals that they belong to 

distinct branches of the phylogenetic tree, corresponding with their separation from the 

main clusters. As an example, the four tyrosine kinases (TK) in the far right of the 

embedding (burgundy) all belong to the JAK family (JAK1, 2, 3 and Tyk2), but only represent 

their second kinase domain. The first kinase domain is more closely associated with the 

rest of the TK group, and lies just outside the DBSCAN assigned cluster. The close 

association of the second kinase domains with the RGC cluster (coloured brown) is 

especially striking, as these domains, just as the RGC kinases, are considered 

pseudokinases. The same holds true for MLKL, IRAK2 and IRAK3. Intriguingly, the IRAK 

family of TKL kinases has four members, of which IRAK1 and IRAK4 are catalytically active, 

whereas IRAK2 and IRAK3 are not.17 In the t-SNE embedding, the former are located in the 

major TKL cluster (orange) whereas the latter are actually assigned to the RGC-dominated 

cluster. MLKL has also been shown to indeed lack catalytic activity in at least one report.18 

Another interesting feature is the separation of a group (left of plot) of TKL kinases from 

the major cluster. This subset features all but one of the STKR family of cell surface bound 

receptor kinases. Upon closer inspection, even the subfamilies of STRK1 and -2 are 

discernible. Strikingly, the MISR2 (AMHR2) kinase receptor is located with kinases 

categorised as ‘Other’. This receptor kinase has an atypical DFG motif (DLG), and as such 

can indeed be classified as a pseudokinase, although phosphorylating activity has 

experimentally been shown.19 The other members of the STKR family do all share the 

conserved DFG motif. Finally, on the lower side of the t-SNE plot several AGC coloured 

kinases have been clustered with the CAMK kinases. These actually represent the second 

kinase domains of the RSK family, which were also attributed to the CAMK group by 

Manning et al.16  

In summary, this analysis of target space of the binding site of protein kinase domains 

indicated that this embedding is able to recognize overall similarity but also detect subtle 

differences between the different binding domains of most kinase inhibitors.  
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Figure 8.2 | t-SNE visualization of kinase domains reveals phylogenetic information: A) t-SNE embedding of 

physicochemical fingerprint of the kinase domains of 535 human kinase domains. t-SNE settings: perplexity = 50, 

learning rate = 50, iterations = 25,000. Arbitrary t-SNE coordinates are rotated to match dendrogram orientation of 

Manning et al. Markers are coloured according to the 12 groups defined by Manning et al., background is coloured 

based on the DBSCAN generated clustering, coloured by the dominant kinase group in that cluster (blanks are 

unclustered kinases). B) Manning et al. manually curated kinome dendrogram, overlaid with circles coloured 

according to the background colouring from the t-SNE map in A), based on the unsupervised DBSCAN clustering.20 

 

DDM can predict target-ligand interaction landscapes 

Based on the successful analysis of the chemical and target space of kinases and their 

inhibitors, a workflow was set up to predict the activity of novel compounds for the entire 

kinome. The bioactivity data measured by Elkins et al. for the Published Kinase Inhibitor 

Set was used as training set, as it contains the most unique interactions of all open datasets 

(Table 8.1).9 The optimisation of the workflow with all parameters is described in more 

detail in the Methods. The final architecture of the algorithm is depicted in Figure 8.3, 

illustrated for the EGFR inhibitor erlotinib. At first, a t-SNE embedding is generated where 

erlotinib is mapped onto the chemical space of the PKIS (top left). This information is used 

to find the 9 most similar molecules (top right). Of these, the inhibition data measured by 

Elkins et al. is averaged, and all kinases above a threshold value C are considered targets 

(lower right). These kinases are then looked up in the target space map (Figure 8.2A), and 

the most similar kinases are appended (lower left) to yield the final prediction (centre). As 

the molecular t-SNE embedding is slightly stochastic, the described process is repeated 

several times (R) and the number of times a kinase is predicted is tracked.  
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Figure 8.3 | Schematic overview of the DDM workflow. In this example, the targets of erlotinib are predicted. 

Based on a t-SNE embedding (top left) the PKIS inhibitors nearest to erlotinib are found, depicted in the top 

right panel. For these, the inhibition data as measured by Elkins et al. is averaged and used as initial prediction. 

These targeted kinases are then looked up in the t-SNE embedding in the lower left panel, where the most 

similar kinases are added to yield the final prediction (centre).  

 

The DDM model was validated using an independent dataset generated by Karaman et 

al.5 The resulting prediction statistics for each of the 38 compounds in this test set are 

summarised in Table S8.1. The average positive prediction value (PPV) was 40%, with a 

Matthews correlation coefficient (MCC) of 0.21. These statistics were compared with 

previously published methods, and it was found that DDM performed better than QSAR-

models and was equal in performance to random forest based proteochemometric models 

(Figure 8.4). A receiver operating characteristic (ROC) analysis of the performance of DDM 

on this test set shows an area under the curve (AUC) of 0.76 (Figure 8.5). Taken all together, 

a novel machine learning model to predict kinome-inhibitor landscapes was developed and 

validated. 
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Figure 8.4 | Statistical comparison of the new t-SNE based model with four models based on published 

procedures. Bars denote mean ± SD of the 38 inhibitors. Significant improvements over random have been 

highlighted, * p < 0.0332, ** p < 0.0021, *** p < 0.0002, **** p < 0.0001 (Two-way ANOVA, Tukey’s 

multiple comparison test). The relatively low PPV and high NPV for the random predictions are caused by the 

activity bias in the data set (13% active vs 87% inactive).  

 

 

 
Figure 8.5 | Receiver operating characteristic curve of the test set predictions 

with varying cut-off C values. Marker labels represent C values. The area under 

the curve is 0.76, with the maximum deviation from random at C values between 

25 and 35%. Axes have been normalized to take into account the inability to 

predict all kinases based on the PKIS coverage. 

 

 
Discovery of novel FLT3 inhibitors using DDM 

To investigate the utility of the model in early drug development, it was applied to the 

identification of new inhibitors for FMS-like Tyrosine kinase 3 (FLT3). FLT3 is implicated in 

advanced myeloid leukaemia, where approximately 30% of patients carry an internal 

tandem duplication (ITD) in their FLT3 gene that activates the kinase and acts as a driver 

mutation.21 Recently, midostaurin has been FDA approved for the treatment of AML 

patients and several other inhibitors are currently being tested in clinical trials. However, 
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fast adaptive mutations in the FLT3 gene quickly result in drug-induced resistance of AML, 

warranting the search for novel chemotypes to inhibit this kinase. To this end, the DDM 

model was used to predict the kinome-ligand interaction landscape of a small kinase-

focused library of 1152 molecules. They were analyzed using various values for the activity 

cut-off C, and were ultimately filtered using C = 40%, and a prediction count of at least 9 

out of 10 runs, to have a balanced number of molecules to be tested. These stringent cut-

offs yielded a workable set of 44 compounds predicted to be active against FLT3.  

 To validate our virtual DDM screen, a time-resolved fluorescence-resonance energy 

transfer (FRET)-based biochemical assay was performed with all 1152 compounds against 

FLT3, at an initial concentration of 10 µM. This screen yielded 184 actives, with >50% loss 

of activity (16% of all compounds). Of these compounds, the pIC50 was measured, resulting 

in 135 compounds with a pIC50 > 5, with a mean of 6.7 ± 0.9. 18 of the 184 compounds 

were part of the 44 compounds identified by the DDM screen, which results in a positive 

predicted value (PPV; or hit rate) of 41% (Figure 8.6A, P < 0.0001 (Hypergeometric test)), 

which is almost three-fold higher compared to the hit rate of the biochemical assay. Of note, 

15 of the predicted compounds demonstrated an IC50 of less than 2 µM (34%, P < 0.0001 

(Hypergeometric test)) with an average pIC50 7.3 ± 1.1, and also included the most active 

compound found in the screen (crenolanib, pIC50 of 9.0). The hit rate was nearly identical 

to the validation statistics for the test set (Figure 8.4), where an overall PPV of 40% was 

achieved. The same holds for the negative predictive value (89%) and the sensitivity (11%). 

The successful application of the DDM model for the FLT3 screen may partially be attributed 

to the high coverage for the TK family of kinases. Of note, the relatively low sensitivity (11%) 

is a balanced choice between minimising the number of compounds to screen and finding 

more actual hits. This can easily be tuned by varying the cut-off parameter.  

Two of the predicted compounds, 5 and 6 (Figure 8.6B), were selected based on their 

chemical properties, novelty regarding FLT3 inhibition, and their predicted interaction 

profile (vide infra). These compounds were resynthesized using established methods (see 

Methods). The activity of the compounds was confirmed in a FRET assay using recombinant 

human FLT3 (Figure 8.6C). Compounds 5 and 6 showed a concentration-dependent activity 

with pIC50 values of 7.3 ± 0.1 and 8.8 ± 0.1, respectively. To determine the cellular activity 

of both compounds, a cell proliferation assay using the FLT3-dependent AML cell line 

MV4:11 was performed. Both compound 5 and 6 showed clear cellular activity with pEC50 

values of 6.3 ± 0.1 and 8.5 ± 0.1, respectively. In summary, the experimental validation of 

the hits illustrated the power of the DDM workflow for compound selection in the lab. 

Finally, to explain the potential binding mode of compound 5 and 6 both compounds 

were docked using a DFG-in model (for 5) and the DFG-out structure 4RT7 (for 6) (Figure 

8.6E). Compound 5 binds to the hinge region with the aminopyrimidine moiety in a fashion 

typical for Type 1 kinase inhibitors. Compound 6 binds FLT3 in the DFG-out conformation 

analogous to RIPK2 (5AR7) by forming hydrogen bonds to the DFG-motif using the urea 

functionality and to the hinge region with the pyridine nitrogen.22 
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Figure 8.6 | Discovery of novel FLT3 inhibitors using DDM. A) Scatter plot of all compounds and their inhibitory 

effect at 10 µM as measured in the high-througput screen. DDM predicted molecules are marked red. B) 

Structures of the two compounds re-synthesized and tested in situ against MV4:11 cells. C) Dose response 

curves of compounds 5 and 6 against recombinant FLT3 in a FRET-based activity assay. Markers denote 

mean ± SD (N=4). Dotted lines denote 95% confidence interval of EC50 fit. D) Dose response curves of 
compounds 5 and 6 against MV4:11 leukaemia cells. Markers denote mean ± SD (N=3). Dotted lines denote 

95% confidence interval of EC50 fit. E) Docking poses of 5 and 6 in the 3D models of FLT3 and the 

corresponding 2D interaction plots. 
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Kinome activity spectrum prediction using DDM 

To reduce potential toxic side effects, kinase cross reactivity is ideally minimized. DDM 

enables rapid assessment of the predicted cross reactivity, because by default, DDM 

predicts the interactions with the entire kinome. Thus far, however, only the FLT3 prediction 

has been taken into account. As final validation, the activity of the two inhibitors on the 

predicted off-targets was tested in biochemical assays. In addition to FLT3, compounds 5 

and 6 were predicted to be active against 35 and 33 kinases, respectively (C = 40%, 

R > 0.5). The off-targets were validated using KinaseProfiler™ by Eurofins at 10 µM. The 

inhibition data per compound are shown in Table S8.2. For compound 5 the predictions 

were 69% accurate (24 of the 35 off-targets confirmed (<50% remaining activity) with two 

additional off-targets in the low 50% residual activity range). For compound 6 the prediction 

was exceedingly accurate as 26 of the 33 targets (79%) were indeed inhibited >50%. To 

conclude, DDM was able to predict the kinome-inhibitor interaction landscape at a relatively 

high accuracy.  

 

Predicting the activity profile of a large commercially available hinge binder set 

The numerous recent approvals of small molecule kinase inhibitors by the FDA (6 in 

2017, 13 since 2014) conceals the fact that none of the last 13 approvals targeted novel 

kinases or mechanisms. A lot of therapeutic potential may still lie in currently untargeted 

pathways. To aid in the elucidation of signalling pathways and validation thereof, easy 

access to KIs is crucial to allow biochemical evaluation by acute inhibition of regulating 

kinases. To facilitate this, and in the spirit of the Published Kinase Inhibitor Set goals, the 

model was used to predict the interaction landscape of a large commercially available hinge 

binder set. To generate a large dataset like this, the Enamine Kinase Hinge Region Directed 

Library of 18,020 molecules was downloaded and all targets were predicted for these 

molecules (Figure 8.7A).23 After filtering for unpredicted kinases and inert molecules all 

18,020 inhibitors remain, with 290 kinases as targets (confidence ≥ 0.1, C = 20%). The 

distribution of the targets across the kinome tree is quite homogenous, as shown in Figure 

8.7B. The only major group that is underrepresented are the TKL kinases, but this follows 

directly from the t-SNE map depicted in Figure S8.1, as the biochemical data generated for 

the PKIS set did not include many TKL kinases. In total 1,888,418 interactions are 

predicted, with FLT3 as most inhibited kinase. For all compounds a value similar to the 

Selectivity Entropy (Ssel) could also be calculated, when the confidence parameter is 

assumed as the association constant (1/Kd).24 This parameter can be used to judge the 

overall promiscuity of a selected inhibitor, to directly avoid pursuing the least selective 

scaffold.  

As an illustration of the use of this large dataset, two kinase targets were chosen based 

on recent literature, for which few molecular modulators are known and which were not 

included in the PKIS dataset. Homeodomain-interacting protein kinase 3 (HIPK3, also 

known as FIST) is a protein kinase involved in transcription regulation, and is thought to 

negatively regulate apoptosis in certain triple negative breast cancer cell lines. Inhibition of 

this kinase may thus prove useful in treatment of these breast cancers.25 p21-activated  
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Figure 8.7 | A) Heatmap of the enamine inhibitor set. Compounds are hierarchically sorted on the predicted 

activity profile, kinases are sorted by group, then family. Cut-off value of 20% is used to increase sensitivity. B) 

Traditional kinase dendrogram showing the predicted kinases in the Enamine heatmap in red, PAK2 and HIPK3 
are highlighted in blue/green. Picture was generated using KinMap.20  

 

kinase 2 (PAK2) is activated by CDC42 and RAC1. When active it stimulates cell survival 

and growth. Recently it was implicated in oestrogen receptor positive (ER+) breast cancer 

as tamoxifen resistance inducer.26 These two kinases belong to two distinct groups (CMGC 

and STE, respectively), also distinct from FLT3 (TK) treated above. HIPK3 was predicted as 

target quite frequently, leading to a set of 172 potential inhibitors (C = 30%, confi-

dence = 1). PAK2 on the other hand is only rarely predicted, and only 57 molecules were 

found, with poor confidence (C = 20%, confidence = 0.1). The chosen targets are thus also 

at the far ends of the potentially usable spectrum of the dataset. For both targets 10 

molecules were selected based on availability, price, and selectivity entropy. These 20 

compounds were purchased and screened in the KinaseProfiler™ platform against both 

PAK2 and HIPK3. As there was no overlap between the two sets of predicted molecules, 

the molecules chosen for HIPK3 were used as negative controls for PAK2 and vice versa to 

check for specific enrichment by the model. The activity data, together with the molecular 

structures, is summarized in Table S8.3. These data showed no identified actives for HIPK3 

or PAK2. The high positive prediction value reached for FLT3 above is thus shown not to 

hold for all targets.  

 

Discussion 

Drug discovery is still largely an empirical process, which is challenging, time consuming 

and hard.27 The multi-parameter optimization of chemical structures, which is needed to 

balance the activity and selectivity of a drug candidate, requires the understanding of high-

dimensional datasets. Machine learning algorithms have been employed to analyse and 
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predict compound activity using large datasets with varying success.11,12,28 Some of the 

major drawbacks of most computational models are the complexity of the algorithm and 

the ‘black box’ nature of the systems. Implementation and interpretation of such systems 

is not trivial and, consequently, has not been widely adopted by the drug discovery 

community.  

Drug Discovery Maps provides an intuitive, data-driven (bio)molecule similarity clustering 

procedure using state-of-the-art machine learning techniques. The model is based on the 

t-Distributed Stochastic Neighbour Embedding algorithm to generate a visualization of 

molecular similarity in two dimensions.29,30 Colour is used as a third dimension to inter-

actively visualize the biological activity or compound class (chemotype). DDM combines two 

different maps. The first map depicts the chemical space in which compounds are clustered 

based on their molecular similarity, whereas in the second map protein targets are 

clustered based on the chemical similarity of the amino acids making up the kinase domain. 

By combining both maps, DDM was able to predict bio-activities of small molecules across 

a protein family. DDM was applied to visualize the chemical space of the Published Kinase 

Inhibitor Set (PKIS) and the target space of the protein kinase family (kinome). It was able 

to predict the kinome activity profile of another independent set of kinase inhibitors with 

comparable or better scores than the currently available machine learning techniques. 

DDM was then used to identify new hits for the oncogene FMS-like tyrosine kinase 3 (FLT3), 

a validated therapeutic target for the treatment of acute myeloid leukaemia.31 The hits were 

resynthesised and their biological activity was validated in biochemical and cellular assays. 

Finally, the off-target profile of the hits as predicted by DDM was validated in a panel of 

kinase assays. The method was then applied to a large commercially available screening 

collection to predict the interaction landscape of over 18,000 inhibitors. 20 inhibitors, 

predicted to be active for either HIPK3 or PAK2, were purchased and tested in vitro. 

Unfortunately, none proved to be active, which was an illustration of the limits of our 

approach. The average positive predictive value of 40% found in the validation and the FLT3 

screen is apparently not universally achieved. This could be attributed to the sparse data 

density around the two selected targets. Another factor to take into account is plain luck of 

the draw (or lack thereof). If the PPV was 20%, there is an 11% chance of choosing 10 

inactive inhibitors at random from a set of predicted actives.  

Although the model performs equally well or better than the current computational drug 

discovery tools, it is envisioned that it can be further improved when more comprehensive 

datasets become available in the public domain. In the PKIS training set, 364 inhibitors 

were only tested at two concentrations on approximately 200 unique wild-type kinases. A 

more expansive dataset of a broader set of more diverse compounds tested on a larger 

number of kinases in a concentration-response fashion would inherently improve the 

predictions generated over the entire kinome.  

The fact that a complete interaction profile is predicted uniquely enables the ranking of 

predicted hits by selectivity, for example by calculation of the predicted selectivity entropy.24 

This allows medicinal chemists in theory to rank scaffolds based on promiscuity and also 

to select for accepted off-targets, that depend on the biological questions or medical 

indication. This was demonstrated by the KinaseProfiler™ screen of predicted off-targets 

for the two FLT3 inhibitors. 



 
Drug Discovery Maps visualizes and predicts kinome-inhibitor interaction landscapes  |  163 

 

To aid in the implementation of the tool as it is presented here, a Python based 

executable including a Graphical User Interface has been made available online32 (Figure 

8.8). The unpackaged Python script with a list of dependencies is also available. Also 

included is a fully annotated KNIME workflow, to allow step by step execution and analysis. 

This set of tools should enable the integration of this data-driven approach into any project 

without any need of investments a priori.  

To conclude, the machine learning algorithm Barnes-Hut t-SNE was successfully 

implemented in a drug discovery setting to predict ligand-protein interaction landscapes. 

The concept of DDM is applicable to a multitude of drug discovery challenges, which, given 

the proper dataset, can be used to design a small molecule with a balanced set of physico-

chemical and biological properties as required for drug candidates. It is envisioned that 

DDM may make the drug discovery process more efficient. 

 

 
Figure 8.8 | Graphical User Interface (left) and generated output (right) of the Python implementation of the 

DDM algorithm presented here. Only a SMILES string is required as input, output is provided as depicted on 

the right. The packaged executable as well as the original Python script have been made available online. 
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Methods 

Training dataset selection 

Several large datasets screening dozens of small molecule inhibitors against hundreds of kinases have 
appeared in literature. Five datasets stand out when judged by size, these are summarized in Table 8.1. The 
first large dataset (>10,000 data points) published was that of Karaman et al. in 2008.5 38 commercially 
available kinase inhibitors were screened in vitro against 287 distinct kinases. In 2011, three large datasets 
were reported. Metz et al.7 published a brief communication describing their analysis of more than 250,000 
data points. However, a large portion of these interactions have not been made public. Later that same year, 
two papers were simultaneously published by Anastassiadis et al. and Davis et al.6,8 Both studies comprise 
known kinase inhibitors and are screened against large portions of the kinome. The latest addition to the field 
is that by Elkins et al., who screened the Published Kinase Inhibitor Set (PKIS) by GlaxoSmithKline in an in vitro 

assay against 224 kinases, including a number of mutants.9,13 This dataset is particularly interesting, as the 
PKIS molecules are available free of charge for academic research, and the set contains the most drug like 
molecules at the largest coverage. For these reasons, the dataset by Elkins et al. was chosen as a starting 
point for our data-driven approach. 
 

t-SNE for the Published Kinase Inhibitor Set 

The curated dataset from ChEMBL 2333 was used, as the original publication contained some duplicate 
molecules, and using the open source software package KNIME, the Morgan fingerprints (RD-Kit, 4096-bits, 
radius = 2) were generated.33–35 These fingerprints were then clustered using the Python implementation of 
Barnes-Hut t-SNE.36 Visual inspection of the embedding shows striking co-localization of the pre-defined 
chemotypes when the chemotype annotation by Elkins et al. is used post-hoc to colour the markers (Figure 
8.1). To quantify the clustering quality, the embedding was analyzed using the DBSCAN algorithm, where the 
eps-parameter was optimized by maximizing the Silhouette Coefficient.14 The best clustering was found for 
eps 0.9, for which the Adjusted Rand Index was 0.774. This unbiased clustering produced 33 clusters (Figure 
8.1), 29 of which were significantly (P < 0.0001, hypergeometric test) enriched for a manually attributed 
chemotype. Of the 31 chemotypes annotated, 23 were fully comprised in one computationally assigned 
cluster. To inspect where it diverges from the human annotation, we inspected the cluster dominated by the 
3-amino-pyrazolopyridines closer (Figure 8.1B). Inspection of the co-clustering of chemotypes shows that this 
cluster also contains all 3-amino-pyrazolopyridazines and the indazole-3-carboxamides, structurally very 
similar classes, as compounds 1, 2 and 3 illustrate.  
 

Nearest neighbour selection of molecules using t-SNE and initial target predictions 

By appending a molecule to the PKIS dataset and regenerating the t-SNE mapping, simple Euclidian distances 
could be used to find its nearest neighbours. Selecting a set of neighbouring molecules should account for 
most chemical variation, leading to an ‘average molecule’ highly similar to our (new) molecule of interest.  
For this set of neighbouring molecules, the interaction landscapes against 200 unique non-mutant kinases 
have been experimentally measured, which can be averaged to yield a predicted inhibition value for the new 
molecule for all these kinases. For the PKIS dataset inhibition was measured at 100 nM and 1 µM. The 
inhibition values measured at 1 µM were used as these have the highest information density and in many 
clinically relevant experiments low micromolar concentrations can (locally) be reached, thus warranting a 
screen for off-targets at this concentration.  
 

Expanding target prediction using t-SNE to find most similar kinases  

To be able to extrapolate from the kinases measured in the PKIS set to incorporate more of the kinome, again 
a t-SNE based approach was used. Of the entire kinome, the amino acid sequences of the kinase domains 
containing the ATP-binding pocket, were aligned and expressed using a fingerprint based on physicochemical 
properties, derived by Heil et al.15 The resulting t-SNE embedding is shown in Figure 8.2 of the main text, and 
reproduced with annotation of the inclusion in the PKIS set (Figure S8.3). With this similarity mapping in hand, 
the prediction based on the training dataset could be expanded to theoretically include the whole human 
kinome, by considering neighbouring kinases as plausible additional targets. The distribution of the measured 
kinases in the PKIS set is visualized in Figure S8.3 and is rather well, but certainly not homogeneous. This 
means that for fair parts of the kinome no truly reliable prediction can be made based only on this set, as there 
are no close neighbouring kinases measured. In the workflow all kinases are however still included, as this will 
allow any dataset to be loaded as training set, without large adaptations.  
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The DDM workflow 

The workflow envisaged was briefly described in Figure 8.3, and is depicted in more detail in Figure S8.1: a 
molecule of interest is converted, via its SMILES representation, into a 4096-bit fingerprint. This fingerprint is 
appended to the PKIS molecules and a 2D t-SNE embedding is generated, as in Figure 8.1A. Based on this 
embedding, the closest molecules are selected and their measured bioactivity is averaged and considered as 
the activity prediction. Then, using the t-SNE embedding of the kinase domains (Figure 8.2), the kinases most 
similar to the predicted kinases are appended to this prediction, which is then the output of the model. Since 
the t-SNE algorithm is inherently stochastic, this whole process is repeated R times, after which the initial 
outputs are weighed and finally returned as overall output. The model thus accepts any molecular string 
representation and returns a list of predicted kinase targets, with a confidence parameter based on the 
number of repetitions in which a specific target has been found. The PKIS molecules the prediction is based 
upon can also be viewed, to assess with a chemical eye whether the prediction is to be trusted. 
Several optimizable parameters naturally arise in this workflow: the number of considered neighbouring 
molecules Nm, the number of considered neighbouring kinases Nk, the number of repetitions of the whole 
process R, and the cut-off value C of the mean inhibition above which an inhibitor is deemed active against 
that kinase.  
 

 
Figure S8.1 | Schematic overview of the DDM workflow. A chemical structure is converted into a Morgan fingerprint 
using the SMILES-string, and appended to the PKIS molecules set. After t-SNE embedding, the closest neighbour 
molecules (Nm) are identified and their biodata is averaged. A minimal average inhibition (C) is used as criterion to 
yield the initial prediction. The Nk kinases with the most similar kinase domain are then found in the kinase t-SNE 
embedding and appended to form the final prediction. This is repeated R times, weighing the final predictions to 
return a weighed final prediction. 
 

Optimization of the model parameters 

To optimize the model parameters and validate our model, the dataset generated by Karaman et al. was used 
as test set as this provided a comprehensive but diverse set of molecules, biochemically tested against a large 
set of kinases. For this test set, all Kd values below 1 µM were considered as actives, to mirror the training set, 
also measured at 1 µM. A multidimensional optimization was performed, initially varying the cut-off C and the 
two neighbouring values, Nm and Nk (Figure S8.2A and S8.2B). The number of repetitions was also optimized, 
as depicted in Figure S8.2C. The best predictions were found for 9 neighbouring molecules, 3 neighbouring 
kinases, and 10 repetitions. The cut-off percentage was found to be a valuable tuning parameter to either have 
a high sensitivity (low C) or rather a high positive predictive value (high C), which can be chosen depending on 
the projects specific demands. This is further illustrated by the ROC-curve in Figure 8.5. The mid-way value of 
C = 30% is recommended. The area under the ROC-curve is 0.76, scoring it as ‘fair’ according to standard 
criteria.  
 

Comparison with state of the art methods 

With this optimization of the model completed, the next step was to compare the new t-SNE based model with 
the state of the art in literature. To this end, three proteochemometric (PCM) models and a QSAR model were 
trained according to published procedures, and the DDM method was compared with those and a random 
model.12,37 The result of this comparison is summarized in Figure 8.4, which shows that the DDM model is 
significantly better than both the random model and the QSAR, and performs similarly when compared to the 
PCM variants. A variant of the DDM model where the standard Tanimoto distances were used to find the 
nearest molecular neighbours in the first step of the workflow was also included in the comparison. t-SNE was 
used in the kinase lookup step. This DDM-Tanimoto variant performed rather well, and not significantly worse 
than our t-SNE based approach, for this test set.  
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Figure S8.2 | Optimization of the model parameters using the Karaman et al. dataset as test set. Optimized 
parameters are the number of neighbouring molecules used (Nm), the number of neighbouring kinases used, Nk, and 
the cut-off inhibition percentage deemed active (C). Markers are sized based on the positive predictive value (PPV) 
and coloured based on the Matthews correlation coefficient (MCC). In A), all possible combinations are shown. In B), 
only the series for Nk = 3 is shown for clarity. 
 

Bioactivity datasets used 

Activity data for Karaman et al. and the Published Kinase Inhibitor Set by Elkins et al. was retrieved from the 
ChEMBL database version 23.33,38 Data was retrieved from a local SQL install, directly from the website or 
through the KNIME extensions provided by the EMBL-EBI.  
 

Kinase sequence information and bitstring 

Sequence information of the kinase domains was retrieved from the KinBase situated on kinase.com, based 
on the paper by Manning et al.16 Missing (pseudo)kinases were appended using data from the ChEMBL 
database version 23 and Uniprot.39 The mapping of ChEMBL, Uniprot and KinBase identifiers was performed 
based on the KinBase website and extensive manual curation. The kinase domains were aligned using the 
online Clustal Omega tool provided by the EMBL-EBI.40 The standard “Clustal w/o numbers” output generated 
was transformed to a bitstring using the amino acid fingerprints as provided in Heil et al.15 with the following 
additions: alignment dashes (-), stops (*) and blanks (X) were all considered empty, represented by 23 0’s.  
 

t-SNE algorithm 

All t-SNE embeddings were generated with the Python Scikit-learn (v. 0.19) implementation of the Barnes-Hut 
t-SNE algorithm, either implemented in a ‘Python for KNIME’ node or as part of a Python script.36  
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DBSCAN algorithm 

The Python implementation of DBSCAN, available through the Scikit-learn module Cluster (v. 0.19) was used.36 
The clustering quality metrics Silhouette Coefficient and Adjusted Rand Index were calculated with the Metrics 
module and the former was optimised by tuning the eps-parameter in steps of 0.05. For the PKIS inhibitors a 
minimal cluster size of 1 was chosen, for the more disperse plotted kinases the minimal cluster size was set 
to 10. Comparisons to manual attributions was done manually. Statistical evaluation was performed using 
Microsoft Excel 2013.  
 

Cheminformatics tools 

All molecular descriptors, molecular representations (SMILES, InChIKey) and fingerprints were generated using 
the RDKit software, either using the KNIME extensions or as the Python implementation.34  
 

QSAR and PCM models 

QSAR and PCM models were trained as has been described before but for PCM using the fully aligned 
sequences rather than the binding site and using classification rather than regression.12,37 PCM models were 
trained at an activity cut-off of 30%, 40%, and 50%. Pipeline Pilot 2016 (version 16.2.0.58 by BioVia) was used 
to process the data and random forests were trained in R (version 3.3, package randomforest) using 500 
trees, equalizing class sizes, and randomly sampling the square root of the total present descriptors at 
individual splits.41 Protein descriptors used were the first three z-scales with a mean value for each sequence 
for each z-scale.42 Chemical descriptors used were circular fingerprints with a diameter of 6 bonds (FCFP_6) 
and physicochemical descriptors as was done previously.37,43 
PCM models were trained on the full set of kinases and PKIs. QSAR models were trained per kinase but only if 
at least 5 active and 10 inactive PKIs per kinase where present (at a cut off of 30%). If no QSAR was trained 
missing predictions were completed to avoid bias and have the ability to compare identical prediction counts. 
This was obtained using a random number generator in the range of 0-1 where > 0.5 was deemed 'active' as 
was done previously.37  
Out of Bag error estimates of PCM models trained on the full set were 8.47% (30% cut off), 8.15 % (40% cut 
off), and 7.83 % (50% cut off). 
 

Docking of 5 and 6 in FLT3 crystal structure 

Docking and structure based modeling was performed in the Schrödinger suite.44 For 5 a DFG-in model was 
constructed on the basis of 4RT7 and 3LCD, in a similar fashion as has been done before,45 using the 
knowledge-based potential in Prime.46,47 Subsequently 5 was docked into this model using induced fit 
docking.48 For the induced fit docking a hydrogen bond constraint on the backbone of Cys96 was used. Since 
6 shares the same substructure as quizartinib, the crystal structure of FLT3 co-crystalized with quizartinib 
(4RT7)49 was used as a starting point. 6 was docked using Glide SP.50 Ligand surfaces, structure renderings 
and 2D interaction plots were generated using Discovery Studio Visualizer v16.1. 
 

Statistical methods 

Clustering enrichment was analysed using a hypergeometric test and was calculated using Microsoft Excel 
2013. Significance was attributed only if P < 0.0001.  
In the comparison of the quality of prediction of the various prediction models a regular 2-way ANOVA with 
Tukey’s multiple comparison test was performed using GraphPad Prism 7. Significance is attributed according 
to the standard GraphPad style: * p < 0.0332, ** p < 0.0021, *** p < 0.0002, **** p < 0.0001.  
 

High Troughput Screening FLT3 

20 nL of 2 mM inhibitor solution in DMSO (row 9-48) or control (DMSO, row 1-8) was dispensed in a 1536-well 
plate. 2 µL assay buffer (50 mM HEPES (pH 7.5), 1 mM EGTA, 10 mM MgCl2, 0.01% Tween-20, 2 mM DTT) 
without protein was loaded in row 5-6 as negative controls. Rows 1-4 and 7-48 were charged with 2 µL 0.75 
ng/µL FLT3 in assay buffer. The plates were spun down for 30 seconds at 187.5x g and incubated for 30 
minutes in the dark. Subsequently, 2 µL of substrate solution was added to all wells (50 mM HEPES (pH 7.5), 
1 mM EGTA, 10 mM MgCl2, 0.01% Tween-20, 2 mM DTT, 600 µM ATP, 12.5 nM Lance TK-peptide, 4 nM Lance 
anti-phosphotyrosine). The plates were spun down for 30 seconds at 187.5x g and incubated for 90 minutes 
in the dark at RT. Plates were then read on the Envision plate reader (Excitation 337 nm (laser), Emission first 
filter 615 nm, second filter 665 nm). Data was analysed using ActivityBase. Final assay concentrations: 10 µM 
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inhibitor, 300 µM ATP, 0.365 ng/µL FLT3, 6.25 nM (0.5 KM) Lance TK-peptide, 2 nM Lance anti-
phosphotyrosine, 0.5% DMSO.  
 

In vitro FRET based FLT3 assay 

In a 384-wells plate, 5 µL kinase+petide mix (0.06 ng/µL FLT3, 200 nM Lance TK-peptide) in assay buffer 
(50 mM HEPES (pH 7.5), 1 mM EGTA, 10 mM MgCl2, 0.01% Tween-20, 2 mM DTT) was dispensed. Seperately 
inhibitor solutions (10 µM – 0.1 pM) were prepared in assay buffer containing 400 µM ATP and 1% DMSO. 
5 µL of these solutions was dispensed and the plate was incubated for 90 minutes in the dark. After 90 
minutes the reaction was quenched by the addition of 10 µL of 20 mM EDTA containing 4 nM Lance anti-
phosphotyrosine. After thorough mixing it was incubated for 60 minutes in the dark. The FRET fluorescence 
was measured on a Tecan Infinite M1000 Pro plate reader (excitation 320 nm, emission first filter 615 nm, 
second filter 665 nm). Data was processed using Microsoft Excel 2013, pIC50 values were fitted using 
GraphPad Prism 7.0. Final assay concentrations during phosphorylation: 200 µM ATP, 0.03 ng/µL FLT3, 
100 nM Lance TK-peptide, 0.5% DMSO) 
 

In situ testing of kinase inhibitors 

MV4:11 cells were grown in IMDM with 10% fetal bovine serum at 37 °C under 5% CO2. For viability assays, 
10,000 cells were seeded per well in a 96-wells plate and inhibitors were added at the indicated concentration. 
Three days later, cell viability was measured using the Cell Titer Blue viability assay (Promega), fluorescence 
was measured using the Clariostar (BMG Labtech). Relative survival was normalized to the untreated control 
and corrected for background signal. 
 

Synthesis of in situ tested kinase inhibitors 

General remarks 

All reactions were performed using oven- or flame-dried glassware and dry solvents. Reagents were purchased 
from Sigma-Aldrich, Acros, and Merck and used without further purification unless noted otherwise. All 
moisture sensitive reactions were performed under a nitrogen atmosphere.  
1H and 13C NMR spectra were recorded on a Bruker AV-400 (400 MHz). Used software for interpretation of 
NMR-data was Bruker TopSpin 1.3 and MestreNova 11.0. Chemical shift values are reported in ppm with 
tetramethylsilane or solvent resonance as the internal standard (CDCl3: δ 7.26 for 1H, δ 77.16 for 13C; DMSO-
d6: δ 2.50 for 1H, δ 39.52 for 13C). Data are reported as follows: chemical shifts (δ), multiplicity (s = singlet, d 
= doublet, dd = double doublet, td = triple doublet, t = triplet, q = quartet, bs = broad singlet, m = multiplet), 
coupling constants J (Hz), and integration. Liquid chromatography was performed on a Finnigan Surveyor 
LC/MS system, equipped with a C18 column. Flash chromatography was performed using SiliCycle silica gel 
type SiliaFlash P60 (230−400 mesh). TLC analysis was performed on Merck silica gel 60/Kieselguhr F254, 
0.25 mm. Compounds were visualized using KMnO4 stain (K2CO3 (40 g), KMnO4 (6 g), and water (600 mL)) or 
CAM stain (Ce(NH4)4(SO4)4·2H2O (ceric ammonium sulfate: 10.0 g); ammonium molybdate (25 g); conc. H2SO4 
(100 mL); H2O (900 mL)). Preparative HPLC (Waters, 515 HPLC pump M; Waters, 515 HPLC pump L; Waters, 
2767 sample manager; Waters SFO System Fluidics Organizer; Waters Acquity Ultra Performance LC, SQ 
Detector; Waters Binary Gradient Module) was performed on a Waters XBridgeTM column (5 µM C18, 150 x 
19 mm). Diode detection was done between 210 and 600 nm. Gradient: ACN in (H2O + 0.2% TFA).  
 

1-(3,4,5-Trimethoxyphenyl)guanidine (7)  

3,4,5-trimethoxyaniline (500 mg, 2.73 mmol) and cyanamide (574 mg, 13.6 mmol) were 
dissolved in ethanol (15 mL) before nitric acid (69%wt, 0.20 mL, 3.0 mmol) was added. 
The mixture was refluxed for 40 h and concentrated in vacuo. The resulting residue was 
suspended in diethylether (10 mL) and kept at 4 °C overnight. It was then filtered and 
air dried. The nitrate salt of the title compound was obtained as a dark purple solid (0.60 

g, 2.1 mmol, 76%). 1H NMR (400 MHz, DMSO) δ 9.51 (bs, 1H), 8.73 – 8.12 (m, 2H), 6.55 (s, 2H), 5.44 (s, 2H), 
3.77 (s, 6H), 3.65 (s, 3H). 13C NMR (101 MHz, DMSO) δ 161.53, 155.86, 153.38, 130.67, 102.91, 60.06, 
56.01. 
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1-(6-Chloropyridin-3-yl)-3-(dimethylamino)prop-2-en-1-one (8) 

1-(6-chloropyridin-3-yl)ethan-1-one (1.00 g, 6.43 mmol) was dissolved in toluene (20 
mL) and dimethylformamide diethylacetal (1.65 mL, 9.64 mmol) was added. The 
mixture was stirred for 16 h at 80 °C. TLC showed near complete conversion. The 
mixture was cooled to 50 °C and slowly concentrated at reduced pressure. The 

resulting crude residue was dissolved in warm toluene and pentane was slowly added. A yellow precipitate 
formed which was filtered off and rinsed with pentane. After drying this yielded the title compound (1.08 g, 
5.12 mmol, 80%) as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 8.85 (dd, J = 0.7, 2.5 Hz, 1H), 8.17 (dd, J = 
2.5, 8.3 Hz, 1H), 7.86 (d, J = 12.2 Hz, 1H), 7.38 (dd, J = 0.8, 8.2 Hz, 1H), 5.63 (d, J = 12.1 Hz, 1H), 3.20 (s, 
3H), 2.97 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 184.90, 155.07, 153.38, 149.08, 138.10, 134.63, 124.10, 
91.54, 45.46, 37.60. 
 

4-(6-Chloropyridin-3-yl)-N-(3,4,5-trimethoxyphenyl)pyrimidin-2-amine (5) 

To a solution of 7 (376 mg, 1.30 mmol) and 8 (250 mg, 1.19 mmol) in ethanol 
(20 mL) K2CO3 (492 mg, 3.56 mmol) was added. The resulting mixture was 
refluxed for 20 h. The reaction was quenched by the addition of saturated 
aqueous Na2CO3 (15 mL) and the water layer was extracted with EtOAc (3x 
25 mL). The combined organic layers were washed with brine, dried (MgSO4), 
filtered and concentrated in vacuo. The resulting crude was purified using 

silica column chromatography (50-70% EtOAc/pentane). The resulting yellow solid was crystallised from warm 
diethylether to yield the title compound (137 mg, 0.37 mmol, 31%) as light yellow crystals. 1H NMR (400 MHz, 
CDCl3) δ 9.07 (dd, J = 0.7, 2.5 Hz, 1H), 8.52 (d, J = 5.2 Hz, 1H), 8.32 (dd, J = 2.5, 8.3 Hz, 1H), 7.46 (dd, J = 
0.7, 8.4 Hz, 1H), 7.38 (s, 1H), 7.14 (d, J = 5.2 Hz, 1H), 6.99 (s, 2H), 3.90 (s, 6H), 3.85 (s, 3H). 13C NMR (101 
MHz, CDCl3) δ 161.53, 160.28, 159.11, 153.74, 153.47, 148.62, 137.11, 135.30, 131.78, 124.52, 108.15, 
97.42, 61.17, 56.26. 
 

4-(Pyridin-4-yloxy)aniline (9) 

4-aminophenol (2.18 g, 20 mmol), 4-chloropyridine (3.15 g, 21 mmol) and NaOH (2.0 g, 
50 mmol) were dissolved in DMSO (50 mL) and heated to 100 °C for 17 h. The mixture 
was cooled to RT and poured into ice water (300 mL). This was extracted with 10% 

MeOH in chloroform (4x 150 mL). The combined organic layers were washed with brine (2x 150 mL), dried 
(Na2SO4), filtered and concentrated in vacuo. The residue was flushed over a silica pad with pure EtOAc and 
concentrated to yield the title compound as a white solid (2.5 g, 13 mmol, 65%). 1H NMR (400 MHz, CDCl3) δ 
8.51 – 8.33 (m, 2H), 6.97 – 6.85 (m, 2H), 6.85 – 6.77 (m, 2H), 6.77 – 6.62 (m, 2H), 3.50 (s, 2H). 13C NMR 
(101 MHz, CDCl3) δ 165.89, 151.25, 145.80, 144.25, 122.12, 116.36, 111.70. 
 

1-(5-(tert-Butyl)isoxazol-3-yl)-3-(4-(pyridin-4-yloxy)phenyl)urea (6) 

3-amino-5-tert-butylisooxazole (0.20 g, 1.4 mmol) was dissolved in DCM (14 
mL) and DIPEA (0.50 mL, 2.9 mmol) was added. The mixture was cooled to 0 
°C and triphosgene (0.42 g, 1.4 mmol) was added. After stirring the mixture 
for 19 h at RT it was refluxed for 1 h before the reaction was quenched by the 
addition of saturated aqueous NaHCO3 (10 mL). The water layer was separated 
and extracted with DCM (3x 10 mL). The combined organic layers were washed 

with brine, dried (Na2SO4) and filtered. The solvent was removed under reduced pressure and the crude 
isocyanate was dissolved in 1,4-dioxane (14 mL). 9 (0.29 g, 1.6 mmol) was added to the solution and the 
mixture was heated to 110 °C for 2.5 h. After cooling to RT the mixture was diluted with DCM (30 mL) and 
saturated aqueous NaHCO3 (30 mL) was added. The water layer was separated and extracted with DCM 
(3x 30 mL). The combined organic layers were washed with brine, dried (Na2SO4), filtered and concentrated in 

vacuo. The resulting yellow oil was purified by preparative HPLC to yield the title compound as a slightly yellow 
oil (0.22 g, 0.62 mmol, 44%). 1H NMR (400 MHz, CDCl3) δ 9.41 (s, 1H), 8.67 (s, 1H), 8.47 (dd, J = 1.5, 5.1 Hz, 
2H), 7.63 – 7.54 (m, 2H), 7.10 – 7.03 (m, 2H), 6.89 – 6.81 (m, 2H), 5.95 (s, 1H), 1.36 (s, 9H). 13C NMR (101 
MHz, CDCl3) δ 181.60, 165.38, 158.45, 152.58, 151.22, 149.95, 135.58, 122.15, 121.60, 112.17, 91.94, 
33.08, 28.75.  
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Supplementary Tables and Figures 

Table S8.1 | Overview of prediction qualities split per compound. Data corresponds to R = 10 and C = 30%.  
PPV = positive predictive value, NPV = negative predictive value, MCC = Matthew’s correlation coefficient. 

CHEMBL ID 
True 

positives 
False 

positives 
True 

negatives 
False 

negatives 
Sensi-
tivity 

Speci-
ficity 

PPV NPV MCC 

CHEMBL10 4 8 254 13 0.24 0.97 0.33 0.95 0.24 

CHEMBL101253 7 41 230 1 0.88 0.85 0.15 1.00 0.32 

CHEMBL103667 5 21 228 25 0.17 0.92 0.19 0.90 0.09 

CHEMBL119385 2 11 265 1 0.67 0.96 0.15 1.00 0.31 

CHEMBL124660 9 66 202 2 0.82 0.75 0.12 0.99 0.25 

CHEMBL1336 20 28 217 14 0.59 0.89 0.42 0.94 0.41 

CHEMBL1421 19 5 207 48 0.28 0.98 0.79 0.81 0.40 

CHEMBL14762 0 49 227 3 0.00 0.82 0.00 0.99 -0.05 

CHEMBL1721885 35 29 147 69 0.34 0.84 0.55 0.68 0.20 

CHEMBL191003 20 43 174 42 0.32 0.80 0.32 0.81 0.12 

CHEMBL215152 1 5 258 15 0.06 0.98 0.17 0.95 0.07 

CHEMBL221959 1 46 226 6 0.14 0.83 0.02 0.97 -0.01 

CHEMBL223360 26 62 187 4 0.87 0.75 0.30 0.98 0.41 

CHEMBL24828 20 16 217 26 0.43 0.93 0.56 0.89 0.41 

CHEMBL259084 20 65 191 3 0.87 0.75 0.24 0.98 0.37 

CHEMBL261849 4 74 201 0 1.00 0.73 0.05 1.00 0.19 

CHEMBL278041 2 14 249 14 0.13 0.95 0.13 0.95 0.07 

CHEMBL296468 2 3 250 24 0.08 0.99 0.40 0.91 0.14 

CHEMBL31965 3 3 261 12 0.20 0.99 0.50 0.96 0.29 

CHEMBL388978 57 3 42 179 0.24 0.93 0.95 0.19 0.16 

CHEMBL428690 2 19 228 30 0.06 0.92 0.10 0.88 -0.02 

CHEMBL440084 0 12 263 4 0.00 0.96 0.00 0.99 -0.03 

CHEMBL477772 22 56 185 16 0.58 0.77 0.28 0.92 0.26 

CHEMBL483321 2 4 272 1 0.67 0.99 0.33 1.00 0.46 

CHEMBL522892 24 31 183 41 0.37 0.86 0.44 0.82 0.24 

CHEMBL535 44 30 117 89 0.33 0.80 0.59 0.57 0.14 

CHEMBL553 3 3 253 20 0.13 0.99 0.50 0.93 0.23 

CHEMBL554 2 0 277 0 1.00 1.00 1.00 1.00 1.00 

CHEMBL558752 10 72 185 12 0.45 0.72 0.12 0.94 0.10 

CHEMBL572878 2 11 199 67 0.03 0.95 0.15 0.75 -0.05 

CHEMBL572881 6 16 242 15 0.29 0.94 0.27 0.94 0.22 

CHEMBL573339 0 58 219 2 0.00 0.79 0.00 0.99 -0.04 

CHEMBL574738 48 12 165 54 0.47 0.93 0.80 0.75 0.47 

CHEMBL607707 11 45 203 20 0.35 0.82 0.20 0.91 0.14 

CHEMBL608533 11 10 169 89 0.11 0.94 0.52 0.66 0.10 

CHEMBL91829 1 12 240 26 0.04 0.95 0.08 0.90 -0.01 

CHEMBL939 3 15 254 7 0.30 0.94 0.17 0.97 0.18 

CHEMBL941 10 115 153 1 0.91 0.57 0.08 0.99 0.19 

Average 12.05 29.29 211.58 26.18 0.38 0.88 0.32 0.89 0.21 
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Table S8.2 | Summary of the off-target screen performed for the in situ tested compounds 5 and 6. Data are 
averages of two duplicates, and are percentages activity compared to vehicle control. 

5 6 
Gene 
Name 

Uniprot 
accession 

CHEMBL ID 
Remaining 
activity (%) 

Gene 
Name 

Uniprot 
accession 

CHEMBL ID 
Remaining 
activity (%) 

ABL1 P00519 CHEMBL1862 26 ABL1 P00519 CHEMBL1862 23 

ABL2 P42684 CHEMBL4014 12 ABL2 P42684 CHEMBL4014 28 

AurA O14965 CHEMBL4722 2 AurA O14965 CHEMBL4722 60 

AurB Q96GD4 CHEMBL2185 2 AurB Q96GD4 CHEMBL2185 60 

AurC Q9UQB9 CHEMBL3935 8 AurC Q9UQB9 CHEMBL3935 91 

BLK P51451 CHEMBL2250 34 DDR1 Q08345 CHEMBL5319 7 

BRK Q13882 CHEMBL4601 61 DDR2 Q16832 CHEMBL5122 1 

EGFR P00533 CHEMBL203 96 EphA3 P29320 CHEMBL4954 9 

EphA4 P54764 CHEMBL3988 72 EphA4 P54764 CHEMBL3988 28 

EphA5 P54756 CHEMBL3987 52 EphA5 P54756 CHEMBL3987 7 

EphB2 P29323 CHEMBL3290 14 EphA7 Q15375 CHEMBL4602 -2 

EphB3 P54753 CHEMBL4901 100 EphB1 P54762 CHEMBL5072 3 

ErbB2 P04626 CHEMBL1824 94 EphB2 P29323 CHEMBL3290 5 

ErbB4 Q15303 CHEMBL3009 108 EphB3 P54753 CHEMBL4901 55 

FER P16591 CHEMBL3982 52 FER P16591 CHEMBL3982 86 

FES P07332 CHEMBL5455 19 FES P07332 CHEMBL5455 86 

FGFR1 P11362 CHEMBL3650 58 FGFR1 P11362 CHEMBL3650 6 

FGFR3 P22607 CHEMBL2742 48 FGFR3 P22607 CHEMBL2742 29 

FGFR4 P22455 CHEMBL3973 91 FGFR4 P22455 CHEMBL3973 70 

FGR P09769 CHEMBL4454 30 FLT1 P17948 CHEMBL1868 1 

FLT1 P17948 CHEMBL1868 1 FLT3 P36888 CHEMBL1974 1 

FLT3 P36888 CHEMBL1974 3 FLT4 P35916 CHEMBL1955 -1 

FLT4 P35916 CHEMBL1955 1 FMS P07333 CHEMBL1844 -1 

FMS P07333 CHEMBL1844 -1 KDR P35968 CHEMBL279 7 

FYN P06241 CHEMBL1841 9 KIT P10721 CHEMBL1936 7 

HCK P08631 CHEMBL3234 17 MUSK O15146 CHEMBL5684 13 

KDR P35968 CHEMBL279 5 PDGFRa P16234 CHEMBL2007 15 

KIT P10721 CHEMBL1936 2 PDGFRb P09619 CHEMBL1913 9 

LCK P06239 CHEMBL258 15 RET P07949 CHEMBL2041 -2 

LYN P07948 CHEMBL3905 26 TIE2 Q02763 CHEMBL4128 1 

PDGFRa P16234 CHEMBL2007 47 TRKA P04629 CHEMBL2815 5 

PDGFRb P09619 CHEMBL1913 46 TRKB Q16620 CHEMBL4898 0 

RET P07949 CHEMBL2041 53 TRKC Q16288 CHEMBL5608 -2 

SRC P12931 CHEMBL267 4      

TNK1* Q13470 CHEMBL5334 -      

YES P07947 CHEMBL2073 10         

*TNK1 was not available in the KinomeProfiler™ 
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Table S8.3 | Overview of the molecular structures and biological activity for the 20 purchased Enamine 
small molecules. Biological data are averages of two duplicates, and are percentages activity remaining 
compared to vehicle control. 

Predicted for PAK2 

Enamine ID Structure HIPK3 inhibition (%) PAK2 inhibition (%) 

Z1272746053 

N
N

N

Cl

N HN

O

S

 

-4 -6 

Z1537171258 

 

2 -5 

Z1557057955 

 

3 1 

Z1695667186 

 

-2 8 

Z226653560 

 

-2 5 

Z228788294 

 

-3 2 

Z237652740 

 

2 3 

Z316373096 

 

7 5 

Z367648718 

 

1 10 

Z785216724 

 

-1 8 
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Table S8.3 (continued) | Overview of the molecular structures and biological activity for the 20 purchased 
Enamine small molecules. Biological data are averages of two duplicates, and are percentages activity 
remaining compared to vehicle control. 

Predicted for HIPK3 

Enamine ID Structure HIPK3 inhibition (%) PAK2 inhibition (%) 

Z1041114058 

 

-6 11 

Z1102997288 

 

3 -1 

Z1272153794 
 

-4 -8 

Z1281728869 

 

-1 2 

Z1502786962 

 

-6 9 

Z1625107708 

 

1 9 

Z17559373 

 

-1 -11 

Z31057533 

 

-2 6 

Z644918986 

 

2 13 

Z909646456 

 

0 -2 
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Figure S8.3 | t-SNE embedding of physicochemical fingerprint of the kinase domains of 
535 human kinases as in Figure 8.2. Markers are coloured based on the presence (green) 
or absence (grey) in the Elkins et al. PKIS dataset. 
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