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A very large part of space-time must be investigated,
if reliable results are to be obtained.
Alan Turing

Drug Discovery Maps visualizes
and predicts kinome-inhibitor
interaction landscapes

Part of this research was published in A.P.A. Janssen et al., J. Chem. Inf. Model. acs.jcim.8b00640 (2018).

Introduction

Protein kinases are an important class of drug targets due to their key role in intracellular
signal transduction processes involved in cancer, auto-immune diseases, and
(neuro)inflammation.12 The therapeutic value of the protein kinase family is demonstrated
by the 38 kinase inhibitors currently approved by the FDA and the plethora of molecules
being tested in clinical trials for this enzyme family.3 It is anticipated that these clinically
approved kinase inhibitors (KI) can serve as starting points to identify novel drug candidates
for other kinases.
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Most Kis interact with the structurally and functionally conserved ATP-binding site,
present in all >500 human protein kinases. It is well established that Kis bind multiple
members of the kinase family, and that this may affect their efficacy and toxicity.* Detailed
investigation of the target-interaction landscape of Kls is, therefore, important to
understand their molecular mode of action and offers the opportunity to identify new
starting points for other therapeutically interesting kinases. Many complex, high-
dimensional datasets with structure-activity relationships (SAR) of Kls over a broad
selection of kinases have become available (Table 8.1).5-10 The wealth of data present in
literature has spurred the development of several computational platforms to predict
kinase activities of inhibitors.11.12 These reported highly specialised computational models
which were able to predict, to some extent, the inhibition profiles of inhibitors against the
kinome.

Given the large amount of data available and the apparent success of previous attempts
to use these datasets in a predictive manner it was expected that the strategies introduced
in Chapter 7 could be applied to the field of kinase inhibitors. This approach was dubbed
Drug Discovery Maps (DDM), a machine learning tool that allows the visualization and
prediction of target-ligand interaction landscapes.

Table 8.1 | Summary of large experimental (partially) public kinome screens for sets of kinase inhibitors.
Numbers of inhibitors and kinases are as reported in original publications and include mutants, splicing
variants and separate kinase domains from the same kinase. Coverage represents the percentage of possible
kinase-inhibitor pairs for which a data point is reported.

Set No. of inhibitors k'i\lnoésoefs Dosage dat'\; Or.)c())ifnts Coverage
Karaman et al. 38 317 Dose response** 12046 100%
Metz et al. 3858 172 Dose response 258094 38.9%
Anastassiadis et al. 178 300 Single dose 52834 98.9%
Davis et al. 72 442 Dose response** 31824 100%
Elkins et al. 367* 224 Two doses 81940 99.9%

* contains duplicate molecules
** only if activity is observed at initial 10 uM single dose screen

t-SNE reliably reproduces human chemotype assignments

In Chapter 7 it was demonstrated that t-SNE is able to visualize molecular similarity in a
drug-like set of 2774 clinically applied molecules. For the current purposes, it had to be
verified that t-SNE is still able to recognize molecular similarity within a smaller set of drug-
like molecules that is more homogenous and has higher molecular similarity. To this end,
a t-SNE-mediated clustering on the molecules from the Published Kinase Inhibitor Set
(PKIS) was performed.13 The PKIS is a 364-member library of molecules assembled by
GlaxoSmithKline that are all classified as inhibitors of protein kinases. The PKIS set
represents 31 manually annotated chemotypes and their activity has been measured and
published for 200 kinases (Table 8.1, last entry).° The resulting map of chemical space
representing the Kls (Figure 8.1A) was coloured according to the manual chemotype
attribution and showed clear co-localisation of chemotypes. A more in-depth analysis by the
unsupervised cluster assignment algorithm DBSCAN confirmed the initial visual inspection
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and shows high statistical correlation between the autonomously derived clustering and
the human annotation.1* Of the 31 chemotypes annotated, 23 were fully comprised in one
computationally assigned cluster. For example, the orange and gold clusters on the left of
the map are completely isolated and comprise all compounds of those chemotypes (Figure
8.1B). An enlargement of the cluster dominated by 3-amino-pyrazolopyridines (Figure 8.1B)
showed that in fact three different chemotypes were included. Compounds 1-3 are
examples of each, and they showed that indeed these compounds are highly similar, and
perhaps arbitrarily assigned to different chemotypes. The ‘stray’ sky blue compound 4 is
part of a chemotype that is less well defined in t-SNE space, but the similarities with
compounds 1-3 are obvious. This analysis showed that t-SNE is capable to recognize and
cluster molecular entities in a highly specific manner and that it allows the visual inspection
of high-dimensional chemical structural data, or chemical space, in an easy and intuitive
way.
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Figure 8.1 | A) t-SNE embedding of the Published Kinase Inhibitor Set. Embedding is based on the 4096-bit
Morgan fingerprint. t-SNE settings: perplexity = 50, learning rate = 50, iterations = 10,000. Markers are
coloured according to 31 manually attributed chemotypes. B) t-SNE embedding as in A) but including a
background of the DBSCAN generated clustering, coloured by the dominant chemotype in that cluster (grey
are singletons or duos). Markers are coloured according to the 31 chemotypes defined by Elkins et al. as in A).
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t-SNE map of the kinase target space

To generate a visualization of the target space, and to quantify the similarity of kinases,
first an alignment of the amino acid sequences of the whole kinase domains containing the
ATP-binding pocket was created. This was translated to a fingerprint based on physico-
chemical properties of the amino acids, analogous to the methods used in Chapter 7.15
These fingerprints were used to create a two-dimensional map of the target space by the
t-SNE algorithm. The resulting embedding (Figure 8.2A) is remarkable, as it almost
seamlessly recreates the phylogenetic tree published by Manning et al. in 2002.16 To assign
the kinases to clusters, the coordinates of the t-SNE embedding were fed into the DBSCAN
algorithm. All ten assigned clusters were significantly (P < 0.00041, Hypergeometric test)
enriched for a specific kinase group as assigned by Manning et al. (Figure 8.2A). Closer
inspection of some of the kinases unassigned by DBSCAN reveals that they belong to
distinct branches of the phylogenetic tree, corresponding with their separation from the
main clusters. As an example, the four tyrosine kinases (TK) in the far right of the
embedding (burgundy) all belong to the JAK family (JAKZ, 2, 3 and Tyk2), but only represent
their second kinase domain. The first kinase domain is more closely associated with the
rest of the TK group, and lies just outside the DBSCAN assigned cluster. The close
association of the second kinase domains with the RGC cluster (coloured brown) is
especially striking, as these domains, just as the RGC kinases, are considered
pseudokinases. The same holds true for MLKL, IRAK2 and IRAK3. Intriguingly, the IRAK
family of TKL kinases has four members, of which IRAK1 and IRAK4 are catalytically active,
whereas IRAK2 and IRAK3 are not.27 In the t-SNE embedding, the former are located in the
major TKL cluster (orange) whereas the latter are actually assigned to the RGC-dominated
cluster. MLKL has also been shown to indeed lack catalytic activity in at least one report.18

Another interesting feature is the separation of a group (left of plot) of TKL kinases from
the major cluster. This subset features all but one of the STKR family of cell surface bound
receptor kinases. Upon closer inspection, even the subfamilies of STRK1 and -2 are
discernible. Strikingly, the MISR2 (AMHR2) kinase receptor is located with kinases
categorised as ‘Other’. This receptor kinase has an atypical DFG motif (DLG), and as such
can indeed be classified as a pseudokinase, although phosphorylating activity has
experimentally been shown.1?® The other members of the STKR family do all share the
conserved DFG motif. Finally, on the lower side of the t-SNE plot several AGC coloured
kinases have been clustered with the CAMK kinases. These actually represent the second
kinase domains of the RSK family, which were also attributed to the CAMK group by
Manning et al.16

In summary, this analysis of target space of the binding site of protein kinase domains
indicated that this embedding is able to recognize overall similarity but also detect subtle
differences between the different binding domains of most kinase inhibitors.



Drug Discovery Maps visualizes and predicts kinome-inhibitor interaction landscapes | 155

CMGC

t-SNE2

CAMK

t-SNE1

DBSCAN cluster ™0 W1 2 W3 4 5 *6 W7 N3 N9

Group @ AGC @ Atypical @ CAMK @CK1 © CMGC @ NDK
O Other @ PKL @ RGC @STE oK @ TKL

Figure 8.2 | t-SNE visualization of kinase domains reveals phylogenetic information: A) t-SNE embedding of
physicochemical fingerprint of the kinase domains of 535 human kinase domains. t-SNE settings: perplexity = 50,
learning rate = 50, iterations = 25,000. Arbitrary t-SNE coordinates are rotated to match dendrogram orientation of
Manning et al. Markers are coloured according to the 12 groups defined by Manning et al., background is coloured
based on the DBSCAN generated clustering, coloured by the dominant kinase group in that cluster (blanks are
unclustered kinases). B) Manning et al. manually curated kinome dendrogram, overlaid with circles coloured
according to the background colouring from the t-SNE map in A), based on the unsupervised DBSCAN clustering.20

DDM can predict target-ligand interaction landscapes

Based on the successful analysis of the chemical and target space of kinases and their
inhibitors, a workflow was set up to predict the activity of novel compounds for the entire
kinome. The bioactivity data measured by Elkins et al. for the Published Kinase Inhibitor
Set was used as training set, as it contains the most unique interactions of all open datasets
(Table 8.1).° The optimisation of the workflow with all parameters is described in more
detail in the Methods. The final architecture of the algorithm is depicted in Figure 8.3,
illustrated for the EGFR inhibitor erlotinib. At first, a t-SNE embedding is generated where
erlotinib is mapped onto the chemical space of the PKIS (top left). This information is used
to find the 9 most similar molecules (top right). Of these, the inhibition data measured by
Elkins et al. is averaged, and all kinases above a threshold value C are considered targets
(lower right). These kinases are then looked up in the target space map (Figure 8.2A), and
the most similar kinases are appended (lower left) to yield the final prediction (centre). As
the molecular t-SNE embedding is slightly stochastic, the described process is repeated
several times (R) and the number of times a kinase is predicted is tracked.
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Figure 8.3 | Schematic overview of the DDM workflow. In this example, the targets of erlotinib are predicted.
Based on a t-SNE embedding (top left) the PKIS inhibitors nearest to erlotinib are found, depicted in the top
right panel. For these, the inhibition data as measured by Elkins et al. is averaged and used as initial prediction.
These targeted kinases are then looked up in the t-SNE embedding in the lower left panel, where the most

similar kinases are added to yield the final

prediction (centre).

The DDM model was validated using an independent dataset generated by Karaman et
al.> The resulting prediction statistics for each of the 38 compounds in this test set are
summarised in Table S8.1. The average positive prediction value (PPV) was 40%, with a
Matthews correlation coefficient (MCC) of 0.21. These statistics were compared with
previously published methods, and it was found that DDM performed better than QSAR-
models and was equal in performance to random forest based proteochemometric models
(Figure 8.4). A receiver operating characteristic (ROC) analysis of the performance of DDM
on this test set shows an area under the curve (AUC) of 0.76 (Figure 8.5). Taken all together,
a novel machine learning model to predict kinome-inhibitor landscapes was developed and

validated.
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Figure 8.4 | Statistical comparison of the new t-SNE based model with four models based on published
procedures. Bars denote mean + SD of the 38 inhibitors. Significant improvements over random have been
highlighted, * p < 0.0332, ** p < 0.0021, *** p < 0.0002, **** p < 0.0001 (Two-way ANOVA, Tukey’s
multiple comparison test). The relatively low PPV and high NPV for the random predictions are caused by the
activity bias in the data set (13% active vs 87% inactive).
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Figure 8.5 | Receiver operating characteristic curve of the test set predictions
with varying cut-off C values. Marker labels represent C values. The area under
the curve is 0.76, with the maximum deviation from random at C values between
25 and 35%. Axes have been normalized to take into account the inability to
predict all kinases based on the PKIS coverage.

Discovery of novel FLT3 inhibitors using DDM

To investigate the utility of the model in early drug development, it was applied to the
identification of new inhibitors for FMS-like Tyrosine kinase 3 (FLT3). FLT3 is implicated in
advanced myeloid leukaemia, where approximately 30% of patients carry an internal
tandem duplication (ITD) in their FLT3 gene that activates the kinase and acts as a driver
mutation.2! Recently, midostaurin has been FDA approved for the treatment of AML
patients and several other inhibitors are currently being tested in clinical trials. However,
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fast adaptive mutations in the FLT3 gene quickly result in drug-induced resistance of AML,
warranting the search for novel chemotypes to inhibit this kinase. To this end, the DDM
model was used to predict the kinome-ligand interaction landscape of a small kinase-
focused library of 1152 molecules. They were analyzed using various values for the activity
cut-off C, and were ultimately filtered using C = 40%, and a prediction count of at least 9
out of 10 runs, to have a balanced number of molecules to be tested. These stringent cut-
offs yielded a workable set of 44 compounds predicted to be active against FLT3.

To validate our virtual DDM screen, a time-resolved fluorescence-resonance energy
transfer (FRET)-based biochemical assay was performed with all 1152 compounds against
FLT3, at an initial concentration of 10 uM. This screen yielded 184 actives, with >50% loss
of activity (16% of all compounds). Of these compounds, the plCso was measured, resulting
in 135 compounds with a plCso > 5, with a mean of 6.7 + 0.9. 18 of the 184 compounds
were part of the 44 compounds identified by the DDM screen, which results in a positive
predicted value (PPV; or hit rate) of 41% (Figure 8.6A, P < 0.0001 (Hypergeometric test)),
which is almost three-fold higher compared to the hit rate of the biochemical assay. Of note,
15 of the predicted compounds demonstrated an ICso of less than 2 uM (34%, P < 0.0001
(Hypergeometric test)) with an average plCso 7.3 + 1.1, and also included the most active
compound found in the screen (crenolanib, plCso of 9.0). The hit rate was nearly identical
to the validation statistics for the test set (Figure 8.4), where an overall PPV of 40% was
achieved. The same holds for the negative predictive value (89%) and the sensitivity (11%).
The successful application of the DDM model for the FLT3 screen may partially be attributed
to the high coverage for the TK family of kinases. Of note, the relatively low sensitivity (11%)
is a balanced choice between minimising the number of compounds to screen and finding
more actual hits. This can easily be tuned by varying the cut-off parameter.

Two of the predicted compounds, 5 and 6 (Figure 8.6B), were selected based on their
chemical properties, novelty regarding FLT3 inhibition, and their predicted interaction
profile (vide infra). These compounds were resynthesized using established methods (see
Methods). The activity of the compounds was confirmed in a FRET assay using recombinant
human FLT3 (Figure 8.6C). Compounds 5 and 6 showed a concentration-dependent activity
with plCsovalues of 7.3 + 0.1 and 8.8 + 0.1, respectively. To determine the cellular activity
of both compounds, a cell proliferation assay using the FLT3-dependent AML cell line
MV4:11 was performed. Both compound 5 and 6 showed clear cellular activity with pECso
valuesof 6.3 + 0.1 and 8.5 + 0.1, respectively. In summary, the experimental validation of
the hits illustrated the power of the DDM workflow for compound selection in the lab.

Finally, to explain the potential binding mode of compound 5 and 6 both compounds
were docked using a DFG-in model (for 5) and the DFG-out structure 4RT7 (for 6) (Figure
8.6E). Compound 5 binds to the hinge region with the aminopyrimidine moiety in a fashion
typical for Type 1 kinase inhibitors. Compound 6 binds FLT3 in the DFG-out conformation
analogous to RIPK2 (5AR7) by forming hydrogen bonds to the DFG-motif using the urea
functionality and to the hinge region with the pyridine nitrogen.22
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Figure 8.6 | Discovery of novel FLT3 inhibitors using DDM. A) Scatter plot of all compounds and their inhibitory
effect at 10 yM as measured in the high-througput screen. DDM predicted molecules are marked red. B)
Structures of the two compounds re-synthesized and tested in situ against MV4:11 cells. C) Dose response
curves of compounds 5 and 6 against recombinant FLT3 in a FRET-based activity assay. Markers denote
mean + SD (N=4). Dotted lines denote 95% confidence interval of ECso fit. D) Dose response curves of
compounds 5 and 6 against MV4:11 leukaemia cells. Markers denote mean + SD (N=3). Dotted lines denote
95% confidence interval of ECso fit. E) Docking poses of 5 and 6 in the 3D models of FLT3 and the
corresponding 2D interaction plots.



160 | Chapter 8

Kinome activity spectrum prediction using DDM

To reduce potential toxic side effects, kinase cross reactivity is ideally minimized. DDM
enables rapid assessment of the predicted cross reactivity, because by default, DDM
predicts the interactions with the entire kinome. Thus far, however, only the FLT3 prediction
has been taken into account. As final validation, the activity of the two inhibitors on the
predicted off-targets was tested in biochemical assays. In addition to FLT3, compounds 5
and 6 were predicted to be active against 35 and 33 kinases, respectively (C = 40%,
R > 0.5). The off-targets were validated using KinaseProfiler™ by Eurofins at 10 yM. The
inhibition data per compound are shown in Table S8.2. For compound 5 the predictions
were 69% accurate (24 of the 35 off-targets confirmed (<50% remaining activity) with two
additional off-targets in the low 50% residual activity range). For compound 6 the prediction
was exceedingly accurate as 26 of the 33 targets (79%) were indeed inhibited >50%. To
conclude, DDM was able to predict the kinome-inhibitor interaction landscape at a relatively
high accuracy.

Predicting the activity profile of a large commercially available hinge binder set

The numerous recent approvals of small molecule kinase inhibitors by the FDA (6 in
2017, 13 since 2014) conceals the fact that none of the last 13 approvals targeted novel
kinases or mechanisms. A lot of therapeutic potential may still lie in currently untargeted
pathways. To aid in the elucidation of signalling pathways and validation thereof, easy
access to Kls is crucial to allow biochemical evaluation by acute inhibition of regulating
kinases. To facilitate this, and in the spirit of the Published Kinase Inhibitor Set goals, the
model was used to predict the interaction landscape of a large commercially available hinge
binder set. To generate a large dataset like this, the Enamine Kinase Hinge Region Directed
Library of 18,020 molecules was downloaded and all targets were predicted for these
molecules (Figure 8.7A).23 After filtering for unpredicted kinases and inert molecules all
18,020 inhibitors remain, with 290 kinases as targets (confidence > 0.1, C = 20%). The
distribution of the targets across the kinome tree is quite homogenous, as shown in Figure
8.7B. The only major group that is underrepresented are the TKL kinases, but this follows
directly from the t-SNE map depicted in Figure S8.1, as the biochemical data generated for
the PKIS set did not include many TKL kinases. In total 1,888,418 interactions are
predicted, with FLT3 as most inhibited kinase. For all compounds a value similar to the
Selectivity Entropy (Sse)) could also be calculated, when the confidence parameter is
assumed as the association constant (1/Kq).2* This parameter can be used to judge the
overall promiscuity of a selected inhibitor, to directly avoid pursuing the least selective
scaffold.

As an illustration of the use of this large dataset, two kinase targets were chosen based
on recent literature, for which few molecular modulators are known and which were not
included in the PKIS dataset. Homeodomain-interacting protein kinase 3 (HIPK3, also
known as FIST) is a protein kinase involved in transcription regulation, and is thought to
negatively regulate apoptosis in certain triple negative breast cancer cell lines. Inhibition of
this kinase may thus prove useful in treatment of these breast cancers.2> p21-activated
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Figure 8.7 | A) Heatmap of the enamine inhibitor set. Compounds are hierarchically sorted on the predicted
activity profile, kinases are sorted by group, then family. Cut-off value of 20% is used to increase sensitivity. B)
Traditional kinase dendrogram showing the predicted kinases in the Enamine heatmap in red, PAK2 and HIPK3
are highlighted in blue/green. Picture was generated using KinMap.20

kinase 2 (PAK2) is activated by CDC42 and RAC1. When active it stimulates cell survival
and growth. Recently it was implicated in oestrogen receptor positive (ER*) breast cancer
as tamoxifen resistance inducer.26 These two kinases belong to two distinct groups (CMGC
and STE, respectively), also distinct from FLT3 (TK) treated above. HIPK3 was predicted as
target quite frequently, leading to a set of 172 potential inhibitors (C = 30%, confi-
dence = 1). PAK2 on the other hand is only rarely predicted, and only 57 molecules were
found, with poor confidence (C = 20%, confidence = 0.1). The chosen targets are thus also
at the far ends of the potentially usable spectrum of the dataset. For both targets 10
molecules were selected based on availability, price, and selectivity entropy. These 20
compounds were purchased and screened in the KinaseProfiler™ platform against both
PAK2 and HIPK3. As there was no overlap between the two sets of predicted molecules,
the molecules chosen for HIPK3 were used as negative controls for PAK2 and vice versa to
check for specific enrichment by the model. The activity data, together with the molecular
structures, is summarized in Table S8.3. These data showed no identified actives for HIPK3
or PAK2. The high positive prediction value reached for FLT3 above is thus shown not to
hold for all targets.

Discussion

Drug discovery is still largely an empirical process, which is challenging, time consuming
and hard.2” The multi-parameter optimization of chemical structures, which is needed to
balance the activity and selectivity of a drug candidate, requires the understanding of high-
dimensional datasets. Machine learning algorithms have been employed to analyse and
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predict compound activity using large datasets with varying success.111228 Some of the
major drawbacks of most computational models are the complexity of the algorithm and
the ‘black box’ nature of the systems. Implementation and interpretation of such systems
is not trivial and, consequently, has not been widely adopted by the drug discovery
community.

Drug Discovery Maps provides an intuitive, data-driven (bio)molecule similarity clustering
procedure using state-of-the-art machine learning techniques. The model is based on the
t-Distributed Stochastic Neighbour Embedding algorithm to generate a visualization of
molecular similarity in two dimensions.29:30 Colour is used as a third dimension to inter-
actively visualize the biological activity or compound class (chemotype). DDM combines two
different maps. The first map depicts the chemical space in which compounds are clustered
based on their molecular similarity, whereas in the second map protein targets are
clustered based on the chemical similarity of the amino acids making up the kinase domain.
By combining both maps, DDM was able to predict bio-activities of small molecules across
a protein family. DDM was applied to visualize the chemical space of the Published Kinase
Inhibitor Set (PKIS) and the target space of the protein kinase family (kinome). It was able
to predict the kinome activity profile of another independent set of kinase inhibitors with
comparable or better scores than the currently available machine learning techniques.
DDM was then used to identify new hits for the oncogene FMS-like tyrosine kinase 3 (FLT3),
a validated therapeutic target for the treatment of acute myeloid leukaemia.3! The hits were
resynthesised and their biological activity was validated in biochemical and cellular assays.
Finally, the off-target profile of the hits as predicted by DDM was validated in a panel of
kinase assays. The method was then applied to a large commercially available screening
collection to predict the interaction landscape of over 18,000 inhibitors. 20 inhibitors,
predicted to be active for either HIPK3 or PAK2, were purchased and tested in vitro.
Unfortunately, none proved to be active, which was an illustration of the limits of our
approach. The average positive predictive value of 40% found in the validation and the FLT3
screen is apparently not universally achieved. This could be attributed to the sparse data
density around the two selected targets. Another factor to take into account is plain luck of
the draw (or lack thereof). If the PPV was 20%, there is an 11% chance of choosing 10
inactive inhibitors at random from a set of predicted actives.

Although the model performs equally well or better than the current computational drug
discovery tools, it is envisioned that it can be further improved when more comprehensive
datasets become available in the public domain. In the PKIS training set, 364 inhibitors
were only tested at two concentrations on approximately 200 unique wild-type kinases. A
more expansive dataset of a broader set of more diverse compounds tested on a larger
number of kinases in a concentration-response fashion would inherently improve the
predictions generated over the entire kinome.

The fact that a complete interaction profile is predicted uniquely enables the ranking of
predicted hits by selectivity, for example by calculation of the predicted selectivity entropy.24
This allows medicinal chemists in theory to rank scaffolds based on promiscuity and also
to select for accepted off-targets, that depend on the biological questions or medical
indication. This was demonstrated by the KinaseProfiler™ screen of predicted off-targets
for the two FLT3 inhibitors.
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To aid in the implementation of the tool as it is presented here, a Python based
executable including a Graphical User Interface has been made available online32 (Figure
8.8). The unpackaged Python script with a list of dependencies is also available. Also
included is a fully annotated KNIME workflow, to allow step by step execution and analysis.
This set of tools should enable the integration of this data-driven approach into any project
without any need of investments a priori.

To conclude, the machine learning algorithm Barnes-Hut t-SNE was successfully
implemented in a drug discovery setting to predict ligand-protein interaction landscapes.
The concept of DDM is applicable to a multitude of drug discovery challenges, which, given
the proper dataset, can be used to design a small molecule with a balanced set of physico-
chemical and biological properties as required for drug candidates. It is envisioned that
DDM may make the drug discovery process more efficient.

Drug Discovery Maps prediction

# rug Discovery Maps predictor I B Lo

-

‘ Welcome to the Drug Discovery Maps kinase inhibitor profiler,a
quick and intuitive way to assess the predicted interactions of
inhibitors and the kinome.

To start, simply enter the SMILES string of your choosing or

leave blank for an illustration using Erlotinib.
Set the cutoff Select the number .
value C: of repeats R: .
30 2 10 3 - h
-
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Figure 8.8 | Graphical User Interface (left) and generated output (right) of the Python implementation of the
DDM algorithm presented here. Only a SMILES string is required as input, output is provided as depicted on
the right. The packaged executable as well as the original Python script have been made available online.
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Methods

Training dataset selection

Several large datasets screening dozens of small molecule inhibitors against hundreds of kinases have
appeared in literature. Five datasets stand out when judged by size, these are summarized in Table 8.1. The
first large dataset (>10,000 data points) published was that of Karaman et al. in 2008.5 38 commercially
available kinase inhibitors were screened in vitro against 287 distinct kinases. In 2011, three large datasets
were reported. Metz et al.” published a brief communication describing their analysis of more than 250,000
data points. However, a large portion of these interactions have not been made public. Later that same year,
two papers were simultaneously published by Anastassiadis et al. and Davis et al.68 Both studies comprise
known kinase inhibitors and are screened against large portions of the kinome. The latest addition to the field
is that by Elkins et al., who screened the Published Kinase Inhibitor Set (PKIS) by GlaxoSmithKline in an in vitro
assay against 224 kinases, including a number of mutants.®13 This dataset is particularly interesting, as the
PKIS molecules are available free of charge for academic research, and the set contains the most drug like
molecules at the largest coverage. For these reasons, the dataset by Elkins et al. was chosen as a starting
point for our data-driven approach.

t-SNE for the Published Kinase Inhibitor Set

The curated dataset from ChEMBL 2333 was used, as the original publication contained some duplicate
molecules, and using the open source software package KNIME, the Morgan fingerprints (RD-Kit, 4096-bits,
radius = 2) were generated.33-35 These fingerprints were then clustered using the Python implementation of
Barnes-Hut t-SNE.36 Visual inspection of the embedding shows striking co-localization of the pre-defined
chemotypes when the chemotype annotation by Elkins et al. is used post-hoc to colour the markers (Figure
8.1). To quantify the clustering quality, the embedding was analyzed using the DBSCAN algorithm, where the
eps-parameter was optimized by maximizing the Silhouette Coefficient.14 The best clustering was found for
eps 0.9, for which the Adjusted Rand Index was 0.774. This unbiased clustering produced 33 clusters (Figure
8.1), 29 of which were significantly (P < 0.0001, hypergeometric test) enriched for a manually attributed
chemotype. Of the 31 chemotypes annotated, 23 were fully comprised in one computationally assigned
cluster. To inspect where it diverges from the human annotation, we inspected the cluster dominated by the
3-amino-pyrazolopyridines closer (Figure 8.1B). Inspection of the co-clustering of chemotypes shows that this
cluster also contains all 3-amino-pyrazolopyridazines and the indazole-3-carboxamides, structurally very
similar classes, as compounds 1, 2 and 3 illustrate.

Nearest neighbour selection of molecules using t-SNE and initial target predictions

By appending a molecule to the PKIS dataset and regenerating the t-SNE mapping, simple Euclidian distances
could be used to find its nearest neighbours. Selecting a set of neighbouring molecules should account for
most chemical variation, leading to an ‘average molecule’ highly similar to our (hew) molecule of interest.

For this set of neighbouring molecules, the interaction landscapes against 200 unique non-mutant kinases
have been experimentally measured, which can be averaged to yield a predicted inhibition value for the new
molecule for all these kinases. For the PKIS dataset inhibition was measured at 100 nM and 1 uM. The
inhibition values measured at 1 yM were used as these have the highest information density and in many
clinically relevant experiments low micromolar concentrations can (locally) be reached, thus warranting a
screen for off-targets at this concentration.

Expanding target prediction using t-SNE to find most similar kinases

To be able to extrapolate from the kinases measured in the PKIS set to incorporate more of the kinome, again
a t-SNE based approach was used. Of the entire kinome, the amino acid sequences of the kinase domains
containing the ATP-binding pocket, were alighed and expressed using a fingerprint based on physicochemical
properties, derived by Heil et al.15 The resulting t-SNE embedding is shown in Figure 8.2 of the main text, and
reproduced with annotation of the inclusion in the PKIS set (Figure S8.3). With this similarity mapping in hand,
the prediction based on the training dataset could be expanded to theoretically include the whole human
kinome, by considering neighbouring kinases as plausible additional targets. The distribution of the measured
kinases in the PKIS set is visualized in Figure S8.3 and is rather well, but certainly not homogeneous. This
means that for fair parts of the kinome no truly reliable prediction can be made based only on this set, as there
are no close neighbouring kinases measured. In the workflow all kinases are however still included, as this will
allow any dataset to be loaded as training set, without large adaptations.
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The DDM workflow

The workflow envisaged was briefly described in Figure 8.3, and is depicted in more detail in Figure S8.1: a
molecule of interest is converted, via its SMILES representation, into a 4096-bit fingerprint. This fingerprint is
appended to the PKIS molecules and a 2D t-SNE embedding is generated, as in Figure 8.1A. Based on this
embedding, the closest molecules are selected and their measured bioactivity is averaged and considered as
the activity prediction. Then, using the t-SNE embedding of the kinase domains (Figure 8.2), the kinases most
similar to the predicted kinases are appended to this prediction, which is then the output of the model. Since
the t-SNE algorithm is inherently stochastic, this whole process is repeated R times, after which the initial
outputs are weighed and finally returned as overall output. The model thus accepts any molecular string
representation and returns a list of predicted kinase targets, with a confidence parameter based on the
number of repetitions in which a specific target has been found. The PKIS molecules the prediction is based
upon can also be viewed, to assess with a chemical eye whether the prediction is to be trusted.

Several optimizable parameters naturally arise in this workflow: the number of considered neighbouring
molecules Nm, the number of considered neighbouring kinases Nk, the number of repetitions of the whole
process R, and the cut-off value C of the mean inhibition above which an inhibitor is deemed active against
that kinase.

cl 5 000000010000000000100 : - : . o - p
{ D via  oo0otoo0000000omoo00  With . P busling Kinase 1 I via cat via Kinase 1
000000000000001000000 - - " i t. H & "
N m Q0100000000000000000 ﬁ> .~' e Kinase 2 senmer ';;'. o ™ alignment Kinase 2
L N oo - -* Kinase 3 fel wvTee Kinase 3
g 000000000000000100000
(0000010000000G010000
Strtictie Fingerorint N, neighbours from > Cinitial Expand with N, using Final Repeat
Eelp t-SNE embedding prediction t-SNE embedding prediction ) R times

Figure S8.1 | Schematic overview of the DDM workflow. A chemical structure is converted into a Morgan fingerprint
using the SMILES-string, and appended to the PKIS molecules set. After t-SNE embedding, the closest neighbour
molecules (Nm) are identified and their biodata is averaged. A minimal average inhibition (C) is used as criterion to
yield the initial prediction. The N« kinases with the most similar kinase domain are then found in the kinase t-SNE
embedding and appended to form the final prediction. This is repeated R times, weighing the final predictions to
return a weighed final prediction.

Optimization of the model parameters

To optimize the model parameters and validate our model, the dataset generated by Karaman et al. was used
as test set as this provided a comprehensive but diverse set of molecules, biochemically tested against a large
set of kinases. For this test set, all Ka values below 1 uM were considered as actives, to mirror the training set,
also measured at 1 yM. A multidimensional optimization was performed, initially varying the cut-off C and the
two neighbouring values, Nmand N« (Figure S8.2A and S8.2B). The number of repetitions was also optimized,
as depicted in Figure S8.2C. The best predictions were found for 9 neighbouring molecules, 3 neighbouring
kinases, and 10 repetitions. The cut-off percentage was found to be a valuable tuning parameter to either have
a high sensitivity (low C) or rather a high positive predictive value (high C), which can be chosen depending on
the projects specific demands. This is further illustrated by the ROC-curve in Figure 8.5. The mid-way value of
C =30% is recommended. The area under the ROC-curve is 0.76, scoring it as ‘fair according to standard
criteria.

Comparison with state of the art methods

With this optimization of the model completed, the next step was to compare the new t-SNE based model with
the state of the art in literature. To this end, three proteochemometric (PCM) models and a QSAR model were
trained according to published procedures, and the DDM method was compared with those and a random
model.1237 The result of this comparison is summarized in Figure 8.4, which shows that the DDM model is
significantly better than both the random model and the QSAR, and performs similarly when compared to the
PCM variants. A variant of the DDM model where the standard Tanimoto distances were used to find the
nearest molecular neighbours in the first step of the workflow was also included in the comparison. t-SNE was
used in the kinase lookup step. This DDM-Tanimoto variant performed rather well, and not significantly worse
than our t-SNE based approach, for this test set.
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Figure S8.2 | Optimization of the model parameters using the Karaman et al. dataset as test set. Optimized
parameters are the number of neighbouring molecules used (Nm), the number of neighbouring kinases used, Nk, and
the cut-off inhibition percentage deemed active (C). Markers are sized based on the positive predictive value (PPV)
and coloured based on the Matthews correlation coefficient (MCC). In A), all possible combinations are shown. In B),

only the series for Nk = 3 is shown for clarity.

Bioactivity datasets used

Activity data for Karaman et al. and the Published Kinase Inhibitor Set by Elkins et al. was retrieved from the
ChEMBL database version 23.33:38 Data was retrieved from a local SQL install, directly from the website or
through the KNIME extensions provided by the EMBL-EBI.

Kinase sequence information and bitstring

Sequence information of the kinase domains was retrieved from the KinBase situated on kinase.com, based
on the paper by Manning et al.16 Missing (pseudo)kinases were appended using data from the ChEMBL
database version 23 and Uniprot.3° The mapping of ChEMBL, Uniprot and KinBase identifiers was performed
based on the KinBase website and extensive manual curation. The kinase domains were aligned using the
online Clustal Omega tool provided by the EMBL-EBI.4° The standard “Clustal w/o numbers” output generated
was transformed to a bitstring using the amino acid fingerprints as provided in Heil et al.15> with the following
additions: alignment dashes (-), stops (*) and blanks (X) were all considered empty, represented by 23 O’s.

t-SNE algorithm
All t-SNE embeddings were generated with the Python Scikit-learn (v. 0.19) implementation of the Barnes-Hut
t-SNE algorithm, either implemented in a ‘Python for KNIME’ node or as part of a Python script.3¢
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DBSCAN algorithm

The Python implementation of DBSCAN, available through the Scikit-learn module Cluster (v. 0.19) was used.3¢
The clustering quality metrics Silhouette Coefficient and Adjusted Rand Index were calculated with the Metrics
module and the former was optimised by tuning the eps-parameter in steps of 0.05. For the PKIS inhibitors a
minimal cluster size of 1 was chosen, for the more disperse plotted kinases the minimal cluster size was set
to 10. Comparisons to manual attributions was done manually. Statistical evaluation was performed using
Microsoft Excel 2013.

Cheminformatics tools

All molecular descriptors, molecular representations (SMILES, InChlKey) and fingerprints were generated using
the RDKit software, either using the KNIME extensions or as the Python implementation.34

QSAR and PCM models

QSAR and PCM models were trained as has been described before but for PCM using the fully aligned
sequences rather than the binding site and using classification rather than regression.?237 PCM models were
trained at an activity cut-off of 30%, 40%, and 50%. Pipeline Pilot 2016 (version 16.2.0.58 by BioVia) was used
to process the data and random forests were trained in R (version 3.3, package randomforest) using 500
trees, equalizing class sizes, and randomly sampling the square root of the total present descriptors at
individual splits.#1 Protein descriptors used were the first three z-scales with a mean value for each sequence
for each z-scale.*2 Chemical descriptors used were circular fingerprints with a diameter of 6 bonds (FCFP_6)
and physicochemical descriptors as was done previously.37:43

PCM models were trained on the full set of kinases and PKls. QSAR models were trained per kinase but only if
at least 5 active and 10 inactive PKls per kinase where present (at a cut off of 30%). If no QSAR was trained
missing predictions were completed to avoid bias and have the ability to compare identical prediction counts.
This was obtained using a random number generator in the range of 0-1 where > 0.5 was deemed 'active' as
was done previously.3?

Out of Bag error estimates of PCM models trained on the full set were 8.47% (30% cut off), 8.15 % (40% cut
off), and 7.83 % (50% cut off).

Docking of 5and 6 in FLT3 crystal structure

Docking and structure based modeling was performed in the Schroédinger suite.*4 For 5 a DFG-in model was
constructed on the basis of 4RT7 and 3LCD, in a similar fashion as has been done before,*> using the
knowledge-based potential in Prime.4647 Subsequently 5 was docked into this model using induced fit
docking.48 For the induced fit docking a hydrogen bond constraint on the backbone of Cys96 was used. Since
6 shares the same substructure as quizartinib, the crystal structure of FLT3 co-crystalized with quizartinib
(ART7)% was used as a starting point. 6 was docked using Glide SP.50 Ligand surfaces, structure renderings
and 2D interaction plots were generated using Discovery Studio Visualizer v16.1.

Statistical methods

Clustering enrichment was analysed using a hypergeometric test and was calculated using Microsoft Excel
2013. Significance was attributed only if P < 0.0001.

In the comparison of the quality of prediction of the various prediction models a regular 2-way ANOVA with
Tukey’s multiple comparison test was performed using GraphPad Prism 7. Significance is attributed according
to the standard GraphPad style: * p < 0.0332, ** p < 0.0021, *** p < 0.0002, **** p < 0.0001.

High Troughput Screening FLT3

20 nL of 2 mM inhibitor solution in DMSO (row 9-48) or control (DMSO, row 1-8) was dispensed in a 1536-well
plate. 2 uL assay buffer (50 mM HEPES (pH 7.5), 1 mM EGTA, 10 mM MgClz, 0.01% Tween-20, 2 mM DTT)
without protein was loaded in row 5-6 as negative controls. Rows 1-4 and 7-48 were charged with 2 yL 0.75
ng/uL FLT3 in assay buffer. The plates were spun down for 30 seconds at 187.5x g and incubated for 30
minutes in the dark. Subsequently, 2 uL of substrate solution was added to all wells (50 mM HEPES (pH 7.5),
1 mM EGTA, 10 mM MgClz2, 0.01% Tween-20, 2 mM DTT, 600 uyM ATP, 12.5 nM Lance TK-peptide, 4 nM Lance
anti-phosphotyrosine). The plates were spun down for 30 seconds at 187.5x g and incubated for 90 minutes
in the dark at RT. Plates were then read on the Envision plate reader (Excitation 337 nm (laser), Emission first
filter 615 nm, second filter 665 nm). Data was analysed using ActivityBase. Final assay concentrations: 10 yM



168 | Chapter 8

inhibitor, 300 yM ATP, 0.365 ng/uL FLT3, 6.25 nM (0.5 Kwm) Lance TK-peptide, 2 nM Lance anti-
phosphotyrosine, 0.5% DMSO.

In vitro FRET based FLT3 assay

In a 384-wells plate, 5 L kinase+petide mix (0.06 ng/uL FLT3, 200 nM Lance TK-peptide) in assay buffer
(50 mM HEPES (pH 7.5), 1 mM EGTA, 10 mM MgClz, 0.01% Tween-20, 2 mM DTT) was dispensed. Seperately
inhibitor solutions (10 uM - 0.1 pM) were prepared in assay buffer containing 400 yuM ATP and 1% DMSO.
5 uL of these solutions was dispensed and the plate was incubated for 90 minutes in the dark. After 90
minutes the reaction was quenched by the addition of 10 yL of 20 mM EDTA containing 4 nM Lance anti-
phosphotyrosine. After thorough mixing it was incubated for 60 minutes in the dark. The FRET fluorescence
was measured on a Tecan Infinite M1000 Pro plate reader (excitation 320 nm, emission first filter 615 nm,
second filter 665 nm). Data was processed using Microsoft Excel 2013, plCso values were fitted using
GraphPad Prism 7.0. Final assay concentrations during phosphorylation: 200 uM ATP, 0.03 ng/uL FLT3,
100 nM Lance TK-peptide, 0.5% DMSO)

In situ testing of kinase inhibitors

MV4:11 cells were grown in IMDM with 10% fetal bovine serum at 37 °C under 5% CO2. For viability assays,
10,000 cells were seeded per well in a 96-wells plate and inhibitors were added at the indicated concentration.
Three days later, cell viability was measured using the Cell Titer Blue viability assay (Promega), fluorescence
was measured using the Clariostar (BMG Labtech). Relative survival was normalized to the untreated control
and corrected for background signal.

Synthesis of in situ tested kinase inhibitors

General remarks

All reactions were performed using oven- or flame-dried glassware and dry solvents. Reagents were purchased
from Sigma-Aldrich, Acros, and Merck and used without further purification unless noted otherwise. All
moisture sensitive reactions were performed under a nitrogen atmosphere.

1H and 13C NMR spectra were recorded on a Bruker AV-400 (400 MHz). Used software for interpretation of
NMR-data was Bruker TopSpin 1.3 and MestreNova 11.0. Chemical shift values are reported in ppm with
tetramethylsilane or solvent resonance as the internal standard (CDCls: 8 7.26 for 1H, & 77.16 for 13C; DMSO-
d6: 6 2.50 for 1H, 6 39.52 for 13C). Data are reported as follows: chemical shifts (8), multiplicity (s = singlet, d
= doublet, dd = double doublet, td = triple doublet, t = triplet, q = quartet, bs = broad singlet, m = multiplet),
coupling constants J (Hz), and integration. Liquid chromatography was performed on a Finnigan Surveyor
LC/MS system, equipped with a C18 column. Flash chromatography was performed using SiliCycle silica gel
type SiliaFlash P60 (230—-400 mesh). TLC analysis was performed on Merck silica gel 60/Kieselguhr F254,
0.25 mm. Compounds were visualized using KMnOa4 stain (K2COs (40 g), KMnOa4 (6 g), and water (600 mL)) or
CAM stain (Ce(NH4)4(S04)42H20 (ceric ammonium sulfate: 10.0 g); ammonium molybdate (25 g); conc. H2S04
(100 mL); H20 (900 mL)). Preparative HPLC (Waters, 515 HPLC pump M; Waters, 515 HPLC pump L; Waters,
2767 sample manager; Waters SFO System Fluidics Organizer; Waters Acquity Ultra Performance LC, SQ
Detector; Waters Binary Gradient Module) was performed on a Waters XBridgeTM column (5 uM C18, 150 x
19 mm). Diode detection was done between 210 and 600 nm. Gradient: ACN in (H20 + 0.2% TFA).

1-(3,4,5-Trimethoxyphenyl)guanidine (7)

o H NH 3,4,5-trimethoxyaniline (500 mg, 2.73 mmol) and cyanamide (574 mg, 13.6 mmol) were
- T > dissolved in ethanol (15 mL) before nitric acid (69%wt, 0.20 mL, 3.0 mmol) was added.
\o:©/ NH The mixture was refluxed for 40 h and concentrated in vacuo. The resulting residue was

o suspended in diethylether (10 mL) and kept at 4 °C overnight. It was then filtered and

air dried. The nitrate salt of the title compound was obtained as a dark purple solid (0.60
g, 2.1 mmol, 76%). *H NMR (400 MHz, DMSO) 6 9.51 (bs, 1H), 8.73 - 8.12 (m, 2H), 6.55 (s, 2H), 5.44 (s, 2H),
3.77 (s, 6H), 3.65 (s, 3H). 13C NMR (101 MHz, DMSO) 5 161.53, 155.86, 153.38, 130.67, 102.91, 60.06,
56.01.
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1-(6-Chloropyridin-3-yl)-3-(dimethylamino)prop-2-en-1-one (8)

o) 1-(6-chloropyridin-3-yl)ethan-1-one (1.00 g, 6.43 mmol) was dissolved in toluene (20
N7 N~ ML) and dimethylformamide diethylacetal (1.65 mL, 9.64 mmol) was added. The
| | mixture was stirred for 16 h at 80 °C. TLC showed near complete conversion. The

cl mixture was cooled to 50 °C and slowly concentrated at reduced pressure. The

resulting crude residue was dissolved in warm toluene and pentane was slowly added. A yellow precipitate
formed which was filtered off and rinsed with pentane. After drying this yielded the title compound (1.08 g,
5.12 mmol, 80%) as a yellow solid. *H NMR (400 MHz, CDCI3) 6 8.85 (dd, J = 0.7, 2.5 Hz, 1H), 8.17 (dd, J =
2.5, 8.3 Hz, 1H), 7.86 (d, J = 12.2 Hz, 1H), 7.38 (dd, J = 0.8, 8.2 Hz, 1H), 5.63 (d, J = 12.1 Hz, 1H), 3.20 (s,
3H), 2.97 (s, 3H). 33C NMR (101 MHz, CDCI3) d 184.90, 155.07, 153.38, 149.08, 138.10, 134.63, 124.10,
91.54, 45.46, 37.60.

4-(6-Chloropyridin-3-yl)-N-(3,4,5-trimethoxyphenyl)pyrimidin-2-amine (5)
_~._-Cl Toasolution of 7 (376 mg, 1.30 mmol) and 8 (250 mg, 1.19 mmol) in ethanol
o H N ‘N (20 mL) K2COs (492 mg, 3.56 mmol) was added. The resulting mixture was

N x
- \ﬁ A refluxed for 20 h. The reaction was quenched by the addition of saturated
~o N~ aqueous Na2C0s (15 mL) and the water layer was extracted with EtOAc (3x
O 25 mL). The combined organic layers were washed with brine, dried (MgS0a),

filtered and concentrated in vacuo. The resulting crude was purified using
silica column chromatography (50-70% EtOAc/pentane). The resulting yellow solid was crystallised from warm
diethylether to yield the title compound (137 mg, 0.37 mmol, 31%) as light yellow crystals.*H NMR (400 MHz,
CDCls) 6 9.07 (dd, J = 0.7, 2.5 Hz, 1H), 8.52 (d, J = 5.2 Hz, 1H), 8.32 (dd, J = 2.5, 8.3 Hz, 1H), 7.46 (dd, J =
0.7, 8.4 Hz, 1H), 7.38 (s, 1H), 7.14 (d, J = 5.2 Hz, 1H), 6.99 (s, 2H), 3.90 (s, 6H), 3.85 (s, 3H). 13C NMR (101
MHz, CDCl3) 8 161.53, 160.28, 159.11, 153.74, 153.47, 148.62, 137.11, 135.30, 131.78, 124.52, 108.15,
97.42,61.17, 56.26.

4-(Pyridin-4-yloxy)aniline (9)

HzN 4-aminophenol (2.18 g, 20 mmol), 4-chloropyridine (3.15 g, 21 mmol) and NaOH (2.0 g,
\©\ /Q 50 mmol) were dissolved in DMSO (50 mL) and heated to 100 °C for 17 h. The mixture

was cooled to RT and poured into ice water (300 mL). This was extracted with 10%
MeOH in chloroform (4x 150 mL). The combined organic layers were washed with brine (2x 150 mL), dried
(Na2S0a), filtered and concentrated in vacuo. The residue was flushed over a silica pad with pure EtOAc and
concentrated to yield the title compound as a white solid (2.5 g, 13 mmol, 65%). 2H NMR (400 MHz, CDCls)
8.51 - 8.33 (m, 2H), 6.97 - 6.85 (m, 2H), 6.85 - 6.77 (m, 2H), 6.77 - 6.62 (m, 2H), 3.50 (s, 2H). 33C NMR
(101 MHz, CDCIs) & 165.89, 151.25, 145.80, 144.25, 122.12, 116.36, 111.70.

1-(5-(tert-Butyl)isoxazol-3-yl)-3-(4-(pyridin-4-yloxy)phenyl)urea (6)
S 3-amino-5-tert-butylisooxazole (0.20 g, 1.4 mmol) was dissolved in DCM (14
M hig \©\ mL) and DIPEA (0.50 mL, 2.9 mmol) was added. The mixture was cooled to O
N O o) °C and triphosgene (0.42 g, 1.4 mmol) was added. After stirring the mixture
for 19 h at RT it was refluxed for 1 h before the reaction was quenched by the
\ addition of saturated aqueous NaHCOs (10 mL). The water layer was separated
N and extracted with DCM (3x 10 mL). The combined organic layers were washed
with brine, dried (Na2S04) and filtered. The solvent was removed under reduced pressure and the crude
isocyanate was dissolved in 1,4-dioxane (14 mL). 9 (0.29 g, 1.6 mmol) was added to the solution and the
mixture was heated to 110 °C for 2.5 h. After cooling to RT the mixture was diluted with DCM (30 mL) and
saturated aqueous NaHCOs (30 mL) was added. The water layer was separated and extracted with DCM
(3x 30 mL). The combined organic layers were washed with brine, dried (NazS0a4), filtered and concentrated in
vacuo. The resulting yellow oil was purified by preparative HPLC to yield the title compound as a slightly yellow
oil (0.22 g, 0.62 mmol, 44%). *H NMR (400 MHz, CDCls) 8 9.41 (s, 1H), 8.67 (s, 1H), 8.47 (dd, J = 1.5, 5.1 Hz,
2H), 7.63 - 7.54 (m, 2H), 7.10 - 7.03 (m, 2H), 6.89 - 6.81 (m, 2H), 5.95 (s, 1H), 1.36 (s, 9H). 13C NMR (101
MHz, CDCls) d 181.60, 165.38, 158.45, 152.58, 151.22, 149.95, 135.58, 122.15, 121.60, 112.17, 91.94,

33.08, 28.75.
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Supplementary Tables and Figures

Table S8.1 | Overview of prediction qualities split per compound. Data corresponds to R = 10 and C = 30%.
PPV = positive predictive value, NPV = negative predictive value, MCC = Matthew’s correlation coefficient.

CHEMBLID | ites posttves nogatives | negatves ity fry PPV NPV MCC
CHEMBL10 4 8 254 13 024 097 033 09 024
CHEMBL101253 7 41 230 1 0.88 @ 0.85 0.15 1.00 0.32
CHEMBL103667 5 21 228 25 0.17 092 0.19 @ 0.90 @ 0.09
CHEMBL119385 2 11 265 1 0.67 @ 0.96 0.15 1.00 031
CHEMBL124660 9 66 202 2 082 075 0.12 099 @0.25
CHEMBL1336 20 28 217 14 059 089 042 094 041
CHEMBL1421 19 5 207 48 028 098 0.79 081 0.40
CHEMBL14762 0] 49 227 3 0.00 082 0.00 @ 0.99 @ -0.05
CHEMBL1721885 35 29 147 69 034 084 055 0.68 0.20
CHEMBL191003 20 43 174 42 032 080 032 081 | 0.12
CHEMBL215152 1 5 258 15 0.06 098 0.17 @ 095 @ 0.07
CHEMBL221959 1 46 226 6 0.14 083 0.02 0.97 -0.01
CHEMBL223360 26 62 187 4 087 075 030 098 041
CHEMBL24828 20 16 217 26 043 093 056 089 041
CHEMBL259084 20 65 191 3 087 075 024 098 @ 0.37
CHEMBL261849 4 74 201 0] 1.00 | 0.73 @ 0.05 1.00 0.19
CHEMBL278041 2 14 249 14 0.143 095 0.13 @ 0.95 @ 0.07
CHEMBL296468 2 3 250 24 0.08 099 040 091 o0.14
CHEMBL31965 3 3 261 12 020 0.99 050 @ 096 @ 0.29
CHEMBL388978 57 3 42 179 024 093 09 019 O0.16
CHEMBL428690 2 19 228 30 0.06 092 0.10 0.88 @-0.02
CHEMBL440084 0] 12 263 4 0.00 096 0.00 @ 0.99 @ -0.03
CHEMBL477772 22 56 185 16 058 @ 0.77 028 092 0.26
CHEMBL483321 2 4 272 1 0.67 | 099 | 0.33 1.00 0.46
CHEMBL522892 24 31 183 41 037 086 044 082 0.24
CHEMBL535 44 30 117 89 033 080 059 057 0.14
CHEMBL553 3 3 253 20 0.13 099 050 @ 093 0.23
CHEMBL554 2 0] 277 0] 1.00 @ 1.00 | 1.00 @ 1.00 1.00
CHEMBL558752 10 72 185 12 045 072 0.12 094 0.10
CHEMBL572878 2 11 199 67 0.03 095 0.15 | 0.75 | -0.05
CHEMBL572881 6 16 242 15 029 094 027 094 0.22
CHEMBL573339 0] 58 219 2 0.00 0.79 @ 0.00 0.99 -0.04
CHEMBL574738 48 12 165 54 047 093 080 @ 0.75 0.47
CHEMBL607707 11 45 203 20 035 082 020 091 0.4
CHEMBL608533 11 10 169 89 0.11 094 052 0.66 0.10
CHEMBL91829 1 12 240 26 0.04 095 0.08 0.9 -0.01
CHEMBL939 3 15 254 7 030 094 0.17 0.97 0.18
CHEMBL941 10 115 153 1 091 057 0.08 | 099 | 0.19

Average 12.05 29.29 211.58 26.18 038 088 032 089 021



Drug Discovery Maps visualizes and predicts kinome-inhibitor interaction landscapes | 171

Table S8.2 | Summary of the off-target screen performed for the in situ tested compounds 5 and 6. Data are
averages of two duplicates, and are percentages activity compared to vehicle control.

5 6
Namo  acoesmion CHEMBLID O Name  acoesmion CHEMBLID LS
ABL1 P00519 CHEMBL1862 26 ABL1 P00519 CHEMBL1862 23
ABL2 P42684 CHEMBL4014 12 ABL2 P42684 CHEMBL4014 28
AurA 014965 CHEMBL4722 2 AurA 014965 CHEMBL4722 60
AurB Q96GD4 CHEMBL2185 2 AurB Q96GD4 CHEMBL2185 60
AurC QoUQB9 CHEMBL3935 8 AurC QoUQB9 CHEMBL3935 91
BLK P51451 CHEMBL2250 34 DDR1 Q08345 CHEMBL5319 7
BRK Q13882 CHEMBL4601 61 DDR2 Q16832 CHEMBL5122
EGFR P00533 CHEMBL203 96 EphA3 P29320 CHEMBL4954
EphA4 P54764 CHEMBL3988 72 EphA4 P54764 CHEMBL3988 28
EphA5 P54756 CHEMBL3987 52 EphA5 P54756 CHEMBL3987 7
EphB2 P29323 CHEMBL3290 14 EphA7 Q15375 CHEMBL4602 -2
EphB3 P54753 CHEMBL4901 100 EphB1 P54762 CHEMBL5072 3
ErbB2 P04626 CHEMBL1824 94 EphB2 P29323 CHEMBL3290 5
ErbB4 Q15303 CHEMBL3009 108 EphB3 P54753 CHEMBL4901 55
FER P16591 CHEMBL3982 52 FER P16591 CHEMBL3982 86
FES P07332 CHEMBL5455 19 FES P07332 CHEMBL5455 86
FGFR1 P11362 CHEMBL3650 58 FGFR1 P11362 CHEMBL3650 6
FGFR3 P22607 CHEMBL2742 48 FGFR3 P22607 CHEMBL2742 29
FGFR4 P22455 CHEMBL3973 91 FGFR4 P22455 CHEMBL3973 70
FGR P09769 CHEMBL4454 30 FLT1 P17948 CHEMBL1868 1
FLT1 P17948 CHEMBL1868 1 FLT3 P36888 CHEMBL1974 1
FLT3 P36888 CHEMBL1974 3 FLT4 P35916 CHEMBL1955 -1
FLT4 P35916 CHEMBL1955 1 FMS PO7333 CHEMBL1844 -1
FMS PO7333 CHEMBL1844 -1 KDR P35968 CHEMBL279
FYN P06241 CHEMBL1841 9 KIT P10721 CHEMBL1936
HCK P08631 CHEMBL3234 17 MUSK 015146 CHEMBL5684 13
KDR P35968 CHEMBL279 5 PDGFRa P16234 CHEMBL2007 15
KIT P10721 CHEMBL1936 2 PDGFRb = P09619 CHEMBL1913 9
LCK P06239 CHEMBL258 15 RET PO7949 CHEMBL2041 -2
LYN P0O7948 CHEMBL3905 26 TIE2 Q02763 CHEMBL4128
PDGFRa P16234 CHEMBL2007 47 TRKA P04629 CHEMBL2815
PDGFRb P09619 CHEMBL1913 46 TRKB Q16620 CHEMBL4898 0]
RET PO7949 CHEMBL2041 53 TRKC Q16288 CHEMBL5608 -2
SRC P12931 CHEMBL267 4
TNK1* Q13470 CHEMBL5334 -
YES PO7947 CHEMBL2073 10

*TNK1 was not available in the KinomeProfiler™
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Table S8.3 | Overview of the molecular structures and biological activity for the 20 purchased Enamine
small molecules. Biological data are averages of two duplicates, and are percentages activity remaining
compared to vehicle control.

Predicted for PAK2

Enamine ID Structure HIPK3 inhibition (%) PAK2 inhibition (%)
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Table S8.3 (continued) | Overview of the molecular structures and biological activity for the 20 purchased
Enamine small molecules. Biological data are averages of two duplicates, and are percentages activity
remaining compared to vehicle control.

Predicted for HIPK3

Enamine ID Structure HIPK3 inhibition (%) PAK2 inhibition (%)
M=o
71041114058 % @f’\‘)v’“w 6 11
NN
(e}
71102997288 NT{NH [ 3 ol
/N N" N ‘\
bl ~N
FF N\ H\/E
71272153794 j\@s o, 4 8
P
71281728869 N N -1 2
avilet
CN
N=
71502786962 =N\ H -6 9
W%
N |
N N F
71625107708 }/@EO o ! 1 9
F- N N
N ~N
Fe H \/ /
CFs
(e}
717559373 PN NS ST)LH 1 11
NN N
s ()
O

731057533 s HK s 2 6
(0]
AN
FaC
J
7644918986 el e 2 13

N s
7909646456 @ A 0 -2
Ol



174 | Chapter 8

t-SNE2

® In dataset Elkins et al.
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Figure S8.3 | t-SNE embedding of physicochemical fingerprint of the kinase domains of
535 human kinases as in Figure 8.2. Markers are coloured based on the presence (green)
or absence (grey) in the Elkins et al. PKIS dataset.
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