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Machines take me by surprise  

with great frequency. 

Alan Turing 

 
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

7. t-Distributed Stochastic 
Neighbour Embeddings 

applied to drug discovery 
 

 

 

 
 
 
 
 
Part of this research was published in A.P.A. Janssen et al., J. Chem. Inf. Model., acs.jcim.8b00640 (2018).  

 

 

Introduction 

Chemical space is vast and can only be explored to a small extent by experimental 

methods to find suitable hits for drug discovery programs.1,2 The search for new chemical 

starting points to modulate therapeutic targets is essential for the development of novel 

drugs. Due to the difficulties in finding suitable hits, it has been postulated that the best 

way to find a new drug is to start with an old drug.3 This is in line with the central paradigm 

in medicinal chemistry that similar structures exert similar biological activities.4 This 

paradigm can be mirrored to state that similar biological entities will be subject to 

modulation by similar molecular structures. It is this latter formulation that explains many 
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of the off-target activities observed when studying the inhibitory activity of a hit molecule 

against a subset of enzymes performing a similar function, which are part of the same 

cascade, or belong to a closely related family. An example from the endocannabinoid field 

is LEI104, which was found to be active against fatty acid amide hydrolase (FAAH) and 

diacylglycerol lipase (DAGL) α and DAGL-β. FAAH is responsible for the hydrolysis of 

N-arachidonoylethanolamine (anandamide), whereas the DAGLs produce 2-arachidonoyl-

glycerol (2-AG).5 The high similarity in structure of the substrate and product, respectively, 

of these enzymes implies that the binding pockets of the enzymes are similar, allowing 

LEI104 to bind to both. 

Since most serine hydrolase inhibitors interact with the catalytically active amino acid, 

often in a covalent manner, off-target activity across this family is commonly observed for 

these compounds.6 Such off-target activity is usually unwanted, and may sometimes lead 

to profound toxic effects as discussed in Chapter 5.7 Despite the efficiency of activity-based 

protein profiling and other techniques to determine the selectivity of lead inhibitors, 

extensive screening campaigns are still expensive and time consuming. In the last decade, 

several large datasets with structure-activity relationships (SAR) of serine hydrolase 

inhibitors spanning a number of enzymes have been published.6,8 These empirical datasets 

may serve as guides to explore chemical space around this drug target family and predict 

(off-)target activity using advanced computational chemistry methods, such as quantitative 

SAR models (QSAR), similarity ensemble approach (SEA), support vector machines, 

k-nearest neighbour, random forest, naïve bayes, (deep learning) neural networks (NN) and 

principal component analysis (PCA).9–12 

Advanced machine learning models promise to revolutionize the field of drug discovery. 

Employing large high-dimensional datasets, these models are used to predict a wider range 

of biological activities for a compound, compared to traditional drug design methods (e.g. 

molecular modelling, docking and early QSAR-models, such as Hansch and Free-Wilson 

analysis13). Yet, many machine learning models are hampered in their applicability by lack 

of a clear interpretation and tendency to overfit on the high-dimensional data. Many of the 

best performing machine learning models are a black box in which it is unclear in what way 

the data are used to generate novel hypotheses. They also require in-depth knowledge of 

advanced cheminformatics and highly specialised or purpose-build software. These 

technical requirements slow down the implementation of the tools in the daily practice of 

drug discovery and consequently prevent the research community to take full advantage of 

the wealth of data becoming available. Therefore, there is a clear need for better tools to 

interpret and visualize complex, high-dimensional SAR datasets in an easy and intuitive 

manner and to predict the biological activity profile of novel hits for drug discovery 

programs.  

 

t-Distributed Stochastic Neighbour Embedding 

t-SNE was first published by van Maaten and Hinton in 2008 as the third variant of the 

Stochastic Neighbour Embedding concept.14,15 The aim of the algorithm is to generate 

visualizations of high dimensional data by generating a two or three dimensional 

embedding thereof (see Box 7.1 for more detail). This makes t-SNE foremost a 
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dimensionality reduction algorithm like the more well-known principal component analysis 

(PCA)16 and multidimensional scaling (MDS)17. The main difference, conceptually, between 

t-SNE, PCA and MDS is that the former is non-linear whereas the latter two are linear 

algorithms. This means that in general PCA and MDS predominantly preserve the large 

distances (differences) between points far apart in the high dimensional space, because 

these obtain a larger weight in the optimization algorithm than small differences. The result 

is that global structure is preserved well, but small variations in local structure are poorly 

mapped to the low dimensional embedding. t-SNE, like other algorithms before, aims to 

overcome these shortcomings by utilizing a non-linear cost-function, which weighs both the 

local and global structures. The success and general applicability of the t-SNE algorithm in 

dimensionality reduction is shown by the spur of publications utilizing it to visualize complex 

high-dimensional data sets in diverse experimental settings.18–22  Here, the applicability of 

t-SNE to drug discovery is investigated. The applicability as a similarity metric is studied, 

with the ultimate goal to apply it in a general workflow to predict target-ligand interactions 

naïvely based on the similarity dogma. 

 

Box 7.1 | A brief introduction to the t-SNE algorithm  

t-Distributed Stochastic Neighbour Embedding is a non-linear dimensionality reduction 

algorithm, or ‘manifold learning’ algorithm. This branch of (unsupervised) machine 

learning is based on the premise that many real-world high-dimensional datasets are 

intrinsically low-dimensional. To be interpretable by humans, a low dimensional view of 

data is required. The process of dimensionality reduction is therefore aimed at removing 

redundant dimensions and deflating it to two or three dimensions, primarily to be visually 

interpretable by the analyst.  
 

Mathematical framework 

The original high-dimensional data-space is defined as �� and the mapped space 
�, 

where D is the dimensionality. Original data points are denoted as ��, mapped points ��. 
The similarity of data point �� to datapoint �� was defined by Maaten and Hinton as the 

conditional probability, ��|�, that �� would be picked as its neighbour by ��. If neighbours 

are picked in proportion to their probability density under a Gaussian centred at �� the 

mathematical definition for ��|� is given by: 

 

 (7.1) 

 

The perplexity variable, which is set by the user, is directly coupled to the � in (7.1), and 

provides a measure of the smoothness of the embedding.  

In the original SNE, a very similar definition was used for the probability condition for 

the embedding, ��|�, where for convenience the �� is set to 
�
√� such that:  

 

  (7.2) 
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This definition led to various problems in the optimization procedure and subsequent 

implementations, so in t-SNE a Student t’s distribution is used as the probability condition 

for the low-dimensional map. This leads to a definition of ��� as follows:  

 

  (7.3) 

 

Where ��� is the symmetrized version of ��|� according to ��� �
��|����|�

� , and likewise for 

���. In a perfect embedding, ��� and ��� will be equivalent for all possibilities of ��, so the 

difference between these two quantities needs to be minimized in the embedding 

process. To achieve this, the Kullback-Leibler divergence is employed by t-SNE as a 

measure of the faithfulness of the embedding. The function to minimize, the cost 

function, is then given by:  

 

  (7.4) 

 

in which � and   represent the joint conditional probability distribution summed over all 

points where � ! �. The values of ��� and ��� are set to zero. The cost function is optimized 

by a gradient descent which is given by: 

 

  (7.5) 

 
 

Physical interpretation 

The optimization generating the low-dimensional embedding can be interpreted as a 

mass-spring system reaching its equilibrium. The magnitude of the Kullback-Leibler 

divergence for a given � will scale linearly with "�� # ��$ (7.5), analogous to Hooke’s law, 

which scales linearly with the displacement of points. Intuitively the stiffness of the spring 

connecting � and � is determined by their distance in high-dimensional space, and also 

follows for t-SNE, where ��� is strongly influenced by "�� # ��$. 
 

t-SNE maps molecular similarity of drugs in drug-like chemical space 

Based on the principle that the chemical structure of a compound determines its 

biological and chemical properties, a machine learning algorithm that predicts target-ligand 

interaction landscapes should be able to recognize molecular similarity between different 

molecules. Traditionally, chemical similarity is measured by the Tanimoto coefficient (Tc).23 

To calculate the distance between compounds the Tc uses a molecular fingerprint, which 

is a high-dimensional bit vector that captures the presence or absence of chemical groups 

in a molecule. As a similarity metric the Tc has its limitations, predominantly because it 

averages differences over all bits, thereby losing information.24 Thus, we envisioned that 

the data contained in the molecular fingerprint should be used more efficiently by a 

machine learning algorithm to determine molecular similarity. Moreover, the Tanimoto 

coefficient is principally a distance metric between two fingerprints and does not allow 
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visualization of similarity within a set of molecules, making interpretation of this similarity 

metric nontrivial. t-SNE can be readily applied to bit vectors of any length and as such is 

easily applicable to chemical structures represented by molecular fingerprints. The 

algorithm could thus be used to find and cluster the most similar molecules in a large 

dataset and visualize that similarity clustering in a two- or three-dimensional space. 

The applicability of the t-SNE algorithm to this problem was initially tested by visualizing 

the molecular similarity of molecules from the Drug Repurposing Hub, an online repository 

containing compounds that have been clinically tested or used in humans.25 Only the 

launched drugs (2774) were selected and partially attributed to 27 chemotypes by hand. 

Morgan fingerprints (RD-Kit, 4096-bits, radius = 2, equivalent to ECFP426) were generated 

for each of these 2774 clinical compounds using KNIME, an open source software 

package.27,28 The fingerprints were fed into the Python implementation of the Barnes-Hut 

t-SNE algorithm to generate a map of the drug-like chemical space.29 The resulting map 

(Figure 7.1) shows remarkable co-localization of most of the chemotypes. As an example, 

the family of penicillin-like structures at the far right of the plot (cyan) is completely 

separated from all other chemical matter. Some unannotated molecules (in grey) are visible 

in this cluster, but upon detailed inspection they all constitute β-lactams in which the sulfur 

is either substituted or omitted. In addition, many other highly dense unannotated clusters 

are visible at the boundaries of the map, corresponding to highly defined chemotypes, such 

as the rapamycin, conazole and oxytocin analogues. Of note, even in the apparently less 

defined centre of the map, clear co-localization of similar molecules can be observed, for 

example a cluster of aspirin-like molecules (orange, near origin).  

Quantifying the quality of the generated embedding is not trivial. Despite the broad 

interest in machine learning algorithms and their application in numerous fields, few 

objective quality measures for embeddings are available.30 Often co-ranking histograms 

are constructed, comparing the original high-dimensional space (H-space) to the construc-

ted low-dimensional space (here: t-SNE, PCA or MDS space). Briefly, co-ranking histograms 

are constructed by counting the occurrences of co-ranking for each sample against all other 

samples. As this generates a two dimensional plot, they are often visualized as a heat-map. 

For the current purposes, such co-ranking histograms were constructed for t-SNE, PCA and 

MDS (Euclidian distances calculated in 2D embedding) and that of the Tanimoto distance 

(Figure 7.2A-D). Generally, the co-ranking histogram of t-SNE fanned out somewhat quicker 

than the Tanimoto plots, but for the lower ranked neighbours it corresponded well to the H-

space. Compared to the two linear dimensionality reduction algorithms, t-SNE looks to be 

considerably better based on the heat-maps. There are several ways to summarize the 

information contained in a co-ranking histogram, of which the Q-score is conceptually one 

of the easiest to interpret.30 It assesses the overall quality of the dimensionality reduction 

where 1 is a perfect score, and 0 is the lowest. The Q-score neglects information regarding 

the kind of ranking error (too high or too low) but summarizes the quality up until a certain 

value of the rank, k. The higher rate of co-ranking for low ranks that was visible in the 

histograms is immediately evident from the Q-score graphs (Figure 7.2E and F), which start  
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Figure 7.1 | t-SNE visualization of chemical space. t-SNE embedding of the ‘launched’ drugs 

in the Drug Repurposing Hub.25 Embedding is based on the 4096-bit Morgan fingerprint. 

t-SNE settings: perplexity = 25, learning rate = 50, iterations = 10,000. Markers are coloured 

according to 27 manually attributed chemotypes.  

out high but quickly fall upon increasing k. This behaviour is observed for all three 

dimensionality reductions and the Tanimoto distance. t-SNE however performs much better 

than the two linear algorithms, even for small values of k. When comparing t-SNE for the 

more direct neighbours in the histogram and plot (Figure 7.2A and E) it is clear that t-SNE 

follows the Tanimoto distance quite closely. Of note, this comparison is technically a bit 

skewed, as the Tc is only a different distance measure derived from the same H-space, not 

the result of a dimensionality reduction as is the case for t-SNE. A benefit of the three 

dimensionality reduction algorithms is that the 2D embedding allows for interrogation of 

the directionality of similarity, whereas when using the Tc, it is impossible to assess the 

similarity between two molecules when their Tc distance to a third is known. It can be 

concluded that t-SNE is able to map the local chemical space of approved drugs well, much 

better than linear dimensionality reduction approaches, whilst following a chemist’s 

intuition. It recognizes molecular similarity in a broad set of diverse drug-like molecules and 

is able to present the results in a visually attractive and interpretable manner. 
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Figure 7.2 | Assessment of the quality of the dimensionality reduction as performed by t-SNE, PCA and MDS 

on the Drug Repurposing Hub molecules, based on the t-SNE embedding in Figure 7.1, the PCA plot in 

Supplementary Figure 7.1A and the MDS plot in Supplementary Figure 7.1B. Panels A-D show a 

log10-transformed co-ranking histogram for the top 100 ranked molecules for t-SNE (A), the Tanimoto 
coefficient (B), PCA (C) and MDS (D). The bottom panels show Q-score30 graphs corresponding to the 

histograms above for the top 1000 (E) and top 100 (F) ranked molecules. H-space: the original 

high-dimensional space. 
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t-SNE map of serine hydrolases recapitulates phylogenetic information 

Since closely related proteins typically bind similar endogenous molecules and 

(experimental) drugs, it was investigated whether the t-SNE algorithm is also capable of 

clustering proteins based on the similarity of their amino acids. Conceptually, this approach 

is analogous to proteochemometric modelling.31 To quantify the similarity of serine 

hydrolases, first a manually curated list containing all serine endopeptidases and metabolic 

serine hydrolases (mSHs) was constructed. This was done in a similar manner as reported 

previously.6 The amino acid sequences of the enzymes were then aligned using Clustal 

Omega.32 This alignment was transformed to a fingerprint based on the physicochemical 

properties of the amino acids.33 These fingerprints were used to create a two dimensional 

map of the target space by the t-SNE algorithm. The resulting map (Figure 7.3A) is capable 

of clustering most of the peptidases (triangles) and the mSHs (squares) in separate groups. 

The embedding was compared with a more traditional phylogenetic tree (Figure 7.3B). 

As an illustration, several groups of proteins have been highlighted and annotated in the 

embedding. In purple all phospholipase A2 group IV proteins, except PLA2G4C, are 

clustered together. This separation is also observed in the phylogenetic tree. The small 

group of hepatocyte growth factor proteins (MST1, MST1L and HGF, in red) are related to 

the F2 protein, according to the phylogenetic tree, and contain kringle domains. In the t-SNE 

embedding however, F2 is quite far away, placed directly next to PRSS51 (not annotated), 

to which it is also quite similar. Intriguingly, the HGF related proteins are all expected to be 

catalytically inactive as they lack one or more of the typical catalytic triad residues, whereas 

F2 is confirmed to be a functional peptidase. This could indicate that t-SNE is able to 

separate similar proteins (global properties) on the absence or presence of key amino acids 

(local structure). It might also be one of the reasons why the red group is isolated in the 

plot. Other well defined protein clusters include the carboxylic esterases (CES, blue) and 

the products of genes LIPA, LIPF and LIPM (yellow). The centre of the embedding where 

less clusters are observed, still holds large co-localized families of proteins, e.g. the 

kallikreins (KLK, light green) or the acyl-coenzyme A thioesterases (ACOT, not annotated). 

It appears that t-SNE, when applied to binarized sequence alignments, is able to analyze 

and cluster these entities, maintaining the separation of large groups (peptidases and 

mSHs), whilst also keeping subclasses of proteins closely associated.  
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Figure 7.3 | Comparison of t-SNE embedding (A) and phylogeny tree (B) of the serine hydrolase (SH) 
family. t-SNE settings: perplexity = 30, learning rate = 50, iterations = 10,000. 
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t-SNE analysis of serine hydrolase inhibition 

t-SNE thus presents itself as a similarity visualization technique able to find and quantify 

similarities between molecules and proteins. With this technique a system could be 

envisioned where a newly designed molecule is compared to a large set of available 

molecules of which the bio-activity data is known. If one now finds the most similar known 

compounds utilizing t-SNE, the bio-activity data of those molecules could be used as a 

prediction for the bio-activity of the newly designed inhibitor. The t-SNE embedding of the 

protein space could then be used to append enzymes, for which no bio-activity data is 

available, as potential targets to the prediction based on the fact that they are closely 

related to known targets. Through this intuitive process, targets, or off-targets, of novel 

molecules may be predicted in an efficient way. This approach is comparable to PASS and 

various other techniques, reviewed by Bender et al.34,35 

Currently, the largest dataset reported for serine hydrolases is that of Bachovchin et al.6, 

which screens a library of 140 inhibitors against 72 SHs (10,080 data points). This dataset 

contains bio-activity at one concentration (50 µM) and all inhibitors have a carbamate 

warhead. The predictive utility of this dataset is, therefore, restricted to similar carbamate-

based inhibitors. Another comprehensive serine hydrolase inhibitor dataset was generated 

using the EnPlex assay.8 This dataset has bio-activity data for 55 quite diverse inhibitors 

(Figure 7.4) and 94 serine hydrolases (Figure 7.5). This dataset was processed using t-SNE 

to visualize the inhibition profiles projected on the embedding of molecules and proteins 

and thereby assess the co-localization. 

When the 55 inhibitors were transformed in their respective fingerprints and clustered 

by t-SNE a quite disperse embedding was obtained (Figure 7.4A), in line with the diversity 

in the molecular set. Some more defined groups were observed, which upon inspection 

indeed corresponded to more similar molecules. When the bio-activity data was projected 

on this visualization by colouring the markers according to the pIC50s for specific targets 

(Figure 7.4B-D) very distinct patterns could be observed. All DPP4 inhibitors were positioned 

in the far right of the embedding, with the exception of methoxyarachidonoyl 

fluorophosphonate (MAFP) which is in the centre of the plot and, by its reactive nature, 

inhibits virtually all serine hydrolases tested in this assay. For the endocannabinoid system 

related enzyme FAAH a similar observation can be made, with all inhibitors co-localized to 

the left of the embedding, barring some reactive molecules in the centre. Most of the tested 

FAAH-inhibitors are carbamate based, and this chemotype typically shows off-target activity 

against carboxylic esterases (CES). This is exemplified by Figure 7.4D where the potency 

for CES1 is annotated. Only the more chemically distinct urea based PF-3845 (topmost 

marker) is inactive for CES1.  
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Figure 7.4 | t-SNE embeddings of the serine hydrolase inhibitors screened in the EnPlex assay.8  
A) Unannotated t-SNE clustering. B-D) All reported inhibition interactions of title enzymes are denoted in a 

gradient colouring. Only measured interactions < 10.000 nM are coloured in the embedding. 

 

Next, the protein-target space was analysed. To aid in this analysis, the serine hydrolases 

for which no bio-activity data is available were filtered out (Figure 7.5A), and the markers 

were coloured according to the activity of three dissimilar inhibitors (Figure 7.5B-E). These 

inhibitors vary not only in structure, but also in reactive group (warhead), targeted 

subfamily, and selectivity. The localization of the inhibited SHs in the plots shows clear co-

localization in pairs or groups. For example, JP104 (Figure 7.5B) has six measured IC50s, 

which are arranged in the embedding as three duos. The active metabolite of lactacystin is, 

as might be expected from its small molecular structure containing a reactive β-lactone, 

less selective. Several clear groups of targets can be seen, most notably the seemingly 

unrelated cluster of retinoid inducible serine carboxypeptidase (SCPEP1), probable serine 

carboxypeptidase CPVL (CPVL), lysosomal protective protein (CTSA) and α/β-hydrolase 

domain containing protein 11 (ABHD11). Of note, the only enzyme classified as peptidase 

targeted by lactacystin is located close to several targeted mSHs. Finally, chymostatin is 
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quite selective, with only 2 observed interactions in this enzyme panel. The two peptidases 

targeted, chymase and chymotrypsin-C, are indeed closely related according to the t-SNE 

embedding, which is not directly evident from the phylogeny tree. 

 

 

 
Figure 7.5 | t-SNE embeddings of the serine hydrolase superfamily. A) Red colouring denotes the inclusion in 

the EnPlex assay. B-D) All reported inhibition interactions of title inhibitor are denoted in blue. Only measured 

serine hydrolases are included in the embedding (those coloured red in A). E) Structures of inhibitors in B-D. 
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Conclusion 

Taken together, it was shown that the dimensionality reduction algorithm t-Distributed 

Stochastic Neighbour Embedding can successfully be applied to molecular fingerprints, and 

that this generates a new, visually interpretable and quantitative similarity metric. 

Annotating a similarity visualization of a small inhibitor set with serine hydrolase inhibition 

data showed very distinct co-localization of activities in the embedding. t-SNE was also able 

to generate similarity maps for the serine hydrolase enzyme family when applied to a 

binarised multiple sequence alignment. This map revealed similarities between proteins 

not necessarily directly related in phylogeny. However, there is significant overlap between 

the traditionally assigned subfamilies and the co-localization in the t-SNE embeddings. By 

superimposing the available bio-activity data as a third dimension in colour on top of the 

t-SNE embeddings, definitive hotspots were shown where co-localized proteins were 

inhibited by the same inhibitor, which not always corresponded to the phylogenetic 

information. Given more (biological) data, it is expected that these mappings combined, in 

principle, could be applied to predict (off-)targets that are in these hotspots, or even predict 

(off-)targets for new molecules based on their molecular similarity to known compounds. It 

is expected that the target space visualization could be enhanced by improving the align-

ment of the enzymes. One option would be to centre the alignment around the catalytic 

serines, to improve the definition of the active site similarities, or truncate the sequences 

such that the alignment is more biased towards the actual binding site of the enzyme. 

The concept presented here can easily be adapted to work with any dataset available. 

Because all data, algorithms, and data processing tools used are in the public domain or 

open source, it is highly adaptable and extensible. Concrete examples include different 

druggable protein classes, such as kinases (Chapter 8), G-protein coupled receptors, ion 

channels or nuclear hormones. It could also be trained on a different molecular set 

altogether, e.g. solubility, membrane permeability, metabolic stability, pharmacokinetics or 

toxicological data.  
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Methods 

Cheminformatics tools 

All molecular descriptors, molecular representations (SMILES, InChIKey) and fingerprints were generated using 
the RDKit software, either using the KNIME extensions or as the Python implementation.28 Morgan fingerprints 
(4096-bits, radius 2) were used for all molecular fingerprints. 
 

t-SNE algorithm 

All t-SNE embeddings were generated with the Python Scikit-learn (v. 0.19) implementation of the Barnes-Hut 
t-SNE algorithm, either implemented in a ‘Python for KNIME’ node or as part of a Python script.29  
 

Principal component analysis 

Principal component analysis was performed using the Python Scikit-learn decomposition module (v. 0.19) 
based on the same 4096-bit fingerprints used for the other analyses.  
 

Multidimensional scaling 

The multidimensional scaling was performed using the Python Scikit-learn manifold module (v. 0.19), based 
on the 4096-bit fingerprints used for other analyses. 
 

Co-ranking histogram and Q-scoring 

The co-ranking histograms were constructed in Python, using SciPy’s Rankdata functionality, using ordinal 
ranking.36 Generated histograms were exported to Microsoft Excel 2016 where they were log10 transformed 
and heatmaps were generated.  
The Q-score was calculated as described previously.37 In brief, Q-scores were calculated by summarizing mild 
k intrusions and mild k extrusions for each k and normalizing to the sample size according to the following 
formula:  

 

 
(7.6) 

 
where N is the total number of identities (2774, the number of molecules) and  
 

  (7.7) 

 
where %�� denotes the rank in the low-dimensional manifold or the rank according to Tanimoto distance, and 

&�� the rank in high dimensional space.  

 

Serine hydrolase sequence information and bitstring 

Sequence information of the serine hydrolases was retrieved from Uniprot.38 The proteins were aligned using 
the online Clustal Omega tool provided by the EMBL-EBI using the default settings.32 The standard “Clustal 
w/o numbers” output generated was transformed to a bitstring using the amino acid fingerprints as provided 
in Heil et al.33 with the following additions: alignment dashes (-), stops (*) and blanks (X) were all considered 
empty, and were represented by 23 0’s.  
 

Bioactivity used 

Activity data for the serine hydrolase superfamily was used without adaptations from Bachovchin et al.8.  
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Supplementary Figures 

 
Figure S7.1 | Principal component analysis (A) and multidimensional scaling analysis (B) of the drug 

repurposing hub molecules with the status “Launched”. Embeddings are based on the 4096-bit Morgan 

fingerprint (RD-Kit). Markers are coloured according to 27 manually attributed chemotypes.  
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