Inhibitor selectivity: profiling and prediction
Janssen, A.P.A.

Citation

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/71808

Note: To cite this publication please use the final published version (if applicable).
The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/71808

Author: Janssen, A.P.A.
Title: Inhibitor selectivity: profiling and prediction
Issue Date: 2019-05-01
Introduction

The last decade has seen a renewed interest in the development of covalent inhibitors for several classes of drug targets, including the serine hydrolase and kinase superfamily.1,2 Serine hydrolases perform a broad array of physiological functions and have diverse substrate preferences, but they all share a conserved catalytic nucleophilic serine residue. Serine hydrolases form a covalent acyl-enzyme intermediate, which can be exploited by irreversible, mechanism-based inhibitors. For example, PF-04457845 and ABX-1431 have entered clinical trials as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase
(MAGL) inhibitors for the treatment of neurological diseases, respectively.3–8 Covalent, irreversible inhibitors initially bind in a reversible fashion to the protein (i.e. the Michaelis-Menten complex) followed by a time-dependent chemical reaction that inactivates the enzyme (Figure 4.1A and 4.1B).9 The half maximum inhibitory concentration (IC\textsubscript{50}) for covalent inhibitors is dependent on a combination of binding affinity (K\textsubscript{i}) and reactivity (k\textsubscript{inact}). This fundamental dual aspect of covalent inhibition is often not taken into account during the optimization of covalent irreversible inhibitors, which is usually based on IC\textsubscript{50} values.2,10 This may lead to the prioritization of highly reactive molecules (large k\textsubscript{inact}) based on their high potency.11 Intrinsic high reactivity may, however, lead to a specific binding to other members of the same enzyme family and unwanted adverse side effects as recently witnessed for BIA 10-2474 (Chapter 5).12,13 Of note, the specificity constant (\(\frac{k\text{inact}}{K_i}\)) is sometimes employed to guide inhibitor optimization to avoid IC\textsubscript{50}-values that are assay- and time-dependent.14–16 The specificity constant is determined by measuring the observed rate constants (k\textsubscript{obs}) using various inhibitor pre-incubation times, but does not allow the independent optimization of the affinity K\textsubscript{i}, while minimizing the reactivity k\textsubscript{inact}. Thus, alternative methods are required to determine K\textsubscript{i} and k\textsubscript{inact} in an independent manner.

Diacylglycerol lipases (DAGL) are serine hydrolases responsible for the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG).17 Modulation of DAGL activity holds therapeutic promise for the treatment of metabolic and neuroinflammatory diseases.18–20 Several DAGL inhibitors, including KT109, DH376 and LEI105, have been developed (Figure 4.1C).20–22 KT109 and DH376 belong to the class of triazole urea inhibitors, which are capable of irreversibly binding the catalytic serine through the formation of a stable carbamate adduct, thereby expelling a triazole-moiety as a leaving group (Figure 4.1A). This class of compounds has also shown merit as inhibitors for other serine hydrolases, such as α/β-hydrolase domain containing protein (ABHD) 621, ABHD1123, DDHD domain-containing protein 2 (DDHD2)24 and MAGL.11,25 Structure activity studies of the DAGL (KT109 and DH376) and MAGL (JJKK-048) inhibitors have shown that the heterocyclic leaving group is crucially important for inhibitor activity.11,26,27 The pK\textsubscript{a} of the leaving group as determinant for the reactivity of the urea28 was postulated to determine the activity of inhibitors.11 The exact kinetic parameters of binding for these inhibitors have, however, thus far not been experimentally measured, thus the precise role of the triazole heterocycle in the inhibitor activity is unknown.

Here, we studied in detail the influence of the heterocycle in DAGL-α inhibitor DH376 on the binding and reactivity. To this end, we synthesized a coherent set of azole derivatives of DH376 to systematically investigate the role of the heterocycle in the activity of the inhibitor. Furthermore, we adapted a surrogate substrate assay of DAGL-α, which allowed us to independently measure K\textsubscript{i} and k\textsubscript{inact} of the new inhibitors. Surprisingly, we found that the azole has a crucial role in the formation of the Michaelis-Menten complex, rather than in modulating the reactivity.
Results

To study the role of the azole heterocycle in the activity of the DAGL inhibitor DH376, a focused set of DH376 analogues was synthesized (1-5) (Figure 4.1D). Four different heterocycles (1,2,3-triazole, 1,2,4-triazole, pyrazole and imidazole) and a regio-isomer were selected, because they differ five orders of magnitude in pKₐ.29–31 The compounds were synthesized according to Scheme 4.1. The enantioselective synthetic route towards (R)-2-benzylpiperidine was adapted from Deng et al.27 We replaced the low yielding transamination step, used to introduce an alkene at the free amine of 10, by a simple alkylation with 4-bromobut-1-ene after nosyl protection of the amine (Scheme 4.1). This protected diene was subjected to ring-closing metathesis and, after deprotection, yielded 15 in a three-fold higher overall yield than previously reported.27 To synthesize the leaving group azole derivatives, a general synthetic route was devised featuring a Grignard reaction as core transformation to yield the di-(p-fluorophenyl)methanol moiety in a single step from accessible azole esters (Scheme 4.1). For all but the imidazole derivative this worked without the introduction of any protecting group. Tritylation of the imidazole ethyl ester was necessary to avoid degradation during the Grignard reaction. Finally, the secondary amine 15 was first transformed in a carbamoyl chloride using triphosgene and subsequently reacted with the diphenyl azoles (18, 21, 25 and 29), which furnished the inhibitors 1-5.
To determine the binding kinetics of the inhibitors we adapted the previously reported para-nitrophenolbutyrate (PNPB) assay. The typical pre-incubation step with the inhibitors was omitted and enzyme activity was continuously measured from the start (\(t = 0\)). To obtain a higher specific signal at early time points, the substrate concentration was increased to 600 µM. Furthermore, the enzyme was pre-mixed with the assay buffer before addition to a 96-well plate, which contained concentrated inhibitor and substrate, to minimize initial mixing effects. This yielded reproducible substrate conversion curves (Figure 4.2).

Most available literature models, including the standard observed rate approximation (\(k_{\text{obs}}\)), assume that the enzyme concentration will not change during the incubation...
These models can, however, not be applied to potent inhibitors, such as KT109 and DH376, that will decrease the enzyme concentration. Therefore, the kinetic model of Schwartz et al. was selected to fit to the substrate conversion curves. In this model, DynaFit software is used for the numerical fitting of the full set of differential equations governing the substrate conversion curves without making the $K_i >> [E]$ assumption. The kinetic model from Schwartz et al. was slightly adapted to incorporate the spontaneous enzyme inactivation observed for blank measurements, where substrate depletion cannot explain the decrease in substrate conversion rate. As the substrate concentration was well below the predicted K_M, the one-step substrate conversion proposed by Schwartz et al. was maintained. Initial values for the required rate constants were derived from several preliminary experiments, and were mostly left to be optimized by the algorithm (Figure S4.1).

The assay was validated using irreversible DAGL inhibitors (KT109 and DH376) and a reversible inhibitor (LEI105) (Figure 4.1C). All three inhibitors were previously found to be highly active with (sub)nanomolar potency (pIC$_{50}$ 8.6 to 9). Using seven inhibitor concentrations around their reported IC$_{50}$-values, a set of substrate conversion curves was generated. These curves were fitted with DynaFit (Figure S4.1). The resulting fits and values for K_i and k_{inact} are shown in Figure 4.2. As was expected, the model does not find a fit for the k_{inact} value for the covalent but reversible inhibitor LEI105. The found K_i-values (all between 0.2 and 0.4 nM) were generally in line with the high potency described in literature, although LEI105 was somewhat more active than previously reported. The inactivation rates for KT-109 and DH376 were similar ($k_{inact} = \pm 0.07$ min$^{-1}$).

![Figure 4.2](image-url) | Kinetics of binding of KT109 (A), DH376 (B) and LEI105 (C), data fits are summarized in (D). For clarity not all substrate conversion curves used for the curve fitting are shown. Markers denote measured absorbance, lines denote fitted model.

<table>
<thead>
<tr>
<th>Compound</th>
<th>pIC$_{50}$</th>
<th>K_i (nM)</th>
<th>k_{inact} (min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH376</td>
<td>> 9</td>
<td>0.27 ± 0.03</td>
<td>0.058 ± 0.008</td>
</tr>
<tr>
<td>KT109</td>
<td>> 9</td>
<td>0.35 ± 0.04</td>
<td>0.080 ± 0.009</td>
</tr>
<tr>
<td>LEI105</td>
<td>8.6</td>
<td>0.23 ± 0.03</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
Next, we tested inhibitors 1-5 to determine the influence of the leaving group on their potency in the standard surrogate substrate assay. A large range in IC\textsubscript{50}-values was observed (Figure 4.3A, Table 4.1). Both regioisomers 1 and 2 were low nanomolar inhibitors, whereas the 1,2,4-triazole (3) had a reduced potency (IC\textsubscript{50} = 3.4 µM) and the imidazole (5) was inactive (IC\textsubscript{50} > 10 µM). Pyrazole (4) had an intermediate potency with IC\textsubscript{50} of 0.21 µM. The IC\textsubscript{50}-values were used to guide the selection of inhibitor concentrations for the kinetic assay (Figure 4.3B, Table 4.1). For all but the imidazole compound 5 we were able to determine the kinetic parameters. Intriguingly, the inactivation rates for 1 and 2 (k\textsubscript{inact} = 0.22 and 0.32 min-1, respectively), were 2-3 times higher than for KT109 and DH376, but they had a lower binding affinity (Ki = 10 and 339 nM, respectively). Unexpectedly, the inactivation rates for 3 and 4 were comparable to DH376 and KT109, whereas there is 10,000-fold difference in pK\textsubscript{a} between these heterocycles (Table 4.1). Yet, the binding affinity of 3 and 4 was substantially reduced (Ki > 10 µM), thereby explaining their higher IC\textsubscript{50}-values.

Figure 4.3 | pIC\textsubscript{50} determination of compounds 1-5 (A) and kinetic fits (B). All data points are measured as N = 4, positive controls (DMSO) as N = 8. Markers denote mean values, error bars denote the SEM, lines are fitted data models.
Table 4.1 | Potency and kinetic parameters of the focused set of DH376 derivatives 1-5.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(pIC_{50})</th>
<th>(K_i) (nM)</th>
<th>(k_{\text{inact}}) (min(^{-1}))</th>
<th>(pK_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.52 ± 0.27</td>
<td>10.4 ± 2.0</td>
<td>0.22 ± 0.03</td>
<td>9.3(^{31})</td>
</tr>
<tr>
<td>2</td>
<td>8.42 ± 0.28</td>
<td>339 ± 55</td>
<td>0.32 ± 0.04</td>
<td>9.3(^{31})</td>
</tr>
<tr>
<td>3</td>
<td>5.47 ± 0.07</td>
<td>13770 ± 910</td>
<td>0.075 ± 0.005</td>
<td>10.0(^{29})</td>
</tr>
<tr>
<td>4</td>
<td>6.68 ± 0.41</td>
<td>10800 ± 910</td>
<td>0.080 ± 0.005</td>
<td>14.2(^{30})</td>
</tr>
<tr>
<td>5</td>
<td>< 4.5</td>
<td>N.D.</td>
<td>N.D.</td>
<td>14.4(^{30})</td>
</tr>
</tbody>
</table>

Figure 4.4 | \(pIC_{50} \) correlates with both \(pK_i \) (A) and \(k_{\text{inact}} \) (B) but \(pK_a \) (C) does not correlate with reactivity for the inhibitors 1-4. Dashed lines denote 90% confidence interval.

Discussion

We developed a surrogate substrate based assay to determine the kinetic parameters of binding and reactivity of triazole urea inhibitors of the serine hydrolase DAGL-α. Having the ability to discern the kinetics of binding should enable the optimization of the affinity of the inhibitors for the enzyme, the \(K_i \), while controlling the reactivity \(k_{\text{inact}} \), to minimize the off-target reactivity. The assay was validated using three well-characterized published DAGL inhibitors. Five DH376 derivatives were synthesized to study the role of the leaving group in the affinity and reactivity with DAGL-α. The \(IC_{50} \)-values correlated with the \(K_i \) and \(k_{\text{inact}} \) with an \(R^2 \) of 0.73 and 0.77, respectively (Figure 4.4A, B). The main reason for the large differences observed in \(IC_{50} \)-values for the five inhibitors was the strong reduction in binding affinity for the pyrazole and 1,2,4-triazole compounds compared to the 1,2,3-triazole inhibitors. Unexpectedly, it was shown that the 1,2,4-triazole 3 and pyrazole 4 inhibitors were as reactive as DH376 and KT109, which is in stark contrast to the five orders of magnitude difference in \(pK_a \). This showed that the leaving group acidity does not correlate with the rate of inactivation \(k_{\text{inact}} \) (Figure 4.4C).

The triazole heterocycles of DH376 and KT109 could be involved in hydrogen bonds with active site amino acids, as has been previously shown for \(\alpha \)-positioned heterocycles for related serine hydrolases like FAAH and others.\(^{39,40}\) From our kinetic investigation we indeed conclude that the position of the nitrogen atoms in the ring is of great importance for the formation and strength of these bonds. Despite the lack of knowledge of the structure of DAGL-α, we could speculate that a major hydrogen bonding interaction has to occur from the direction in which His650 is drawn in Figure 4.5 (directionality relative to the
heterocycle). His650 is part of the catalytic triad and has been postulated to bind in this manner before, based on the covalent docking of α-ketoheterocycles in a homology model of DAGL-α. The 1,2,3-triazoles would both be capable of forming this bond. Compounds 3-5 could not form this interaction, which would explain the strong drop in binding affinity. A second weaker hydrogen bonding interaction on the other side of the urea functionality could explain the further differences observed. A candidate hydrogen bond donor would be His471 (drawn in Figure 4.5). Compound 1 would be optimally positioned to bind both, leading to the low K_i observed. The N1-isomer could only bind His650, leading to a slight drop in potency. Compounds 3 and 4 could both bind only through the weaker second interaction, leading to a poor overall binding. Imidazole 5 would be unable to pick up either bond. The proposed hydrogen bonding interactions are unable to directly explain the slight difference in binding between 3 and 4, though the specific electronic properties of the azoles (i.e. the efficiency of the hydrogen bond formation) could be a cause.

Figure 4.5 Illustration of the hypotheses using potential hydrogen bonding to explain the difference in K_i. His650 is hypothesized to form the major hydrogen bond; His471 might form a secondary hydrogen bonding interaction.
The assay presented here, in combination with the data analysis through numerical fitting, could be translated to work on a multitude of serine hydrolases. As long as a sensitive and robust (surrogate) substrate assay is available that can be interrogated in a time-dependent manner it should in principle be possible to derive structure kinetics relationships. These relationships provide important insights into the mode of action and can aid in the optimization of covalent serine hydrolase inhibitors in an affinity directed manner. For the DAG lipase inhibitors, this may lead to more selective inhibitors more suitable for further in vivo target validation studies.

Conclusion

To conclude, we have developed a kinetic assay to study the influence of the heterocyclic core of triazole ureas as covalent, mechanism-based inhibitors of diacylglycerol lipase-α. We found that the pKₐ of the leaving group did not correlate with the reactivity of the inhibitors, but that the position of the nitrogen atom in the heterocycle is of importance in its binding affinity. Detailed knowledge of structure kinetic relationships is expected to guide the optimization of more selective and well-balanced irreversible inhibitors of serine hydrolases.

Acknowledgements

Jacob van Hengst is kindly acknowledged for his essential contribution to the synthetic work described in this Chapter.
Methods

Chemical biology methods

Cell culture and membrane preparation

HEK293T cells were grown in DMEM with stable glutamine and phenolred (PAA) with 10% New Born Calf serum, penicillin and streptomycin. Cells were passaged every 2-3 days by resuspending in medium and seeding them to appropriate confluence. Membranes were prepared from transiently transfected HEK293T cells. One day prior to transfection 10^7 cells were seeded in a 15 cm petri dish. Cells were transfected by the addition of a 3:1 mixture of polyethyleneimine (60 µg) and plasmid DNA (20 µg) in 2 mL serum free medium. The medium was refreshed after 24 hours, and after 72 h the cells were harvested by suspending them in 20 mL medium. The suspension was centrifuged for 10 min at 1000 g and the supernatant was removed. The cell pellet was stored at -80 °C until use.

Cell pellets were thawed on ice and suspended in lysis buffer (20 mM Hepes, 2 mM DTT, 1 mM MgCl₂, 25 U/mL benzonase). The suspension was homogenized by polytrone (3x 7 sec) and incubated for 30 min on ice. The suspension was subjected to ultracentrifugation (93,000 g, 30 min, 4 °C, Beckman Coulter, Type Ti70 rotor) to yield the cytosolic fraction in the supernatant and the membrane fraction as a pellet. The pellet was resuspended in storage buffer (20 mM Hepes, 2 mM DTT). The protein concentration was determined with Quick Start Bradford assay (Biorad). The protein fractions were diluted to a total protein concentration of 1 mg/mL and stored in small aliquots at -80 °C until use.

Surrogate substrate assay

The biochemical mDAGL-α activity assay is based on the method previously described. 32 100 µL reactions were performed in flat bottom Greiner 96-wells plates in a 50 mM pH 7.2 Hepes buffer. Membrane protein fractions from HEK293T cells transiently transfected with mDAGL-α (0.05 µg/µL final concentration) were used as mDAGL-α source. Inhibitors were introduced in 2.5 µL DMSO. The mixtures were incubated for 20 minutes before 5.0 µL 6 mM PNP-butyrate (final concentration 0.3 mM) in 50% DMSO was added (final DMSO concentration 5.0%). Reactions were allowed to progress for 30 minutes at 20 °C before OD (420 nm) was measured using a TECAN GENios plate reader. All experiments were performed at N=2, n=2 for experimental measurements and N=2, n=4 for controls.

Data analysis: Z'-factor of each plate was determined for the validation of each experiment, using the following formula $Z' = 1 - 3(\sigma_{pc} + \sigma_{nc})/(\mu_{pc} - \mu_{nc})$. The OD from the positive control (pc: DAGL DMSO), and the negative control (nc: 10 µM THL) was used. Plates were accepted for further analysis when $Z' > 0.6$. Measurements were corrected for the average absorption of the negative control (10 µM THL). The average, standard deviation (SD) and standard error of mean (SEM) were calculated and normalized to the corrected positive control. Data was exported to Graphpad Prism 7.0 for the calculation of the pIC_{50} using a non-linear dose-response analysis.

DynaFit setup

DynaFit version 4 was used with an academic license. For batch processing the command line interface was used. The raw data were pre-processed using Microsoft Excel 2016 and exported to tab delimited text files for use with DynaFit. Scripts were generated manually or using a purpose-made python script. An example DynaFit script is shown in Figure S4.1.

The contents of the header [task] follow directly from the DynaFit manual and simply state that the program should fit progress curves using the data supplied.

The section [mechanism] was built based on standard enzyme kinetics. The simplified hit and run (E + S ---+ E + P) was used for the substrate conversion as the K_M of the surrogate substrate is too high to be determined reliably experimentally. 10,32 The additional enzyme degradation step (E ---+ E*) was included as the progress rate curves for the DMSO blanks decreased more than could be explained by the reduction in substrate concentration (which is accounted for in the set of differential equations fitted).

The rate constants defined in [constants] were set empirically but are all left to be optimized. The exception is k_{on}, which is fixed to 100,000 µM⁻¹·min⁻¹, but the variable itself is dependent on k_{off} (and vice versa), so only the ratio of the two (K_i) is physically meaningful in this experimental setup.

As the enzyme is obtained by overexpression in HEK293T cells the exact concentration is unknown. Data from the previously published PNPB-based assay used for pIC_{50} determination indicate that the assay limit lies around 9, which puts the enzyme concentration at ± 1 nM. It is left to be optimised by DynaFit.

The value for P given in the [responses] section is essentially the absorption coefficient of the converted surrogate substrate in AUµM⁻¹, which was determined experimentally (Figure S4.2).
Chemistry

General remarks

All reactions were performed using oven- or flame-dried glassware and dry (molecular sieves) solvents. Reagents were purchased from Alfa Aesar, Sigma-Aldrich, Acros, and Merck and used without further purification unless noted otherwise. All moisture sensitive reactions were performed under an argon or nitrogen atmosphere.

1H and 13C NMR spectra were recorded on a Bruker DPX-300 (300 MHz), AV-400 (400 MHz) or DRX-500 (500 MHz). Used software for interpretation of NMR-data was Bruker TopSpin 1.3 and MestReNova 11.0. Chemical shift values are reported in ppm with tetramethylsilane or solvent resonance as the internal standard (CDCl$_3$: δ 7.26 for 1H, δ 77.16 for 13C; ACN-d3: δ 1.94 for 1H, δ 1.32 for 13C; MeOD: δ 3.31 for 1H, δ 49.00 for 13C).42 Data are reported as follows: chemical shifts (δ), multiplicity (s = singlet, d = doublet, dd = double doublet, td, t = triplet, q = quartet, bs = broad singlet, m = multiplet), coupling constants J (Hz), and integration.

Liquid chromatography was performed on a Finnigan Surveyor LC/MS system, equipped with a C18 column. Flash chromatography was performed using silica gel silica gel type SiliaFlash P60 (230–400 mesh). TLC analysis was performed on Merck silica gel 60/Kieselguhr F254, 0.25 mm. Compounds were visualized using KMnO$_4$ staining (K$_2$CO$_3$ (40 g), KMnO$_4$ (6 g), and water (600 mL)) or CAM stain (Ce(NH$_4$)$_2$(SO$_4$)$_2$·2H$_2$O (ceric ammonium sulfate: 10 g); ammonium molybdate (25 g); conc. H$_2$SO$_4$ (100 mL); H$_2$O (900 mL)). Preparative HPLC (Waters, 515 HPLC pump; Waters, 515 HPLC pump; Waters, 2767 sample manager; Waters SFO System Fluidics Organizer; Waters Acquity Ultra Performance LC, SQ Detector; Waters Binary Gradient Module) was performed on a Waters XBridgeTM column (5 µM C18, 150 x 19 mm). Diode detection was done between 210 and 600 nm. Gradient: ACN in (H$_2$O + 0.2% TFA). Chiral HPLC analysis was performed after benzylation of the free amine on a Daicel Chiralpak AD column (250 x 4.5 mm, 10 µm particle size) using 10 % isopropyl alcohol in hexane as eluent (1.0 mL/min, UV-detection at 254 nm) Ret= 15.1 min (R-enantiomer 12.8 min). High resolution mass spectra (HRMS) were recorded by direct injection on a q-TOF mass spectrometer (Synapt G2-Si) equipped with an electrospray ion source in positive mode with Leu-enkephalin (m/z = 556.2771) as an internal lock mass. The instrument was calibrated prior to measurement using the MS/MS spectrum of Glu-1-fibrinopeptide B.

![Chemical structures](image_url)

Scheme S4.1 | Synthesis of (R)-2-benzylpiperidine. Reagents and conditions: a) N,O-di-Me-hydroxylamineHCl, EDC/HCl, DCM, 0°C → RT, 92%; b) LIAH$_4$, THF, -20°C, 96%; c) MeP(Ph)$_2$Br, KHMDMS, THF, -78°C → RT, 56%; d) HCl, MeOH/H$_2$O, quant.; e) NsCl, NEt$_3$, DMAP, DCM 85%; f) 4-bromobut-1-ene, K$_2$CO$_3$, DMF, 70°C, 80%; g) Grubbs’ 1st gen., DCM, 40°C, 62%; h) PhSH, NaOH, ACN/H$_2$O, 50°C, 99%; i) RuCl$_3$(H$_2$O)$_2$, NaBH$_4$, DCE/MeOH, 87%.

tert-Butyl (S)-1-(methoxy(phenyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamic acid (7)

![Chemical structure](image_url)
tert-Butyl \((S) \)-(1-oxo-3-phenylpropan-2-yl)carbamate \((8)\)

\(7 \) (25.9 g, 84 mmol) was dissolved in THF and cooled to -15 °C. Subsequently a 1 M solution of \(\text{LiAlH}_4 \) in THF (42 mL, 42 mmol) was added slowly. Upon completion, the reaction was quenched with 25% aq. \(\text{KHSO}_3 \), allowed to warm up to RT and stirred vigorously. Ethyl acetate was added, and the organic phase was separated, washed with sat. aq. \(\text{NaHCO}_3 \) and brine, dried (\(\text{MgSO}_4 \)), filtered and concentrated under reduced pressure to give the title compound as a white solid. (20.2 g, 81 mmol, 96%).

\(^1\text{H} \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 9.63 (s, 1H), 7.43 – 7.04 (m, 5H), 5.18 – 4.99 (m, 1H), 4.43 (q, \(J = 6.8 \text{ Hz} \), 1H), 3.12 (d, \(J = 6.7 \text{ Hz} \), 2H), 1.41 (s, 9H).

\(^{13}\text{C} \) NMR (101 MHz, CDCl\(_3\)) \(\delta \) 199.56, 135.90, 129.46, 128.88, 127.19, 80.33, 60.91, 35.58, 28.39.

tert-Butyl \((S) \)-(1-phenylbut-3-en-2-yl)carbamate \((9)\)

To a solution of potassium bis(trimethylsilyl)amide (27 g, 135 mmol) in dry THF was added methyltriphenylphosphonium bromide (54.8 g, 153 mmol). The resulting mixture was stirred for 3 hr and subsequently cooled to -78 °C, after which a solution of \(8 \) (22.5 g, 90 mmol) in THF was added. The reaction was allowed to warm up to RT overnight and quenched with sat. aq. \(\text{NH}_4\text{Cl} \). EtOAc was added and the organic phase was separated, washed with sat. aq. \(\text{NaHCO}_3 \) and brine, dried (\(\text{MgSO}_4 \)), filtered and concentrated under reduced pressure. The residue was purified with silica chromatography (6% ethyl acetate in petroleum ether) to give the desired product as a white, waxy solid (12.6 g, 50.9 mmol, 56%). \(^1\text{H} \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.34 – 7.13 (m, 5H), 5.88 – 5.71 (m, 1H), 5.16 – 5.03 (m, 2H), 4.45 (d, \(J = 27.0 \text{ Hz} \), 2H), 2.83 (d, \(J = 6.5 \text{ Hz} \), 2H), 1.40 (s, 9H).

\(^{13}\text{C} \) NMR (101 MHz, CDCl\(_3\)) \(\delta \) 155.33, 138.18, 137.53, 129.68, 128.44, 126.59, 114.84, 79.53, 53.58, 41.60, 28.47.

\((S)\)-1-Phenylbut-3-en-2-amine \((10)\)

\(9 \) (9.7 g, 39.2 mmol) was dissolved in absolute methanol and 4 M aq. HCl was added. After TLC showed full consumption of the starting material, the mixture was concentrated under reduced pressure and diluted with water. The solution was washed with diethyl ether and aq. \(\text{NaOH} \) was used to make the aqueous layer basic (pH > 12). The aqueous phase was extracted 3x with chloroform. The organic layers were combined, dried (\(\text{MgSO}_4 \)), filtered and concentrated under reduced pressure to give the title compound in quantitative yield. Epimerised product that was formed during Wittig olefination was removed by recrystallization form toluene/n-propyl alcohol with \(N\)-acetyl-L-leucine according to literature procedure, yielding the amine as a yellow oil with an enantiomeric ratio of 97:3 as determined by chiral HPLC \(\text{(vide infra)} \). \(^1\text{H} \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.36 – 7.12 (m, 5H), 5.89 (ddd, \(J = 16.8, 10.3, 6.2 \text{ Hz} \), 1H), 5.14 (dt, \(J = 17.2, 1.5 \text{ Hz} \), 1H), 5.04 (dt, \(J = 10.3, 1.4 \text{ Hz} \), 1H), 3.64 – 3.52 (m, 1H), 2.83 (dd, \(J = 13.3, 5.4 \text{ Hz} \), 1H), 2.62 (dd, \(J = 13.3, 8.3 \text{ Hz} \), 1H), 1.31 (s, 3H).

\(^{13}\text{C} \) NMR (101 MHz, CDCl\(_3\)) \(\delta \) 142.49, 138.86, 129.51, 128.50, 126.45, 113.77, 55.57, 44.43.
(S)-2-Nitro-N-(1-phenylbut-3-en-2-yl)benzenesulphonamide (11)

10 (3.5 g, 23.8 mmol), triethylamine (4.88 mL, 35.7 mmol), N,N-dimethylaminopyridine (1.45 g, 11.9 mmol) and 2-nitrobenzenesulphonyl chloride (6.85 g, 30.9 mmol) were dissolved in dry DCM and stirred overnight, after which the reaction mixture was concentrated under reduced pressure. Flash column chromatography (20% ethyl acetate in petroleum ether) yielded the desired product with trace impurities as an orange oil (6.7 g, 20.2 mmol, 80%). 1H NMR (400 MHz, CDCl3) δ 8.01 – 7.90 (m, 1H), 7.63 – 7.61 (m, 1H), 7.69 – 7.58 (m, 2H), 7.18 – 7.01 (m, 5H), 5.81 – 5.64 (m, 1H), 5.40 (d, J = 7.9 Hz, 1H), 5.13 (dt, J = 17.1, 1.2 Hz, 1H), 5.03 (dt, J = 10.3, 1.1 Hz, 1H), 4.32 – 4.17 (m, 1H), 2.92 (dd, J = 13.8, 6.1 Hz, 1H), 2.79 (dd, J = 13.8, 7.8 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 137.21, 136.22, 134.84, 133.45, 131.70, 130.88, 129.39, 128.55, 126.75, 124.29, 118.98, 117.34, 61.66, 44.69, 39.60, 35.63.

(S)-N-(But-3-en-1-yl)-2-nitro-1-(phenylbut-3-en-2-yl)benzenesulphonamide (12)

11 (6.7 g, 20.2 mmol) was dissolved in DMF and K2CO3 (11.1 g, 81 mmol) and 4-bromo-1-butene (2.46 mL, 24.2 mmol) were added. The mixture was heated to 70 °C and stirred vigorously. After 24 hr, an extra portion of 4-bromo-1-butene (2.46 mL, 24.2 mmol) was added and the resulting mixture was stirred for 72 h. The reaction was allowed to cool down to RT, diluted with brine and extracted 3x with EtOAc. Combination, drying (MgSO4), filtration and concentration of the organic phases yielded the desired product as a brown oil (6.24 g, 16.2 mmol, 80%). 1H NMR (400 MHz, CDCl3) δ 7.92 – 7.84 (m, 1H), 7.69 – 7.52 (m, 3H), 7.25 – 7.12 (m, 5H), 5.89 – 5.64 (m, 2H), 5.17 – 5.02 (m, 4H), 4.72 – 4.62 (m, 1H), 3.50 – 3.31 (m, 2H), 3.08 (dd, J = 13.5, 5.9 Hz, 1H), 2.95 (dd, J = 13.5, 9.2 Hz, 1H), 2.50 – 2.31 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 137.45, 135.28, 134.61, 134.09, 133.45, 131.70, 130.88, 129.39, 128.55, 126.75, 124.29, 118.98, 117.34, 61.66, 44.69, 39.60, 35.63.

(S)-6-Benzyl-1-(2-nitrophenyl)sulfonyl)-1,2,3,6-tetrahydropyridine (13)

A solution of 12 (6.24 g, 16.2 mmol) in DCM was purged with argon and 1st generation Grubbs catalyst (400 mg, 3 mol%) was added. The mixture was heated to 40 °C and stirred overnight. Volatiles were removed under reduced pressure and flash column chromatography (40% diethyl ether in petroleum ether) yielded the desired product as brown powder (3.5 g, 23.8 mmol, 62%). 1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 7.7 Hz, 1H), 7.69 – 7.48 (m, 3H), 7.25 – 7.09 (m, 5H), 5.87 – 5.74 (m, 1H), 5.62 (d, J = 10.6 Hz, 1H), 4.56 (s, 1H), 3.93 (dd, J = 14.4, 6.2 Hz, 1H), 3.15 (ddd, J = 15.2, 11.7, 4.1 Hz, 1H), 3.00 (dd, J = 13.1, 6.0 Hz, 1H), 2.89 (dd, J = 13.1, 8.3 Hz, 1H), 2.21 – 2.04 (m, 1H), 1.93 (dt, J = 18.1, 5.0 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 137.28, 134.48, 133.30, 131.84, 130.44, 129.69, 128.50, 127.07, 126.79, 125.61, 124.27, 55.78, 41.71, 39.11, 24.33.

(S)-6-Benzyl-1,2,3,6-tetrahydropyridine (14)

To a solution of thiophenol (2.56 mL, 24.9 mmol) in acetonitrile cooled with ice was added a 2 M aq. solution of NaOH (12.45 mL, 24.9 mmol). After stirring for 10 minutes, the ice bath was removed and a solution of 13 (3.57 g, 9.96 mmol) in acetonitrile was added slowly. The resulting mixture was heated to 50 °C. When TLC showed full conversion of the starting material, the reaction was cooled to RT and diluted with aq. HCl so that the pH was below 2. The aqueous layer was washed with Et2O and diluted with aq. NaOH until the pH was above 12. It was then extracted 3x with ethyl acetate. The organic layers were combined, dried (MgSO4), filtered and concentrated to afford the desired product as yellow oil (1.71 g, 9.86 mmol, 99%). 1H NMR (400 MHz, CDCl3) δ 7.37 – 7.15 (m, 5H), 5.84 – 5.75 (m, 1H), 5.64 (dd, J = 10.1, 2.0 Hz, 1H), 3.61 – 3.51 (m, 1H), 3.17 – 2.99 (m, 1H), 2.85 – 2.75 (m, 2H), 2.70 (dd, J = 13.2, 8.8 Hz, 1H), 2.26 – 2.12 (m, 1H), 2.02 – 1.91 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 138.97, 130.25, 129.39, 128.57, 126.43, 126.22, 55.47, 42.56, 42.12, 25.86.

(R)-2-Benzylpiperidine (15)

In a three-neck flask containing two stoppers and one septum with empty balloons, 14 (1.70 g, 9.81 mmol) was dissolved in dichloroethane/methanol 10:3. This solution was purged with argon and cooled to 0 °C, after which RuCl3(H2O)3 (257 mg, 0.98 mmol) was added. NaBH4 (1.86 g, 49 mmol) was added quickly while capturing the formed H2 gas in the empty balloons, thus keeping the reaction under hydrogen atmosphere. The reaction was allowed to warm up to RT and stirred overnight. Aqueous HCl was then added, so that the water layer had a pH of
below 2. The aqueous layer was washed with Et\textsubscript{2}O and diluted with aq. NaOH until the pH was above 12. The water layer was extracted thrice with ethyl acetate. The organic layers were combined, dried (MgSO\textsubscript{4}), filtered and concentrated to yield the title compound as a yellow waxy solid (1.5 g, 8.6 mmol, 87%). 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.38 – 7.03 (m, 5H), 3.08 – 2.89 (m, 1H), 2.77 – 2.64 (m, 2H), 2.64 – 2.46 (m, 2H), 1.84 – 1.73 (m, 1H), 1.73 – 1.63 (m, 1H), 1.63 – 1.52 (m, 1H), 1.52 – 1.38 (m, 1H), 1.37 – 1.15 (m, 3H). 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 139.12, 129.23, 128.39, 126.20, 58.26, 47.08, 43.81, 32.77, 26.08, 24.80.

Methyl 1\textsubscript{H}-1,2,3-triazole-4-carboxylate (17)

This protocol was based on literature procedure.44 A mixture of azidotrimethylsilane (2.6 mL, 20 mmol) and methyl propiolate (1.8 mL, 20 mmol) was heated for 4 h at 90 °C, concentrated and coevaporated with MeOH to yield the title compound as a white solid (1.74 g, 14 mmol, 68%). 1H NMR (400 MHz, MeOD) δ 8.35 (s, 1H), 3.92 (s, 3H). 13C NMR (101 MHz, MeOD) δ 162.61, 139.63, 131.92, 52.53.

Bis(4-fluorophenyl)(1\textsubscript{H}-1,2,3-triazol-4-yl)methanol (18)

17 (100 mg, 0.787 mmol) was dissolved in THF and cooled to 0 °C. Under vigorous stirring, a 2M solution of 4-fluorophenylmagnesium bromide in Et\textsubscript{2}O (1.38 mL, 2.75 mmol) was added dropwise. The reaction mixture was allowed to warm up to RT and stirred overnight. The reaction was quenched with sat. aq. NH\textsubscript{4}Cl. The aqueous phase was extracted with DCM (3x). The combined organic layers were dried (MgSO\textsubscript{4}), filtered and concentrated under reduced pressure. The residue was purified using flash column chromatography (40% to 60% ethyl acetate in pentane) in order to obtain the title compound as a white solid (210 mg, 0.731 mmol, 94%). 1H NMR (400 MHz, MeOD) δ 7.60 (s, 1H), 7.45 – 7.33 (m, 4H), 7.15 – 6.98 (m, 4H).

Methyl 1\textsubscript{H}-1,2,4-triazole-3-carboxylate (20)

1\textsubscript{H}-1,2,4-triazole-3-carboxylic acid 19 (250 mg, 2.21 mmol) was dissolved in MeOH (50 mL) and cooled to 0 °C. Thionyl chloride (0.48 ml, 6.6 mmol) was slowly added to the solution. The mixture was then heated to reflux for 3 h after which it was cooled to RT and concentrated in vacuo to yield the title compound (271 mg, 2.14 mmol, 97%) as a white solid. 1H NMR (400 MHz, MeOD) δ 9.24 (s, 1H), 4.05 (s, 3H).

Bis(4-fluorophenyl)(1\textsubscript{H}-1,2,4-triazol-3-yl)methanol (21)

20 (100 mg, 0.787 mmol) was dissolved in THF and cooled to 0 °C. Under vigorous stirring, a 2 M solution of 4-fluorophenylmagnesium bromide in Et\textsubscript{2}O (1.37 mL, 2.75 mmol) was added dropwise. The reaction mixture was allowed to warm up to RT and stirred overnight. The reaction was quenched with sat. aq. NH\textsubscript{4}Cl. The aqueous phase was extracted with ethyl acetate (3x). The combined organic layers were dried (MgSO\textsubscript{4}), filtered and concentrated under reduced pressure, yielding the title compound as an off-white solid (201 mg, 0.700 mmol, 89%). 1H NMR (400 MHz, CD\textsubscript{3}CN) δ 8.21 (s, 1H), 7.40 (dd, J = 8.7, 5.4 Hz, 4H), 7.08 (t, J = 8.7 Hz, 4H). 13C NMR (101 MHz, CD\textsubscript{3}CN) δ 163.23, 160.78, 140.15, 133.42, 128.89 (d, J = 8.2 Hz), 115.17, 114.42 (d, J = 21.7 Hz), 76.63.

1\textsubscript{H}-Pyrazole-3-carboxylic acid (23)

Synthesis based on published procedure.45 3-Methyl-1\textsubscript{H}-pyrazole 22 (750 mg, 9.13 mmol) was dissolved in water, K\textsubscript{2}MnO\textsubscript{4} (3.18 g, 20.1 mmol) was added and the mixture was refluxed overnight. The reaction was cooled to room temperature, solids were filtered off, and the solvent was removed under reduced pressure. The resulting white powder was used directly without further purification.

Ethyl 1\textsubscript{H}-pyrazolecarboxylate (24)

Crude 23 was dissolved in anhydrous ethanol with a catalytic amount of concentrated H\textsubscript{2}SO\textsubscript{4} and refluxed overnight. The reaction was allowed to cool to RT, the solvent was partially removed and the residue was neutralized using sat. aq. NaHCO\textsubscript{3}. The aqueous phase was extracted with ethyl acetate (3x), and the combined organic layers were dried (MgSO\textsubscript{4}),
filtered and concentrated under reduced pressure, yielding the title compound as a white power (607 mg, 4.33 mmol, 47% over 2 steps). 1H NMR (400 MHz, MeOD) δ 7.73 (d, $J = 2.3$ Hz, 1H), 6.85 (d, $J = 2.3$ Hz, 1H), 4.39 (q, $J = 7.1$ Hz, 2H), 1.40 (t, $J = 7.1$ Hz, 3H). 13C NMR (101 MHz, MeOD) δ 108.84, 105.15, 61.94, 14.58.

Bis(4-fluorophenyl)(1H-pyrazol-3-yl)methanol (25)

13C NMR (101 MHz, MeOD) δ 108.84, 105.15, 61.94, 14.58.

Bis(4-fluorophenyl)(1-trityl-1H-imidazol-4-yl)methanol (28)

13C NMR (101 MHz, MeOH) δ 162.18 (d, $J = 246.8$ Hz), 141.90 (d, $J = 2.2$ Hz, 1H), 114.90 (d, $J = 21.4$ Hz), 110.10, 105.43, 77.61.

Bis(4-fluorophenyl)(1H-imidazol-4-yl)methanol (29)

13C NMR (101 MHz, CDCl$_3$) δ 162.18 (d, $J = 246.9$ Hz), 144.16, 140.79, 140.65, 129.62, 129.10 (d, $J = 8.1$ Hz), 128.92, 128.68, 121.17, 115.33, 115.28 – 114.61 (m), 76.24.
4-[[1,1'-Biphenyl]-4-yl]-1H-1,2,3-triazole (30)

A mixture of formaldehyde (12.5 mL, 168 mmol), acetic acid (1.44 mL, 25.2 mmol) and 1,4-dioxane (125 mL) was stirred for 15 min. Sodium azide (1.64 g, 25.2 mmol) was added, followed by 4-ethynyl-1,1'-biphenyl (3.00 g, 16.8 mmol). After 10 min, sodium ascorbate (0.667 g, 3.37 mmol), and CuSO\(_4\)-5H\(_2\)O (0.210 g, 0.842 mmol) in 1 mL of water were added. The resulting mixture was stirred for 18 h at RT. It was diluted with H\(_2\)O (60 mL) and extracted with chloroform (3 x 30 mL). The combined organic layers were dried (MgSO\(_4\)), filtered and concentrated. The residue was suspended in 2 M NaOH (6 mL) and stirred for 20 h at RT. The reaction was acidified with 4 M HCl (aq.) and the white precipitate was filtered off, yielding the desired product as a white solid (2.31 g, 10.4 mmol, 62%).

\(^1\)H NMR (400 MHz, DMSO) \(\delta\) 15.18 (s, 1H), 8.40 (s, 1H), 7.99 – 7.93 (m, 2H), 7.81 – 7.75 (m, 2H), 7.75 – 7.69 (m, 2H), 7.53 – 7.45 (m, 2H), 7.42 – 7.34 (m, 1H).

\(^{13}\)C NMR (101 MHz, DMSO) \(\delta\) 156.90, 145.31, 139.56, 128.99, 127.60, 127.17, 126.56, 126.09.

(R,S)-2-Benzylpiperidine (31)

2-Benzylpyridine (5.0 mL, 31 mmol) was dissolved in ethanol (100 mL) and concentrated aqueous HCl (10 mL) was added. Then PtO\(_2\) (112 mg, 0.49 mmol) was added and the mixture was shaken under a hydrogen atmosphere of 2 bar at RT. After overnight shaking, solids were filtered off over celite. The solvent was removed under reduced pressure and the residue was purified using flash column chromatography (10% methanol in DCM) to yield the title compound (4.2 g, 20 mmol, 64%).

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.41 (s, 1H), 7.42 – 7.13 (m, 5H), 3.58 – 3.38 (m, 2H), 3.25 – 3.02 (m, 1H), 3.02 – 2.73 (m, 2H), 2.14 – 1.47 (m, 5H), 1.47 – 1.10 (m, 1H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 136.16, 129.51, 128.76, 127.04, 58.59, 45.11, 40.07, 27.97, 22.61.

General procedure 1: triphosgene coupling of 2-benzylpiperidine and bis(4-fluorophenyl) heterocycle

Triphosgene (0.7 eq.) was dissolved in dry DCM (0.1 M) and to this solution 2-benzylpiperidine (1 eq.) and Na\(_2\)CO\(_3\) (1 eq.) were added at 0 °C. The mixture was stirred for 1 hour, warming to RT. The mixture was then filtered and concentrated in vacuo. The residue was taken up in dry THF, followed by addition of a bis(4-fluorophenyl) heterocycle (1 eq.), DMAP (0.1 eq.) and DIPEA (1.1 eq.). The reaction mixture was refluxed to completion. The reaction was quenched with saturated NH\(_4\)Cl (aq.), after which the water layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried with MgSO\(_4\), filtered and concentrated under reduced pressure.

(R)-(2-Benzylpiperidin-1-yl)(4-(bis(4-fluorophenyl)(hydroxy)methyl)-2H-1,2,3-triazol-2-yl)methanone (1) and (R)-(2-benzylpiperidin-1-yl)(4-(bis(4-fluorophenyl)(hydroxy)methyl)-1H-1,2,3-triazol-1-yl)methanone (2)

Synthesized according to General Procedure 1 from 18 (123 mg, 0.428 mmol). The N1-isomer was isolated as first eluting isomer (1.63 mg, 3.3 µmol, 1.2%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.41 – 6.57 (m, 14H), 4.76 (s, 1H), 4.40 – 4.18 (m, 1H), 3.56 (d, \(J = 66.9\) Hz, 1H), 3.41 – 2.81 (m, 2H), 2.08 – 1.39 (m, 6H). HRMS: Calculated for [C\(_{28}\)H\(_{26}\)F\(_2\)N\(_4\)O\(_2\)+H]\(^+\) = 488.2079, found = 488.2097. N2-isomer (2.14 mg, 4.4 µmol, 1.5%): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.48 (s, 1H), 7.40 – 6.70 (m, 13H), 5.04 – 3.66 (m, 2H), 3.47 (s, 1H), 3.26 (t, \(J = 13.3\) Hz, 1H), 3.16 – 2.81 (m, 2H), 1.94 – 1.43 (m, 6H). HRMS: Calculated for [C\(_{28}\)H\(_{26}\)F\(_2\)N\(_4\)O\(_2\)+H]\(^+\) = 488.2079, found = 488.2091.

(R)-(2-Benzylpiperidin-1-yl)(3-(bis(4-fluorophenyl)(hydroxy)methyl)-1H-1,2,4-triazol-1-yl)methanone (3)

Synthesized according to General Procedure 1 from 21 (65 mg, 0.23 mmol). The title compound was obtained as a white solid (34.7 mg, 0.071 mmol, 35%). \(^1\)H NMR (400 MHz, CD\(_2\)CN) \(\delta\) 8.04 (bs, 1H), 7.35 (d, \(J = 6.6\) Hz, 4H), 7.12 (s, 3H), 7.07 – 6.70 (m, 7H), 4.88 (s, 1H), 4.72 (s, 1H), 4.03 (d, \(J = 15.5\) Hz, 1H), 3.23 (t, \(J = 13.1\) Hz, 1H), 2.70 (s, 1H), 1.83 – 1.32 (m, 6H). HRMS: Calculated for [C\(_{28}\)H\(_{26}\)F\(_2\)N\(_4\)O\(_2\)+H]\(^+\) = 488.2097, found = 488.2096.
Synthesized according to General Procedure 1 from 25 (65 mg, 0.23 mmol).
The title compound was obtained as a white solid (21 mg, 0.043 mmol, 21%).
^1^H NMR (400 MHz, CD$_3$CN) δ 7.66 – 7.49 (m, 1H), 7.42 – 7.29 (m, 4H), 7.17 (dd, J = 5.1, 1.9 Hz, 3H), 7.13 – 6.92 (m, 6H), 6.22 (d, J = 2.6 Hz, 1H), 4.77 (s, 1H), 4.59 (s, 1H), 4.17 – 3.99 (m, 1H), 3.25 (td, J = 13.4, 3.0 Hz, 1H), 3.10 (dd, J = 13.5, 9.0 Hz, 1H), 2.83 – 2.68 (m, 1H), 1.88 – 1.21 (m, 6H).
HRMS: Calculated for [C$_{29}$H$_{27}$F$_2$N$_3$O$_2$+H]$^+$ = 488.2144, found = 488.2140.

Synthesized according to General Procedure 1 from 29 (83 mg, 0.29 mmol).
The title compound was obtained as a white solid (38 mg, 0.078 mmol, 27%).
^1^H NMR (400 MHz, CD$_3$CN) δ 7.42 (s, 1H), 7.38 – 6.99 (m, 13H), 6.27 (s, 1H), 4.47 (s, 1H), 4.30 (qt, J = 7.1, 3.8 Hz, 1H), 3.81 (d, J = 13.7 Hz, 1H), 3.32 (td, J = 13.3, 2.9 Hz, 1H), 3.19 (dd, J = 13.7, 10.0 Hz, 1H), 2.78 (dd, J = 13.7, 5.5 Hz, 1H), 1.92 – 1.63 (m, 6H).
HRMS: Calculated for [C$_{29}$H$_{27}$F$_2$N$_3$O$_2$+H]$^+$ = 488.2144, found = 488.2142.

Synthesized according to General Procedure 1 from 30 (2.31 g, 10.4 mmol). The N$_1$-isomer was isolated as first eluting isomer (621 mg, 1.47 mmol, 14%).
^1^H NMR (400 MHz, CDCl$_3$) δ 7.87 (s, 2H), 7.75 – 7.60 (m, 4H), 7.53 – 7.35 (m, 4H), 7.24 (d, J = 15.7 Hz, 6H), 4.86 (s, 1H), 4.37 (d, J = 13.5 Hz, 1H), 3.31 (d, J = 52.1 Hz, 2H), 2.70 (s, 1H), 2.11 – 1.62 (m, 6H).
HRMS: Calculated for [C$_{27}$H$_{36}$N$_4$O$^+$ + H]$^+$ = 423.2179, found = 423.2183.
Supplementary Figures

Example DynaFit script. All concentrations are in µM units, rate constants are given in min\(^{-1}\) (k\(_{off}\), k\(_{inact}\) and k\(_{deg}\)) or M\(^{-1}\) min\(^{-1}\) (k\(_{prod}\) and k\(_{on}\)).

Figure S4.1 | Example DynaFit script. All concentrations are in µM units, rate constants are given in min\(^{-1}\) (k\(_{off}\), k\(_{inact}\) and k\(_{deg}\)) or M\(^{-1}\) min\(^{-1}\) (k\(_{prod}\) and k\(_{on}\)).

Figure S4.2 | Absorption of 4-nitrophenol. Linear curve fit of absorbance measured for a concentration of 4-nitrophenol in the assay buffer. 6 repetitions are given for each condition. Dashed lines denote 95% confidence interval. Slope value is given ± standard deviation.
References

44. Taherpour, A. A. & Kheradmand, K. One-pot microwave-assisted solvent free synthesis of simple alky 1,2,3-triazole-4-carboxylates by using trimethylsilyl azide. *J. Heterocycl. Chem.* **46**, 131–133 (2009).