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Anxiety disorders are among the most prevalent forms of psychopathology (Kessler, Berglund, Demler, Jin, 

Merikangas, & Walters, 2005; Kessler, Chiu, Demler, & Walters, 2005) and are associated with a significant 

impairment in overall functioning and reduction in quality of life (American Psychiatric Association, 2013). 

Research into the mechanisms that underlie anxiety disorders and/or maladaptive anxiety states is critical to help 

in treatment consideration.  

 Anxiety has often been related to certain attentional deficits (e.g. Mogg & Bradley, 1998; 2016; Derryberry 

& Reed, 2002; Eysenck, Derakshan, Santos and Calvo, 2007), more specifically, anxious individuals were found to 

often have an enduring automatic tendency to attend preferentially to threat related information (e.g. see 

Derryberry & Reed, 2002; Bar-Haim, Lamy, Pergamin, Bakermans-Kranenburg & van IJzendoorn, 2007). These 

tendencies are also called ‘attentional biases’ favoring threatening information. Attentional biases to threat were 

for example suggested to maintain anxiety complaints, as anxious (distracting) information is not well regulated 

in, for example anxiety disorders (Mogg & Bradley, 1998; 2016). Moreover, attentional biases to threat are 

considered to causally relate to heightened trait anxiety (Bar-Haim et al., 2007; Mathews & MacLeod, 2002; van 

Bockstaele, Verschuere, Tibboel, De Houwer, Crombez, & Koster, 2014).  

 Critically however, several lines of evidence argued that the attentional processes that underlie 

attentional biases to threat fluctuate across time and context and depend on individual trait-differences (e.g. 

Mogg & Bradley et al., 1998; 2016; Iacoviello, Wu, Abend, Murrough, Feder, Fruchter et al., 2014; Kruijt, Field & Fox, 

2016; Notebaert, Clarke & MacLeod, 2016). One example is individuals’ capacity to control their attention, in other 

words, attentional control. Attentional control can be defined as the ability to control attention in relation to 

thought and reaction patterns (Derryberry & Reed, 2002). Impaired attentional control was found to be a predictor 

for certain anxiety disorders, which will be further outlined in subsequent sections of this introduction. Several 

studies furthermore found low attentional control to directly relate to stronger attentional biases/ disturbed 

threat processing (e.g. Derryberry & Reed, 2002; Eysenck et al., 2007; Koster, Crombez, Verschuere, & De Houwer, 

2004) making attentional control an important concept to further investigate. In the current doctoral thesis, the 

specific role of attentional control in processing threatening information will be reviewed, along with the use of a 

related physiological marker; EEG theta/beta ratio.  

 

Attentional control  

 Attention is the means by which the ‘limited-capacity brain’ allocates processing resources (Posner & 

Petersen, 1990). Giving attention to some features of our environment may cause partial or full exclusion of 

attention to other features (Driver, 2001). In other words, attention denotes concentration or distractibility 

(Lawrence, Ross, Hoffmann, Garavan, & Stein, 2003). Attentional control, as a key concept in this thesis, is the 

ability to effortfully control attention to support tasks and goals.  

 Attentional control has been described by different theoretical models in psychological research, 

including different component processes, contributing to the broader construct of ‘cognitive control’. Miyake, 

Friedman, Emerson, Witzki, Howerter and Wager (2000) described several processes involved in cognitive 

‘executive’ control functions. They used a latent variable analysis to identify the basic control functions for 

 9 

attention by selecting cognitive tasks on lower level functions. Three major functions were identified: 1) Inhibition: 

one’s ability to deliberately inhibit dominant, automatic responses when necessary; this involves using attentional 

control to resist disruption or interference from task-irrelevant stimuli or responses, e.g., assessed by anti-saccade 

and Stroop tasks. 2)  Shifting: shifting back and forth between multiple tasks, operations, or mental sets; this 

function involves adaptive changes in attentional control based on task demands. 3)  Updating: updating and 

monitoring of working memory representations e.g. assessed by working memory tasks. Miyake et al. (2000) 

noted that correlations between shifting, updating and inhibition measures have an underlying commonality. 

This definition of executive functions underlying attentional control may reflect a shared requirement to maintain 

goals in working memory and/ or a common inhibitory process. In an update of their model, Miyake and 

Friedman (2012) propose that ‘inhibition’ can be seen as a common factor that is fundamental for all aspects of 

executive control. In this revised model, two factors are proposed to be subordinate of the common ‘inhibition’ 

factor; a separate shifting-specific and updating-specific factor.  

 In line with Miyake and Friedman (2012), Derryberry and Reed, (2002) describe attentional control as the 

top-down command over different components of attention. They point out that attentional control consists of 

two dimensions. Attentional Focus is the ability to maintain attentional engagement in the face of distraction, 

while Attentional Shifting is the ability to execute attentional disengagement, in other words to shift attention 

away from a distraction or toward a new task. Individual differences in attentional control can be measured 

reliably, both by self-report and performance measures (Derryberry & Reed, 2002). Attentional control may be 

conceptualized as a trait capturing the control of information processing (Derryberry & Reed, 2002). 

 Eysenck et al. (2007) proposed an attentional control theory, in which working memory and attention are 

controlled by two attentional systems: a bottom-up, stimulus-driven system, and a goal-directed top-down 

system. During anxious states for example, the bottom-up processing of threatening stimuli is automatically 

increased. This causes misbalance between both systems and bottom-up processes become favoured. The goal-

directed top-down system on the other hand, supports two key functions as part of attentional control: inhibition 

of task-irrelevant information and responses, and switching between tasks (Berggren & Derakshan, 2013; Snyder, 

Miyake & Hankin, 2015). 

 

Attentional control and anxiety disorders 

 As briefly mentioned before, low capacity of attentional control has repeatedly been associated with a 

broad spectrum of anxiety disorders (for a review see Cisler & Koster, 2010). Post-Traumatic Stress Disorder (PTSD) 

for example, may be characterized by trauma related impaired attentional control, that was most apparent when 

the threat cue was in the patient’s domain of concern (PTSD relevant threat; see Bomyea, Risbrough, & Lang, 

2012). PTSD patients’ persistence of distressing intrusive thoughts may also stem from ineffective utilization of 

cognitive systems – specifically aspects of attentional functioning – to inhibit or down-regulate all information 

(e.g., Anderson & Levy, 2009; Joormann, Yoon, & Siemer, 2010; Verwoerd, de Jong, & Wessel, 2008). Hagenaars and 

Putman (2011) provided further evidence for the relationship between intrusive memories and attentional 

control. Healthy participants who were low in attentional control showed a self-perceived tonic immobility when 
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viewing an aversive film, which in turn predicted intrusion frequency during the subsequent week. People with 

better attentional control were more resilient to this relationship.  

  General Anxiety Disorder (GAD) has also been associated with impaired attentional control (Amir, Beard, 

Burns, & Bomyea., 2009). In GAD, anxiogenic cognitions take the form of perseverative worry, which consists of 

repeated thoughts about everyday concerns (Armstrong, Zald, & Olatunji, 2011; Burns, Keortge, Formea, & 

Sternberger, 1996) and are thought to start as uninhibited selective thought-processing, akin to automatic 

attentional processing of threat-information (Hirsch & Mathews, 2012). Individuals suffering from GAD moreover 

experience related impairments, such that one’s ability to manage attentional resources toward the prevention of 

‘unwanted negative thoughts’ is undermined.  

 Similarly, social anxiety disorder (SAD) is characterized by a biased internal activation system of 

threatening thoughts such as fears of evaluation by others (Schmidt, Richey, Buckner, & Timpano, 2009). These 

threatening thoughts impact working memory and other attentional mechanisms (Hirsch & Mathews, 2012). 

Adapting and performing well in one’s environment depends on capacity-limited attention and on executive 

functions like working memory. Individuals suffering from cognitive performance anxiety (also a sub-classification 

of SAD; American Psychiatric Association, 2013) often encounter comparable intrinsic thoughts that disturb 

cognitive functions and thus performance (Osborne & Franklin, 2002). Cognitive performance anxiety is generally 

defined as experienced fears about some domain of one’s cognitive performance and about others’ evaluations 

thereof. Test anxiety is a clear example of cognitive performance anxiety. Although moderate levels of stress may 

increase performance, severe cognitive performance anxiety will have a detrimental effect on actual cognitive 

performance (Cassady & Johnson, 2002; Eum & Rice, 2011).  

 These described lines of research lead to the hypothesis that enhancing attentional control may be 

helpful for persons who suffer from anxiety disorders and who are characterised by disrupted attentional 

processing. Enabling patients to exert more cognitive control over their attentional resources may help them 

direct attention to cognitive tasks instead of to distracting intrusions. Therefore, it is important to understand the 

underlying mechanisms of attentional processing, in particular threat selective attention.  

 

Threat selective attention and threat avoidance 

 Selective attention is the means by which certain features in the environment are selected by individuals 

for attentional focus (e.g. Driver, 2001; Derryberry & Reed, 2002; Koster et al., 2004). As already mentioned, anxious 

individuals (scoring high on trait-anxiety) selectively and automatically attend to emotional, mainly threat-related, 

stimuli, compared to neutral stimuli (for reviews see Bar-Haim et al., 2007; Cisler, Bacon & Williams, 2009; Cisler & 

Koster, 2010; Koster et al., 2004; Mogg & Bradley, 1998; 2016). In other words, anxious individuals have ‘attentional 

biases’ favoring threatening information. These biases are important in that the attention selectively facilitates 

early threat processing, thereby influencing the cognitive and emotional processes related to anxiety (further 

referred to as ‘threat selective attention’; Mathews, May, Mogg & Eysenck, 1990; Williams, Mathews, & MacLeod, 

1996).  

 Mogg and Bradley (1998; 2016) described threat selective attention as that being vulnerable to anxiety 
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disorders stems mainly from a bias caused by automatic threat evaluation. This idea includes that an intrinsic 

stimulus threat value might be automatically assessed by a valence evaluation system, influenced by several 

variables (e.g. stimulus features, context, prior learning, state- and trait-anxiety). This intrinsic system is more 

reactive to threat cues in individuals prone to anxiety disorders. In the absence of threat, the system processes 

goal-relevant stimuli, but inhibits processing of minor task-irrelevant negative cues. However, if the valence 

evaluation system judges a stimulus to have a high threat value, this triggers automatic attention to the threat 

and interrupts all goal-related activity. Because anxiety prone individuals tend to evaluate mildly threatening 

stimuli as having a high motivational salience, they are more likely to direct attention to those stimuli. Hence, 

threat selective attention, specifically to mildly threatening stimuli may be an index of anxiety-proneness. In this 

way, threat selective attention actually maintains anxiety, as anxiety-prone individuals are more likely to notice 

minor threat cues in the environment, which enhances their perception of the world as aversive and unsafe, and 

increases their state anxiety (Bardeen & Orcutt, 2011; Derryberry & Reed, 2002; Putman, Arias-Garcia, Pantazi, & van 

Schie, 2012; Schoorl, Putman, van der Werff & van der Does, 2014; Taylor, Cross, and Amir., 2016; Peers & Lawrence, 

2009).  

 Among others, Mogg et al., (1987) reported that initial threat selective attention may be opposed by 

threat avoidance in controlled attention-related strategies. Avoidance was proposed to reflect an attempt to 

reduce subjective discomfort or perceived danger, making avoidance possibly more apparent at higher levels of 

threat or anxiety (Mogg, Weinman, & Mathews, 1987). Whereas avoidant attention-related strategies may reduce 

immediate distress, they may not be useful on the long-term by causing habituation and thus persistence of 

anxiety (Mogg & Bradley, 2016). These considerations carry possible implications for the currently popular 

attentional bias modification (ABM) paradigm and its attempts to train attentional bias away from threat with the 

objective of effecting more adaptive, healthy attentional processing styles. The ABM-threat-avoidance training 

may cause strategic avoidance of threat, making it unhelpful for anxious individuals. 

Neural mechanisms of attentional control and threat selective attention 

 Understanding the neural underpinnings of attentional control and threat selective attention may be 

fundamental for improvement of maladaptive anxiety states. Scientific research on these mechanisms points out 

that the bottom-up sensory and top-down control processes interact to determine how much ‘attention’ threat-

related stimuli receive (e.g. Bishop, 2008; Hermans, Henckens, Joels & Fernandez, 2014). Top-down attentional 

control and inhibition of such stimulus-driven attention seems to be carried out by e.g. the dorsal anterior 

cingulate cortex and the dorso-lateral prefrontal cortex (DL-PFC; Fani, Jovanovic, Ely, Bradley, Gutman, et al., 2012). 

Bottom up processes of salient and threat-related distracters (which have also been classified as the ‘salience 

network’) seem to be mediated by sub-cortical brain areas like the ventral anterior cingulate cortex, the medial 

prefrontal cortex (mPFC), parahippocampal gyrus and the angular gyrus (e.g. Bishop, 2008).  

 Neural resources that are allocated towards this salience network seem to be highly influenced by 

catecholamines (e.g., norepinephrine and dopamine) in terms of mediating earliest responses to acute threat 

(Hermans et al., 2014). The goal oriented, top-down attentional control mediated by prefrontal cortex (PFC) 

networks is also dependent on adequate catecholamine action (Hermans et al., 2014; Arnsten, 2009a). Stress and 



Introduction

11

I

 10 

viewing an aversive film, which in turn predicted intrusion frequency during the subsequent week. People with 

better attentional control were more resilient to this relationship.  

  General Anxiety Disorder (GAD) has also been associated with impaired attentional control (Amir, Beard, 

Burns, & Bomyea., 2009). In GAD, anxiogenic cognitions take the form of perseverative worry, which consists of 

repeated thoughts about everyday concerns (Armstrong, Zald, & Olatunji, 2011; Burns, Keortge, Formea, & 

Sternberger, 1996) and are thought to start as uninhibited selective thought-processing, akin to automatic 

attentional processing of threat-information (Hirsch & Mathews, 2012). Individuals suffering from GAD moreover 

experience related impairments, such that one’s ability to manage attentional resources toward the prevention of 

‘unwanted negative thoughts’ is undermined.  

 Similarly, social anxiety disorder (SAD) is characterized by a biased internal activation system of 

threatening thoughts such as fears of evaluation by others (Schmidt, Richey, Buckner, & Timpano, 2009). These 

threatening thoughts impact working memory and other attentional mechanisms (Hirsch & Mathews, 2012). 

Adapting and performing well in one’s environment depends on capacity-limited attention and on executive 

functions like working memory. Individuals suffering from cognitive performance anxiety (also a sub-classification 

of SAD; American Psychiatric Association, 2013) often encounter comparable intrinsic thoughts that disturb 

cognitive functions and thus performance (Osborne & Franklin, 2002). Cognitive performance anxiety is generally 

defined as experienced fears about some domain of one’s cognitive performance and about others’ evaluations 

thereof. Test anxiety is a clear example of cognitive performance anxiety. Although moderate levels of stress may 

increase performance, severe cognitive performance anxiety will have a detrimental effect on actual cognitive 

performance (Cassady & Johnson, 2002; Eum & Rice, 2011).  

 These described lines of research lead to the hypothesis that enhancing attentional control may be 

helpful for persons who suffer from anxiety disorders and who are characterised by disrupted attentional 

processing. Enabling patients to exert more cognitive control over their attentional resources may help them 

direct attention to cognitive tasks instead of to distracting intrusions. Therefore, it is important to understand the 

underlying mechanisms of attentional processing, in particular threat selective attention.  

 

Threat selective attention and threat avoidance 

 Selective attention is the means by which certain features in the environment are selected by individuals 

for attentional focus (e.g. Driver, 2001; Derryberry & Reed, 2002; Koster et al., 2004). As already mentioned, anxious 

individuals (scoring high on trait-anxiety) selectively and automatically attend to emotional, mainly threat-related, 

stimuli, compared to neutral stimuli (for reviews see Bar-Haim et al., 2007; Cisler, Bacon & Williams, 2009; Cisler & 

Koster, 2010; Koster et al., 2004; Mogg & Bradley, 1998; 2016). In other words, anxious individuals have ‘attentional 

biases’ favoring threatening information. These biases are important in that the attention selectively facilitates 

early threat processing, thereby influencing the cognitive and emotional processes related to anxiety (further 

referred to as ‘threat selective attention’; Mathews, May, Mogg & Eysenck, 1990; Williams, Mathews, & MacLeod, 

1996).  

 Mogg and Bradley (1998; 2016) described threat selective attention as that being vulnerable to anxiety 

 11 

disorders stems mainly from a bias caused by automatic threat evaluation. This idea includes that an intrinsic 
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anxiety trigger a variety of neurochemical changes, including increased influx of dopamine and nor-adrenaline 

into the PFC (Joëls & Baram, 2009). Both dopamine and nor-adrenaline influence PFC in a dose-dependent, 

inverted U-shaped manner (Arnsten, 2009a). While moderate levels are needed for good prefrontal executive 

control, dopaminergic and noradrenergic over-stimulation leads to decreased PFC function. In other words, 

increasing levels of catecholamines are associated with increasing performance until a tipping point is reached, 

after which further catecholamine stimulation will harm executive performance, including top-down attentional 

control (Arnsten, 2009a; Arnsten & Rubia, 2012; Hermans et al., 2014). This tipping point for the effects of stress-

induced catecholamines (the apex of the inverted U-shape relation between catecholamines and cognitive 

performance) was found to be dependent on catecholamine-driven basal prefrontal function, and is therefore 

different for every individual (Arnsten, 2009a; Arnsten 2009b; Cools & D’Esposito, 2011). This implies that a well-

dosed manipulation of catecholamine systems could increase attentional control over threat-bias, depending on 

individual differences in anxiety and baseline PFC function or catecholamine levels (Arnsten, 2006; Arnsten, 

2011b). 

 In addition, it was found that the manipulation of attentional focus, threat-value, and stimulus 

presentation parameters (e.g. stimulus delay) have different influences upon subcortical areas and prefrontal 

activation to threatening stimuli (Bishop, 2008). For example, high perceptual load causes competition for 

perceptual resources and appears to inhibit the processing of threat distractors at an early stage, eliminating the 

amygdala response to these distractors. On the other hand, for low perceptual load the automatic bottom-up 

activity can be sufficient for such threat distractors to cause amygdala activity (Bishop, Jenkins & Lawrence, 2006; 

Pessoa, Padmala, & Morland, 2005). It can be argued that salient distractors compete for processing resources, 

such as entry to working memory and guidance of response selection. This is in line with the previously described 

attentional control theory (Eysenck et al., 2007); in low perceptual load, prefrontal cortical regions cause top-down 

attentional control to be electively activated in response to the occurrence of threat-related distractors (Bishop et 

al., 2006).  

 Moreover, individual differences in anxiety seem to modulate the strength of the amygdala signal to 

threat stimuli, even when participants are not attending to or consciously aware of these stimuli (Bishop, Duncan 

& Lawrence, 2004; Etkin, Klemenhagen, Dudman, Rogan, Hen, et al., 2004). Elevated anxiety is also associated with 

disrupted recruitment of prefrontal control mechanisms and thus executive control, in response to processing 

competition from threat-related distractors (Bishop et al., 2006; Bishop et al., 2004).  

 Taken together; (neural) individual differences of e.g. attentional control, catecholamine functioning and 

anxiety are important aspects when investigating threat selective attention and their contribution to threat 

processing should be further investigated. The concept of attentional control in particular seems to play a key role 

in a neural model of threat selective attention. Attentional control has mainly been measured by self-report, but 

research may benefit from using objective markers of attentional control (see also Bardeen & Daniel, 2018). An 

objective measure for attentional control, such as a psychophysiological marker, could prevent possible response 

biases of self-reports and provide a more accurate representation of attentional control (Kihlstrom, Eich, 

Sandbrand, & Tobias, 2000). 
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EEG theta/beta ratio as a marker of executive control  

 Electroencephalogram (EEG) measures represent the combined electrical fluctuations in membrane 

potentials generated from the interactions of the primary inhibitory and excitatory neurons (Gordon, 2000; Nunez, 

1995) which reflects the number of neurons that discharge synchronously (Klimesch, 1999). Spectral analysis of a 

resting state EEG signal produces measures for power in different frequency bands, for example, the theta band, a 

low frequency band with signals oscillating between 4 and 7 Hz, or a high frequency band such as the beta band 

(13-30 Hz). Typically measured under resting conditions, the ratio between the theta and beta band (theta/beta 

ratio; TBR) has been utilized as a source of information about the baseline state of the brain (in terms of 

maturation and/or arousal) as well as a predictor for any subsequent brain activity that may be associated with 

increased cognitive demand (Barry, Clarke, & Johnstone, 2003).  

 Several lines of evidence further point out that the TBR is possibly of interest when investigating 

attentional control. A robust finding for example is that TBR scores are higher in patients diagnosed with 

attention-deficit/ hyperactivity disorder (ADHD; Barry et al., 2003). Also, administration of methylphenidate (a 

stimulant that is beneficial for ADHD) is effective through restoration of sub-optimal prefrontal cortical executive 

function via upregulation of post-synaptic PFC catecholamine function and normalizes the TBR (Clarke, Barry, 

McCarthy, Selikowitz & Johnstone, 2007). This fits the previously described inverted U-shape relation between 

catecholamines and cognitive performance. Furthermore, high TBR scores were related to poor prefrontal cortical 

mediated attentional and inhibitory functions, (i.e. Arns, Conners, & Kraemer, 2013; Barry et al., 2003) and likely 

reflects functional reciprocal cortical-subcortical interactions in both healthy and clinical populations (Knyazev, 

2007; Schutter & Knyazev, 2012).  

 TBR has been used as an electrophysiological marker of (top-down, PFC-regulated) attentional control to 

investigate its effect on attentional bias and trait anxiety in healthy adults (Angelidis, Hagenaars, van Son, van der 

Does, & Putman, 2018). TBR was also found to negatively correlate with motivational decision making and the 

learning processes involved therein (Schutter & van Honk, 2005; Massar, Rossi, Schutter, & Kenemans, 2012; 

Massar, Kenemans, & Schutter, 2014; Schutte, Kenemans, & Schutter, 2017). Putman et al. (2010) found that TBR 

correlated negatively with the ability to modulate response inhibition in an emotional go/no-go task (Putman, 

van Peer, Maimari, & van der Werff, 2010). A similar correlation between TBR and self-reported attentional control 

was observed. The emotional go/no-go task utilizes emotional stimuli to induce a response bias in terms of 

longer response latencies and more errors. This response is in turn modulated by activity in the amygdala, as well 

as in the lateral orbitofrontal cortex (Schulz, Fan, Magidina, Marks, Hahn & Halperin, 2007). In other words, TBR may 

reflect voluntary top-down processes of executive control (including attentional control), mediated by (dorso-

lateral) PFC, over bottom-up processes from limbic areas, such as the anterior cingulate cortex, hippocampus and 

amygdala; (Bishop, 2008; Gregoriou, Rossi, Ungerleider, Desimone, 2014; Knyazev, 2007; Schutter & Knyazev, 2012).  

 In sum, frontal TBR is considered to reflect PFC regulated executive control; it might therefore as well be 

related to individual differences of the catecholamine tipping point, as described before. The established model 

of inverted U-shape relations between prefrontal catecholamine activity and cognitive attentional control 

(Arnsten, 2006; Arnsten, 2009a; Cools and D’Esposito, 2011) would predict that if TBR indeed represents executive 
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control, it is also regulated by prefrontal catecholamine levels (Arnsten, 2006; Hermans et al., 2014). Frontal TBR as 

an electrophysiological marker for executive control thus might be a useful approximation of individual 

differences in baseline prefrontal catecholamine function that could be used when investigating catecholamine 

manipulation, for example. Including other measures that reflect basal PFC regulated executive control can also 

improve outcomes of studies of effects of pharmaca on prefrontal cognitive processing. Likely, EEG TBR 

measurement is a useful tool in psychopharmacological studies.   

 Multiple studies to date found that TBR is (directly) negatively correlated with ACS scores (Angelidis, van 

der Does, Schakel, & Putman, 2016; Putman et al., 2010; Putman, Verkuil, Arias-Garcia, Pantazi, & van Schie, 2014; 

but see Morillas-Romero, Tortella-Feliu, Bornas & Putman, 2015; Angelidis et al., 2018). Also, TBR was found to 

correlate to task-based measures of attentional control in patients suffering from multiple sclerosis, having 

clinically impaired attention (Keune, Hansen, Weber, Zapf, Habich, Muenssinger et al., 2017). TBR was reported to 

have a very high one-week and two-week re-test reliability (Angelidis et al., 2016; Keune et al., 2017), supporting 

the validity of TBR as a reflection of trait attentional control. TBR thus seems to be a marker of executive control 

and attentional control and requires further investigation to explore its specific functions/applications. As 

attentional control plays an important role in threat processing, further research was needed to investigate TBR’s 

relation to threat related and emotional processes, which will be further discussed in the next section.  

 

EEG theta/beta ratio, stress, threat and emotional processes 

 The prefrontal cortex (PFC) is often viewed as the control center, exerting executive control over various 

bottom-up processes, e.g. regulating fearful responses driven by the amygdala (Bishop et al., 2004). The finding of 

TBR being negatively related to attentional control indicates that the relationship between PFC regulated 

executive control and theta/beta ratio might reflect a continuum of brain-behaviour correlation of which, for 

example, attentional deficits represent a far end of the spectrum. Baseline resting state TBR has been similarly 

related to stimulus evoked behaviour (e.g., Massar et al., 2012; Putman et al., 2010; Schutter & van Honk, 2005), 

self-reported emotional and motivational traits (Putman et al., 2010) and psychiatric diagnosis reflecting dynamic 

behaviour over extended periods (Clarke, Barry, McCarthy & Selikowitz, 2002). The inter-individual variance of TBR 

thus seems to reflect the inter-individual variance of a certain brain state that specifically determines one’s 

response to environmental challenges. These are indications that TBR may be useful in the study of, for example, 

performance in the presence of environmental stressors. Putman et al., (2014) actually tested the prediction that 

TBR moderates the deleterious effects of anxious stress on state attentional control. As expected, resting state TBR 

did moderate the effects of stress on change in state attentional control, which favours the idea that TBR predicts 

resilience/vulnerability to the effects of performance anxiety-like stress on self-reported state attentional control.  

  Furthermore, a number of associations have been found between attentional control and emotion 

regulation capability, suggesting that the two functional mechanisms are related (e.g. Rothbart & Rueda, 2005). 

Cognitive reappraisal, which is an emotion regulation strategy premised on reinterpretation of the meaning of a 

stimulus in order to regulate the emotional response to it, has been a particularly successful strategy in terms of 

regulating subjective and physiological responses (Gross, 1998). Ochsner and Gross (2005) reported that ‘cold’ 
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forms of emotional control are strikingly similar to the consistently found activations observed in cognitive 

reappraisal. If cognitive reappraisal relies on the same functional mechanism as ‘cold’ forms of cognitive control, it 

is reasonable to expect that individuals with biased cognitive control, accompanied by an elevated TBR will be 

similarly poorer in their capability to apply cognitive reappraisal. TBR can therefore be indirectly related to 

emotion regulation which is also supported by more recent studies (Morillas-Romero et al., 2015; Tortella-Feliu, 

Morillas-Romero, Balle, Llabrés, Bornas, & Putman, 2014). Spontaneous emotion down regulation has for example 

previously been found to be predicted by attentional control and a slowing down of heart rate (Morillas-Romero 

et al., 2015). Also, TBR as a measure of attentional control was suggested to be associated with discomfort ratings 

and time needed to downregulate negative emotion after subjects were exposed to negative pictures (Tortella-

Feliu et al., 2014). These results contribute to a better understanding of the involvement of TBR in emotion 

regulation processes, however more studies are needed to further extend and elaborate these findings.  

 TBR might therefore be a useful electrophysiological marker of emotion-attentional control interactions 

for research on anxiety and should be studied further. 

 

The role of mind wandering as involuntary, distracting thought patterns 

 Lower TBR has consistently been linked to ‘on task’ processes and the processes that accompany 

performance on a task. Importantly, Braboszcz & Delorme (2011) found that increased theta and decreased beta 

(in other words, increased TBR) was specifically present during mind wandering episodes (uncontrolled thought), 

and the opposite (decreased TBR) during controlled thought periods. We therefore assumed that TBR might be a 

marker for these uncontrolled thought/ controlled thought processes. Since mind wandering is described as a 

deficit in working memory and attention (McVay & Kane, 2009) and a predictor for performance errors 

(Smallwood & Schooler, 2006), poor attentional control might cause a higher tendency to mind wander. In other 

words, more frequent and lengthy occurrences of mind wandering episodes during the standardized ~8 minutes 

“resting state” assessment of spontaneous TBR might be responsible for the negative correlation between the 

average TBR during such measurements and attentional control.  

 Along these lines, it will be interesting to investigate whether mind wandering is the underlying 

responsible mechanism of the TBR – attentional control relationship as previously described, and will possibly 

provide better understanding of the functional and neural mechanisms that are responsible for the relationship 

between TBR and executive control. An effective way of measuring mind wandering episodes is to include the 

underlying neural mechanisms such as functional connectivity of mind wandering related brain regions. Mind 

wandering was mainly found to activate the Default Mode Network (Karapanagiotidis, Bernhardt, Jefferies & 

Smallwood, 2017; Smallwood, Beach, Schooler & Handy, 2008); a network of interacting neural regions, known to 

have activity that is highly correlated within this network during task unrelated thoughts (Stawarczyk, Majerus, 

Maquet, & D'Argembeau, 2011). Also, it was found that regions within the ‘Executive Control Network’, which 

consists of the DL-PFC, dorsal anterior cingular cortex (dACC) and posterior parietal regions (Seeley, Menon, 

Schatzberg, Keller, Glover, Kenna et al., 2007), became active during awareness of mind wandering, attentional 

shifting and sustained attention (Hasenkamp, Wilson-Mendenhall, Duncan, & Barsalou, 2012; Christoff, Ream, 
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(Smallwood & Schooler, 2006), poor attentional control might cause a higher tendency to mind wander. In other 

words, more frequent and lengthy occurrences of mind wandering episodes during the standardized ~8 minutes 

“resting state” assessment of spontaneous TBR might be responsible for the negative correlation between the 

average TBR during such measurements and attentional control.  

 Along these lines, it will be interesting to investigate whether mind wandering is the underlying 

responsible mechanism of the TBR – attentional control relationship as previously described, and will possibly 

provide better understanding of the functional and neural mechanisms that are responsible for the relationship 

between TBR and executive control. An effective way of measuring mind wandering episodes is to include the 

underlying neural mechanisms such as functional connectivity of mind wandering related brain regions. Mind 

wandering was mainly found to activate the Default Mode Network (Karapanagiotidis, Bernhardt, Jefferies & 

Smallwood, 2017; Smallwood, Beach, Schooler & Handy, 2008); a network of interacting neural regions, known to 

have activity that is highly correlated within this network during task unrelated thoughts (Stawarczyk, Majerus, 

Maquet, & D'Argembeau, 2011). Also, it was found that regions within the ‘Executive Control Network’, which 

consists of the DL-PFC, dorsal anterior cingular cortex (dACC) and posterior parietal regions (Seeley, Menon, 

Schatzberg, Keller, Glover, Kenna et al., 2007), became active during awareness of mind wandering, attentional 

shifting and sustained attention (Hasenkamp, Wilson-Mendenhall, Duncan, & Barsalou, 2012; Christoff, Ream, 
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Geddes, & Gabrieli 2003). Additional insights can thus be obtained when looking at functional connectivity within 

the Default Mode Network and the Executive Control Network during mind wandering episodes, and what role it 

plays in the hypothesized underlying responsible mechanism of mind wandering on the TBR and attentional 

control relation.  

 

Manipulating EEG theta/beta ratio  

 Increased slow-wave activity coupled with decreased fast wave activity was first observed in ADHD in 

the early 1970s (Loo & Makeig, 2012; Satterfield, Cantwell & Satterfield, 1974). This work primed the interest in 

determining EEG abnormalities in ADHD children, and more research has been carried out since, to replicate the 

findings (e.g. Barry et al., 2003; Hermens, Kohn, Clarke, Gordon, & Williams, 2005; Lazzaro, Gordon, Whitmont, 

Meares, & Clarke, 2001; Monastra, Lubar, & Linden, 2001; Ogrim, Kropotov, & Hestad, 2012). Main findings were 

that ADHD was associated with increased EEG theta and decreased beta bands; in other words; increased 

theta/beta ratio (for review and meta-analysis, see Arns et al., 2013; Barry et al., 2003). Several studies reported that 

manipulating TBR using Neurofeedback training (NFT) could successfully reduce the TBR and ADHD-related 

symptoms in individuals diagnosed with ADHD (e.g. hyperactivity, impaired attention; e.g. Kouijzer, de Moor, 

Gerrits, Congedo and van Schie, 2009, for a review see Vernon, 2005). 

 The study of the potential beneficial effects of reducing TBR with NFT in healthy adults seems warranted, 

given the abovementioned relations between TBR and various psychological regulatory constructs. However, 

some studies reported that no changes in EEG were actually observed when applying a commonly used NFT 

method (Janssen, Bink, Weeda, Geladé, van Mourik, Maras, & Oosterlaan, 2017; Shönenberg, Wiedemann, 

Schneidt, Scheeff, Logemann, Keune et al., 2017; Doppelmayr & Weber, 2011). Further replications and extensions 

of studies on exact changes therefore seem imperative to ascertain the effects of TBR NFT in healthy adults, and 

whether it can provide a tool to study causality in this relation and possibly even enhance human performance. 

 

Integration and scientific relevance 

 The above-mentioned relationships between TBR, attentional control and emotional processes further 

reinforce the notion that frontal TBR has a unique and independent predictive value in the study of executive 

control and threat selective attention, specifically, control over information in an emotional context. These 

relationships may provide valuable information for investigating emotion-regulation related disorders, as these 

disorders have previously been linked to executive or attentional problems in anxiety. The role of attentional 

control and its relation with aberrant attentional threat-processing in the diagnosis, maintenance and treatment 

of anxiety disorders should not be underestimated (Mogg & Bradley, 2016). TBR seems to provide a promising 

variable of interest for such research. 
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 Considering that TBR is a potentially useful marker of executive/attentional control, both in healthy and 

clinical samples, we designed studies in healthy adults to further investigate the relation of TBR with threat 

selective attention. We manipulated threat value and attentional stages; catecholamine functioning; uncontrolled 
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sample is affected by NFT. In summary, we aimed to answer the following research questions.  
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manipulations, such as caffeine administration? (Chapter 2).  
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ABSTRACT  

Frontal EEG theta/beta ratio (TBR; negatively associated with attentional control, or AC) was previously reported to 

moderate threat-level dependent attentional bias in a pictorial dot-probe task (DPT), interacting with trait anxiety. 

Unexpectedly, this was independent from processing stage (using cue-target delays of 200 and 500 ms) and also 

not observed for self-reported trait AC. We therefore aimed to replicate these effects of TBR and trait anxiety and 

to test if effects of early versus late processing stages are evident for shorter cue-target delays. This study also 

revisited the hypothesis that TBR and self-reported trait AC show similar effects. Fifty-three participants provided 

measurements of frontal TBR, self-reported trait AC, trait anxiety and DPT-bias for mild and high threat pictures 

using the same DPT, but this time with 80 and 200 ms cue-target delays. Results indicated that higher TBR 

predicted more attention to mild than high threat, but this was independent from trait anxiety or delay. Lower 

self-reported trait AC predicted more attention to mild than high threat, only after 200 ms (also independent of 

trait anxiety). We conclude that the moderating effect of TBR on threat-level dependent DPT-bias was replicated, 

but not the role of trait anxiety, and this study partially confirms that effects of trait AC are more dominant in later 

processing.  
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Vigilance to highly threatening stimuli is a natural and adaptive response (Ohman, 1993, 1994; Whalen, 1998). An 

efficient response when task-irrelevant stimuli are subjectively evaluated as being only mildly aversive, would be 

to direct attention away from them (e.g. Bradley, Mogg, Falla, & Hamilton, 1998; Koster, Verschuere, Crombez, & 

Van Damme, 2005; MacLeod, Mathews, & Tata, 1986). Highly anxious individuals have a tendency to appraise 

mildly threatening stimuli and situations as highly threatening (see Mogg & Bradley,1998; 2016; Cisler & Koster, 

2010). Many studies have indeed demonstrated a vigilant bias to high threat in most people, which extends 

toward mild threat when people are more anxious (for reviews and meta-analysis, see Bar-Haim, Lamy, Pergamin, 

Bakermans-Kranenburg, van IJzendoorn, 2007; Cisler & Koster, 2010; van Bockstaele, Verschuere, Tibboel, De 

Houwer, Crombez, & Koster, 2014). This attentional over-processing of mild threat, or ‘attentional bias to threat’, 

may occur automatically and is probably a maintenance factor of anxiety disorders (van Bockstaele et al.). In 

highly anxious individuals, however, attentional avoidance might also occur (e.g. Koster et al., 2005; Mogg, 

Bradley, Miles, & Dixon, 2004; Schoorl, Putman, van der Werff, & van der Does, 2014; Wald, Shechner, Bitton, 

Holoshitz, Charney, Muller, et al., 2011). This attentional avoidance may occur especially for highly threatening 

stimuli (Mogg & Bradley, 2016), e.g., phobia- or trauma-related stimuli or scenes cueing immediate threats to 

physical integrity (e.g., Koster et al., 2007; Schoorl et al., 2014; Mogg, Philippot & Bradley, 2004; Pine et al., 2005). 

Trait attentional control may have a crucial influence in this (Mogg & Bradley, 1998; 2016). Attentional avoidance 

may result from a secondary process, mediated by strategic, top-down attentional control (Mogg & Bradley, 2016). 

The question of whether such avoidance is indeed controlled or if it also occurs automatically is still open to 

empirical study. For instance, more avoidance of trauma-related pictures was observed in patients with post-

traumatic stress disorder (PTSD) who also reported low attentional control, suggesting that avoidance was the 

more automatic response (Schoorl et al., 2014). Also, the time course of such a supposedly secondary avoidant 

response is far from clear and it may occur even earlier than 200 ms after cue presentation (Koster, Crombez, 

Verschuere, Vanvolsem & De Houwer, 2007; Mackintosh & Mathews, 2003). 

 Consequently, individual differences in trait attentional control (AC) may be of crucial importance in the 

manifestation of attentional bias to threat. Trait AC may be measured by self-report (attentional control scale, ACS; 

Derryberry & Reed, 2002). Most studies on trait AC and attentional bias used the ACS (e.g., Bardeen & Orcutt, 2011; 

Derryberry & Reed, 2002; Putman, Arias-Garcia, Pantazi, & van Schie, 2012; Schoorl et al., 2014; Taylor, Cross, and 

Amir., 2016; Peers & Lawrence, 2009) and three studies used an objective (performance-based) measure of AC 

(Hou, Moss-Morris, Risdale, Lynch, Jeevaratnam, Bradley & Mogg, 2014; Reinholdt-Dunne, Mogg, & Bradley, 2009; 

Bardeen & Daniel, 2017). Research into the role of trait AC in attentional threat bias may benefit from using self-

report as well as objective markers of trait AC to obtain converging evidence for different methods (see also 

Bardeen & Daniel, 2017). 

 A potential objective electrophysiological measure for trait AC can be derived from spontaneous (also 

known as “resting-state”) activity in electroencephalography (EEG). Frontal theta/beta ratio (TBR) reflects the ratio 

between power in the slow (theta) frequency band and the fast (beta) frequency band. High TBR is related to 

poor prefrontal cortex (PFC) mediated attentional and inhibitory functions, as seen in attention 

deficit/hyperactivity disorder (ADHD; for reviews and meta-analyses see Arns, Conners, & Kraemer, 2013; Barry, 
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ABSTRACT  

Frontal EEG theta/beta ratio (TBR; negatively associated with attentional control, or AC) was previously reported to 

moderate threat-level dependent attentional bias in a pictorial dot-probe task (DPT), interacting with trait anxiety. 

Unexpectedly, this was independent from processing stage (using cue-target delays of 200 and 500 ms) and also 

not observed for self-reported trait AC. We therefore aimed to replicate these effects of TBR and trait anxiety and 

to test if effects of early versus late processing stages are evident for shorter cue-target delays. This study also 

revisited the hypothesis that TBR and self-reported trait AC show similar effects. Fifty-three participants provided 

measurements of frontal TBR, self-reported trait AC, trait anxiety and DPT-bias for mild and high threat pictures 

using the same DPT, but this time with 80 and 200 ms cue-target delays. Results indicated that higher TBR 

predicted more attention to mild than high threat, but this was independent from trait anxiety or delay. Lower 

self-reported trait AC predicted more attention to mild than high threat, only after 200 ms (also independent of 

trait anxiety). We conclude that the moderating effect of TBR on threat-level dependent DPT-bias was replicated, 

but not the role of trait anxiety, and this study partially confirms that effects of trait AC are more dominant in later 

processing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26 

Vigilance to highly threatening stimuli is a natural and adaptive response (Ohman, 1993, 1994; Whalen, 1998). An 

efficient response when task-irrelevant stimuli are subjectively evaluated as being only mildly aversive, would be 

to direct attention away from them (e.g. Bradley, Mogg, Falla, & Hamilton, 1998; Koster, Verschuere, Crombez, & 

Van Damme, 2005; MacLeod, Mathews, & Tata, 1986). Highly anxious individuals have a tendency to appraise 

mildly threatening stimuli and situations as highly threatening (see Mogg & Bradley,1998; 2016; Cisler & Koster, 

2010). Many studies have indeed demonstrated a vigilant bias to high threat in most people, which extends 

toward mild threat when people are more anxious (for reviews and meta-analysis, see Bar-Haim, Lamy, Pergamin, 

Bakermans-Kranenburg, van IJzendoorn, 2007; Cisler & Koster, 2010; van Bockstaele, Verschuere, Tibboel, De 

Houwer, Crombez, & Koster, 2014). This attentional over-processing of mild threat, or ‘attentional bias to threat’, 

may occur automatically and is probably a maintenance factor of anxiety disorders (van Bockstaele et al.). In 

highly anxious individuals, however, attentional avoidance might also occur (e.g. Koster et al., 2005; Mogg, 

Bradley, Miles, & Dixon, 2004; Schoorl, Putman, van der Werff, & van der Does, 2014; Wald, Shechner, Bitton, 

Holoshitz, Charney, Muller, et al., 2011). This attentional avoidance may occur especially for highly threatening 

stimuli (Mogg & Bradley, 2016), e.g., phobia- or trauma-related stimuli or scenes cueing immediate threats to 

physical integrity (e.g., Koster et al., 2007; Schoorl et al., 2014; Mogg, Philippot & Bradley, 2004; Pine et al., 2005). 

Trait attentional control may have a crucial influence in this (Mogg & Bradley, 1998; 2016). Attentional avoidance 

may result from a secondary process, mediated by strategic, top-down attentional control (Mogg & Bradley, 2016). 

The question of whether such avoidance is indeed controlled or if it also occurs automatically is still open to 

empirical study. For instance, more avoidance of trauma-related pictures was observed in patients with post-

traumatic stress disorder (PTSD) who also reported low attentional control, suggesting that avoidance was the 

more automatic response (Schoorl et al., 2014). Also, the time course of such a supposedly secondary avoidant 

response is far from clear and it may occur even earlier than 200 ms after cue presentation (Koster, Crombez, 

Verschuere, Vanvolsem & De Houwer, 2007; Mackintosh & Mathews, 2003). 

 Consequently, individual differences in trait attentional control (AC) may be of crucial importance in the 

manifestation of attentional bias to threat. Trait AC may be measured by self-report (attentional control scale, ACS; 

Derryberry & Reed, 2002). Most studies on trait AC and attentional bias used the ACS (e.g., Bardeen & Orcutt, 2011; 

Derryberry & Reed, 2002; Putman, Arias-Garcia, Pantazi, & van Schie, 2012; Schoorl et al., 2014; Taylor, Cross, and 

Amir., 2016; Peers & Lawrence, 2009) and three studies used an objective (performance-based) measure of AC 

(Hou, Moss-Morris, Risdale, Lynch, Jeevaratnam, Bradley & Mogg, 2014; Reinholdt-Dunne, Mogg, & Bradley, 2009; 

Bardeen & Daniel, 2017). Research into the role of trait AC in attentional threat bias may benefit from using self-

report as well as objective markers of trait AC to obtain converging evidence for different methods (see also 

Bardeen & Daniel, 2017). 

 A potential objective electrophysiological measure for trait AC can be derived from spontaneous (also 

known as “resting-state”) activity in electroencephalography (EEG). Frontal theta/beta ratio (TBR) reflects the ratio 

between power in the slow (theta) frequency band and the fast (beta) frequency band. High TBR is related to 

poor prefrontal cortex (PFC) mediated attentional and inhibitory functions, as seen in attention 

deficit/hyperactivity disorder (ADHD; for reviews and meta-analyses see Arns, Conners, & Kraemer, 2013; Barry, 
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Clarke, & Johnstone, 2003). TBR has been suggested to reflect functional reciprocal cortical-subcortical 

interactions in healthy as well as clinical populations (Knyazev, 2007; Schutter & Knyazev, 2012) and it might 

reflect voluntary top-down processes of executive control (including AC), mediated by (dorso-lateral) PFC, over 

bottom-up processes from limbic areas (such as the anterior cingulate cortex, hippocampus and amygdala; 

Bishop, 2008; Gregoriou, Rossi, Ungerleider, Desimone, 2014; Knyazev, 2007; Schutter & Knyazev, 2012; Hermans, 

Henckens, Joels, & Fernandez, 2014). Besides TBR’s association with ADHD, its status as an index of AC is based on 

repeated observations that frontal TBR is associated with PFC-mediated cognitive and cognitive-emotional 

processes (Angelidis, van der Does, Schakel, & Putman, 2016; Putman, van Peer, Maimari, & van der Werff, 2010; 

Putman, Verkuil, Arias-Garcia, Pantazi, & van Schie, 2014; Angelidis, Hagenaars, van Son, van der Does, & Putman, 

2018; Keune, Hansen, Weber, Zapf, Habich, Muenssinger & Wolf et al., 2017; Schutter & van Honk, 2005a; Massar, 

Kenemans, & Schutter, 2014; Schutte, Kenemans, & Schutter, 2017; Sari, Koster, Pourtois, & Derakshan, 2015). PFC-

mediated cognitive control seems to play an important role in the attentional processing of threatening 

information (see also Mogg & Bradley, 2016; Shechner & Bar-Haim, 2016).  

 Accordingly, TBR was positively correlated with attention toward mild threat and negatively correlated 

with attention toward high threat, as measured with a dot-probe task (Angelidis et al., 2018). The latter correlation 

was mostly evident for low anxious people. Those data confirmed that adaptive attentional responding to varying 

threat levels depends on cognitive control and that TBR can be used to study these processes. The first aim of the 

present study was to replicate these novel findings for TBR and trait anxiety in relation to threat-level dependent 

attentional bias, using the same dot probe task as Angelidis et al. Because of the theoretical assumption that 

processes of trait AC in attentional threat-bias need some time to develop as they might rely on secondary PFC-

mediated control over fast and automatic initial bottom-up processes (Ohman, 1993, 1994; Whalen, 1998; 

Derryberry & Reed, 2002; Mogg & Bradley, 1998; 2016; Bardeen & Orcutt, 2011; Koster et al., 2007), Angelidis et al. 

(2018) tested if effects of TBR would be different in early and late processing stages. However, contrary to 

expectations, the results of Angelidis et al. were independent of processing stage: a 200 ms cue-target delay 

(intended to capture the early attentional processes) showed no different results than a 500 ms cue-target delay 

(late attentional processes). We concluded that 200 ms delay may have been too long to capture early attentional 

processes and that the delay-hypothesis should be revisited. The second aim of the present study was therefore 

to revisit the hypothesis that AC should influence attentional bias more in later and controlled than in earlier and 

automatic processing stages, using shorter cue-target delays than in Angelidis et al.: a short delay of 80 ms and a 

long delay of 200 ms.  

 Another unexpected finding in Angelidis et al. (2018) was that self-reported trait AC was not related to 

threat-bias or to TBR. To show the role of trait AC in attentional processing of threat using converging methods 

(EEG and self-report) would strengthen the interpretation of these findings. Therefore, the third aim of the current 

study was to re-examine the relationship between attentional bias and trait AC, using ACS scores as well as TBR as 

indices of trait AC. We hypothesized that TBR and ACS would be negatively correlated – when controlling for trait 

anxiety (c.f., Putman et al., 2010; 2014; Angelidis et al., 2016) and that both indices would show similar relations 

with anxious attentional bias to threat. 
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 In summary, building on the findings of Angelidis et al. (2018) and theoretical frameworks on the effects 

of threat-level and processing stages in relation to anxiety as outlined above (e.g. Mogg & Bradley, 1998; 2016), we 

aimed to investigate whether frontal EEG TBR is related to attentional bias in response to mild and high 

threatening stimuli (also in interaction with trait anxiety), if these effects are more pronounced in later (controlled) 

than earlier (automatic) processing stages and if self-reported trait AC and TBR (which are expected to correlate 

negatively) show converging effects. We used the same design as in Angelidis et al., (2018), but the dot-probe 

task contained a similar but new set of stimuli and shorter cue-target delays (80 and 200 ms). We tested the 

following hypotheses:  

Hypothesis 1a: Frontal TBR moderates attentional responding to threat-level dependent bias in a dot-probe task, 

 and high frontal TBR will be related to relatively more attention toward mild threatening pictures and 

 relatively more attention away from high threatening pictures.  

Hypothesis 1b: Self-reported trait anxiety moderates the relationship of hypothesis 1a between frontal TBR and 

 effect of threat-level.  

Hypothesis 2: These effects of hypothesis 1a and 1b should be more pronounced after a long cue-target delay 

 (200 ms) than after a short cue-target delay (80 ms).  

Hypothesis 3: Self-reported trait AC correlates negatively to TBR when controlling for trait anxiety. 

Hypothesis 4a: Self-reported trait AC moderates attentional responding to threat-level dependent bias in a dot-

 probe task, and low trait AC will be related to relatively more attention toward mild threatening pictures 

 and relatively more attention away from high threatening pictures.  

Hypothesis 4b: Self-reported trait anxiety moderates the relationship of hypothesis 4a between self-reported trait 

 AC and effect of threat-level.  

Hypothesis 5: These effects of hypothesis 4a and 4b should be more pronounced after a long cue-target delay 

 (200 ms) than after a short cue-target delay (80 ms).  

These hypotheses were tested in a sample of healthy students, unselected for anxiety levels, looking at the 

average TBR of the frontal electrodes F3, Fz and F4 as in almost all relevant previous studies in heathy participants.  

 

     Methods 

Participants 

 Fifty-three students (47 women) took part in this study. All participants signed informed consent. 

Participants had to be between 18 and 30 years old. Exclusion criteria were: presence of a mood, anxiety, or 

attention disorder; frequent use of psychoactive substances; and (history of) a neurological disorder. The study 

was approved by the local ethics review board (CEP#5927902162).  

 

Materials 

 Questionnaires. Participants completed the trait version of the State-Trait Anxiety Inventory (STAI-t; 

Spielberger, 1983; Van der Ploeg, Defares & Spielberger, 1980) and the Attentional Control Scale (ACS; Derryberry 

& Reed, 2002; Verwoerd, de Jong, &Wessel, 2006). The STAI-t assesses trait anxiety (20 items, range 20-80; 
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Clarke, & Johnstone, 2003). TBR has been suggested to reflect functional reciprocal cortical-subcortical 

interactions in healthy as well as clinical populations (Knyazev, 2007; Schutter & Knyazev, 2012) and it might 

reflect voluntary top-down processes of executive control (including AC), mediated by (dorso-lateral) PFC, over 

bottom-up processes from limbic areas (such as the anterior cingulate cortex, hippocampus and amygdala; 

Bishop, 2008; Gregoriou, Rossi, Ungerleider, Desimone, 2014; Knyazev, 2007; Schutter & Knyazev, 2012; Hermans, 

Henckens, Joels, & Fernandez, 2014). Besides TBR’s association with ADHD, its status as an index of AC is based on 

repeated observations that frontal TBR is associated with PFC-mediated cognitive and cognitive-emotional 

processes (Angelidis, van der Does, Schakel, & Putman, 2016; Putman, van Peer, Maimari, & van der Werff, 2010; 

Putman, Verkuil, Arias-Garcia, Pantazi, & van Schie, 2014; Angelidis, Hagenaars, van Son, van der Does, & Putman, 

2018; Keune, Hansen, Weber, Zapf, Habich, Muenssinger & Wolf et al., 2017; Schutter & van Honk, 2005a; Massar, 

Kenemans, & Schutter, 2014; Schutte, Kenemans, & Schutter, 2017; Sari, Koster, Pourtois, & Derakshan, 2015). PFC-

mediated cognitive control seems to play an important role in the attentional processing of threatening 

information (see also Mogg & Bradley, 2016; Shechner & Bar-Haim, 2016).  

 Accordingly, TBR was positively correlated with attention toward mild threat and negatively correlated 

with attention toward high threat, as measured with a dot-probe task (Angelidis et al., 2018). The latter correlation 

was mostly evident for low anxious people. Those data confirmed that adaptive attentional responding to varying 

threat levels depends on cognitive control and that TBR can be used to study these processes. The first aim of the 

present study was to replicate these novel findings for TBR and trait anxiety in relation to threat-level dependent 

attentional bias, using the same dot probe task as Angelidis et al. Because of the theoretical assumption that 

processes of trait AC in attentional threat-bias need some time to develop as they might rely on secondary PFC-

mediated control over fast and automatic initial bottom-up processes (Ohman, 1993, 1994; Whalen, 1998; 

Derryberry & Reed, 2002; Mogg & Bradley, 1998; 2016; Bardeen & Orcutt, 2011; Koster et al., 2007), Angelidis et al. 

(2018) tested if effects of TBR would be different in early and late processing stages. However, contrary to 

expectations, the results of Angelidis et al. were independent of processing stage: a 200 ms cue-target delay 

(intended to capture the early attentional processes) showed no different results than a 500 ms cue-target delay 

(late attentional processes). We concluded that 200 ms delay may have been too long to capture early attentional 

processes and that the delay-hypothesis should be revisited. The second aim of the present study was therefore 

to revisit the hypothesis that AC should influence attentional bias more in later and controlled than in earlier and 

automatic processing stages, using shorter cue-target delays than in Angelidis et al.: a short delay of 80 ms and a 

long delay of 200 ms.  

 Another unexpected finding in Angelidis et al. (2018) was that self-reported trait AC was not related to 

threat-bias or to TBR. To show the role of trait AC in attentional processing of threat using converging methods 

(EEG and self-report) would strengthen the interpretation of these findings. Therefore, the third aim of the current 

study was to re-examine the relationship between attentional bias and trait AC, using ACS scores as well as TBR as 

indices of trait AC. We hypothesized that TBR and ACS would be negatively correlated – when controlling for trait 

anxiety (c.f., Putman et al., 2010; 2014; Angelidis et al., 2016) and that both indices would show similar relations 

with anxious attentional bias to threat. 
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 In summary, building on the findings of Angelidis et al. (2018) and theoretical frameworks on the effects 

of threat-level and processing stages in relation to anxiety as outlined above (e.g. Mogg & Bradley, 1998; 2016), we 

aimed to investigate whether frontal EEG TBR is related to attentional bias in response to mild and high 

threatening stimuli (also in interaction with trait anxiety), if these effects are more pronounced in later (controlled) 

than earlier (automatic) processing stages and if self-reported trait AC and TBR (which are expected to correlate 

negatively) show converging effects. We used the same design as in Angelidis et al., (2018), but the dot-probe 

task contained a similar but new set of stimuli and shorter cue-target delays (80 and 200 ms). We tested the 

following hypotheses:  

Hypothesis 1a: Frontal TBR moderates attentional responding to threat-level dependent bias in a dot-probe task, 

 and high frontal TBR will be related to relatively more attention toward mild threatening pictures and 

 relatively more attention away from high threatening pictures.  

Hypothesis 1b: Self-reported trait anxiety moderates the relationship of hypothesis 1a between frontal TBR and 

 effect of threat-level.  

Hypothesis 2: These effects of hypothesis 1a and 1b should be more pronounced after a long cue-target delay 

 (200 ms) than after a short cue-target delay (80 ms).  

Hypothesis 3: Self-reported trait AC correlates negatively to TBR when controlling for trait anxiety. 

Hypothesis 4a: Self-reported trait AC moderates attentional responding to threat-level dependent bias in a dot-

 probe task, and low trait AC will be related to relatively more attention toward mild threatening pictures 

 and relatively more attention away from high threatening pictures.  

Hypothesis 4b: Self-reported trait anxiety moderates the relationship of hypothesis 4a between self-reported trait 

 AC and effect of threat-level.  

Hypothesis 5: These effects of hypothesis 4a and 4b should be more pronounced after a long cue-target delay 

 (200 ms) than after a short cue-target delay (80 ms).  

These hypotheses were tested in a sample of healthy students, unselected for anxiety levels, looking at the 

average TBR of the frontal electrodes F3, Fz and F4 as in almost all relevant previous studies in heathy participants.  

 

     Methods 

Participants 

 Fifty-three students (47 women) took part in this study. All participants signed informed consent. 

Participants had to be between 18 and 30 years old. Exclusion criteria were: presence of a mood, anxiety, or 

attention disorder; frequent use of psychoactive substances; and (history of) a neurological disorder. The study 

was approved by the local ethics review board (CEP#5927902162).  

 

Materials 

 Questionnaires. Participants completed the trait version of the State-Trait Anxiety Inventory (STAI-t; 

Spielberger, 1983; Van der Ploeg, Defares & Spielberger, 1980) and the Attentional Control Scale (ACS; Derryberry 

& Reed, 2002; Verwoerd, de Jong, &Wessel, 2006). The STAI-t assesses trait anxiety (20 items, range 20-80; 
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Cronbach’s alpha in the current study = 0.89) and the ACS assesses self-reported attentional control in terms of 

attentional focus, attentional switching and the capacity to quickly generate new thoughts (20 items, range 20-

80; Cronbach’s alpha in the current study = 0.85).  

 Dot-Probe task pictures and IAPS ratings. For the dot-probe task, 60 pictures were used from the 

International Affective Picture System (IAPS; Center for the Study of Emotion and Attention, 1999), a standardized 

set of emotion eliciting color pictures with normative ratings on valence and arousal. The pictures (stimuli) were 

selected according to the ratings for valence and arousal (scale 1-9; valence 1: very unpleasant to 9: very pleasant 

and arousal scales; 1: not arousing at all to 9: very arousing) provided by Lang et al (2005)1. The mean valence 

score for mild threatening (MT) stimuli was M = 2.52 (SD = 0.66) and for high threatening (HT) stimuli M = 1.63 (SD 

= 0.33); the mean arousal scores were M = 5.98 (SD = 0.91) and M = 6.79 (SD = 0.55), respectively. 

  Of the 48 stimuli that were used in the main task, 32 were neutral (N; e.g. shoes), eight were high 

threatening (e.g. mutilated body), and eight were mild threatening (e.g. angry dog) in content. Three types of 

stimulus pairs were created: N-N, MT-N and HT-N. N-N trials were included to avoid habituation to threatening 

stimuli; the results on these trials are not reported here. A total of 8 N-N, 8 HT-N and 8 MT-N stimulus pairs were 

created. The remaining 12 neutral stimuli were selected for twelve N-N practice trials.  Each pair of stimuli was 

subjectively matched on color and composition. We tested whether the average valence and arousal ratings 

reported by Center for the Study of Emotion and Attention (1999) differed between the categories. HT stimuli had 

lower valence ratings than MT (t(31) = 3.42, p = 0.004), and neutral stimuli (t(31) = 13.20, p < 0.001). MT stimuli also 

had more unpleasant ratings than neutral stimuli (t(31) = 10.40, p < 0.001). No difference was found between 

arousal ratings of HT stimuli and MT stimuli (t(31) = -2.16, p = 0.53), HT and MT pictures were both more arousing 

than neutral pictures (HT-N: t(31) = -7.15, p < 0.001; MT-N: t(31) = -4.68, p < 0.001). 

 

 EEG recording and software. EEG recording was done using 32 Ag/AgCl electrodes placed in an 

extended 10-20 montage using the ActiveTwo BioSemi system (BioSemi, The Netherlands). Electrodes placed on 

the left and right mastoids were used for offline re-referencing of the scalp signals to the mastoid signals. The dot-

probe task and questionnaires were programmed and presented using E-Prime V2.0 (Psychology Software Tools, 

Pittsburgh, PA). 

 

Procedure 

 General Procedure. After informed consent had been obtained, participants completed the STAI-t and 

the ACS. This was followed by the measurement of resting state EEG in eight alternating one-minute blocks of 

eyes open/closed recording. The dot-probe task was performed afterwards. The study took approximately 1 hour 

to complete.  

 Attentional bias. The dot-probe task was as in Angelidis et al. (2018), however we used a largely different 

stimulus set and different intervals for short and long probe-delays. During the task, participants sat at a distance 

of 80 cm away from the screen. The task consisted of 12 practice and 192 test trials, consisting of 64 HT-N, 64 MT-

N and 64 N-N trials. In test trials, all stimulus pairs were presented eight times in random order, fully 
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counterbalanced for cue-target delay (80 or 200 ms), probe position (left/right), and congruency. Each trial started 

with a random inter-trial interval (ITI) between 500 and 1500 ms. The ITI was followed by a black fixation cross that 

was presented for 1000 ms in the center of a grey screen, and participants were instructed to look at this cross. 

The fixation cross was followed by two pictures that appeared vertically centered, 2.2 cm left and right from the 

screen. Pictures were presented with a height of 7.6 cm and width of 10.7 cm. Immediately after offset of the 

pictures, a probe (black dot; 5 mm diameter) appeared below the left or right picture location. The participants 

were asked to indicate the probe location as fast and accurately as possible by pressing response boxes attached 

to the left and right arm of their chair with their index fingers.  

 

Data Processing 

 Dot-Probe data. Incorrect responses were excluded from analyses. One participant made 27 errors 

(more than five standard deviations above mean) and was excluded from further dot-probe task analyses. The 

average number of errors of the remaining participants was 3.57 (SD = 2.5) with a range from 0 to 11. Probe 

detection was measured in milliseconds and reaction times (RTs) that were shorter than 300 ms or longer than 

1000 ms were defined as outliers and removed from the data. After applying this first filter, RTs that deviated more 

than three standard deviations from the individual mean RT were also removed as outliers (mean total number of 

removed outliers per participant was 4.27 (SD = 2.61)). The number of outliers per participant ranged from 0 to 14. 

An average of 2.1% of the data were removed in total; mean RT of remaining data was 335 ms (SD = 36). Bias 

scores were calculated for HT-N and MT-N trials separately in short cue-target delay trials (80 ms) and long cue-

target delay trials (200 ms) by subtracting the average response time on congruent trials from incongruent trials. 

Positive bias scores indicate selective attention towards threat whereas negative scores indicate attentional 

avoidance. Mean RTs and SDs per stimulus-pair per condition and bias scores are presented in Table 1. Finally, 

Δthreat-level contrast scores were calculated separately for short and long delay conditions by subtracting 

average bias scores of HT-N trials from average bias scores of MT-N trials (a higher score reflecting a relatively 

stronger attentional bias toward mild compared to high threatening stimuli). 

 

 EEG processing. Offline data processing was done using Brain Vision Analyzer V2.0.4 (Brain Products 

GmbH, Germany). Data was high-pass filtered at 0.1 Hz, low-pass filtered at 100-Hz and a 50-Hz notch filter was 

applied. The data were automatically corrected for ocular artifacts (Gratton, Coles & Donchin, 1983) in segments 

of 4 seconds. Remaining segments containing muscle movements, amplitudes above 200 µV or other artifacts 

were removed. Fast Fourier transformation (Hamming window length 10%) was applied to calculate power 

density for the beta (13-30 Hz) and theta (4-7 Hz) band. The present research questions concerned the average of 

the frontal electrodes (F3, Fz and F4, as in Angelidis et al., 2018; see also Angelidis et al., 2016; Putman et al., 2010; 

Putman et al., 2014; Schutter & Van Honk, 2005). These frontal averages were therefore calculated for both the 

beta and theta band, other electrodes were used for exploratory purposes that were not meant to be reported. 

One participant had extremely high theta activity (more than four standard deviations above the mean) and was 

excluded from further EEG analyses. Frontal theta/beta ratio was calculated by dividing the frontal theta by frontal 
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Cronbach’s alpha in the current study = 0.89) and the ACS assesses self-reported attentional control in terms of 

attentional focus, attentional switching and the capacity to quickly generate new thoughts (20 items, range 20-

80; Cronbach’s alpha in the current study = 0.85).  

 Dot-Probe task pictures and IAPS ratings. For the dot-probe task, 60 pictures were used from the 

International Affective Picture System (IAPS; Center for the Study of Emotion and Attention, 1999), a standardized 

set of emotion eliciting color pictures with normative ratings on valence and arousal. The pictures (stimuli) were 

selected according to the ratings for valence and arousal (scale 1-9; valence 1: very unpleasant to 9: very pleasant 

and arousal scales; 1: not arousing at all to 9: very arousing) provided by Lang et al (2005)1. The mean valence 

score for mild threatening (MT) stimuli was M = 2.52 (SD = 0.66) and for high threatening (HT) stimuli M = 1.63 (SD 

= 0.33); the mean arousal scores were M = 5.98 (SD = 0.91) and M = 6.79 (SD = 0.55), respectively. 

  Of the 48 stimuli that were used in the main task, 32 were neutral (N; e.g. shoes), eight were high 

threatening (e.g. mutilated body), and eight were mild threatening (e.g. angry dog) in content. Three types of 

stimulus pairs were created: N-N, MT-N and HT-N. N-N trials were included to avoid habituation to threatening 

stimuli; the results on these trials are not reported here. A total of 8 N-N, 8 HT-N and 8 MT-N stimulus pairs were 

created. The remaining 12 neutral stimuli were selected for twelve N-N practice trials.  Each pair of stimuli was 

subjectively matched on color and composition. We tested whether the average valence and arousal ratings 

reported by Center for the Study of Emotion and Attention (1999) differed between the categories. HT stimuli had 

lower valence ratings than MT (t(31) = 3.42, p = 0.004), and neutral stimuli (t(31) = 13.20, p < 0.001). MT stimuli also 
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 EEG recording and software. EEG recording was done using 32 Ag/AgCl electrodes placed in an 

extended 10-20 montage using the ActiveTwo BioSemi system (BioSemi, The Netherlands). Electrodes placed on 

the left and right mastoids were used for offline re-referencing of the scalp signals to the mastoid signals. The dot-

probe task and questionnaires were programmed and presented using E-Prime V2.0 (Psychology Software Tools, 

Pittsburgh, PA). 

 

Procedure 

 General Procedure. After informed consent had been obtained, participants completed the STAI-t and 

the ACS. This was followed by the measurement of resting state EEG in eight alternating one-minute blocks of 

eyes open/closed recording. The dot-probe task was performed afterwards. The study took approximately 1 hour 

to complete.  

 Attentional bias. The dot-probe task was as in Angelidis et al. (2018), however we used a largely different 

stimulus set and different intervals for short and long probe-delays. During the task, participants sat at a distance 

of 80 cm away from the screen. The task consisted of 12 practice and 192 test trials, consisting of 64 HT-N, 64 MT-

N and 64 N-N trials. In test trials, all stimulus pairs were presented eight times in random order, fully 
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counterbalanced for cue-target delay (80 or 200 ms), probe position (left/right), and congruency. Each trial started 

with a random inter-trial interval (ITI) between 500 and 1500 ms. The ITI was followed by a black fixation cross that 

was presented for 1000 ms in the center of a grey screen, and participants were instructed to look at this cross. 

The fixation cross was followed by two pictures that appeared vertically centered, 2.2 cm left and right from the 

screen. Pictures were presented with a height of 7.6 cm and width of 10.7 cm. Immediately after offset of the 

pictures, a probe (black dot; 5 mm diameter) appeared below the left or right picture location. The participants 

were asked to indicate the probe location as fast and accurately as possible by pressing response boxes attached 

to the left and right arm of their chair with their index fingers.  

 

Data Processing 

 Dot-Probe data. Incorrect responses were excluded from analyses. One participant made 27 errors 

(more than five standard deviations above mean) and was excluded from further dot-probe task analyses. The 

average number of errors of the remaining participants was 3.57 (SD = 2.5) with a range from 0 to 11. Probe 

detection was measured in milliseconds and reaction times (RTs) that were shorter than 300 ms or longer than 

1000 ms were defined as outliers and removed from the data. After applying this first filter, RTs that deviated more 

than three standard deviations from the individual mean RT were also removed as outliers (mean total number of 

removed outliers per participant was 4.27 (SD = 2.61)). The number of outliers per participant ranged from 0 to 14. 

An average of 2.1% of the data were removed in total; mean RT of remaining data was 335 ms (SD = 36). Bias 

scores were calculated for HT-N and MT-N trials separately in short cue-target delay trials (80 ms) and long cue-

target delay trials (200 ms) by subtracting the average response time on congruent trials from incongruent trials. 

Positive bias scores indicate selective attention towards threat whereas negative scores indicate attentional 

avoidance. Mean RTs and SDs per stimulus-pair per condition and bias scores are presented in Table 1. Finally, 

Δthreat-level contrast scores were calculated separately for short and long delay conditions by subtracting 

average bias scores of HT-N trials from average bias scores of MT-N trials (a higher score reflecting a relatively 

stronger attentional bias toward mild compared to high threatening stimuli). 

 

 EEG processing. Offline data processing was done using Brain Vision Analyzer V2.0.4 (Brain Products 

GmbH, Germany). Data was high-pass filtered at 0.1 Hz, low-pass filtered at 100-Hz and a 50-Hz notch filter was 

applied. The data were automatically corrected for ocular artifacts (Gratton, Coles & Donchin, 1983) in segments 

of 4 seconds. Remaining segments containing muscle movements, amplitudes above 200 µV or other artifacts 

were removed. Fast Fourier transformation (Hamming window length 10%) was applied to calculate power 

density for the beta (13-30 Hz) and theta (4-7 Hz) band. The present research questions concerned the average of 

the frontal electrodes (F3, Fz and F4, as in Angelidis et al., 2018; see also Angelidis et al., 2016; Putman et al., 2010; 

Putman et al., 2014; Schutter & Van Honk, 2005). These frontal averages were therefore calculated for both the 

beta and theta band, other electrodes were used for exploratory purposes that were not meant to be reported. 

One participant had extremely high theta activity (more than four standard deviations above the mean) and was 

excluded from further EEG analyses. Frontal theta/beta ratio was calculated by dividing the frontal theta by frontal 
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beta power density. Frontal theta/beta ratio was non-normally distributed and therefore log10-normalized.  

 

 Statistical analyses. The mean bias scores were analyzed using a cue-target delay x threat-level (2 x 2) 

repeated measures analysis of variance (rm ANOVA). To test if TBR moderated the effect of threat-level on bias 

score (hypothesis 1a), a 2 level (threat-level) repeated measures ANOVA was performed, this time with frontal TBR 

added as a covariate to the model. This concerns a directional planned replication hypothesis, so a one-sided test 

was performed. Mahalonobis distance tests were used to check for bivariate outliers. To test hypothesis 1b and 2, 

the 2 level (threat-level) rm ANOVA was repeated, followed by a cue-target delay (2) x threat-level (2) rm ANOVA 

with centered frontal TBR, centered STAI-t, and their interaction term added as covariates to both models. 

Centered variables were used as predictor variables in the model to control for multicollinearity. Partial correlation 

testing was done to test hypothesis 3 for the association between TBR and ACS, and to control for confounding 

by STAI-t (see Putman et al., 2010; 2014; Angelidis et al., 2016). The same analyses that were done for hypotheses 

1a, 1b and 2 were repeated for hypotheses 4a, 4b, and 5 but centered frontal TBR was replaced by centered ACS.  

 

 

      Results 

Participants 

 Participants (N = 53) had a mean age of 21.7 years; (SD = 2.6), mean STAI-t score of 37.7 (SD = 9.9) and 

mean ACS score of 51 (SD = 8.4). The mean frontal TBR that was measured during resting state was 1.26 (SD = 

0.54). 

Dot-Probe   

 Mean RTs and bias scores are presented in Table 1 (see Table 1). No significant main effect or interaction 

effects were observed: cue-target delay (F(1,51) = 0.067, p = 0.798, ηp
2 = 0.001);  threat-level (F(1,51) = 0.504, p = 

0.481, ηp
2 = 0.01) cue-target delay x threat-level (F(1,51) = 3.283, p = 0.076, ηp

2 = 0.06). Overall bias score compared 

to zero was also not significant, t(51) = - 0.169, p = 0.866. In sum, without taking into account variables of 

individual differences, no clear pattern of biases occurred for the dot-probe task; see Table 1.    

 

 

 

 

 

 

Footnotes: 

 1The following pairs of pictures numbers were used: HT-N: 3010-1616, 5661-3130, 3000-7195, 3053-7200, 7496-3064, 7291-3080, 3051-7482, 7110-3068; 

MT-N: 7330-1300, 6570-5890, 3350-5532, 5480-8485, 9265-1590, 5622-9584, 5470-3530, 5830-9921; N-N: 2514-1540, 5471-5593, 1731-7490, 2388-2594, 

5833-2398, 5010-5201, 5731-2515, 5250-7031. 
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Table 1. Mean RTs and bias scores (and standard deviations) in ms for the two probe-delays and threat-levels in the dot-probe task (n = 53). 

Probe-target delay Threat-level  Congruent Incongruent Bias score 

80 ms MT-N  339 (36) 341 (41) 2 (20) 

 
HT-N  340 (35) 337 (38) -3 (16) 

200 ms MT-N  330 (39) 326 (39) -4 (16) 

 HT-N  330 (38) 333 (38) 3 (21) 

Total MT-N  334 (41) 333 (39) -1 (10) 

 HT-N  335 (35) 335 (37) -0.4 (14) 

 
 

 

Hypothesis 1a; Frontal TBR moderates attentional responding to threat-level dependent bias in a dot-probe 

task 

 Mahalonobis distance tests revealed a significant bivariate outlier case for the relationship between 

frontal TBR and threat-bias (D2 = 7.46; p < 0.05 for MT bias and D2 = 14.06; p < 0.001 for HT bias). This case was 

removed for analyses on TBR and dot-probe task data. The main effect of threat-level was non-significant (F(1,48) 

= 0.142, p = 0.708, ηp
2 = 0.003), but interaction effect of frontal TBR x threat-level was significant (one-tailed) 

(F(1,48) = 3.038, p = 0.044, ηp
2 = 0.06). The effect remained significant (one-tailed) when controlling for STAI-t 

(F(1,47) = 3.831, p = 0.028, ηp
2 = 0.075). Figure 1.1 depicts this interaction as the relation between TBR and 

Δthreat-level. It can be seen that high frontal TBR is associated with relatively more attention toward mild threat 

than toward high threat. Follow-up tests showed no significant correlation between frontal TBR and bias for MT (r 

= - 0.19, p = 0.19) but a significant negative correlation between frontal TBR and bias for HT (r = - 0.41, p = 0.003). 

Hypothesis 1a was therefore confirmed. 
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beta power density. Frontal theta/beta ratio was non-normally distributed and therefore log10-normalized.  
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effects were observed: cue-target delay (F(1,51) = 0.067, p = 0.798, ηp
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2 = 0.06). Overall bias score compared 

to zero was also not significant, t(51) = - 0.169, p = 0.866. In sum, without taking into account variables of 

individual differences, no clear pattern of biases occurred for the dot-probe task; see Table 1.    
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Table 1. Mean RTs and bias scores (and standard deviations) in ms for the two probe-delays and threat-levels in the dot-probe task (n = 53). 
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 HT-N  330 (38) 333 (38) 3 (21) 
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Hypothesis 1a; Frontal TBR moderates attentional responding to threat-level dependent bias in a dot-probe 

task 

 Mahalonobis distance tests revealed a significant bivariate outlier case for the relationship between 

frontal TBR and threat-bias (D2 = 7.46; p < 0.05 for MT bias and D2 = 14.06; p < 0.001 for HT bias). This case was 
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2 = 0.075). Figure 1.1 depicts this interaction as the relation between TBR and 

Δthreat-level. It can be seen that high frontal TBR is associated with relatively more attention toward mild threat 

than toward high threat. Follow-up tests showed no significant correlation between frontal TBR and bias for MT (r 

= - 0.19, p = 0.19) but a significant negative correlation between frontal TBR and bias for HT (r = - 0.41, p = 0.003). 

Hypothesis 1a was therefore confirmed. 
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 Figure 1.1 The relation between Ln-normalized frontal EEG TBR and ΔThreat level (Bias for MT stimuli – Bias for HT 

stimuli).  

 

Hypothesis 1b; Self-reported trait anxiety moderates the relationship between frontal TBR and effect of 

threat-level 

 The crucial interaction effect between frontal TBR, STAI-t and threat-level was not significant, F(1,46) = 

0.046, p = 0.831, ηp
2 = 0.001. Hypothesis 1b was therefore rejected. 

 

Hypothesis 2; Cue-target delay related to TBR and TBR x trait anxiety in threat-level dependent dot-probe 

performance 

 The crucial interaction effect between frontal TBR x cue-target delay x threat-level was not significant, 

F(1,48) = 0.016, p = 0.898, ηp
2 <  0.001. When we added STAI-t and the frontal TBR x STAI-t interaction term, there 

was no significant crucial STAI-t x TBR x cue-target delay x threat-level interaction, F(1,46) = 1.005, p = 0.321, ηp
2 = 

0.021. Thus, hypothesis 2 was rejected. 

 

Hypothesis 3: The relation between TBR and trait-AC  

 TBR was significantly negatively correlated to trait AC (as measured by the ACS; when controlling for 

STAI-t, the partial correlation was r = -0.32; p = 0.024). Frontal TBR also correlated significantly negatively to STAI-t 

when controlling for ACS (partial r =-0.336; p = 0.016). Hypothesis 3 was thus confirmed. 

 

Hypothesis 4a and 4b; The effect of trait AC and trait AC x trait anxiety in threat-level dependent dot-probe 

performance  

 We performed the same moderation analyses for trait AC (as measured by the ACS), as we did for TBR 

using the 2 level (threat-level) repeated measures ANOVA with ACS as covariate. This showed no significant ACS x 
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threat-level interaction, F(1,50) = 0.149, p = 0.701, ηp
2 = 0.003. To test if the interaction of ACS x STAI-t moderated 

effect of threat-level, the model was repeated using ACS, STAI-t and their interaction in the model. This revealed 

no significant ACS x STAI-t x threat-level interaction, F(1,48) = 0.167, p = 0.685, ηp
2 = 0.003. Hypotheses 4a and 4b 

are therefore rejected.  

 

Hypothesis 5; Cue-target delay related to trait AC x trait anxiety in threat-level dependent dot-probe 

performance 

 A significant ACS x cue-target delay x threat-level interaction was found, F(1,50) = 7.339, p = 0.009, ηp
2 = 

0.128. This interaction remained significant when we controlled for STAI-t, F(1,49) = 7.863, p = 0.007, ηp
2 = 0.138. 

This confirms hypothesis 5. Follow-up analyses showed a trend-level ACS x threat-level interaction in the short 

delay condition, F(1,50) = 3.174, p = 0.08, ηp
2 = 0.06. Figure 1.2, left panel, depicting this interaction as the 

correlation between ACS and Δthreat-level, clarifies the nature of this interaction; higher ACS scores were 

associated with a tendency toward higher difference scores for bias for mild minus high threat. ACS was 

negatively associated with bias toward HT (r = - 0.29, p = 0.04) and not with bias for MT (r = 0.09, p = 0.53) in the 

short delay condition.  

  In the long delay condition, there was a significant ACS x threat-level interaction, F(1,50) = 5.046, p = 

0.03, ηp
2 = 0.092, which remained significant when controlling for STAI-t  , F(1,50) = 5.696, p = 0.02, ηp

2 = 0.104. 

Figure 1.2 clarifies the nature of this interaction; lower ACS scores were associated with a tendency toward higher 

difference scores for bias for mild minus high threat. ACS was significantly negatively correlated to bias to MT (r = 

-0.28, p = 0.04) and non-significantly positively correlated with bias to HT (r = 0.20, p = 0.15).  

 To test if ACS and STAI-t interactively moderated a cue-target delay x threat-level effect on bias scores, 

the cue-target delay (2) x threat-level (2) ANOVA was run with ACS, STAI-t and their interaction term in the model. 

This showed no significant STAI-t x ACS x cue-target delay x threat-level interaction, F(1,48) = 0.001, p = 0.973, ηp
2 

< 0.001. Hypotheses 5 is thus partially confirmed. 
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threat-level interaction, F(1,50) = 0.149, p = 0.701, ηp
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 A significant ACS x cue-target delay x threat-level interaction was found, F(1,50) = 7.339, p = 0.009, ηp
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2 = 0.092, which remained significant when controlling for STAI-t  , F(1,50) = 5.696, p = 0.02, ηp
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Figure 1.2. The relationship between Δthreat-level (bias score MT – bias score HT) in ms and attentional control in 

short (80 ms, left) and long (200 ms, right) cue-target delays.  

 

       Discussion 

This study investigated whether frontal EEG TBR is related to threat-level dependent attentional bias, alone and in 

interaction with trait anxiety, if results were more pronounced after a longer cue-target delay than after a shorter 

delay and if findings for self-reported trait AC and for TBR converged, to further test the construct validity of TBR 

as a marker of trait AC and its role in attentional bias. Results showed that lower TBR was associated with more 

attention toward high than toward mild threat. Trait anxiety did not interact with TBR’s relation to threat-level 

dependent bias, contrary to expectation. The TBR threat-level interaction was not affected by cue-target delay. As 

expected, TBR and ACS were negatively correlated, and ACS moderated attentional bias to different threat-levels 

in a similar manner as TBR did. ACS did not interact with trait anxiety either, but the association between ACS and 

threat-level was dependent on cue-target delay, as predicted: the ACS x threat-level interaction was specific to 

the longer cue-target delay. These results are further discussed below. 

 The finding that TBR moderates attentional bias to different threat-levels replicates our previous study 

(Angelidis et al., 2018). We tested this hypothesis one-sided since it concerns a planned replication hypothesis, 

but it should be noted that this was a statistical trend (p = 0.056) when tested two-sided, likely due to our 

somewhat smaller sample size. Angelidis et al. (2018) reported that higher TBR (low cognitive control) was 

associated with relative avoidance of high threatening stimuli compared to mild threatening stimuli and the 

current data show the same interaction for TBR and threat-level. This is in line with the cognitive motivational 

model of attentional bias (Mogg & Bradley, 1998; 2016), indicating that attentional bias towards threat may be 

opposed by mechanisms of avoidance and that individual differences in cognitive control are crucial in the actual 

manifestation of threat-bias toward or away from threat (Mogg, Weinman & Mathews, 1987; Mogg & Bradley, 

2016). 
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 Our next hypothesis was that the moderation of TBR on threat-level would be different in early (80 ms 

cue-target delays) compared to later (200 ms cue-target delays) stages of attention. However, our data did not 

show this, similar as in Angelidis et al. (2018) where cue-target delays of 200 and 500 ms were used. The 

expectation that cue-target delay would affect the results originates from the assumption that the cognitive 

control mechanisms that regulate automatic attention away from threat (attentional avoidance) occur at later 

stages of attentional processing (Derryberry & Reed, 2002; Cisler & Koster, 2010; Mogg & Bradley, 1998; 2016). The 

current results for TBR and the results of Angelidis et al., (2018) do not support this notion. One methodological 

explanation of the current findings might be that the short cue target delay was too short for sufficient 

emotional-attentional processing so no bias might be measured at all. However, ACS scores were significantly 

associated with bias (toward high threat) in the short delay condition. This suggests that the short cue target 

delay condition was sufficient to allow measurement of attentional bias. An 80 ms delay is known to allow 

orienting of visuospatial attention (Posner & Cohen, 1984) and in dot-probe tasks, anxious selective attention 

toward threat has been observed already after 50 ms (Armony & Dolan, 2002) and even after 34 ms, using 

subliminal presentation (Fox, 2002). All in all, we do not think that the cue-target delay of 80 ms was too short. 

Another possible methodological explanation for the current data might be that the difference between 80 ms 

and 200 ms is not large enough to distinguish between early and late attentional processes. Importantly though, 

we did find a significant delay-dependent ACS moderation of threat-level, where the association was stronger in 

the longer cue-target condition, as expected. In conclusion, we do not have a ready explanation for the absence 

of a delay effect for TBR, especially considering the current positive finding for ACS. The latter finding is in line 

with two previous studies (Derryberry & Reed, 2002, Bardeen & Orcutt, 2011) that also measured visuospatial 

threat-biased attention, albeit with different cue-target delays. Considering a delay effect for one measure of trait 

AC (ACS) but no such effect for the other index of trait AC (TBR), we conclude that our results on this issue are 

inconclusive. Measuring the time-course of attention remains notoriously difficult (see also Mogg & Bradley, 2016). 

Different methods such as emotional cueing tasks (Koster et al., 2007), event-related potential tasks (Harrewijn, 

Schmidt, Westenberg, Tang, & van der Molen, 2017) or even non-spatial emotional-attention tasks such as 

interference tasks (Clarke et al., 2013) or serial presentation tasks (Peers & Lawrence, 2009) might be used in future 

studies to assess the time-course of selective attention, attentional avoidance and attentional control.  

 We hypothesized that the moderation of TBR on threat-level would interact with trait anxiety, but this 

was not observed. A possible explanation might be that we used different stimuli than in Angelidis et al. (2018). 

We cannot compare the sets because the ratings of the stimuli in Angelidis et al. (2018) were collected in a 

different sample and in a different experimental setting than the IAPS ratings. Perhaps pre-selecting participants 

on high trait anxiety and/or manipulation of state anxiety could be helpful in resolving this issue, as attentional 

threat bias might depend on interaction between trait and state anxiety (Egloff & Hock, 2001). 

 Contrary to Angelidis et al. (2018), a significant correlation between TBR and ACS scores (independent of 

trait anxiety) was found in the current sample, which is in line with previous studies from our lab (Putman et al., 

2010; 2014; Angelidis et al., 2016) and with reported negative correlations between TBR and task-based objective 

measures of attention (Keune et al., 2017). Conceptualizing TBR as a marker of attentional control, we also 
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Schmidt, Westenberg, Tang, & van der Molen, 2017) or even non-spatial emotional-attention tasks such as 

interference tasks (Clarke et al., 2013) or serial presentation tasks (Peers & Lawrence, 2009) might be used in future 

studies to assess the time-course of selective attention, attentional avoidance and attentional control.  

 We hypothesized that the moderation of TBR on threat-level would interact with trait anxiety, but this 

was not observed. A possible explanation might be that we used different stimuli than in Angelidis et al. (2018). 

We cannot compare the sets because the ratings of the stimuli in Angelidis et al. (2018) were collected in a 

different sample and in a different experimental setting than the IAPS ratings. Perhaps pre-selecting participants 

on high trait anxiety and/or manipulation of state anxiety could be helpful in resolving this issue, as attentional 

threat bias might depend on interaction between trait and state anxiety (Egloff & Hock, 2001). 

 Contrary to Angelidis et al. (2018), a significant correlation between TBR and ACS scores (independent of 

trait anxiety) was found in the current sample, which is in line with previous studies from our lab (Putman et al., 

2010; 2014; Angelidis et al., 2016) and with reported negative correlations between TBR and task-based objective 

measures of attention (Keune et al., 2017). Conceptualizing TBR as a marker of attentional control, we also 
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predicted that ACS scores (which indicate trait AC) would show a similar relation with dot-probe task 

performance as TBR. This was partially confirmed: lower ACS was related to relative avoidance of high threatening 

stimuli and also to attentional bias toward mild threatening stimuli. This conceptually replicates the TBR effect, 

but only when taking cue-target delay into consideration, which is largely consistent with our predictions. 

Although TBR was reported to have a very high one and two-week re-test reliability (Angelidis et al., 2016; Keune 

et al., 2017), little is known about transient state-fluctuations of TBR and operationally our TBR measure was done 

at a single point in time. Since acute fluctuations in trait AC may occur as a function of factors as diverse as fatigue 

(van der Linden, Frese & Meijman, 2003) or circadian rhythm (van Dongen & Dinges, 2000), results for trait and 

state measures of trait AC should not be expected to correlate perfectly. As such it is encouraging that results of 

the current study for trait ACS and TBR converged. This solidifies the interpretation of the current TBR results as 

well as the similar results of Angelidis et al., (2018), supporting the construct validity of TBR as a reflection of neural 

processes underlying trait AC.  

 Altogether, our findings that both TBR and ACS are related to attentional processing of cues with 

different threat-levels, indicate that executive control plays a critical role in threat processing. The current study 

emphasizes the importance of threat-level; different attentional responses were found for high versus mild 

threatening stimuli, moderated by frontal TBR and ACS. Schechner & Bar-Haim (2016) recently also emphasized 

the importance of subjective threat evaluation (influences of state anxiety) in the manifestation of threat-avoidant 

attentional bias. Their findings and ours carry possible implications for the currently popular attentional bias 

modification paradigm and its attempts to train attentional bias away from threat with the objective of effecting 

more adaptive and healthy attentional processing styles (Cristea, Kok & Cuijpers, 2015).  

 Potential limitations of this study include that we used a smaller sample and a lower number of males 

than the previous study (Angelidis et al., 2018). The stimulus set included eight high and eight mild threatening 

stimuli, which may be considered a fairly small set. The fact that our results for TBR and threat-level dependent 

attention partially replicate Angelidis et al. (2018) who used a largely different stimulus-set, is reassuring. Still, 

future research could consider using larger sets of stimuli to avoid possible artefacts resulting from narrow 

stimulus sampling.  

 To conclude, this study partially replicated previously reported relations between TBR and threat-level 

dependent dot probe bias and as such supports the notion of frontal TBR as an electrophysiological marker for 

executive control, i.e. regulation of attentional processing of threatening stimuli. The direction of attentional bias 

depends on individual differences in attentional control and threat level of the stimuli. The issue of early and 

automatic versus late and controlled attentional processing remains unresolved as only effects of self-reported 

trait AC, but not of TBR, were confined to a later stage of processing and requires further investigation.  Finally, 

converging results were found for TBR and an often used and validated (Judah, Grant, Mills, & Lechner, 2014) self-

report measure of trait AC, supporting construct validity. 
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predicted that ACS scores (which indicate trait AC) would show a similar relation with dot-probe task 

performance as TBR. This was partially confirmed: lower ACS was related to relative avoidance of high threatening 

stimuli and also to attentional bias toward mild threatening stimuli. This conceptually replicates the TBR effect, 

but only when taking cue-target delay into consideration, which is largely consistent with our predictions. 

Although TBR was reported to have a very high one and two-week re-test reliability (Angelidis et al., 2016; Keune 

et al., 2017), little is known about transient state-fluctuations of TBR and operationally our TBR measure was done 

at a single point in time. Since acute fluctuations in trait AC may occur as a function of factors as diverse as fatigue 

(van der Linden, Frese & Meijman, 2003) or circadian rhythm (van Dongen & Dinges, 2000), results for trait and 

state measures of trait AC should not be expected to correlate perfectly. As such it is encouraging that results of 

the current study for trait ACS and TBR converged. This solidifies the interpretation of the current TBR results as 

well as the similar results of Angelidis et al., (2018), supporting the construct validity of TBR as a reflection of neural 

processes underlying trait AC.  

 Altogether, our findings that both TBR and ACS are related to attentional processing of cues with 

different threat-levels, indicate that executive control plays a critical role in threat processing. The current study 

emphasizes the importance of threat-level; different attentional responses were found for high versus mild 

threatening stimuli, moderated by frontal TBR and ACS. Schechner & Bar-Haim (2016) recently also emphasized 

the importance of subjective threat evaluation (influences of state anxiety) in the manifestation of threat-avoidant 

attentional bias. Their findings and ours carry possible implications for the currently popular attentional bias 

modification paradigm and its attempts to train attentional bias away from threat with the objective of effecting 

more adaptive and healthy attentional processing styles (Cristea, Kok & Cuijpers, 2015).  

 Potential limitations of this study include that we used a smaller sample and a lower number of males 

than the previous study (Angelidis et al., 2018). The stimulus set included eight high and eight mild threatening 

stimuli, which may be considered a fairly small set. The fact that our results for TBR and threat-level dependent 

attention partially replicate Angelidis et al. (2018) who used a largely different stimulus-set, is reassuring. Still, 

future research could consider using larger sets of stimuli to avoid possible artefacts resulting from narrow 

stimulus sampling.  

 To conclude, this study partially replicated previously reported relations between TBR and threat-level 

dependent dot probe bias and as such supports the notion of frontal TBR as an electrophysiological marker for 

executive control, i.e. regulation of attentional processing of threatening stimuli. The direction of attentional bias 

depends on individual differences in attentional control and threat level of the stimuli. The issue of early and 

automatic versus late and controlled attentional processing remains unresolved as only effects of self-reported 

trait AC, but not of TBR, were confined to a later stage of processing and requires further investigation.  Finally, 
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ABSTRACT  

Background: Spontaneous EEG theta/beta ratio (TBR) probably marks prefrontal cortical (PFC) executive control, 

and its regulation of attentional threat-bias. Caffeine at moderate doses may strengthen executive control 

through increased PFC catecholamine action, dependent on basal PFC function.  

Goal: To test if caffeine affects threat-bias, moderated by baseline frontal TBR and trait-anxiety.  

Methods: A pictorial emotional Stroop task was used to assess threat-bias in forty female participants in a cross-

over, double-blind study after placebo and 200 mg caffeine.  

Results: At baseline and after placebo, comparable relations were observed for negative pictures: high TBR was 

related to low threat-bias in low trait-anxious people. Caffeine had opposite effects on threat-bias in low trait-

anxious people with low and high TBR. 

Conclusions:  This further supports TBR as a marker of executive control and highlights the importance of taking 

baseline executive function into consideration when studying effects of caffeine on executive functions. 
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Anxiety disorders are one of the most common mental health problems with point prevalence rates estimated 

around 7.3% worldwide (Baxter, Scott, & Whiteford, 2013). Individuals with an anxiety disorder excessively attend 

to threatening information and this may also be observed in individuals at risk (Mogg and & Bradley, 2016; 

Ledoux; 1995). This tendency is usually referred to as an attentional bias (AB) towards threat.  

 A large number of studies have confirmed a positive relation between anxiety levels and AB toward 

(mild) threat and it is thought that threat AB might maintain anxiety disorders (Mogg & Bradley, 1998; 2016; Bar-

Haim, Lamy, Pergamin, Bakermans-Kranenburg & van IJzendoorn, 2007; Cisler & Koster, 2010; van Bockstaele, 

Verschuere, Tibboel, De Houwer, Crombez & Koster, 2014). AB is also thought to partially explain the well-

documented association between anxiety and reduced cognitive performance through facilitating the 

processing of task-unrelated threatening information at the cost of task-directed attentional control and working 

memory capacity (Hembree, 1988; Putwain, 2009; Owens, Stevenson, Hadwin & Norgate, 2012; Eysenck, 

Derakshan, Santos & Calvo, 2007; Derakshan & Eysenck, 2009; Cassady & Johnson, 2002; Bishop, 2008). Bottom-up 

processing of salient information might cause selective and automatic attention to threat, while top-down 

cognitive control facilitates more goal-directed cognition and behavior (e.g., Eysenck et al., 2007; Hermans, 

Henckens, Joels & Fernandez, 2014; Mogg & Bradley, 2016). This is in line with findings of Derryberry and Reed 

(2002) who found that trait attentional control, as assessed with the attentional control scale (ACS; Derryberry & 

Reed 2002) regulates automatic attention to threatening stimuli. Since their original study, several studies have 

reported that individual differences in attentional control (AC) are associated with the occurrence of threat-bias 

(often depending on levels of trait anxiety). In these studies, AC was measured either by self-report (e.g., Bishop, 

Jenkins & Lawrence, 2007; Derryberry & Reed, 2002; Putman, Arias-Garcia, Pantazi & van Schie, 2012; Schoorl, 

Putman, van der Werff, & van der Does, 2014; Taylor, Cross & Amir, 2016) or with objectively assessed measures 

(Hou, Moss-Morris, Risdale, Lynch, Jeevaratnam, Bradley & Mogg, 2014; Reinholdt-Dunne, Mogg & Bradley, 2009; 

Angelidis, Hagenaars, van Son, van der Does & Putman, 2018; van Son, Angelidis, Hagenaars, van der Does & 

Putman, 2018). 

 Goal oriented, top-down attentional control is mediated by prefrontal-cortical networks (Derakshan & 

Eysenck, 2009; Bishop, 2008; Gregoriou, Rossi, Ungerleider & Desimone, 2014), whose function is dependent on 

adequate catecholamine action (Hermans et al., 2014; Arnsten, 2009a). Stress and anxiety trigger a variety of 

neurochemical changes (Joëls &Baram, 2009), including increased influx of the catecholamines dopamine and 

nor-adrenaline into the prefrontal cortex (PFC). These processes are partly genetically determined and individually 

different (Kvetnansky, Sabban & Palkovits, 2009). Both types of catecholamines influence PFC in a dose-

dependent, inverted U-shaped manner (Arnsten, 2009). While moderate levels are needed for good prefrontal 

executive control, dopaminergic and noradrenergic over-stimulation leads to decreased PFC function. In other 

words, increasing levels of catecholamines are associated with increasing performance until a tipping point is 

reached, after which further catecholamine stimulation will harm executive performance, including top-down 

attentional control (Arnsten, 2009a; Arnsten, 2011b; Arnsten & Rubia, 2012; Hermans et al., 2014). This tipping 

point for the effects of stress-induced catecholamines (the apex of the inverted U-shape relation between 

catecholamines and cognitive performance) has been found to be dependent on catecholamine-driven basal 
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neurochemical changes (Joëls &Baram, 2009), including increased influx of the catecholamines dopamine and 
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different (Kvetnansky, Sabban & Palkovits, 2009). Both types of catecholamines influence PFC in a dose-

dependent, inverted U-shaped manner (Arnsten, 2009). While moderate levels are needed for good prefrontal 

executive control, dopaminergic and noradrenergic over-stimulation leads to decreased PFC function. In other 
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prefrontal function, and is therefore different for every individual (Arnsten, 2009a; Arnsten 2009b; Cools & 

D’Esposito, 2011). This implies that a well-dosed manipulation of catecholamine systems could increase 

attentional control over threat-bias, depending on individual differences in anxiety and baseline PFC function or 

catecholamine levels (Arnsten, 2006; Arnsten, 2011b).  

 A pharmacon that has repeatedly been linked to facilitated attentional and working memory functioning 

is caffeine (Lorist & Tops, 2003). Caffeine works as an antagonist of adenosine receptors. Because adenosine 

inhibits release of nor-adrenaline and dopamine, caffeine indirectly stimulates dopamine and nor-adrenaline 

release in subcortical and cortical areas of the brain (Nehlig, Daval, & Debry, 1992). Our interest is in caffeine’s 

agonistic effects on PFC noradrenergic and dopaminergic post-synaptic activation (Sebastião & Ribeiro, 2009) 

which is thought to mediate how caffeine affects PFC processes such as executive control and working memory, 

which is in line with the existing literature on caffeine and cognitive performance (Klaassen, de Groot, Evers, Snel, 

Veerman, Ligtenberg & Veltman, 2013; Haller, Rodriguez, Moser, Toma, Hofmeister, Sinanaj & Lovblad, 2013; Greer, 

McLean & Graham, 1998). The effects of caffeine consumption on such PFC-regulated cognitive performance are 

dose-dependent and thereby seem to follow a similar inverted U-shape curve as described for the effects of stress 

and catecholamines on PFC-regulated performance (Arnsten, 2009a). In particular, in healthy humans, smaller 

doses (i.e., up to 200 mg) have positive effects on performance, while higher doses (e.g. above 400 mg) have no 

further benefit for cognitive functioning or even impair performance (Einöther & Giesbrecht, 2013; Pasman, van 

Baak, Jeukendrup & de Haan, 1995; Smillie & Gökçen, 2010; Wood, Sage, Shuman & Anagnostaras, 2014). The first 

aim of the present study was therefore to investigate whether caffeine administration affects control over 

attentional threat bias depending on anxiety levels and basal PFC executive control.  

 A potential objective electrophysiological measure for PFC regulated attentional control can be derived 

from spontaneous (also known as “resting-state”) activity in electroencephalography (EEG). Previous studies 

reported that the ratio between power in the theta (4-7 Hz) and the beta (13-30 Hz) frequency bands (theta/beta 

ratio; TBR) was negatively correlated to self-reported trait attentional control in healthy participants (ACS; Putman, 

van Peer, Maimari & van der Werff, 2010; Putman, Verkuil, Arias-Garcia, Pantazi & van Schie, 2014; Angelidis, van der 

Does, Schakel & Putman, 2016) and to objectively assessed attentional control in multiple sclerosis patients with 

mild cognitive impairment (Keune, Hansen, Weber, Zapf, Habich, Muenssinger, Wolf & Oschmann, 2017) and is 

positively correlated to stress-induced decline of state attentional control (Putman et al., 2014). Recent studies 

from our own lab showed that TBR moderated AB to stimuli of different threat-levels (Angelidis et al., 2018; van 

Son et al., 2018). Also, increased frontal TBR has been related to PFC-mediated attentional and inhibitory functions 

as seen in attention deficit/hyperactivity disorder (ADHD; for reviews and meta-analyses see Arns, Conners, & 

Kraemer, 2013; Barry, Clarke, & Johnstone, 2003). Frontal TBR is suggested to reflect inhibitory functional cortical-

subcortical interactions (Knyazev, 2007; Schutter & Knyazev, 2012) and to reflect voluntary top-down processes 

like attentional control carried out by the dorso-lateral PFC (Bishop, 2008; Gregoriou et al., 2014) over automatic 

bottom-up processes mediated by limbic areas such as the anterior cingulate cortex and the amygdala which 

facilitate attention to salient information (Hermans et al., 2014).  

 Interestingly, the administration of methylphenidate as treatment for ADHD improves cognitive 
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functioning by enhancing dopamine and nor-adrenaline transmission in the PFC (Arnsten, 2006), and was also 

found to reduce theta and increase beta waves (thus normalized TBR; Clarke et al., 2007; Moreno-García, Delgado-

Pardo & Roldán-Blasco, 2015). Additionally, a positive relation was found between TBR reduction caused by 

methylphenidate administration and ADHD symptom reduction (Loo, Cho, Hale, McGough, McCracken & Smalley, 

2013). Again, when referring to the ‘inverted U-shape’ relation of cognitive performance and catecholaminergic 

activity, it is expected that effects of methylphenidate are most favourable in individuals with low PFC activity 

(thus lower attentional control; Devilbiss & Berridge, 2008). The findings that methylphenidate reduces frontal 

TBR, while ameliorating PFC-mediated cognitive difficulties in ADHD (Arns et al., 2013; Barry et al., 2003; Loo et al., 

2013) again support the relation between frontal TBR and executive (attentional) control. 

 Altogether, frontal TBR is suggested to be a reliable electrophysiological marker of executive and 

attentional control. This may in particular be the case during the processing of emotional information (Morillas-

Romero, Tortella-Feliu, Bornas, & Putman, 2015), making frontal TBR a promising tool to investigate cognitive-

affect regulation. This includes the study of the effects of psychopharmacological manipulations on attentional 

control over salient emotional distracters, which likely depend on baseline PFC functioning. This was the second 

topic that we aimed to address in the present study. 

 To assess distraction by negative (threatening) task-irrelevant information on cognitive performance, we 

chose to use the Pictorial Emotional Stroop Task (PEST). The emotional Stroop task in its common form presents 

neutral and emotionally relevant stimuli in different colors. Participants have to indicate the color as fast as 

possible while ignoring the irrelevant (emotional) content of the stimuli. When the color-naming of emotional 

stimuli is slower relative to the color-naming of neutral stimuli, emotional interference is said to have occurred, 

either as a result of inability to inhibit the automatic attentional processing of the stimuli or because a bottom-up 

threat detection triggers the automatic inhibition of ongoing cognitive and behavioral activity, causing reduced 

task performance (Algom, Chajut & Lev, 2004; Williams, Mathews & McLeod, 1996; Mogg & Bradley, 2016). 

Emotional interference by threatening stimuli is most easily demonstrated in people with elevated anxiety and for 

stimuli of great personal or acute relevance (Williams et al., 1996). In order to sensitively measure interference in a 

healthy sample, we opted to use a variant of the emotional Stroop task using highly arousing photographical 

stimuli of threatening and positive scenes. Although attentional avoidance of highly arousing threatening stimuli 

is also reported, mostly for tasks that measure visual-spatial attention (e.g., Cisler & Koster, 2010; Eysenck et al., 

2007) and as a function of trait anxiety and cognitive control levels (Mogg & Bradley, 2016; Angelidis et al., 2018; 

van Son et al., 2018), we expected to find strong interference in baseline and placebo conditions which should 

enable to clearly test effects of our psychopharmacological manipulation on attentional control over threat-bias. 

Also, fear and anxiety modulate the influence of limbic structures such as the amygdala within the salience 

network. PFC –mediated executive control modulates the manifestation of such emotional and motivational 

bottom-up processes (Hermans et al., 2014). We therefore also expect interference for threat to be dependent on 

individual differences in trait anxiety (as also predicted by influential theoretical models and abundantly 

supported by empirical findings; Mogg & Bradley, 1998, 2016; Bar-Haim et al., 2007; Cisler & Koster, 2010; van 

Bockstaele et al., 2014), via modulation of bottom-up processes, which will then also likely interact with any 
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prefrontal function, and is therefore different for every individual (Arnsten, 2009a; Arnsten 2009b; Cools & 

D’Esposito, 2011). This implies that a well-dosed manipulation of catecholamine systems could increase 

attentional control over threat-bias, depending on individual differences in anxiety and baseline PFC function or 

catecholamine levels (Arnsten, 2006; Arnsten, 2011b).  

 A pharmacon that has repeatedly been linked to facilitated attentional and working memory functioning 

is caffeine (Lorist & Tops, 2003). Caffeine works as an antagonist of adenosine receptors. Because adenosine 

inhibits release of nor-adrenaline and dopamine, caffeine indirectly stimulates dopamine and nor-adrenaline 

release in subcortical and cortical areas of the brain (Nehlig, Daval, & Debry, 1992). Our interest is in caffeine’s 

agonistic effects on PFC noradrenergic and dopaminergic post-synaptic activation (Sebastião & Ribeiro, 2009) 

which is thought to mediate how caffeine affects PFC processes such as executive control and working memory, 

which is in line with the existing literature on caffeine and cognitive performance (Klaassen, de Groot, Evers, Snel, 

Veerman, Ligtenberg & Veltman, 2013; Haller, Rodriguez, Moser, Toma, Hofmeister, Sinanaj & Lovblad, 2013; Greer, 

McLean & Graham, 1998). The effects of caffeine consumption on such PFC-regulated cognitive performance are 

dose-dependent and thereby seem to follow a similar inverted U-shape curve as described for the effects of stress 

and catecholamines on PFC-regulated performance (Arnsten, 2009a). In particular, in healthy humans, smaller 

doses (i.e., up to 200 mg) have positive effects on performance, while higher doses (e.g. above 400 mg) have no 

further benefit for cognitive functioning or even impair performance (Einöther & Giesbrecht, 2013; Pasman, van 

Baak, Jeukendrup & de Haan, 1995; Smillie & Gökçen, 2010; Wood, Sage, Shuman & Anagnostaras, 2014). The first 

aim of the present study was therefore to investigate whether caffeine administration affects control over 

attentional threat bias depending on anxiety levels and basal PFC executive control.  

 A potential objective electrophysiological measure for PFC regulated attentional control can be derived 

from spontaneous (also known as “resting-state”) activity in electroencephalography (EEG). Previous studies 

reported that the ratio between power in the theta (4-7 Hz) and the beta (13-30 Hz) frequency bands (theta/beta 

ratio; TBR) was negatively correlated to self-reported trait attentional control in healthy participants (ACS; Putman, 

van Peer, Maimari & van der Werff, 2010; Putman, Verkuil, Arias-Garcia, Pantazi & van Schie, 2014; Angelidis, van der 

Does, Schakel & Putman, 2016) and to objectively assessed attentional control in multiple sclerosis patients with 

mild cognitive impairment (Keune, Hansen, Weber, Zapf, Habich, Muenssinger, Wolf & Oschmann, 2017) and is 

positively correlated to stress-induced decline of state attentional control (Putman et al., 2014). Recent studies 

from our own lab showed that TBR moderated AB to stimuli of different threat-levels (Angelidis et al., 2018; van 

Son et al., 2018). Also, increased frontal TBR has been related to PFC-mediated attentional and inhibitory functions 

as seen in attention deficit/hyperactivity disorder (ADHD; for reviews and meta-analyses see Arns, Conners, & 

Kraemer, 2013; Barry, Clarke, & Johnstone, 2003). Frontal TBR is suggested to reflect inhibitory functional cortical-

subcortical interactions (Knyazev, 2007; Schutter & Knyazev, 2012) and to reflect voluntary top-down processes 

like attentional control carried out by the dorso-lateral PFC (Bishop, 2008; Gregoriou et al., 2014) over automatic 

bottom-up processes mediated by limbic areas such as the anterior cingulate cortex and the amygdala which 

facilitate attention to salient information (Hermans et al., 2014).  

 Interestingly, the administration of methylphenidate as treatment for ADHD improves cognitive 
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functioning by enhancing dopamine and nor-adrenaline transmission in the PFC (Arnsten, 2006), and was also 

found to reduce theta and increase beta waves (thus normalized TBR; Clarke et al., 2007; Moreno-García, Delgado-

Pardo & Roldán-Blasco, 2015). Additionally, a positive relation was found between TBR reduction caused by 

methylphenidate administration and ADHD symptom reduction (Loo, Cho, Hale, McGough, McCracken & Smalley, 

2013). Again, when referring to the ‘inverted U-shape’ relation of cognitive performance and catecholaminergic 

activity, it is expected that effects of methylphenidate are most favourable in individuals with low PFC activity 

(thus lower attentional control; Devilbiss & Berridge, 2008). The findings that methylphenidate reduces frontal 

TBR, while ameliorating PFC-mediated cognitive difficulties in ADHD (Arns et al., 2013; Barry et al., 2003; Loo et al., 

2013) again support the relation between frontal TBR and executive (attentional) control. 

 Altogether, frontal TBR is suggested to be a reliable electrophysiological marker of executive and 

attentional control. This may in particular be the case during the processing of emotional information (Morillas-

Romero, Tortella-Feliu, Bornas, & Putman, 2015), making frontal TBR a promising tool to investigate cognitive-

affect regulation. This includes the study of the effects of psychopharmacological manipulations on attentional 

control over salient emotional distracters, which likely depend on baseline PFC functioning. This was the second 

topic that we aimed to address in the present study. 

 To assess distraction by negative (threatening) task-irrelevant information on cognitive performance, we 

chose to use the Pictorial Emotional Stroop Task (PEST). The emotional Stroop task in its common form presents 

neutral and emotionally relevant stimuli in different colors. Participants have to indicate the color as fast as 

possible while ignoring the irrelevant (emotional) content of the stimuli. When the color-naming of emotional 

stimuli is slower relative to the color-naming of neutral stimuli, emotional interference is said to have occurred, 

either as a result of inability to inhibit the automatic attentional processing of the stimuli or because a bottom-up 

threat detection triggers the automatic inhibition of ongoing cognitive and behavioral activity, causing reduced 

task performance (Algom, Chajut & Lev, 2004; Williams, Mathews & McLeod, 1996; Mogg & Bradley, 2016). 

Emotional interference by threatening stimuli is most easily demonstrated in people with elevated anxiety and for 

stimuli of great personal or acute relevance (Williams et al., 1996). In order to sensitively measure interference in a 

healthy sample, we opted to use a variant of the emotional Stroop task using highly arousing photographical 

stimuli of threatening and positive scenes. Although attentional avoidance of highly arousing threatening stimuli 

is also reported, mostly for tasks that measure visual-spatial attention (e.g., Cisler & Koster, 2010; Eysenck et al., 

2007) and as a function of trait anxiety and cognitive control levels (Mogg & Bradley, 2016; Angelidis et al., 2018; 

van Son et al., 2018), we expected to find strong interference in baseline and placebo conditions which should 

enable to clearly test effects of our psychopharmacological manipulation on attentional control over threat-bias. 

Also, fear and anxiety modulate the influence of limbic structures such as the amygdala within the salience 

network. PFC –mediated executive control modulates the manifestation of such emotional and motivational 

bottom-up processes (Hermans et al., 2014). We therefore also expect interference for threat to be dependent on 

individual differences in trait anxiety (as also predicted by influential theoretical models and abundantly 

supported by empirical findings; Mogg & Bradley, 1998, 2016; Bar-Haim et al., 2007; Cisler & Koster, 2010; van 

Bockstaele et al., 2014), via modulation of bottom-up processes, which will then also likely interact with any 
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relations with TBR (c.f. Angelidis et al., 2018) or effects of caffeine.    

 In summary, the goal of the present study was to investigate the effects of a single caffeine 

administration on threat-bias, taking into account possible moderating effects of frontal TBR and trait anxiety. 

Since frontal TBR is considered to reflect basal functioning of PFC executive control (and hence possibly 

catecholamine function) and should therefore be related to individual differences of the catecholamine tipping 

point, we expected frontal TBR to moderate the effect of caffeine on threat-bias. Furthermore, trait anxiety was 

expected to further moderate these effects. We used a moderate dose of caffeine in a relatively caffeine-naïve 

sample (max daily consumption of 100 mg), to prevent influence of caffeine withdrawal effects (Juliano & Griffiths, 

2004). We hypothesized that: 

I) Increased frontal TBR is related to interference in the PEST as measured on baseline or after placebo. 

II) A moderate dose of caffeine, moderated by individual differences in frontal TBR should reduce interference as 

measured with the PEST. 

III) Trait anxiety interacts with these relations between frontal TBR and interference and the effects of caffeine 

thereon. 

IV) A caffeine-induced reduction of TBR will mediate effects of caffeine on interference in the PEST. 

These hypotheses were primarily aimed at the threatening stimuli, especially hypothesis III. However, for relations 

with frontal TBR and caffeine (hypotheses I and II), it is possible that also distraction by positive stimuli and effects 

of caffeine thereon are moderated by frontal TBR, especially since TBR has been related to reward-motivated 

biases in cognition (Schutter & van Honk, 2005; Massar et al., 2012; Massar et al., 2014). Therefore, also a condition 

with positive stimuli was added to the PEST in order to assess valence-specificity. These hypotheses were tested 

as part of a larger study wherein also effects of caffeine on measures of non-emotional working memory were 

tested (reported elsewhere). 

 

     Methods 

Participants 

  Forty female participants (between 18 and 25 years old) recruited at Leiden University took part in this 

study. The participants were preselected for consuming a maximum of 100 mg caffeine per day (equivalent of 

about one cup of coffee). Caffeine consumption was assessed via self-report. Exclusion criteria were factors which 

could likely adversely affect participation or alter effects of caffeine on EEG or attention, including daily smoking, 

severe physical or psychological dysfunction, and/or the use of psychotropic medication. Participants were asked 

to abstain from caffeine and alcohol consumption for 12 hours before the start of lab sessions. Informed consent 

was obtained prior to testing, and participants received a monetary reimbursement for their participation. The 

study protocol was pre-registered (Clinicaltrials.gov: NCT02940808) and approved by the local medical-ethical 

review board. 
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Materials 

 Questionnaires. Participants completed the trait version of the State-Trait Anxiety Inventory (STAI-t; 

Spielberger, 1983; Van der Ploeg, Defares & Spielberger, 1980) and the Attentional Control Scale (ACS; Derryberry 

& Reed, 2002; Verwoerd, de Jong, &Wessel, 2006). The STAI-t assesses trait anxiety (20 items, range 20-80; 

Cronbach’s alpha in the current study = 0.85), by indicating their agreement with items like ‘I feel nervous and 

restless’ and ‘I have disturbing thoughts’ on a four-point Likert scale. The ACS assesses self-reported attentional 

control in terms of attentional focus, attentional switching and the capacity to quickly generate new thoughts (20 

items, range 20-80; Cronbach’s alpha in present study = 0.86), by indicating agreement with items like ‘I can 

quickly switch from one task to another’ and ‘I have a hard time concentrating when I’m excited about 

something’. 

 

 Caffeine. Participants orally consumed either one capsule containing 200 mg of caffeine or an 

undistinguishable placebo capsule containing a filler only. A capsule was administered during a second and third 

test session, while no capsule was administered during the first test session which served as a baseline condition 

(see below). Thus, there were three test sessions in total, all separated by approximately one week. The order of 

administration of the capsules during the second and third session was counterbalanced and randomized, and 

researchers and participants were blind to the contents of the capsules. Caffeine and placebo capsule 

preparation, labelling and blinding was done by the pharmacy of the Leiden University Medical Center (LUMC). 

 

 Pictorial Emotional Stroop Task (PEST) stimuli. For the Pictorial Emotional Stroop task (PEST), 72 

pictures1 (24 per test-day) were used from the International Affective Picture System (IAPS, Center for the Study of 

Emotion and Attention, 1999), a standardized set of emotion eliciting, colour pictures with normative ratings for 

valence and arousal. Of these pictures, per test-day, eight were categorized as positive (e.g. people enjoying 

sports), eight as negative (almost all depicting cues to immediate threat to bodily integrity, e.g. mutilated bodies, 

interpersonal attack and dangerous animals) and eight as neutral pictures (e.g., a towel). The pictures were 

subjectively matched on colour and composition. The pictures were selected according to the ratings for valence 

and arousal (scale 1-9; valence 1: very unpleasant to 9: very pleasant and arousal scales; 1: not arousing at all to 9: 

very arousing) provided by Lang et al (2005). The mean valence score over all test moments for positive stimuli 

was M = 7.22 (SD = 1.54), neutral M = 5.00 (SD = 1.16) and for negative stimuli M = 2.42 (SD = 1.54); the mean 

arousal scores were M = 5.33 (SD = 2.21), M = 2.70 (SD = 1.91) and M = 6.33 (SD = 2.21), respectively. 

 

 EEG recording and software. Recordings for frontal theta and beta activity were obtained from the Fz, 

F3, and F4 10/20 positions using Ag/AgCl electrodes of the ActiveTwo BioSemi system (BioSemi, The 

Netherlands). Electrodes placed on the left and right mastoids were used for offline re-referencing of the scalp 

signals to the mastoid signals. The PEST and questionnaires were programmed and presented using E-Prime 2.0 

software (Psychology Software Tools, Pittsburgh, PA). 
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relations with TBR (c.f. Angelidis et al., 2018) or effects of caffeine.    

 In summary, the goal of the present study was to investigate the effects of a single caffeine 

administration on threat-bias, taking into account possible moderating effects of frontal TBR and trait anxiety. 

Since frontal TBR is considered to reflect basal functioning of PFC executive control (and hence possibly 

catecholamine function) and should therefore be related to individual differences of the catecholamine tipping 

point, we expected frontal TBR to moderate the effect of caffeine on threat-bias. Furthermore, trait anxiety was 

expected to further moderate these effects. We used a moderate dose of caffeine in a relatively caffeine-naïve 

sample (max daily consumption of 100 mg), to prevent influence of caffeine withdrawal effects (Juliano & Griffiths, 

2004). We hypothesized that: 

I) Increased frontal TBR is related to interference in the PEST as measured on baseline or after placebo. 

II) A moderate dose of caffeine, moderated by individual differences in frontal TBR should reduce interference as 

measured with the PEST. 

III) Trait anxiety interacts with these relations between frontal TBR and interference and the effects of caffeine 

thereon. 

IV) A caffeine-induced reduction of TBR will mediate effects of caffeine on interference in the PEST. 

These hypotheses were primarily aimed at the threatening stimuli, especially hypothesis III. However, for relations 

with frontal TBR and caffeine (hypotheses I and II), it is possible that also distraction by positive stimuli and effects 

of caffeine thereon are moderated by frontal TBR, especially since TBR has been related to reward-motivated 

biases in cognition (Schutter & van Honk, 2005; Massar et al., 2012; Massar et al., 2014). Therefore, also a condition 

with positive stimuli was added to the PEST in order to assess valence-specificity. These hypotheses were tested 

as part of a larger study wherein also effects of caffeine on measures of non-emotional working memory were 

tested (reported elsewhere). 

 

     Methods 

Participants 

  Forty female participants (between 18 and 25 years old) recruited at Leiden University took part in this 

study. The participants were preselected for consuming a maximum of 100 mg caffeine per day (equivalent of 

about one cup of coffee). Caffeine consumption was assessed via self-report. Exclusion criteria were factors which 

could likely adversely affect participation or alter effects of caffeine on EEG or attention, including daily smoking, 

severe physical or psychological dysfunction, and/or the use of psychotropic medication. Participants were asked 

to abstain from caffeine and alcohol consumption for 12 hours before the start of lab sessions. Informed consent 

was obtained prior to testing, and participants received a monetary reimbursement for their participation. The 

study protocol was pre-registered (Clinicaltrials.gov: NCT02940808) and approved by the local medical-ethical 

review board. 
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Materials 

 Questionnaires. Participants completed the trait version of the State-Trait Anxiety Inventory (STAI-t; 

Spielberger, 1983; Van der Ploeg, Defares & Spielberger, 1980) and the Attentional Control Scale (ACS; Derryberry 

& Reed, 2002; Verwoerd, de Jong, &Wessel, 2006). The STAI-t assesses trait anxiety (20 items, range 20-80; 

Cronbach’s alpha in the current study = 0.85), by indicating their agreement with items like ‘I feel nervous and 

restless’ and ‘I have disturbing thoughts’ on a four-point Likert scale. The ACS assesses self-reported attentional 

control in terms of attentional focus, attentional switching and the capacity to quickly generate new thoughts (20 

items, range 20-80; Cronbach’s alpha in present study = 0.86), by indicating agreement with items like ‘I can 

quickly switch from one task to another’ and ‘I have a hard time concentrating when I’m excited about 

something’. 

 

 Caffeine. Participants orally consumed either one capsule containing 200 mg of caffeine or an 

undistinguishable placebo capsule containing a filler only. A capsule was administered during a second and third 

test session, while no capsule was administered during the first test session which served as a baseline condition 

(see below). Thus, there were three test sessions in total, all separated by approximately one week. The order of 

administration of the capsules during the second and third session was counterbalanced and randomized, and 

researchers and participants were blind to the contents of the capsules. Caffeine and placebo capsule 

preparation, labelling and blinding was done by the pharmacy of the Leiden University Medical Center (LUMC). 

 

 Pictorial Emotional Stroop Task (PEST) stimuli. For the Pictorial Emotional Stroop task (PEST), 72 

pictures1 (24 per test-day) were used from the International Affective Picture System (IAPS, Center for the Study of 

Emotion and Attention, 1999), a standardized set of emotion eliciting, colour pictures with normative ratings for 

valence and arousal. Of these pictures, per test-day, eight were categorized as positive (e.g. people enjoying 

sports), eight as negative (almost all depicting cues to immediate threat to bodily integrity, e.g. mutilated bodies, 

interpersonal attack and dangerous animals) and eight as neutral pictures (e.g., a towel). The pictures were 

subjectively matched on colour and composition. The pictures were selected according to the ratings for valence 

and arousal (scale 1-9; valence 1: very unpleasant to 9: very pleasant and arousal scales; 1: not arousing at all to 9: 

very arousing) provided by Lang et al (2005). The mean valence score over all test moments for positive stimuli 

was M = 7.22 (SD = 1.54), neutral M = 5.00 (SD = 1.16) and for negative stimuli M = 2.42 (SD = 1.54); the mean 

arousal scores were M = 5.33 (SD = 2.21), M = 2.70 (SD = 1.91) and M = 6.33 (SD = 2.21), respectively. 

 

 EEG recording and software. Recordings for frontal theta and beta activity were obtained from the Fz, 

F3, and F4 10/20 positions using Ag/AgCl electrodes of the ActiveTwo BioSemi system (BioSemi, The 

Netherlands). Electrodes placed on the left and right mastoids were used for offline re-referencing of the scalp 

signals to the mastoid signals. The PEST and questionnaires were programmed and presented using E-Prime 2.0 

software (Psychology Software Tools, Pittsburgh, PA). 
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Procedure 

 General Procedure. Participants were tested on three separate days. Each of the three lab sessions was 

separated by approximately one week (M = 7.7 days, SD = 2.5). On the first testing day (will be referred to as 

‘baseline results’) participants completed questionnaires including demographics, ACS and STAI-t. In addition, 

baseline EEG was measured to provide a trait-like measure for TBR (see Angelidis et al., 2016 and Keune et al., 2017 

for re-test reliability of TBR which ranged between r = 0.86 and r = 0.93). Baseline TBR as measured during this first 

session will be used for all analyses of baseline TBR in this paper. Participants were then familiarized and practiced 

with tasks measuring different aspects of cognition (besides the PEST, these were a measure of attentional control 

for non-emotional processing and a working memory task for non-emotional processing; these outcome 

measures are used for different research questions that are reported elsewhere). Participants completed these 

tasks on the first day to reduce the occurrence of learning effects between drug-testing sessions and to provide 

an indication for baseline performance. Hypotheses for caffeine administration were tested by comparing the 

results for the cross-over drug-testing days 2 and 3. 

 During the second testing day, participants had to complete short questionnaires assessing their current 

alertness, fatigue, arousal and attentional control, Participants then received an eight-minute recording of 

spontaneous (resting-state) EEG and eye blink rate (EBR; reported elsewhere) in alternating one-minute blocks of 

eyes open/closed (reported elsewhere). Subsequently, participants ingested a capsule containing either caffeine 

(200 mg) or placebo (double-blind, randomized administration). As it takes some time for caffeine to affect CNS 

activity after oral administration (Nehlig, Daval, & Debry, 1992), the participants did some passive recreation (e.g., 

read magazines) for 30 minutes. This was again followed by the same eight-minute recording of spontaneous 

(resting-state) EEG and EBR. Finally, participants completed the same cognitive tasks as they completed on the 

first day. On the third testing day, the testing protocol of the second day was repeated, except that the other, 

remaining caffeine (200 mg) or placebo capsule was administered.  

 To examine whether blinding was successful, debriefing interviews were held at the end of the final lab 

session in which participants were asked to guess which capsule they had consumed in which session. 

Additionally, participants were asked to rate how certain they were that their guess was correct, on a scale of 1 

(“Not certain at all”) to 10 (“Very certain”). 

 

 PEST. During the PEST, participants sat at a distance of 70 cm from the screen on which the stimuli were 

presented. The task consisted of 24 practice and 96 test trials. Every picture was presented in a random order with 

32 positive, 32 negative and 32 neutral trials. Each trial started with an inter-trial interval (ITI) of 2000 ms. The ITI 

was followed by a picture with a height of 10.2 cm and width of 13.6 cm that was presented in the center of a 30 

cm x 50 cm grey screen. After 200 ms, a coloured square of 1.3 cm by 1.3 cm was superimposed on the picture. 

The coloured squares were presented for 1800 ms (irrespective of response time) and were randomly chosen 

from three possible options (red, yellow, or blue) on each trial. For each picture, a coloured square appeared once 

in each of four possible locations: either 1.5 cm from the two edges of the left upper corner, right upper corner, 

left bottom corner, or right bottom corner of the picture. The participants were asked to indicate as fast as 
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possible without making too many mistakes the colour of the square with same coloured buttons using the 

index, middle or ring finger of their dominant hand using buttons of a response box (Psychology Software Tools, 

Pittsburgh, PA).  

 

Data Processing 

 PEST data pre-processing. Incorrect responses were excluded from analyses. Color discrimination was 

measured in milliseconds and individual reaction times (RTs) that were shorter than 300 ms or longer than 1200 

ms were defined as outliers and removed from the data. Secondly, individual RTs that deviated more than 2.5 

standard deviations from the individual RT mean after this first filtering were also defined as outliers and were 

removed. This resulted in a total average percentage of 7.76% trials removed. Interference scores were calculated 

per condition separately for positive and negative trials. Interference scores were calculated for positive trials by 

distracting mean RTs of the neutral condition from mean RTs of the positive condition, and negative interference 

scores were calculated by distracting mean RTs of the neutral condition from mean RTs of the negative condition. 

Positive interference scores reflect longer RTs for trials with emotional pictures (or increased cognitive responding 

to emotional pictures) and negative scores reflect shorter RTs for trials with emotional pictures (or decreased 

processing of emotional pictures). 

 

 EEG pre-processing. Data processing was done using Brain Vision Analyzer V2.0.4 (Brain Products GmbH, 

Germany). Data was high-pass filtered at 0.1 Hz, low-pass filtered at 100-Hz and a 50-Hz notch filter was applied. 

The data was automatically corrected for ocular artifacts (Gratton, Coles & Donchin, 1983) in segments of 4 

seconds. Fast Fourier transformation (Hamming window length 10%) was applied to calculate power density for 

the beta (13-30 Hz) and theta (4-7 Hz) band. Our interest was the power density average of the frontal electrodes 

and power density average of the F3, Fz and F4 positions as in Putman et al. (2010; 2014) and Angelidis et al. 

(2016; 2018), therefore these frontal averages were calculated for both the beta and theta band. Frontal TBR was 

calculated by dividing the frontal theta by frontal beta power density. A high frontal TBR reflects relatively more 

theta than beta power. Frontal TBR values were non-normally distributed and therefore log-normalized with a 

log10 transformation. 

 

Analyses  

 The main outcome variables of interest for the PEST are the interference scores. All hypotheses and 

follow-up tests were tested using repeated measures ANOVAs, univariate ANOVAs, paired sample t-tests, 

Pearson’s correlations and simple slope analyses. Analyses for the influence of TBR were done using baseline TBR. 

For effects of Drug on TBR, we used the pre- and post-administration TBRs for placebo and caffeine conditions. All 

analyses reported were repeated controlling for contraceptive use and all statistical tests that were significant in 

the primary analyses remained significant when controlling for this factor. These secondary analyses with this 

factor are therefore not reported. Because the design of our study already controls for the order of Drug condition 

(counterbalancing of order and the inclusion of a baseline day), our primary analyses are done without also 
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Procedure 

 General Procedure. Participants were tested on three separate days. Each of the three lab sessions was 

separated by approximately one week (M = 7.7 days, SD = 2.5). On the first testing day (will be referred to as 

‘baseline results’) participants completed questionnaires including demographics, ACS and STAI-t. In addition, 

baseline EEG was measured to provide a trait-like measure for TBR (see Angelidis et al., 2016 and Keune et al., 2017 

for re-test reliability of TBR which ranged between r = 0.86 and r = 0.93). Baseline TBR as measured during this first 

session will be used for all analyses of baseline TBR in this paper. Participants were then familiarized and practiced 

with tasks measuring different aspects of cognition (besides the PEST, these were a measure of attentional control 

for non-emotional processing and a working memory task for non-emotional processing; these outcome 

measures are used for different research questions that are reported elsewhere). Participants completed these 

tasks on the first day to reduce the occurrence of learning effects between drug-testing sessions and to provide 

an indication for baseline performance. Hypotheses for caffeine administration were tested by comparing the 

results for the cross-over drug-testing days 2 and 3. 

 During the second testing day, participants had to complete short questionnaires assessing their current 

alertness, fatigue, arousal and attentional control, Participants then received an eight-minute recording of 

spontaneous (resting-state) EEG and eye blink rate (EBR; reported elsewhere) in alternating one-minute blocks of 

eyes open/closed (reported elsewhere). Subsequently, participants ingested a capsule containing either caffeine 

(200 mg) or placebo (double-blind, randomized administration). As it takes some time for caffeine to affect CNS 

activity after oral administration (Nehlig, Daval, & Debry, 1992), the participants did some passive recreation (e.g., 

read magazines) for 30 minutes. This was again followed by the same eight-minute recording of spontaneous 

(resting-state) EEG and EBR. Finally, participants completed the same cognitive tasks as they completed on the 

first day. On the third testing day, the testing protocol of the second day was repeated, except that the other, 

remaining caffeine (200 mg) or placebo capsule was administered.  

 To examine whether blinding was successful, debriefing interviews were held at the end of the final lab 

session in which participants were asked to guess which capsule they had consumed in which session. 

Additionally, participants were asked to rate how certain they were that their guess was correct, on a scale of 1 

(“Not certain at all”) to 10 (“Very certain”). 

 

 PEST. During the PEST, participants sat at a distance of 70 cm from the screen on which the stimuli were 

presented. The task consisted of 24 practice and 96 test trials. Every picture was presented in a random order with 
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cm x 50 cm grey screen. After 200 ms, a coloured square of 1.3 cm by 1.3 cm was superimposed on the picture. 
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in each of four possible locations: either 1.5 cm from the two edges of the left upper corner, right upper corner, 

left bottom corner, or right bottom corner of the picture. The participants were asked to indicate as fast as 
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possible without making too many mistakes the colour of the square with same coloured buttons using the 

index, middle or ring finger of their dominant hand using buttons of a response box (Psychology Software Tools, 

Pittsburgh, PA).  

 

Data Processing 

 PEST data pre-processing. Incorrect responses were excluded from analyses. Color discrimination was 

measured in milliseconds and individual reaction times (RTs) that were shorter than 300 ms or longer than 1200 

ms were defined as outliers and removed from the data. Secondly, individual RTs that deviated more than 2.5 

standard deviations from the individual RT mean after this first filtering were also defined as outliers and were 

removed. This resulted in a total average percentage of 7.76% trials removed. Interference scores were calculated 

per condition separately for positive and negative trials. Interference scores were calculated for positive trials by 

distracting mean RTs of the neutral condition from mean RTs of the positive condition, and negative interference 

scores were calculated by distracting mean RTs of the neutral condition from mean RTs of the negative condition. 

Positive interference scores reflect longer RTs for trials with emotional pictures (or increased cognitive responding 

to emotional pictures) and negative scores reflect shorter RTs for trials with emotional pictures (or decreased 

processing of emotional pictures). 

 

 EEG pre-processing. Data processing was done using Brain Vision Analyzer V2.0.4 (Brain Products GmbH, 

Germany). Data was high-pass filtered at 0.1 Hz, low-pass filtered at 100-Hz and a 50-Hz notch filter was applied. 

The data was automatically corrected for ocular artifacts (Gratton, Coles & Donchin, 1983) in segments of 4 

seconds. Fast Fourier transformation (Hamming window length 10%) was applied to calculate power density for 

the beta (13-30 Hz) and theta (4-7 Hz) band. Our interest was the power density average of the frontal electrodes 

and power density average of the F3, Fz and F4 positions as in Putman et al. (2010; 2014) and Angelidis et al. 

(2016; 2018), therefore these frontal averages were calculated for both the beta and theta band. Frontal TBR was 

calculated by dividing the frontal theta by frontal beta power density. A high frontal TBR reflects relatively more 

theta than beta power. Frontal TBR values were non-normally distributed and therefore log-normalized with a 

log10 transformation. 

 

Analyses  

 The main outcome variables of interest for the PEST are the interference scores. All hypotheses and 

follow-up tests were tested using repeated measures ANOVAs, univariate ANOVAs, paired sample t-tests, 

Pearson’s correlations and simple slope analyses. Analyses for the influence of TBR were done using baseline TBR. 

For effects of Drug on TBR, we used the pre- and post-administration TBRs for placebo and caffeine conditions. All 

analyses reported were repeated controlling for contraceptive use and all statistical tests that were significant in 

the primary analyses remained significant when controlling for this factor. These secondary analyses with this 

factor are therefore not reported. Because the design of our study already controls for the order of Drug condition 

(counterbalancing of order and the inclusion of a baseline day), our primary analyses are done without also 
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adding statistical control for this design-controlled factor; this results in the statistically most powerful and 

straightforward analysis for this design. We post-hoc also re-ran the crucial analyses controlling for the factor 

Order. Because including this factor never influenced the significance of the relevant tests, we do not report those 

secondary analyses. Furthermore, we measured state anxiety using the STAI-state questionnaire (Spielberger, 

1983; Van der Ploeg, Defares & Spielberger, 1980) on every testing day before capsule administration and before 

cognitive testing. State anxiety did not change as a function of Drug condition and time of measurement and 

results remained the same when including it as a covariate, therefore state anxiety will not be further reported. 

Finally, as secondary analyses, relations between STAI-t, ACS and TBR were assessed. Because it has been 

previously found that all three variables correlated significantly with each other, we report partial correlations 

between TBR and STAI-t or ACS, controlling for each other to control confounding (c.f. Putman et al., 2010, 

Putman et al., 2014; Angelidis et al., 2016). A two-sided statistical alpha of 0.05 was used throughout. 

 

      Results 

Participants 

 Visual inspection before data analysis showed that EEG data of two participants were of bad quality and 

these participants were removed from all analyses. Remaining participants (N = 38) had a mean age of 21.90 years 

(SD = 2.05, range: 18-25) mean STAI-t score was 34.6 (SD = 6.7, range 23-53). The mean frontal TBR of the 

remaining participants that was measured during resting state on the first testing day (baseline results) was 1.25 

(SD = 0.63, range 0.49-2.60 [non log-normalized]). Participants had an average caffeine consumption of 

approximately 53 milligram per day. Twenty-nine of the 38 participants (76%) indicated to use either oral 

contraceptives or a hormonal intra-uterine device.  

 

PEST results 

 The average number of errors out of 96 trials was 3.97 (SD = 5.25) in the baseline condition, 3.34 (SD = 

2.39) in the caffeine condition and 3.71 (SD = 2.18) in the placebo condition. Mean RTs and SDs per trial-type per 

condition and interference scores of the PEST are presented in Table 2. 
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Baseline PEST interference scores 

 We first analyzed the baseline interference scores using a repeated measures analysis of variance (RM 

ANOVA) with Valence (interference scores for positive and negative stimuli) as the within-subjects factor. A main 

effect of Valence was found, F(1,37) = 16.49, p < 0.001, ηp2 = 0.31, indicating larger interference for negative 

compared to positive stimuli. Follow-up t-tests showed that for this baseline data, both the interference score for 

positive stimuli (t(1,37) = 4.97, p < 0.001) as well as negative stimuli (t(1,37) = 8.09, p < 0.001) were significantly 

different from 0.  

 

Moderation analyses for the role of frontal TBR and trait anxiety at baseline 

 Next, we investigated whether baseline frontal TBR moderated interference for positive versus negative 

stimuli, by adding TBR as covariate to the RM ANOVA. No significant main effect was found for frontal TBR, F(1,36) 

= 0.46, p = 0.502, ηp2 = 0.013, and there was no moderation effect for frontal TBR on Valence (interference for 

positive stimuli vs negative stimuli), F(1,36) = 0.55, p = 0.465, ηp2 = 0.015. This rejects hypothesis I for the baseline 

condition: TBR, without STAI-t, does not moderate PEST performance. 

 Furthermore, we investigated the role of trait anxiety on the TBR × Valence interaction, by adding STAI-t 

as a covariate to the model. No significant main effect of TBR, F(1,34) = 0.88, p = 0.356, ηp2 = 0.025, or TBR × STAI-t 

interaction, F(1,34) = 1.25, p = 0.271, ηp2  = 0.036 was found. However, a significant frontal TBR × STAI-t × Valence 

interaction was found, F(1,34) = 4.95, p = 0.033, ηp2 = 0.127. 

Table 2. Mean RTs and interference scores (standard deviations between parentheses) in milliseconds for the 

Pictorial Emotional Stroop task in the conditions ‘baseline results’, ‘placebo’ and ‘caffeine’ (N = 38). 

 Condition Neutral Positive Negative 

RT Baseline  586 (82) 609 (89) 636 (97) 

 Placebo 557 (78) 564 (81) 591 (93) 

 Caffeine 544 (61) 559 (67) 582 (72) 

Interference Baseline  22 (32) 50 (38) 

 Placebo  7 (27) 34 (31) 

 Caffeine  14 (20) 37 (28) 

Note: RT= reaction time. All interference scores, for baseline, placebo and caffeine conditions, were different 

from 0 with p < 0.001. All interference scores for negative pictures were significantly larger than for positive 

pictures with p < 0.001. Test-retest correlations of positive interference scores in the placebo condition with 

those in the caffeine condition were r = 0.318, p = 0.058 and correlations of negative interference scores in 

placebo condition with those in the caffeine condition were r = 0.353, p = 0.035. The interference scores in 

caffeine or placebo condition did not correlate significantly with those in baseline condition.   
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adding statistical control for this design-controlled factor; this results in the statistically most powerful and 
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Baseline PEST interference scores 
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 Next, we investigated whether baseline frontal TBR moderated interference for positive versus negative 

stimuli, by adding TBR as covariate to the RM ANOVA. No significant main effect was found for frontal TBR, F(1,36) 

= 0.46, p = 0.502, ηp2 = 0.013, and there was no moderation effect for frontal TBR on Valence (interference for 
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interaction was found, F(1,34) = 4.95, p = 0.033, ηp2 = 0.127. 

Table 2. Mean RTs and interference scores (standard deviations between parentheses) in milliseconds for the 

Pictorial Emotional Stroop task in the conditions ‘baseline results’, ‘placebo’ and ‘caffeine’ (N = 38). 
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RT Baseline  586 (82) 609 (89) 636 (97) 

 Placebo 557 (78) 564 (81) 591 (93) 

 Caffeine 544 (61) 559 (67) 582 (72) 

Interference Baseline  22 (32) 50 (38) 

 Placebo  7 (27) 34 (31) 

 Caffeine  14 (20) 37 (28) 

Note: RT= reaction time. All interference scores, for baseline, placebo and caffeine conditions, were different 

from 0 with p < 0.001. All interference scores for negative pictures were significantly larger than for positive 

pictures with p < 0.001. Test-retest correlations of positive interference scores in the placebo condition with 

those in the caffeine condition were r = 0.318, p = 0.058 and correlations of negative interference scores in 

placebo condition with those in the caffeine condition were r = 0.353, p = 0.035. The interference scores in 

caffeine or placebo condition did not correlate significantly with those in baseline condition.   
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 To further test this three-way interaction; interference scores for negative and positive stimuli were 

tested separately in univariate ANOVAs, again adding frontal TBR and STAI-t as covariates to the model. No main 

effect of TBR was present for interference for positive stimuli, F(1,34) = 0.32, p = 0.574, ηp2  = 0.009, or interference 

for negative stimuli, F(1,34) = 0.98, p = 0.328, ηp2  = 0.028. Also, no three-way interaction of TBR × STAI-t for 

interference for positive stimuli was found, F(1,34) = 0.08, p = 0.778, ηp2  = 0.002, but a trend level three-way 

interaction effect was present for interference for negative stimuli, F(1,34) = 3.98, p = 0.054, ηp2  = 0.105. Because 

the results indicated a near-significant moderation of interference for negative stimuli by the frontal TBR × STAI-t 

interaction, we conducted a simple slopes analysis for the dependent variable of interference for negative stimuli 

(Aiken, West & Reno, 1991) to illustrate this interaction, see Figure. 2.1. We performed these follow-up analyses 

even though the interaction just failed to reach significance, in order to provide the necessary information for 

later comparison between baseline PEST performance and placebo PEST performance. These analyses revealed 

that the frontal TBR × STAI-t interaction was different for individuals with low STAI-t (1 SD below the mean; β = -

19.22, t(1,34) = -1.18, p = 0.24) mean STAI-t (β = 2.99, t(1,34) = 0.25, p = 0.80) and high STAI-t (1 SD above the 

mean; β = 25.19, t(1,34) = -1.55, p = 0.13). As can be seen, the trend-level effect of TBR × STAI-t is such that for low 

STAI-t people, low TBR (1 SD below the mean) is associated with high interference for negative stimuli, but 

interference is lower for high TBR (1 SD above the mean). For people with high STAI-t, the influence of TBR is 

reversed with less interference for low compared to high TBR. Thus, although the crucial interaction is only just 

above the statistical alpha of .05, this rejects hypothesis III for the baseline condition.  

 

 

 

 

 

 

 54 

 

 

 

 

Figure 2.1. Simple slopes for the moderation of trait anxiety on the effect of Ln-normalized frontal EEG on 

negative interference (AB = attentional bias) in the PEST baseline results frontal TBR = Log-normalized theta/beta 

ratio. 

 

 

Placebo versus Caffeine 

 PEST: Placebo versus Caffeine. To investigate the effects of caffeine on PEST responding, interference 

scores were analyzed using a Drug-type (2; placebo vs caffeine) × Valence (2; positive vs negative interference 

scores) repeated measures ANOVA. No main effect was found for Drug-type, F(1,37) = 0.20, p = 0.65, ηp2  = 0.005. 

We again found a main effect of Valence, F(1,37) = 34.49, p < 0.001, ηp2  = 0.48, but no interaction effect was 

found between Drug-type and Valence, F(1,37) = 0.03, p = 0.87, ηp2  = 0.001.   

 

 Moderation analyses for the role of frontal TBR and trait anxiety, Placebo versus Caffeine. A 

Mahalonobis distance test revealed two significant bivariate outliers for the relationship between frontal TBR and 

PEST interference in the placebo and caffeine conditions (D2 (2,36) = 10.01; p = 0.007; D2 (2,36) = 10.87; p = 0.004). 

These cases were removed for all further analyses on PEST data.  

 To test the role of frontal TBR in this model, again a Drug-type × Valence (2 × 2) repeated measures 

ANOVA was performed with frontal TBR (baseline) as a covariate to the model. No main effect of TBR, F(1,34) = 

0.88, p = 0.354, ηp2 = 0.025), or interaction effect was found for Drug-type × TBR, F(1,34) = 0.80, p = 0.376, ηp2 = 

0.023). There was a significant Drug-type × TBR × Valence interaction, F(1,34) = 7.95, p = 0.008, ηp2 = 0.19. To 
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follow up on this interaction, separate Valence x TBR ANOVAs were performed for placebo and caffeine 

conditions. Both showed no significant main effects for TBR or significant TBR x Valence interactions. This rejects 

hypothesis I for both placebo and caffeine conditions separately: TBR, without STAI-t, does not moderate PEST 

performance.  

 Also, post-hoc correlations were performed between TBR and contrast scores of interference between 

Drug-type condition (interference in placebo condition minus interference in caffeine condition) separately for 

interference for negative and positive stimuli to directly assess effects of Drug on relations between TBR and PEST 

performance; higher TBR was significantly related to lower interference scores for negative stimuli in the placebo 

compared to the caffeine condition (r = -0.37, p = 0.029), but there was no significant correlation for this contrast 

for interference scores for positive stimuli (r = 0.17, p = 0.313). This confirms hypothesis II for threatening stimuli 

only: caffeine reduces PEST interference for negative stimuli in low TBR. In high TBR, caffeine increases 

interference for negative stimuli. 

 To see whether trait anxiety has an effect on this Drug-type × Valence × frontal TBR interaction, the 

Drug-type × Valence repeated measures ANOVA was performed with frontal TBR and STAI-t as covariates in the 

model. No main effect of TBR regardless of valence F(1,32) = 1.67, p = 0.206, ηp2 = 0.049, or interaction effect 

regardless of valence was found for TBR × STAI, F(1,32) = 1.26, p = 0.270, ηp2 = 0.038). However, a significant 

interaction was present for frontal TBR × Drug-type × STAI-t × Valence F(1,32) = 9.49, p = 0.004, ηp2 = 0.23.   

 To investigate separate effects of positive and negative stimuli, two rm ANOVAs were conducted with 

positive or negative interference scores as dependent variables, using Drug (2) as the within-subject factor and 

TBR and STAI-t as covariates. The interaction of frontal TBR × STAI-t × Drug-type was not found for the positive 

interference score, F(1,32) = 0.94, p = 0.340, ηp2  = 0.03, but was present for the negative interference score, F(1,32) 

= 5.77, p = 0.022, ηp2  = 0.15 Thus, hypothesis III concerning effects of caffeine is confirmed for negative 

interference only.   

 To clarify this complex four-way interaction and its constituent three-way interactions, additional simple 

slope analyses with interference for negative stimuli as a dependent variable were conducted separately for the 

caffeine and the placebo condition. It was found that TBR was negatively related to interference for negative 

stimuli for low STAI-t (1 SD below the mean; β = -47.19, t(1,32) = -3.77, p = 0.001)  and mean STAI-t (β = -20.40, 

t(1,32) = -2.23, p = 0.033), whereas it was  positive and not significant for high STAI-t (1 SD above the mean; β = 

6.40, t(1,32) = 0.50, p = 0.619) see Figure 2.2a. As can be seen, the results for placebo are comparable to the 

baseline results (interference scores are overall lower for high TBR now): for low STAI-t participants, low TBR is 

associated with high interference for negative stimuli, but interference is lower for high TBR. For people with high 

STAI-t there seems little effect of TBR. 

 For the Caffeine condition, univariate ANOVA did not show a main effect of TBR, F(1,34) = 0.18, p = 0.670, 

ηp2 = 0.005. Also, the TBR × STAI-t ×Valence interaction was not significant, F(1,34) = 0.19, p = 0.665, ηp2 = 0.006. 

Simple slope analyses showed no effects of TBR for low STAI-t (β = 0.43, t(1,32) = 0.03, p = 0.97) mean STAI-t (β = 

4.51, t(1,32) = 0.46, p = 0.65) or high STAI-t (β = 8.59, t(1,32) = 0.63, p = 0.53) see Figure 2.2b. The influences of 
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individual difference variables that were observed in the placebo condition are absent with all participants 

showing moderate interference scores for negative stimuli.   

 

 

 

 

  

Figure 2.2ab. Simple slopes for the moderation of STAI-t on the effect of Ln-normalized frontal EEG on negative 

interference in the EST after consumption of placebo (a:left) or caffeine (b:right). Frontal TBR = Ln-normalized 

frontal theta/beta ratio. In the placebo condition, increased frontal TBR was associated with stronger negative 

interference; an effect which was only significant for individuals with lower trait anxiety. No effects were found 

however in the caffeine condition. 

 

 

Drug effects on EEG 

 To examine the effects of caffeine consumption on EEG, we conducted a 2 (Drug) x 2 (Time) rm ANOVA 

for the pre- and post-administration EEG recording of the second and third session. No effect was found for TBR x 

Time, F(1, 37) = 0.130, p = 0.721, ηp2 = 0.003. Looking at the theta and beta bands separately in further rm 

ANOVAs for caffeine and placebo separately, caffeine consumption significantly decreased power compared to 

the placebo condition in the theta band, F(1, 37) = 20.526, p < 0.001, ηp2 = 0.357, and in the beta band, F(1, 37) = 

48.297, p < 0.001, ηp2 = 0.566. To compare theta and beta only at ‘post drug administration’ between the placebo 

and caffeine condition, post-hoc paired samples t-tests were conducted. Theta was significantly lower after 

caffeine (M = 14.76, SD = 6.02), compared to the placebo administration, (M = 17.86 , SD = 8.46; t(37) = 4.354, p < 

0.001; the descriptives are for the data before log-normalization for a more intuitive appreciation but the statistical 
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follow up on this interaction, separate Valence x TBR ANOVAs were performed for placebo and caffeine 

conditions. Both showed no significant main effects for TBR or significant TBR x Valence interactions. This rejects 

hypothesis I for both placebo and caffeine conditions separately: TBR, without STAI-t, does not moderate PEST 

performance.  

 Also, post-hoc correlations were performed between TBR and contrast scores of interference between 

Drug-type condition (interference in placebo condition minus interference in caffeine condition) separately for 

interference for negative and positive stimuli to directly assess effects of Drug on relations between TBR and PEST 

performance; higher TBR was significantly related to lower interference scores for negative stimuli in the placebo 

compared to the caffeine condition (r = -0.37, p = 0.029), but there was no significant correlation for this contrast 

for interference scores for positive stimuli (r = 0.17, p = 0.313). This confirms hypothesis II for threatening stimuli 

only: caffeine reduces PEST interference for negative stimuli in low TBR. In high TBR, caffeine increases 

interference for negative stimuli. 

 To see whether trait anxiety has an effect on this Drug-type × Valence × frontal TBR interaction, the 

Drug-type × Valence repeated measures ANOVA was performed with frontal TBR and STAI-t as covariates in the 

model. No main effect of TBR regardless of valence F(1,32) = 1.67, p = 0.206, ηp2 = 0.049, or interaction effect 

regardless of valence was found for TBR × STAI, F(1,32) = 1.26, p = 0.270, ηp2 = 0.038). However, a significant 

interaction was present for frontal TBR × Drug-type × STAI-t × Valence F(1,32) = 9.49, p = 0.004, ηp2 = 0.23.   

 To investigate separate effects of positive and negative stimuli, two rm ANOVAs were conducted with 
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interference only.   
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 For the Caffeine condition, univariate ANOVA did not show a main effect of TBR, F(1,34) = 0.18, p = 0.670, 
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4.51, t(1,32) = 0.46, p = 0.65) or high STAI-t (β = 8.59, t(1,32) = 0.63, p = 0.53) see Figure 2.2b. The influences of 
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individual difference variables that were observed in the placebo condition are absent with all participants 

showing moderate interference scores for negative stimuli.   

 

 

 

 

  

Figure 2.2ab. Simple slopes for the moderation of STAI-t on the effect of Ln-normalized frontal EEG on negative 

interference in the EST after consumption of placebo (a:left) or caffeine (b:right). Frontal TBR = Ln-normalized 

frontal theta/beta ratio. In the placebo condition, increased frontal TBR was associated with stronger negative 

interference; an effect which was only significant for individuals with lower trait anxiety. No effects were found 

however in the caffeine condition. 

 

 

Drug effects on EEG 

 To examine the effects of caffeine consumption on EEG, we conducted a 2 (Drug) x 2 (Time) rm ANOVA 

for the pre- and post-administration EEG recording of the second and third session. No effect was found for TBR x 

Time, F(1, 37) = 0.130, p = 0.721, ηp2 = 0.003. Looking at the theta and beta bands separately in further rm 

ANOVAs for caffeine and placebo separately, caffeine consumption significantly decreased power compared to 

the placebo condition in the theta band, F(1, 37) = 20.526, p < 0.001, ηp2 = 0.357, and in the beta band, F(1, 37) = 

48.297, p < 0.001, ηp2 = 0.566. To compare theta and beta only at ‘post drug administration’ between the placebo 

and caffeine condition, post-hoc paired samples t-tests were conducted. Theta was significantly lower after 

caffeine (M = 14.76, SD = 6.02), compared to the placebo administration, (M = 17.86 , SD = 8.46; t(37) = 4.354, p < 

0.001; the descriptives are for the data before log-normalization for a more intuitive appreciation but the statistical 
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tests were performed on log-nomalized data. Beta was significantly lower as well after caffeine (M = 11.86, SD = 

5.29), compared to placebo administration, (M = 15.18, SD = 8.19; t(37) = 5.328, p < 0.001). As no effects of caffeine 

were found on TBR, the hypothesized mediation of caffeine’s effect on TBR- PEST interference cannot be tested 

and hypothesis IV is rejected.  

 

Secondary analyses  

 TBR did not correlate significantly with ACS score (partial r = 0.277, p = 0.107) or STAI-t score (partial r = 

0.119, p = 0.495) when controlling for one another. There was a trend level bivariate ACS and STAI-t correlation (r 

= -0.301, p = 0.074).   

 

Drug condition awareness 

 Of the 38 participants included in the analyses, 33 (86.8%) correctly guessed on which day they 

consumed caffeine. A binomial test showed that this percentage was significantly above 50% chance level, p < 

0.001. Participants reported a mean certainty of making a correct guess of 7.27 on a 1-10 scale (SD = 1.57). Often 

reported reasons for guessing which capsule was consumed included feeling more awake or alert and noticing 

physiological changes (e.g., feeling more tense or dizzy) on days on which caffeine was thought to be consumed, 

in contrast to feeling sleepier or noticing no difference in functioning on days on which placebo was thought to 

be consumed. 

     Discussion 

This study investigated whether frontal EEG TBR moderates the effect of caffeine on threat-bias. We found a 

significant interaction effect of TBR with trait-anxiety on interference from negative stimuli in the placebo 

condition and a near-significant similar effect at baseline. Specifically, higher TBR related to lower interfering effect 

of negative (threatening) stimuli in the Pictorial Emotional Stroop Task (PEST) in low anxious participants. TBR on 

its own did moderate the effect of caffeine on threat interference, although this effect might have been driven by 

low anxious participants as TBR and trait anxiety interactively influenced caffeine effects on PEST performance: 

caffeine administration had opposite effects on threat-interference for people with low and high TBR (high and 

low PFC functioning) and low or high trait anxiety, effectively cancelling out individual differences and a main 

effect for caffeine.   

 Our first hypothesis that TBR would be related to interference in the PEST was not confirmed as results 

were only present for low anxious individuals. This interaction is however in line with many studies of the past 

decades: several studies have reported that attentional control (as measured with self-report) and trait anxiety 

predicted attentional processing of threat (e.g. Bardeen & Orcutt, 2011; Derryberry & Reed, 2002; Reinholdt-Dunne 

et al., 2009; Schoorl et al., 2014; Taylor et al., 2016) and recently we reported the same for TBR as measure of 

attentional control (Angelidis et al., 2018). In low anxious individuals, our data indicate that the relation of TBR 

with interference was valence-specific; the effect was only present in arousing-threatening images, but not in 

arousing positive images. Note that this is to be expected given the interaction with trait anxiety: much research 

has established relations between anxiety and threat bias, hardly ever with bias toward positive stimuli (Mogg & 
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Bradley, 1998, 2016; Bar-Haim et al., 2007; Cisler & Koster, 2010; van Bockstaele et al., 2014, Angelidis et al., 2018). 

The role of TBR (as basal PFC functioning) had not previously been investigated using both threatening and 

positive images. Some studies looked only at negative arousal. It was for instance reported that TBR predicted 

reductions in self-reported attentional control after a socially threatening stress-manipulation (Putman et al., 

2014). Also, higher TBR was related to less effective spontaneous down-regulation of the negative affect evoked 

by arousing negative stimuli (Tortella-Feliu, Morillas-Romero, Balle, Llabres, Bornas & Putman, 2014). Another study 

(Putman et al., 2010) did include positive and negative stimuli and reported that TBR was related to a contrasting 

effect on RTs from fearful and happy faces in an emotional go-no go task, but contrary to the current study, this 

study did not compare these arousing conditions with a condition with neutral stimuli and therefore does not 

allow any firm conclusions for the specific processing of negative and positive stimuli. The current study directly 

tested and showed that the relation is specific for negative information, in interaction with trait anxiety. This 

finding implies that TBR possibly reflects the interplay between an executive attention-network and a salience 

network that is more active in states of negative arousal (Hermans et al., 2014; Kohn, Hermans & Fernández, 2017). 

The current study showed that TBR was not related (alone or in interaction with trait anxiety) to a bias for our 

positive stimuli, but perhaps future studies could further test the valence-specificity of TBR’s relation to attentional 

bias using different and maybe more arousing positive stimuli (e.g. erotic stimuli as in Putman & Berling, 2010).   

 Data for the baseline and placebo conditions showed that TBR was negatively related to interference 

from threatening pictures, again only in low anxious participants. When comparing our baseline and placebo 

results, the relation between TBR and interference effects might seem to deviate looking at the direction of the 

mean slopes for interference for negative stimuli. However, there were no significant main effects of TBR and 

when comparing these results one should only consider the pattern of interaction between TBR and STAI-t 

(which was highly significant in the placebo condition and only just missed significance in the baseline 

condition).This comparison shows that in baseline and placebo conditions alike the pattern is such that for low 

TBR, low anxious people show higher interference for threat than high anxious participants and this pattern is the 

reverse in people with high TBR. We therefore conclude that our study shows a quite stable pattern of TBR-

anxiety interactions in our sample when not influenced by caffeine.  

 It has previously been reported for other variants of the Emotional Stroop Task (EST), that lower cognitive 

control over automatic processing of threat information resulted in higher interference for threatening words 

(Jha, Krompinger & Baine, 2007; Putman et al., 2012, for a review see Bar-Haim et al., 2007). TBR (negatively related 

to attentional control; see Lansbergen, van Dongen-Boomsma, Buitelaar, & Slaats-Willemse. 2011; Zhang, 

Roodenrys, Li, Barry, Clarke, Wu, et al., 2017; Keune et al., 2017; Putman et al., 2010, Putman et al., 2014; Angelidis et 

al., 2016) was therefore expected to correlate positively with interference in the PEST. Our results demonstrated a 

negative relation between TBR and interference for threat (in low anxious individuals) with individuals with higher 

TBR showing less interference or even negative interference scores on the PEST. Although studies using an EST 

have often found an interference effect of threatening words (e.g. Amir, Elias, Klumpp & Przeworski, 2003; Putman 

et al., 2012; Gorlin & Teachman, 2015) other EST studies have reported response facilitation (faster color naming 

responses to threatening than neutral stimuli) which is usually interpreted as reflecting attentional avoidance of 
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tests were performed on log-nomalized data. Beta was significantly lower as well after caffeine (M = 11.86, SD = 

5.29), compared to placebo administration, (M = 15.18, SD = 8.19; t(37) = 5.328, p < 0.001). As no effects of caffeine 

were found on TBR, the hypothesized mediation of caffeine’s effect on TBR- PEST interference cannot be tested 

and hypothesis IV is rejected.  

 

Secondary analyses  

 TBR did not correlate significantly with ACS score (partial r = 0.277, p = 0.107) or STAI-t score (partial r = 

0.119, p = 0.495) when controlling for one another. There was a trend level bivariate ACS and STAI-t correlation (r 

= -0.301, p = 0.074).   

 

Drug condition awareness 

 Of the 38 participants included in the analyses, 33 (86.8%) correctly guessed on which day they 

consumed caffeine. A binomial test showed that this percentage was significantly above 50% chance level, p < 

0.001. Participants reported a mean certainty of making a correct guess of 7.27 on a 1-10 scale (SD = 1.57). Often 

reported reasons for guessing which capsule was consumed included feeling more awake or alert and noticing 

physiological changes (e.g., feeling more tense or dizzy) on days on which caffeine was thought to be consumed, 

in contrast to feeling sleepier or noticing no difference in functioning on days on which placebo was thought to 

be consumed. 

     Discussion 

This study investigated whether frontal EEG TBR moderates the effect of caffeine on threat-bias. We found a 

significant interaction effect of TBR with trait-anxiety on interference from negative stimuli in the placebo 

condition and a near-significant similar effect at baseline. Specifically, higher TBR related to lower interfering effect 

of negative (threatening) stimuli in the Pictorial Emotional Stroop Task (PEST) in low anxious participants. TBR on 

its own did moderate the effect of caffeine on threat interference, although this effect might have been driven by 

low anxious participants as TBR and trait anxiety interactively influenced caffeine effects on PEST performance: 

caffeine administration had opposite effects on threat-interference for people with low and high TBR (high and 

low PFC functioning) and low or high trait anxiety, effectively cancelling out individual differences and a main 

effect for caffeine.   

 Our first hypothesis that TBR would be related to interference in the PEST was not confirmed as results 

were only present for low anxious individuals. This interaction is however in line with many studies of the past 

decades: several studies have reported that attentional control (as measured with self-report) and trait anxiety 

predicted attentional processing of threat (e.g. Bardeen & Orcutt, 2011; Derryberry & Reed, 2002; Reinholdt-Dunne 

et al., 2009; Schoorl et al., 2014; Taylor et al., 2016) and recently we reported the same for TBR as measure of 

attentional control (Angelidis et al., 2018). In low anxious individuals, our data indicate that the relation of TBR 

with interference was valence-specific; the effect was only present in arousing-threatening images, but not in 

arousing positive images. Note that this is to be expected given the interaction with trait anxiety: much research 

has established relations between anxiety and threat bias, hardly ever with bias toward positive stimuli (Mogg & 
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Bradley, 1998, 2016; Bar-Haim et al., 2007; Cisler & Koster, 2010; van Bockstaele et al., 2014, Angelidis et al., 2018). 

The role of TBR (as basal PFC functioning) had not previously been investigated using both threatening and 

positive images. Some studies looked only at negative arousal. It was for instance reported that TBR predicted 

reductions in self-reported attentional control after a socially threatening stress-manipulation (Putman et al., 

2014). Also, higher TBR was related to less effective spontaneous down-regulation of the negative affect evoked 

by arousing negative stimuli (Tortella-Feliu, Morillas-Romero, Balle, Llabres, Bornas & Putman, 2014). Another study 

(Putman et al., 2010) did include positive and negative stimuli and reported that TBR was related to a contrasting 

effect on RTs from fearful and happy faces in an emotional go-no go task, but contrary to the current study, this 

study did not compare these arousing conditions with a condition with neutral stimuli and therefore does not 

allow any firm conclusions for the specific processing of negative and positive stimuli. The current study directly 

tested and showed that the relation is specific for negative information, in interaction with trait anxiety. This 

finding implies that TBR possibly reflects the interplay between an executive attention-network and a salience 

network that is more active in states of negative arousal (Hermans et al., 2014; Kohn, Hermans & Fernández, 2017). 

The current study showed that TBR was not related (alone or in interaction with trait anxiety) to a bias for our 

positive stimuli, but perhaps future studies could further test the valence-specificity of TBR’s relation to attentional 

bias using different and maybe more arousing positive stimuli (e.g. erotic stimuli as in Putman & Berling, 2010).   

 Data for the baseline and placebo conditions showed that TBR was negatively related to interference 

from threatening pictures, again only in low anxious participants. When comparing our baseline and placebo 

results, the relation between TBR and interference effects might seem to deviate looking at the direction of the 

mean slopes for interference for negative stimuli. However, there were no significant main effects of TBR and 

when comparing these results one should only consider the pattern of interaction between TBR and STAI-t 

(which was highly significant in the placebo condition and only just missed significance in the baseline 

condition).This comparison shows that in baseline and placebo conditions alike the pattern is such that for low 

TBR, low anxious people show higher interference for threat than high anxious participants and this pattern is the 

reverse in people with high TBR. We therefore conclude that our study shows a quite stable pattern of TBR-

anxiety interactions in our sample when not influenced by caffeine.  

 It has previously been reported for other variants of the Emotional Stroop Task (EST), that lower cognitive 

control over automatic processing of threat information resulted in higher interference for threatening words 

(Jha, Krompinger & Baine, 2007; Putman et al., 2012, for a review see Bar-Haim et al., 2007). TBR (negatively related 

to attentional control; see Lansbergen, van Dongen-Boomsma, Buitelaar, & Slaats-Willemse. 2011; Zhang, 

Roodenrys, Li, Barry, Clarke, Wu, et al., 2017; Keune et al., 2017; Putman et al., 2010, Putman et al., 2014; Angelidis et 

al., 2016) was therefore expected to correlate positively with interference in the PEST. Our results demonstrated a 

negative relation between TBR and interference for threat (in low anxious individuals) with individuals with higher 

TBR showing less interference or even negative interference scores on the PEST. Although studies using an EST 

have often found an interference effect of threatening words (e.g. Amir, Elias, Klumpp & Przeworski, 2003; Putman 

et al., 2012; Gorlin & Teachman, 2015) other EST studies have reported response facilitation (faster color naming 

responses to threatening than neutral stimuli) which is usually interpreted as reflecting attentional avoidance of 



60

Chapter 2

 59 

the threatening content of the stimuli (e.g. Dandenau & Baldwin, 2004; Egloff & Hock, 2001; Edelstein & Gillath, 

2008; Putman, Hermans & van Honk, 2004). Similar attentional avoidance has often been reported for spatial 

attention tasks for emotional information (for overviews see Cisler & Koster, 2010; Mogg & Bradley, 2016), where 

the avoidant response is evident from slower responses to trials where threatening stimuli cue the location of a 

subsequent target location (e.g. Amir, Foa, & Coles, 1998; Koster, De Raedt, Goeleven, Franck & Crombez, 2005; 

Mogg, Bradley, Miles, & Dixon, 2004; Schoorl et al., 2014; Wald et al., 2011).  

 Such attentional avoidance in spatial tasks seems to occur mostly for very highly threatening (pictorial) 

stimuli and/or stimuli that are of a phobic nature to anxious participants (see Mogg & Bradley, 2016). Many of the 

stimuli that we used were also highly threatening pictures cueing direct and acute threat to well-being (e.g. 

mutilated bodies and attacking animals) which seem more likely to evoke attentional avoidance in anxious 

people (anxiety is negatively related to attentional control). The model by Mogg and Bradley (1998; 2016) predicts 

that anxious hypervigilance is more likely to be evoked by mild threatening pictures whereas low levels of anxiety 

and high levels of cognitive control should be related to adaptive vigilance toward survival-relevant highly 

threatening pictures. Indeed, our healthy sample as a whole demonstrated strong average interference score of 

50 and 34 ms for baseline and placebo conditions to our threat pictures. The finding that for low anxious 

individuals, higher TBR was associated with reduced interference is as predicted from this theoretical framework 

and is in line with recent findings from two studies in our lab, similarly reporting more vigilance/less avoidance for 

such highly threatening pictures in people with low TBR (Angelidis et al., 2018; van Son et al., 2018). The spatial 

dot-probe task and emotional cueing task that previously demonstrated anxious attentional avoidance of graphic 

threat seem greatly influenced by response facilitation or a slow-down in responding when attention needs to be 

disengaged from a threatening cueing stimulus preceding the target response (Koster, et al., 2005; Koster, 

Crombez, Verschuere & De Houwer, 2006; Mogg et al., 2004) and also overall response slowing has been observed 

for trials with threatening cues (Koster et al., 2005). This response-slowing in disengagement processes might not 

be fundamentally different from slowed response in our PEST. Especially because influences on disengagement of 

spatial attention from salient visual information cannot be excluded for the PEST since it is not unlikely that the 

colour targets often appear in another location of the background pictures than the parts that especially draw or 

hold attention.  

 One of the purposes of this study was to see whether trait anxiety would moderate the effect of frontal 

TBR on threat interference. Relations between trait anxiety and automatic influences on attention to threat (as 

often reported; Mogg & Bradley, 1998, 2016; Bar-Haim et al., 2007; Cisler & Koster, 2010; van Bockstaele et al., 2014) 

likely result from anxiety’s facilitation of bottom-up attentional processing, which is further controlled by 

prefrontal executive control. The data confirmed such an interaction with trait anxiety; the effect of TBR seemed 

only to be present in individuals with lower trait anxiety. Studies investigating the specific relation between trait 

anxiety and executive control have had rather inconsistent results. Derryberry & Reed (2002) reported that 

attentional control is essentially effective for threat selective attention in highly anxious individuals, and Schoorl et 

al., (2014) also reported a stronger effect of AC on mildly threatening stimuli in higher anxious individuals 

suffering from post-traumatic stress disorder (PTSD). More recent data (Angelidis et al., 2018) however, suggest 
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that the effect of TBR as PFC-regulated executive control was mainly present in low trait anxious individuals (for 

highly threatening stimuli). These results are in line with the current study. However, the Dot Probe task that was 

used in Angelidis et al. (2018) had separate categories of mild and high threatening stimuli, which was not the 

case in the PEST as presently used, making our results difficult to compare. We therefore refrain from drawing any 

strong conclusion about the exact role of trait anxiety. For now, we speculate that threat-related stimuli usually 

involve automated uncontrolled responses (e.g. Ledoux, 1995), likely especially in high anxious individuals (Bar-

Haim et al., 2007; Cisler & Koster, 2010) and therefore individual differences in attentional control might have only 

limited influence in high anxious people. Nevertheless, we conclude that it remains unclear what the role of trait 

anxiety is in the effects of caffeine administration on control over threat selective attention. Future studies should 

revisit this issue in designs allowing better control over the influence of anxiety, for instance by preselecting 

participants on levels of trait anxiety or manipulating state anxiety, as well as target the effect of stimuli of 

different threat-levels. 

 No correlation was found between TBR, self-reported attentional control and trait anxiety ACS score or 

ACS and STAI-t, although a commonly observed negative relation between self-reported attentional control and 

trait anxiety (e.g., Derryberry & Reed, 2002) was observed as a statistical trend. Previous studies did report relations 

of TBR with ACS and STAI-t (e.g. Putman et al., 2010; Putman et al., 2014; Angelidis et al., 2016). Two other studies 

however did not replicate the TBR - ACS relation (Tortella-Feliu et al., 2014; Angelidis et al., 2018). Absence of a 

TBR-ACS relation in the current study is possibly explained by the fact that the current participant sample was pre-

selected on having a very low caffeine usage, possibly making it difficult to compare this sample to previously 

used groups of healthy subjects, since caffeine is thought to affect executive cognitive function (Klaassen et al., 

2013; Haller et al., 2013; Greer et al., 1998) and we ourselves suggested that it might affect TBR. The occasional 

absence of the TBR – ACS relation and various findings of relations between TBR and executive processing of 

typically emotional information (e.g., Tortella-Feliu et al., 2014; Putman et al., 2010; Putman et al., 2014; Angelidis 

et al., 2018; Schutte, Kenemans & Schutter, 2017) might indicate that TBR mainly represents executive control in 

emotional contexts such as during threat processing or threat interference (see also Morillas-Romero et al., 2015). 

Importantly, the current results for TBR’s relation with anxious threat-processing and effects of caffeine thereon, 

support this notion.    

 Caffeine did not affect TBR, but unexpectedly reduced both theta and beta. Previous literature reported 

effects of caffeine on separate EEG theta and beta activity (e.g., Kaplan et al., 1997; Landolt et al., 2004; Keane & 

James, 2008), but mixed results have been found depending on the sample studied (e.g., caffeine non-consumers 

versus regular consumers), design employed (e.g., acute effects versus long-term consumption), and dose of 

caffeine administered, making it quite difficult to compare our results to these previous studies. As beta has 

commonly been found to be related to motor inhibition (e.g. Engel & Fries, 2010), one possible explanation is 

then that our caffeine manipulation, due to caffeine’s generally arousing and motor-behavior increasing effects 

(Fisone, Borgkvist & Usiello, 2004; for a review see Rivera-Oliver & Díaz-Ríos, 2014) decreased motoric inhibition. 

Furthermore, having a strong test-retest correlation (Angelidis et al., 2016; Keune et al., 2017), when being 

measured during resting state, TBR might possibly reflect more structural or tonal aspects of brain organization 
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the threatening content of the stimuli (e.g. Dandenau & Baldwin, 2004; Egloff & Hock, 2001; Edelstein & Gillath, 
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stimuli and/or stimuli that are of a phobic nature to anxious participants (see Mogg & Bradley, 2016). Many of the 

stimuli that we used were also highly threatening pictures cueing direct and acute threat to well-being (e.g. 

mutilated bodies and attacking animals) which seem more likely to evoke attentional avoidance in anxious 

people (anxiety is negatively related to attentional control). The model by Mogg and Bradley (1998; 2016) predicts 

that anxious hypervigilance is more likely to be evoked by mild threatening pictures whereas low levels of anxiety 

and high levels of cognitive control should be related to adaptive vigilance toward survival-relevant highly 

threatening pictures. Indeed, our healthy sample as a whole demonstrated strong average interference score of 

50 and 34 ms for baseline and placebo conditions to our threat pictures. The finding that for low anxious 

individuals, higher TBR was associated with reduced interference is as predicted from this theoretical framework 

and is in line with recent findings from two studies in our lab, similarly reporting more vigilance/less avoidance for 

such highly threatening pictures in people with low TBR (Angelidis et al., 2018; van Son et al., 2018). The spatial 

dot-probe task and emotional cueing task that previously demonstrated anxious attentional avoidance of graphic 

threat seem greatly influenced by response facilitation or a slow-down in responding when attention needs to be 

disengaged from a threatening cueing stimulus preceding the target response (Koster, et al., 2005; Koster, 

Crombez, Verschuere & De Houwer, 2006; Mogg et al., 2004) and also overall response slowing has been observed 

for trials with threatening cues (Koster et al., 2005). This response-slowing in disengagement processes might not 

be fundamentally different from slowed response in our PEST. Especially because influences on disengagement of 

spatial attention from salient visual information cannot be excluded for the PEST since it is not unlikely that the 

colour targets often appear in another location of the background pictures than the parts that especially draw or 

hold attention.  

 One of the purposes of this study was to see whether trait anxiety would moderate the effect of frontal 

TBR on threat interference. Relations between trait anxiety and automatic influences on attention to threat (as 

often reported; Mogg & Bradley, 1998, 2016; Bar-Haim et al., 2007; Cisler & Koster, 2010; van Bockstaele et al., 2014) 

likely result from anxiety’s facilitation of bottom-up attentional processing, which is further controlled by 

prefrontal executive control. The data confirmed such an interaction with trait anxiety; the effect of TBR seemed 

only to be present in individuals with lower trait anxiety. Studies investigating the specific relation between trait 

anxiety and executive control have had rather inconsistent results. Derryberry & Reed (2002) reported that 

attentional control is essentially effective for threat selective attention in highly anxious individuals, and Schoorl et 

al., (2014) also reported a stronger effect of AC on mildly threatening stimuli in higher anxious individuals 

suffering from post-traumatic stress disorder (PTSD). More recent data (Angelidis et al., 2018) however, suggest 
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highly threatening stimuli). These results are in line with the current study. However, the Dot Probe task that was 

used in Angelidis et al. (2018) had separate categories of mild and high threatening stimuli, which was not the 
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however did not replicate the TBR - ACS relation (Tortella-Feliu et al., 2014; Angelidis et al., 2018). Absence of a 

TBR-ACS relation in the current study is possibly explained by the fact that the current participant sample was pre-
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absence of the TBR – ACS relation and various findings of relations between TBR and executive processing of 

typically emotional information (e.g., Tortella-Feliu et al., 2014; Putman et al., 2010; Putman et al., 2014; Angelidis 

et al., 2018; Schutte, Kenemans & Schutter, 2017) might indicate that TBR mainly represents executive control in 

emotional contexts such as during threat processing or threat interference (see also Morillas-Romero et al., 2015). 

Importantly, the current results for TBR’s relation with anxious threat-processing and effects of caffeine thereon, 

support this notion.    

 Caffeine did not affect TBR, but unexpectedly reduced both theta and beta. Previous literature reported 

effects of caffeine on separate EEG theta and beta activity (e.g., Kaplan et al., 1997; Landolt et al., 2004; Keane & 

James, 2008), but mixed results have been found depending on the sample studied (e.g., caffeine non-consumers 

versus regular consumers), design employed (e.g., acute effects versus long-term consumption), and dose of 

caffeine administered, making it quite difficult to compare our results to these previous studies. As beta has 

commonly been found to be related to motor inhibition (e.g. Engel & Fries, 2010), one possible explanation is 

then that our caffeine manipulation, due to caffeine’s generally arousing and motor-behavior increasing effects 
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compared to the phasic processes that one would expect after such transient and relatively mild 

psychopharmacological effects as our moderate caffeine administration. Though studies investigating the effects 

on TBR after ADHD medication suggest otherwise (e.g. see Clarke et al., 2007) and found TBR to change, therefore 

this issue remains unclear and needs further investigation. More research, possibly controlling for motoric 

inhibitions, is required for resolving the exact effects of caffeine on the theta and beta bands.  

 Importantly though, despite the absence of an effect of caffeine on state TBR, baseline TBR of low 

anxious individuals showed a significant direct relation with responding in the PEST and this was clearly 

influenced by caffeine administration. Participants with low trait anxiety and higher TBR who showed less 

interference/more facilitation in baseline and placebo conditions showed more interference/less facilitation in the 

caffeine condition. Contrariwise, participants with lower TBR who showed more threat interference/less 

facilitation in baseline and placebo conditions showed less interference after caffeine administration. This pattern 

of responding is in line with the predicted moderation of caffeine’s effects by baseline TBR. Given the evidence 

that lower TBR is related to better prefrontal cortical control (Angelidis et al., 2016; Barry et al., 2003; Keune et al., 

2017), and better prefrontal cortical control over the automatic attentional processing of salient threatening 

stimuli (Putman et al., 2010; Angelidis et al., 2018; van Son et al., 2018) and assuming that such basal prefrontal 

attentional control is regulated by prefrontal catecholamine levels (Arnsten, 2006; Hermans et al., 2014), the 

established model of inverted U-shape relations between prefrontal catecholamine activity and cognitive 

attentional control (Arnsten, 2006; Arnsten, 2009a; Cools and D’Esposito, 2011) would predict just that. 

 Several studies have already provided evidence for the inverted U-shape effect of caffeine and its relation 

to PFC moderation of catecholamines (for a review see Dobson and Hunt, 2013). Larger doses of caffeine resulted 

in poor PFC mediated cognitive functioning (Wood et al., 2014; Kaplan, Greenblatt, Ehrenberg, Goddard, Cotreau 

& Shader et al., 1997). It was also reported that performance of individuals on short-term memory and attentional 

tasks depended on caffeine-dose in an inverted U-shape function (Anderson, 1990; Anderson & Revelle, 1983; 

Gilliland, 1980, Revelle, Humphreys, Simon & Gilliland, 1980). Studies in rats support this notion; rats with lower 

baseline working memory performance showed a stronger increase in performance when measured PFC 

dopamine efflux was higher compared to rats with higher initial baseline working memory performance (Phillips, 

Ahn & Floresco, 2004; Murphy, Arnsten, Goldman-Rakic & Roth, 1996; for a review see Cools & D‘Esposito, 2011). 

Similarly, Aston-Jones & Cohen (2005) found nor-adrenaline levels in the locus coeruleus of monkeys to modulate 

performance on attentional tasks in the same inverted-U-shaped relation. In the current study, caffeine affected 

participants with better baseline attentional control (as evident from baseline TBR and baseline/placebo PEST 

performance) in such a way that their performance after caffeine resembled more the baseline/placebo 

performance of participants with less attentional control. Performance of people with less attentional control 

resembled more the baseline/placebo performance of people with better attentional control after caffeine 

administration. Therefore, the results of our study support the notion that effects of caffeine on executive 

cognitive performance, like catecholamine manipulations, depend on (likely catecholamine-mediated) baseline 

prefrontal executive performance and indirectly support the notion that effects of caffeine on executive function 

likely follow an inverted U-shape dose-response relation (Arnsten, 2009a; Einöther & Giesbrecht, 2013; Pasman et 
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al., 1995; Wood et al., 2014; see Figure 2.3. for an illustration of the hypothesized relation between basal PFC 

(catecholamine) function, executive performance and our moderate caffeine administration). As stated before, 

caffeine affects neural processing in several different brain areas (Nehlig et al., 1992; Sebastião & Ribeiro, 2009, van 

Dort, Baghdoyan, Lydic, 2009). Our study and interpretation of the results is based on caffeine’s established effects 

on prefrontal cortical function. Though it cannot be excluded that caffeine’s effects in other brain areas 

contributed to the results in our study, we believe our results are most compatible with the prefrontally mediated 

effects that we explain above.  

 

 

   

Figure 2.3. The hypothesized inverted U-shape relation between TBR as an indicator of (catecholamine) PFC 

function and PFC-mediated attentional control (AC) of threat bias and effects of caffeine thereon, as based on the 

theoretical model of Arnsten (2006; 2009a). Gray-patterned planes represent TBR – drug condition combinations. 

Trait anxiety influences limbic regulation of bottom-up response tendencies to threat. PFC-mediated executive 

control further determines the manifestation of selective attention. After placebo, participants with high TBR 

perform sub-optimally and participants with low TBR perform optimally. After caffeine administration and 

resulting upregulation of PFC catecholamine function, the high TBR participants move toward the optimal 

performance that low TBR participants displayed after placebo. The latter participants however, overshoot their 

optimal performance zone after caffeine’s further increase of prefrontal catecholamine function. 
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& Shader et al., 1997). It was also reported that performance of individuals on short-term memory and attentional 
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 To sum up, we aimed to study effects of caffeine on attentional control over threat-bias and how 

baseline frontal TBR interacts with these effects. Results were as expected; caffeine administration influenced 

interference in the PEST, moderated by baseline TBR, used as a marker of basal PFC executive control, and trait 

anxiety. Our findings likely confirm previous suggestions that TBR reflects executive control in healthy individuals 

(Angelidis et al., 2016; Putman et al., 2010, 2014; Angelidis et al., 2018; van Son et al., 2018). Previous reports 

describe that caffeine up-regulates PFC activity, but has different effects on attentional performance depending 

on baseline catecholamine activity in the PFC (Arnsten, 2009a; Arnsten 2009b; Cools & D’Esposito, 2011). Including 

measures that reflect basal PFC regulated executive control might thus improve studies of effects of caffeine on 

prefrontal cognitive processing, making TBR a possibly useful tool in psychopharmacological studies, e.g. when 

investigating the role of catecholamines in attentional performance. Moreover PFC-mediated attentional control 

was found to have a key function in the processing of emotional information such as selective attention to threat 

or cognitive appraisal (Ochsner, Silvers, & Buhle, 2012), which is usually impaired in different types of 

psychopathology (Etkin & Wager, 2007; Joormann & Gotlib, 2010), therewith using TBR can be beneficial when 

studying for example threat selective attention and emotion regulation.  

 Potential limitations of this study include that the threat-level of the pictures used in the PEST was not 

manipulated. As discussed above, whether participants direct attention toward or away from a stimulus, depends 

on whether stimuli are highly or mildly threatening (Angelidis et al., 2018; van Son et al., 2018; Mogg & Bradley, 

2016; Bar-Haim et al., 2007). Follow-up studies should therefore explicitly target the effect of stimuli of different 

threat-levels. Also, although this study did control for contraceptive use, in a design like ours with three lab visits 

in two weeks, it is fairly difficult to control for participant’s menstrual cycle phase, which was therefore not 

controlled. Furthermore, participants guessed accurately whether caffeine or placebo was administered and were 

therefore not blind to the manipulation – at least at the end of the second drug/placebo testing session though 

not necessarily during PEST performance. Theoretically, results might thus have been affected by an expectancy 

bias due to the participant’s knowledge of whether caffeine was given or not. Given that interference as 

measured by the PEST is relatively implicit, and the finding that the effect of caffeine was solely present when 

including a physiological measure, we assume it to be unlikely that the non-blindness of our study has influenced 

the final results. However, this finding demonstrates a larger issue in studies of caffeine administration and many 

other psychopharmacological experiments in human subjects. Such studies rarely measured or reported whether 

participants were aware of the drug they had received in a manner similar to ours (see Ahluwalia & Herrick, 2015). 

Our inclusion of debriefing the participants about condition awareness should thus foremost be seen as a 

methodological strength and future studies should surely implement this methodological control.   

 In conclusion, this study supports the notion of frontal TBR as an electrophysiological marker for 

executive control and is possibly a useful approximation of individual differences in baseline prefrontal 

catecholamine function that could be used when, for example, investigating catecholamine manipulation. It also 

confirms that caffeine can affect attentional control over automatic threat-attention depending on baseline 

individual differences.   
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studying for example threat selective attention and emotion regulation.  

 Potential limitations of this study include that the threat-level of the pictures used in the PEST was not 
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controlled. Furthermore, participants guessed accurately whether caffeine or placebo was administered and were 
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not necessarily during PEST performance. Theoretically, results might thus have been affected by an expectancy 

bias due to the participant’s knowledge of whether caffeine was given or not. Given that interference as 
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participants were aware of the drug they had received in a manner similar to ours (see Ahluwalia & Herrick, 2015). 
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ABSTRACT 

Background: In resting-state EEG, the ratio between frontal power in the slow theta frequency band and the fast 

beta frequency band (the theta/beta ratio, TBR) has previously been negatively related to attentional control. Also, 

increased theta and reduced beta power were observed during mind wandering (MW) compared to episodes of 

focused attention. Thus, increased resting-state frontal TBR could be related to MW, suggesting that previously 

observed relationships between TBR and attentional control could reflect MW episodes increasing the average 

resting state TBR in people with low attentional control. 

Goals: To replicate and extend the previous theta and beta MW effects for frontal TBR recordings and test if MW 

related changes in frontal TBR are related to attentional control. 

Methods: Twenty-six healthy participants performed a 40-minute breath-counting task, after a baseline EEG 

recording, while EEG was measured and participants indicated MW episodes with button presses.   

Results: Frontal TBR was significantly higher during MW episodes than during on-task periods. However, no 

relation between frontal TBR and attentional control was found. 

Conclusions: This confirms that frontal TBR varies with MW, which is thought to reflect, among other things, a 

state of reduced top-down attentional control over thoughts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 72 

The electroencephalographic (EEG) signal represents the combined electrical fluctuations in membrane 

potentials generated from the interactions of the primary inhibitory and excitatory neurons (Gordon, 2000; Nunez, 

1995) and can be decomposed into power estimates of different frequency bands. Typically measured under 

resting conditions, the ratio between the slow wave theta (4-7 Hz) and fast wave beta (13-30 Hz) band power, in 

other words the theta/beta ratio (TBR), has been utilized as a source of critical information about brain activity that 

may be associated with increased cognitive demand (Barry, Clarke, & Johnstone, 2003). TBR has also been found 

to have a very high test-retest reliability (Angelidis, van der Does, Schakel, & Putman, 2016; Keune, Hansen, Weber, 

Zapf, Habich, Muenssinger, Wolf, et al., 2017). 

 Several lines of evidence suggest that TBR is of interest when investigating attentional control. A 

frequently replicated finding, for example, is that TBR is increased in patients diagnosed with attention-deficit/ 

hyperactivity disorder (ADHD; Barry et al., 2003), though also non-findings have been reported (Arns, Vollebregt, 

Palmer, Spooner, Gordon & Kohn et al., 2018; Loo, Cho, Hale, McGough, McCracken, & Smalley, 2013; Kitsune, 

Cheung, Brandeis, Banaschewski, Asherson, McLoughlin, & Kuntsi, 2015). Additionally, TBR was negatively 

correlated with self-reported trait attentional control (using the Attentional Control Scale, or ACS; Derryberry & 

Reed, 2002) in healthy participants (especially when controlling for an often-correlated measure of trait anxiety; 

Putman, van Peer, Maimari & van der Werff, 2010, replicated by Putman, Verkuil, Arias-Garcia, Pantazi & van Schie, 

2014, Angelidis et al., 2016; van Son, Angelidis, Hagenaars, van der Does & Putman, 2018a). Also, TBR was 

negatively related to objectively measured attentional control in multiple sclerosis patients with mild cognitive 

impairment (Keune et al., 2017). Furthermore, TBR was found to be positively correlated with a stress-induced 

decline in state attentional control (Putman et al., 2014). All in all, the relation between TBR and attentional control 

seems to span the spectrum from healthy student samples to clinically impaired groups (Keune et al., Barry et al., 

2003; Arns, Conners & Kraemer, 2013). Frontal TBR has been suggested to reflect cortical-subcortical interactions 

associated with inhibitory functioning and cortical inhibition of subcortical processes (Knyazev, 2007; Schutter & 

Knyazev, 2012; Putman et al., 2014). This could reflect voluntary top-down processes like attentional control 

carried out by the dorsolateral prefrontal cortex (Bishop, 2008; Gregoriou, Rossi, Ungerleider, & Desimone, 2014) 

over automatic bottom-up processes mediated by limbic areas such as the anterior cingulate cortex and the 

amygdala, facilitating attention to salient information (Hermans, Henckens, Joëls & Fernández, 2014).  

 Recent studies from our lab showed that TBR moderated attentional bias to stimuli of different threat 

levels (Angelidis, Hagenaars, van Son, van der Does & Putman, 2018; van Son et al., 2018a) as predicted for 

attentional control in influential models of attentional bias (Mogg & Bradley, 1998, 2016). However, attentional 

bias does not solely include attentional processing of external stimuli. Anxious people, for example, also worry a 

lot, which represents biased internal activation of threatening cognitions in working memory, and shares 

mechanisms with biased attention (Hirsch & Mathews, 2012). Worry can be seen as self-generated off-task 

thought, and is sometimes referred to as a negative form of the umbrella term ‘mind wandering’ (Ottaviani, 

Shahabi, Tarvainen, Cook, Abrams & Shapiro, 2015).   

 Like worry, mind wandering (MW) episodes correspond to the emergence of task-unrelated affects and 

thoughts that draw attention away from the task at hand (Smallwood & Schooler, 2006). MW can occur while 
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performing a task, and is manifested as thinking of something else while executing a task (Mason, Norton, Van 

Horn, Wegner, Grafton, & Macrae, 2007). MW has been shown to play a role in processes like prospection and 

future planning (Baumeister & Masicampo, 2010; Baumeister, Masicampo & Vohs, 2011), creativity (Baird, 

Smallwood, Mrazek, Kam, Franklin & Schooler, 2012) and mental breaks, remediating an unpleasant mood (Ruby, 

Smallwood, Engen, & Singer, 2013). Besides its relation with these more beneficial processes, others have 

repeatedly conceptualized MW as a state of reduced working memory and attentional control (McVay & Kane, 

2009; Unsworth & McMillan, 2014), and as a predictor of performance errors (Smallwood & Schooler, 2006). MW 

has furthermore directly been related to reduced attention and focus (Smallwood, Nind, & O’Connor, 2009; 

Stawarczyk, Majerus, Catale, & D'Argembeau, 2014; Unsworth & McMillan, 2014). Also, ADHD was found to relate 

to increased MW (Bozhilova, Michelini, Kuntsi, & Asherson, 2018). It is this latter aspect of MW that is addressed in 

our paper: MW as a state of reduced cognitive control and vigilance, as related to working memory performance 

and cognitive failure.  

 In a proof of principle study, Braboszcz and Delorme (2011) reported that higher EEG theta band power 

and lower EEG beta band power were related to a state of MW. Participants were asked to focus on counting their 

breaths and to press a button as soon as they became aware that their mind had wandered off task. EEG spectral 

analysis showed higher theta and lower beta (likely higher TBR) before the button press, but lower theta and 

higher beta (likely lower TBR) after the button press, when they again focused on breath counting. These results 

were observed for windows of a -8 to -2 second period before the button press and a 2 to 8 second period after 

the button press, omitting the four seconds surrounding the button press. These time-windows correspond with 

theoretical and empirical observations concerning short periods of low, but growing awareness and a shift in 

attentional orientation just before and after the button press respectively (Hasenkamp, Wilson-Mendenhall, 

Duncan & Barsalou, 2012). The two seconds immediately before the button press were considered as ‘participants 

becoming aware that their mind wandered off’, and the two seconds immediately after the button press as 

‘getting back into breath-counting’.  

 As outlined above, MW itself is described as a deficit in working memory and attentional control (McVay 

& Kane, 2009; Unsworth & McMillan, 2014) and is a predictor for performance errors (Smallwood & Schooler, 2006); 

TBR’s relation to attentional control might therefore be associated with a higher tendency to mind wander during 

resting state, increasing the average TBR in people with low attentional control. Studying this hypothesis would 

greatly benefit our understanding of TBR’s relation to attentional control in healthy people (Putman et al., 2010; 

2014; Angelidis et al., 2016; van Son et al., 2018a) and clinical samples (Keune et al., 2017; Arns et al., 2013; Barry et 

al., 2003). If the TBR–attentional control relationship reflects mainly changes in TBR when people engage in mind 

wandering episodes, it might also be interesting to consider possible interactions between the number of mind 

wandering episodes and the assumed TBR–attentional control correlation. Therefore, if the TBR-ACS relation is 

observed in our present sample (despite null-findings reported in Morillas-Romero, Tortella-Feliu, Bornas, & 

Putman, 2015; Angelidis et al., 2018), this hypothesis regarding the mediating underlying processes causing the 

relation between TBR and attentional control can be tested.  

 The aim of the current study was to replicate and extend the design and results of Braboszcz and 
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Delorme (2011) as pertaining to the MW related changes in EEG, in order to gain further insight into the role of 

TBR during MW episodes. Our primary hypotheses will be tested using frontal TBR, since previous studies 

examining TBR in relation to executive processes using healthy participants focused almost exclusively on frontal 

TBR (Putman et al., 2010, 2014; Angelidis et al., 2016, 2018; van Son et al., 2018a; Schutter & van Honk, 2004; 

Schutter & van Honk, 2005; Sari, Koster, Pourtois, & Derakshan, 2016; Tortella-Feliu, Morillas-Romero, Balle, Llabrés, 

Bornas, & Putman, 2014; Morillas-Romero et al., 2015). We hypothesized that:  

I) Frontal TBR is higher during MW episodes than during on-task periods. 

II) Baseline spontaneous frontal TBR is expected to negatively correlate with attentional control as measured by 

the ACS when controlling for trait anxiety. 

III) The MW related changes in frontal TBR (assessed in hypothesis I) are related to baseline TBR during resting 

state and ACS. 

IV) The MW related changes in frontal TBR (assessed in hypothesis I) mediate the correlation between baseline 

spontaneous TBR and ACS (hypothesis II).  

These hypotheses were tested in a female sample (unlike Braboszcz and Delorme [2011] who included both 

males and females) since the majority of previous studies on TBR in healthy samples were (mostly) female and 

because of the gender imbalance in our available participants. Also, it is yet to be verified if TBR at frontal regions 

is the optimal predictor of attentional control and MW, thus the present study additionally explores the 

topographical occurrence of MW-related TBR. Furthermore, after testing the hypotheses for the MW versus 

focused attention epochs corresponding to Braboszcz and Delorme’s (2011) analysis, we further explore effects of 

time within these 6 second epochs (pre- and post-button press) as visual inspection of their data suggests that 

TBR increased following the button press. Finally, we correlated EEG data with the number of button presses that 

the participants made, as the occurrence of MW awareness might be related to the qualitative nature of mind 

wandering episodes; that is, less profound mind wandering might occur in participants who often become aware 

of their mind wandering.    

      Methods 

Participants 

  Fifty-three female participants (between 18 and 30 years old) recruited at Leiden University took part in 

this study. Only females were included because of the low prevalence of men signing up to participate in the 

study and for better comparison with previous studies of relations between TBR and attentional control functions 

in healthy participants. Exclusion criteria were factors which would likely adversely affect participation, EEG, or 

attention; these included severe physical or psychological dysfunction, and/or the use of psychotropic 

medication. As described in detail below, 27 participants were excluded because they retained too few (<11) 

acceptable mind wandering epochs of acceptable EEG data quality. Informed consent was obtained prior to 

testing, and participants received a monetary reimbursement for their participation. The study was approved by 

the Leiden University local ethics review board. 
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study and for better comparison with previous studies of relations between TBR and attentional control functions 

in healthy participants. Exclusion criteria were factors which would likely adversely affect participation, EEG, or 

attention; these included severe physical or psychological dysfunction, and/or the use of psychotropic 

medication. As described in detail below, 27 participants were excluded because they retained too few (<11) 

acceptable mind wandering epochs of acceptable EEG data quality. Informed consent was obtained prior to 

testing, and participants received a monetary reimbursement for their participation. The study was approved by 

the Leiden University local ethics review board. 
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Materials 

 Questionnaires. Participants completed the trait version of the State-Trait Anxiety Inventory (STAI-t; 

Spielberger, 1983) and the Attentional Control Scale (ACS; Derryberry & Reed, 2002). The STAI-t assesses trait 

anxiety (20 items, range 20-80; Cronbach’s alpha in the current study = 0.88), by indicating agreement with items 

like ‘I feel nervous and restless’ and ‘I have disturbing thoughts’ on a four-point Likert scale. The ACS assesses self-

reported attentional control in terms of attentional focus, attentional switching and the capacity to quickly 

generate new thoughts (20 items, range 20-80; Cronbach’s alpha in present study = 0.80), by indicating 

agreement with items like ‘I can quickly switch from one task to another’ and ‘I have a hard time concentrating 

when I’m excited about something’.  

 

 Breath counting task. The breath counting task was reproduced from Braboszcz and Delorme (2011). 

Participants were asked to keep their eyes closed and count their breath cycles (one inhalation and one 

exhalation) from 1 to 10 and then start from 1 again during two blocks of 20 minutes. They were instructed to 

press a button when they realized they had stopped counting, continued counting further than 10, or when they 

had to reflect intensively on what the next count would be. Participants were instructed to refocus on breath-

counting again after any button presses. In order to maintain procedural consistency with Braboszcz and Delorme 

(2011), a passive auditory oddball task was presented concurrently with the breath counting task and participants 

were instructed to ignore the auditory stimuli. We were not interested in studying oddball-related EEG, but since 

it is possible that this particular detail of the procedure could influence mind wandering, we included it for the 

sake of close methodological replication. For the same reason, we also presented some debriefing questions at 

the end of each block (as done by Braboszcz and Delorme, 2011) that were not analyzed here. 

 

EEG recording and software. EEG recordings were obtained continuously from 31 electrodes at 10/20 positions 

using Ag/AgCl electrodes of the ActiveTwo BioSemi system (BioSemi, The Netherlands). Electrodes placed on the 

left and right mastoids were used for offline re-referencing. Data were collected with a sampling rate of 1024 Hz 

with a gain of 16x at a bandwidth between DC-400 Hz. For processing purposes, data were down-sampled to 256 

Hz.  

 

Procedure 

 General Procedure. After informed consent had been obtained, participants completed the ACS and the 

STAI-t. This was followed by the measurement of resting-state EEG for ten minutes with eyes closed, and then the 

breath counting task was conducted while recording EEG.  

 

Data Reduction 

 Button presses. For each subject, the EEG data were segmented into 16 second data epochs around 

their button presses. We considered that participants were mind wandering during the -8 to -2 second period 

preceding the button press, and that participants were concentrating on their breath during the 2 to 8 second 
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period that followed the button press (as in Braboszcz & Delorme, 2011). One participant pressed the button 111 

times (more than 3 standard deviations above the mean number of button presses) and was therefore removed 

from further analysis. Twenty-seven subjects did not have enough clean (i.e., artefact free) data epochs to be 

considered for further analysis; specifically, these participants had below 11 button presses with EEG data of 

sufficient quality and were excluded.  

 

 EEG pre-processing and FFT during resting-state. EEG baseline data were re-referenced offline to the 

linked mastoids and automatically corrected for ocular artifacts (Gratton, Coles, & Donchin, 1983) in segments of 4 

seconds using Brain Vision Analyzer V2.04 (Brain Products GmbH, Germany). Baseline resting state EEG was then 

subjected to a Fast Fourier transformation (Hanning window length 10%) to calculate power for the beta (13-30 

Hz) and theta (4-7 Hz) band. Theta/beta ratio was calculated by dividing the theta by the beta power. All EEG 

baseline variables were non-normally distributed and therefore log-normalized with a log10 transformation. 

 

 EEG pre-processing and Fourier analysis during the breath-counting task. For the EEG data during the 

breath counting task, offline re-referencing and ocular correction procedures were done as for the resting-state 

EEG. Neuroscan 4.5 Edit software was then used to interpolate bad channels and extract single trial epochs for 

8.25 second pre- to 8.25 second post-button press. The remaining data quantification was completed within 

MATLAB (The Mathworks, Version 8.0.0.783, R2012b) using EEGLAB (Version 13.4; Delorme and Makeig, 2004) and 

custom scripts. For each electrode and for each participant, 1 second intervals of sequential and non-overlapping 

data from 8 to 2 second before, and 2 to 8 second after each button press were individually selected, DC 

corrected, and then a 10% Hanning window was applied. Discrete Fourier Transformation (DFT) was used to 

derive the frequency spectra at 1 Hz resolution, and a correction was applied for the use of the Hanning window. 

Wide band power data were then computed for the delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz) and beta (13-30 

Hz) bands. Theta/beta ratio was calculated by dividing the theta power by the beta power.  

 

 Event-related spectral perturbations (ERSP) for EEG during the breath-counting task. To inspect 

differences in EEG pre-versus post-button press in more detail within the time-frequency domain, we computed 

Event Related Spectral Perturbations (ERSPs). For these analyses, we decomposed the EEG signal in brief 

overlapping segments using DFT. DFT separates oscillations in short epochs thus we considered this method to 

be better suited for studying effects over time within the 6s window after the button press, as opposed to 

wavelet decomposition as was utilized by Braboszcz and Delorme (2011); e.g., see Figure 2, Barry, Fogarty, De 

Blasio, and Karamacoska (2018). Following Braboszcz and Delorme (2011), baseline corrections were not applied 

to either the full-length epochs or their ERSP data. Each ERSP used 257 sliding DFT windows with a size of 128 

data points (500 ms). Data in each window were DC corrected, and a 10% Hanning window was applied. Data 

were zero padded to 256 data points (1 second duration) and subjected to DFT. This gave us EEG power data at 1 

Hz frequency resolution, with a 62.5 ms time resolution. We assessed DC to 30 Hz.  

 Each ERSP resulted in a three-dimensional matrix of EEG power at each frequency step and at each time 
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Materials 

 Questionnaires. Participants completed the trait version of the State-Trait Anxiety Inventory (STAI-t; 

Spielberger, 1983) and the Attentional Control Scale (ACS; Derryberry & Reed, 2002). The STAI-t assesses trait 

anxiety (20 items, range 20-80; Cronbach’s alpha in the current study = 0.88), by indicating agreement with items 

like ‘I feel nervous and restless’ and ‘I have disturbing thoughts’ on a four-point Likert scale. The ACS assesses self-

reported attentional control in terms of attentional focus, attentional switching and the capacity to quickly 

generate new thoughts (20 items, range 20-80; Cronbach’s alpha in present study = 0.80), by indicating 

agreement with items like ‘I can quickly switch from one task to another’ and ‘I have a hard time concentrating 

when I’m excited about something’.  

 

 Breath counting task. The breath counting task was reproduced from Braboszcz and Delorme (2011). 

Participants were asked to keep their eyes closed and count their breath cycles (one inhalation and one 

exhalation) from 1 to 10 and then start from 1 again during two blocks of 20 minutes. They were instructed to 

press a button when they realized they had stopped counting, continued counting further than 10, or when they 

had to reflect intensively on what the next count would be. Participants were instructed to refocus on breath-

counting again after any button presses. In order to maintain procedural consistency with Braboszcz and Delorme 

(2011), a passive auditory oddball task was presented concurrently with the breath counting task and participants 

were instructed to ignore the auditory stimuli. We were not interested in studying oddball-related EEG, but since 

it is possible that this particular detail of the procedure could influence mind wandering, we included it for the 

sake of close methodological replication. For the same reason, we also presented some debriefing questions at 

the end of each block (as done by Braboszcz and Delorme, 2011) that were not analyzed here. 

 

EEG recording and software. EEG recordings were obtained continuously from 31 electrodes at 10/20 positions 

using Ag/AgCl electrodes of the ActiveTwo BioSemi system (BioSemi, The Netherlands). Electrodes placed on the 

left and right mastoids were used for offline re-referencing. Data were collected with a sampling rate of 1024 Hz 

with a gain of 16x at a bandwidth between DC-400 Hz. For processing purposes, data were down-sampled to 256 

Hz.  

 

Procedure 

 General Procedure. After informed consent had been obtained, participants completed the ACS and the 

STAI-t. This was followed by the measurement of resting-state EEG for ten minutes with eyes closed, and then the 

breath counting task was conducted while recording EEG.  

 

Data Reduction 

 Button presses. For each subject, the EEG data were segmented into 16 second data epochs around 

their button presses. We considered that participants were mind wandering during the -8 to -2 second period 

preceding the button press, and that participants were concentrating on their breath during the 2 to 8 second 
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period that followed the button press (as in Braboszcz & Delorme, 2011). One participant pressed the button 111 

times (more than 3 standard deviations above the mean number of button presses) and was therefore removed 

from further analysis. Twenty-seven subjects did not have enough clean (i.e., artefact free) data epochs to be 

considered for further analysis; specifically, these participants had below 11 button presses with EEG data of 

sufficient quality and were excluded.  

 

 EEG pre-processing and FFT during resting-state. EEG baseline data were re-referenced offline to the 

linked mastoids and automatically corrected for ocular artifacts (Gratton, Coles, & Donchin, 1983) in segments of 4 

seconds using Brain Vision Analyzer V2.04 (Brain Products GmbH, Germany). Baseline resting state EEG was then 

subjected to a Fast Fourier transformation (Hanning window length 10%) to calculate power for the beta (13-30 

Hz) and theta (4-7 Hz) band. Theta/beta ratio was calculated by dividing the theta by the beta power. All EEG 

baseline variables were non-normally distributed and therefore log-normalized with a log10 transformation. 

 

 EEG pre-processing and Fourier analysis during the breath-counting task. For the EEG data during the 

breath counting task, offline re-referencing and ocular correction procedures were done as for the resting-state 

EEG. Neuroscan 4.5 Edit software was then used to interpolate bad channels and extract single trial epochs for 

8.25 second pre- to 8.25 second post-button press. The remaining data quantification was completed within 

MATLAB (The Mathworks, Version 8.0.0.783, R2012b) using EEGLAB (Version 13.4; Delorme and Makeig, 2004) and 

custom scripts. For each electrode and for each participant, 1 second intervals of sequential and non-overlapping 

data from 8 to 2 second before, and 2 to 8 second after each button press were individually selected, DC 

corrected, and then a 10% Hanning window was applied. Discrete Fourier Transformation (DFT) was used to 

derive the frequency spectra at 1 Hz resolution, and a correction was applied for the use of the Hanning window. 

Wide band power data were then computed for the delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz) and beta (13-30 

Hz) bands. Theta/beta ratio was calculated by dividing the theta power by the beta power.  

 

 Event-related spectral perturbations (ERSP) for EEG during the breath-counting task. To inspect 

differences in EEG pre-versus post-button press in more detail within the time-frequency domain, we computed 

Event Related Spectral Perturbations (ERSPs). For these analyses, we decomposed the EEG signal in brief 

overlapping segments using DFT. DFT separates oscillations in short epochs thus we considered this method to 

be better suited for studying effects over time within the 6s window after the button press, as opposed to 

wavelet decomposition as was utilized by Braboszcz and Delorme (2011); e.g., see Figure 2, Barry, Fogarty, De 

Blasio, and Karamacoska (2018). Following Braboszcz and Delorme (2011), baseline corrections were not applied 

to either the full-length epochs or their ERSP data. Each ERSP used 257 sliding DFT windows with a size of 128 

data points (500 ms). Data in each window were DC corrected, and a 10% Hanning window was applied. Data 

were zero padded to 256 data points (1 second duration) and subjected to DFT. This gave us EEG power data at 1 

Hz frequency resolution, with a 62.5 ms time resolution. We assessed DC to 30 Hz.  

 Each ERSP resulted in a three-dimensional matrix of EEG power at each frequency step and at each time 
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point, containing all the information in the EEG throughout the trial. These ERSPs were obtained from 8 seconds 

before to 8 seconds after the button press for each trial and then averaged to obtain a mean ERSP for each 

subject. Contrary to Braboszcz and Delorme (2011), we did not assess the auditory oddball task as we were mainly 

interested in the spectral composition during mind wandering and breath focus. 

 For the explorative topographical analyses, the following division in electrodes per region were made: 

Frontal; Fp1, Fp2, F3, Fz, F4, F7, F8, AFz, FCz, FC3, FC4, FT7, FT8; Central; C3, Cz, C4, CP3, CPz, CP4, T7, T8, TP7, TP8; 

Posterior; P3, Pz, P4, P7, P8, O1, Oz, O2; Left; Fp1, F7, F3, FT7, FC3, T7, C3, TP7, CP3, P7, P3, O1; Midline; AFz, Fz, FCz, 

Cz, CPz, Pz, Oz; Right; Fp2, F4, F8 FC4, FT8, C4, T8, CP4, TP8, P4, P8, O2.    

 

Statistical analyses  

 All four formal hypotheses are tested using Fourier transformations for extraction of power estimates in 

baseline TBR and the pre- and post-button press windows for close comparison with previous studies. Results 

from ERSP analyses are also provided for a more comprehensive and in-depth approach to the additional 

explorative questions, as mentioned in the Introduction (e.g., visual inspection of other frequency bands and the 

time-course of TBR during the post-button-press-window). To test whether TBR was different pre- versus post-

button press (hypothesis I), a 2-level (time) repeated measures analysis of variance (rm-ANOVA) was carried out. 

Next, four 2-level (time) rm-ANOVA’s were conducted to exploratively test pre- versus post-button press 

differences in theta, beta, delta and alpha. We used Pearson’s correlations to check whether there was a 

correlation between TBR change (pre- versus post-) and baseline TBR; baseline TBR and ACS; TBR pre-button press 

and ACS; TBR post-button press and ACS, and TBR change pre- vs post- and ACS (hypotheses II and III). These 

correlations were repeated by using partial correlations controlling for STAI-t score. To inspect the changes in the 

frequency bands of interest (theta, beta and TBR) pre-versus post-button press in more detail within the time-

frequency domains, ERSP outcomes were examined. To test time differences using the ERSP data, mean narrow-

band frontal ERSP data (across F3, Fz and F4) were summed to form the theta (4-7 Hz) and beta (13-30 Hz) 

frequency bands. These data were then averaged in 1 second non-overlapping sections to provide 6 averages 

from -8 to -2 seconds pre-button press, and 6 averages from 2 to 8 seconds post-button press. The same averages 

were calculated for theta/beta ratio by dividing the theta data by the corresponding data in beta. Then, a 6 level 

(time-points) multivariate analysis of variance [MANOVA] for time-points pre-button press and a 6 level (time-

points) MANOVA for time-points post-button press, were conducted for Frontal TBR to explore the linear trend 

over the time points. Furthermore, we exploratively evaluated topographical differences by conducting a 2 (pre-

post) x 3 (sagittal; frontal [F], central [C], posterior [P]) x 3 (lateral; left [L], midline [M], right [R]) MANOVA for TBR. 

Finally, we exploratively checked whether differences pre- versus post- button press for theta, beta and TBR were 

correlated to the number of button presses by using Pearson’s correlations. All baseline EEG variables and ERSP-

derived EEG power values were non-normally distributed and therefore normalized with a log10 transformation. 

Bonferroni corrections for multiple testing were applied and reported where appropriate. 
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           Results 

Participants 

 The 26 remaining participants had a mean age of 22.8 years (SD = 2.6, range: 19-28). Mean ACS score was 

53.88 (SD = 5.44, range 41-63), mean STAI-t score was 38.54 (SD = 6.32, range 29-50). The mean frontal TBR of the 

participants measured during the resting state (baseline) was 1.22 (SD = 0.49, range 0.52-2.47 [non log-

normalized]). All subjects had between 11 and 60 button presses (M = 23.76, SD = 12.54). 

 

EEG activity pre- and post-button press average differences  

 TBR was found to be significantly higher pre- compared to post-button press; F(1,25) = 28.05, p < 0.001, 

ηp
2 = 0.53. This confirms hypothesis I.  

 We exploratively tested pre- and post-differences for theta, beta, delta and alpha. Theta was significantly 

higher pre- versus post-button press; F(1,25) = 13.60, p = 0.004, ηp
2 = 0.35 (p-value is Bonferroni corrected by 

factor 4 as 4 bands were tested). Beta, on the other hand, was lower pre- compared to post-button press; F(1,25) = 

18.58, p = 0.001, ηp
2 = 0.43 (Bonferroni corrected). Delta was significantly higher pre- versus post-button press; 

F(1,25) = 9.07, p = 0.024, ηp
2 = 0.27 (Bonferroni corrected). Alpha was significantly lower pre- versus post-button 

press; F(1,25) = 17.64, p = 0.001, ηp
2 = 0.41 (Bonferroni corrected).  

 

EEG baseline TBR related to ACS and TBR change pre- versus post- and ACS.  

 When controlling for STAI-t, no significant correlation was found between ACS and baseline frontal TBR 

(partial r = 0.14, p = 0.518). This correlation was also absent without controlling for STAI-t; r = 0.16, p = 0.423, this 

rejects hypothesis II. Also, no significant correlation was found between TBR change pre- versus post- and 

baseline TBR, r = 0.06; p = 0.758. Also, ACS did not correlate significantly with the difference score of frontal pre-

minus-post TBR; r = 0.17, p = 0.540. This was also the case when controlling for STAI-t; ACS did not correlate with 

frontal TBR pre-button press (partial r = 0.25, p = 0.220), post-button press (partial r = 0.16, p = 0.435), or difference 

score of frontal pre-minus-post TBR; partial r = 0.15, p = 0.483. Thus, hypothesis III was rejected. Because of these 

non-significant results for relations between baseline TBR, TBR change and ACS, hypothesis IV (mediation) was not 

tested.  

 

Event Related Spectral Perturbations (ERSPs). 

 First, we visually inspected the output of the ERSP analyses (Figure 3.1). The ERSP included averages for 

all epochs of -8 to 8 seconds around the button press for all participants and all electrodes. As our hypotheses 

were based on previous findings with frontal TBR, we visualized ERSP data of frontal electrode positions (average 

of F3, Fz and F4) averaged over all participants.  This figure suggests that the power decreases post compared to 

pre-button press occurred not only in theta, but also in delta, while power increases were apparent not only in 

beta, but also alpha post-button press. Figure 3.1 also suggests that prior to the end of the post-button press 

epoch, theta power starts to increase again, and beta power starts to decrease. 
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point, containing all the information in the EEG throughout the trial. These ERSPs were obtained from 8 seconds 

before to 8 seconds after the button press for each trial and then averaged to obtain a mean ERSP for each 

subject. Contrary to Braboszcz and Delorme (2011), we did not assess the auditory oddball task as we were mainly 

interested in the spectral composition during mind wandering and breath focus. 

 For the explorative topographical analyses, the following division in electrodes per region were made: 

Frontal; Fp1, Fp2, F3, Fz, F4, F7, F8, AFz, FCz, FC3, FC4, FT7, FT8; Central; C3, Cz, C4, CP3, CPz, CP4, T7, T8, TP7, TP8; 

Posterior; P3, Pz, P4, P7, P8, O1, Oz, O2; Left; Fp1, F7, F3, FT7, FC3, T7, C3, TP7, CP3, P7, P3, O1; Midline; AFz, Fz, FCz, 

Cz, CPz, Pz, Oz; Right; Fp2, F4, F8 FC4, FT8, C4, T8, CP4, TP8, P4, P8, O2.    

 

Statistical analyses  

 All four formal hypotheses are tested using Fourier transformations for extraction of power estimates in 

baseline TBR and the pre- and post-button press windows for close comparison with previous studies. Results 

from ERSP analyses are also provided for a more comprehensive and in-depth approach to the additional 

explorative questions, as mentioned in the Introduction (e.g., visual inspection of other frequency bands and the 

time-course of TBR during the post-button-press-window). To test whether TBR was different pre- versus post-

button press (hypothesis I), a 2-level (time) repeated measures analysis of variance (rm-ANOVA) was carried out. 

Next, four 2-level (time) rm-ANOVA’s were conducted to exploratively test pre- versus post-button press 

differences in theta, beta, delta and alpha. We used Pearson’s correlations to check whether there was a 

correlation between TBR change (pre- versus post-) and baseline TBR; baseline TBR and ACS; TBR pre-button press 

and ACS; TBR post-button press and ACS, and TBR change pre- vs post- and ACS (hypotheses II and III). These 

correlations were repeated by using partial correlations controlling for STAI-t score. To inspect the changes in the 

frequency bands of interest (theta, beta and TBR) pre-versus post-button press in more detail within the time-

frequency domains, ERSP outcomes were examined. To test time differences using the ERSP data, mean narrow-

band frontal ERSP data (across F3, Fz and F4) were summed to form the theta (4-7 Hz) and beta (13-30 Hz) 

frequency bands. These data were then averaged in 1 second non-overlapping sections to provide 6 averages 

from -8 to -2 seconds pre-button press, and 6 averages from 2 to 8 seconds post-button press. The same averages 

were calculated for theta/beta ratio by dividing the theta data by the corresponding data in beta. Then, a 6 level 

(time-points) multivariate analysis of variance [MANOVA] for time-points pre-button press and a 6 level (time-

points) MANOVA for time-points post-button press, were conducted for Frontal TBR to explore the linear trend 

over the time points. Furthermore, we exploratively evaluated topographical differences by conducting a 2 (pre-

post) x 3 (sagittal; frontal [F], central [C], posterior [P]) x 3 (lateral; left [L], midline [M], right [R]) MANOVA for TBR. 

Finally, we exploratively checked whether differences pre- versus post- button press for theta, beta and TBR were 

correlated to the number of button presses by using Pearson’s correlations. All baseline EEG variables and ERSP-

derived EEG power values were non-normally distributed and therefore normalized with a log10 transformation. 

Bonferroni corrections for multiple testing were applied and reported where appropriate. 
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           Results 

Participants 

 The 26 remaining participants had a mean age of 22.8 years (SD = 2.6, range: 19-28). Mean ACS score was 

53.88 (SD = 5.44, range 41-63), mean STAI-t score was 38.54 (SD = 6.32, range 29-50). The mean frontal TBR of the 

participants measured during the resting state (baseline) was 1.22 (SD = 0.49, range 0.52-2.47 [non log-

normalized]). All subjects had between 11 and 60 button presses (M = 23.76, SD = 12.54). 

 

EEG activity pre- and post-button press average differences  

 TBR was found to be significantly higher pre- compared to post-button press; F(1,25) = 28.05, p < 0.001, 

ηp
2 = 0.53. This confirms hypothesis I.  

 We exploratively tested pre- and post-differences for theta, beta, delta and alpha. Theta was significantly 

higher pre- versus post-button press; F(1,25) = 13.60, p = 0.004, ηp
2 = 0.35 (p-value is Bonferroni corrected by 

factor 4 as 4 bands were tested). Beta, on the other hand, was lower pre- compared to post-button press; F(1,25) = 

18.58, p = 0.001, ηp
2 = 0.43 (Bonferroni corrected). Delta was significantly higher pre- versus post-button press; 

F(1,25) = 9.07, p = 0.024, ηp
2 = 0.27 (Bonferroni corrected). Alpha was significantly lower pre- versus post-button 

press; F(1,25) = 17.64, p = 0.001, ηp
2 = 0.41 (Bonferroni corrected).  

 

EEG baseline TBR related to ACS and TBR change pre- versus post- and ACS.  

 When controlling for STAI-t, no significant correlation was found between ACS and baseline frontal TBR 

(partial r = 0.14, p = 0.518). This correlation was also absent without controlling for STAI-t; r = 0.16, p = 0.423, this 

rejects hypothesis II. Also, no significant correlation was found between TBR change pre- versus post- and 

baseline TBR, r = 0.06; p = 0.758. Also, ACS did not correlate significantly with the difference score of frontal pre-

minus-post TBR; r = 0.17, p = 0.540. This was also the case when controlling for STAI-t; ACS did not correlate with 

frontal TBR pre-button press (partial r = 0.25, p = 0.220), post-button press (partial r = 0.16, p = 0.435), or difference 

score of frontal pre-minus-post TBR; partial r = 0.15, p = 0.483. Thus, hypothesis III was rejected. Because of these 

non-significant results for relations between baseline TBR, TBR change and ACS, hypothesis IV (mediation) was not 

tested.  

 

Event Related Spectral Perturbations (ERSPs). 

 First, we visually inspected the output of the ERSP analyses (Figure 3.1). The ERSP included averages for 

all epochs of -8 to 8 seconds around the button press for all participants and all electrodes. As our hypotheses 

were based on previous findings with frontal TBR, we visualized ERSP data of frontal electrode positions (average 

of F3, Fz and F4) averaged over all participants.  This figure suggests that the power decreases post compared to 

pre-button press occurred not only in theta, but also in delta, while power increases were apparent not only in 

beta, but also alpha post-button press. Figure 3.1 also suggests that prior to the end of the post-button press 

epoch, theta power starts to increase again, and beta power starts to decrease. 
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Figure 3.1, ERSP plot of the frontal average (across F3 Fz F4 sites) at 1 Hz frequency resolution, and 62.5 ms time 

resolution. Mind wandering was considered to have occurred in the -8 to -2 second period preceding the button 

press, and breath focus was considered to have occurred in the+2 to +8 second period following the button 

press. Rectangular frames highlight these data of interest. 

 

 

ERSP pre- and post-button press slopes and topography 

 The values of the 6 pre- and 6 post-button press averages for frontal TBR are visualized in Figure 3.2.  

Testing ERSP time effects, a significant difference was found for TBR from pre- to post-, F(1,25) = 26.69, p < 0.001, 

ηp
2 = 0.52. Frontal TBR did not have a significant linear slope trend over time pre-button press, F(1,25) = 0.44, p = 

0.516, ηp
2 = 0.02), but (as can be seen in Figure 3.2) there was a significant linear slope trend over time post-

button press, F(1,25) = 34.84, p < 0.001, ηp
2 = 0.58 (Bonferroni corrected by a factor of 2), showing that TBR 

increased over time 2 to 8 seconds after the button press. 

 As for topographical differences, TBR was dominant in the midline compared to the lateral regions (M > 

L/R: F = 66.96, p < 0.001, ηp
2 = 0.73), and in the frontal compared to the posterior regions (F > P: F = 36.53, p < 

0.001, ηp
2 = 0.59). TBR also showed two-way interactions, with the midline dominance significantly larger in the 

frontal than posterior regions (M > L/R x F > P: F = 7.65, p = 0.011, ηp
2 = 0.23). The midline TBR dominance was also 

significantly larger in central compared to frontal/posterior regional mean (M > L/R x C > F/P: F = 15.61, p = 0.001, 

ηp
2 = 0.38). Pre- vs post-button press interactions showed greater midline than lateral reductions (M > L/R x pre > 

post: F = 4.50, p = 0.044, ηp
2 = 0.15), particularly in posterior compared to frontal regions (M > L/R x P > F x pre > 

post: F = 6.04, p = 0.021, ηp
2 = 0.19). Thus, the effect of MW on TBR was maximal in the posterior midline region. 

The two-way interaction with TBR on midline over frontal and posterior regions and the pre- vs post-button press 

midline and posterior dominance effect would however become non-significant after Bonferroni correction. 
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ERSP data pre- and post-differences related to number of button presses.  

 As differences were found pre-versus post-button press, we explored whether these differences were 

related to the number of button presses that participants made. To analyse this, we first computed the average of 
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between these for frontal (average F3, Fz and F4) theta and beta band and the TBR. Correlational analysis showed 

no significant correlation between the number of button presses and the difference scores in theta (r = 0.07, p = 

0.741), beta (r = -0.24, p = 0.234), or TBR (r = 0.10, p = 0.618). Thus, MW-related TBR change was independent of 

the number of button presses. 
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Figure 3.2. Plot of the ERSP-derived theta/beta ratio (TBR; non-logtransformed) data for Frontal electrode mean 

(F3, Fz and F4) showing slope trends plotted over six- 1 second averages pre- and post-button press. Topographic 

map of power pre (left) and post (right) button press is shown for TBR averaged from −8 to −2 second before and 

2 to 8 second after the button press. 
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Figure 3.1, ERSP plot of the frontal average (across F3 Fz F4 sites) at 1 Hz frequency resolution, and 62.5 ms time 

resolution. Mind wandering was considered to have occurred in the -8 to -2 second period preceding the button 

press, and breath focus was considered to have occurred in the+2 to +8 second period following the button 

press. Rectangular frames highlight these data of interest. 
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       Discussion 

This study aimed to replicate and extend the design and results of Braboszcz and Delorme (2011) as pertaining to 

the MW related changes in EEG, to gain further insight into the role of frontal TBR during MW episodes. In our all-

female sample, we found that frontal TBR was significantly higher during MW episodes compared to on-task time 

periods; this TBR – MW effect was strongest in the midline, particularly in posterior regions. When considering the 

EEG bands separately, theta power was higher and beta power was lower during MW episodes as opposed to on-

task periods. Frontal baseline TBR did not correlate with ACS or the TBR-MW effect, resulting in an inability to test 

our hypothesis that previously observed relations between ACS and TBR might be mediated by EEG changes 

during MW.  

 Our first hypothesis that frontal TBR would be higher during MW episodes was confirmed. TBR’s change 

between MW and focused episodes was stronger along the midline regions compared to the lateral regions and 

this effect was stronger in posterior compared to central and frontal regions, although these effects were 

relatively small and did not remain significant after correction for multiple testing. This finding seems comparable 

to the results of Braboszcz & Delorme, (2011) who found the MW effect on separate theta and beta bands to be 

strongest in parieto-occipital regions. Previous crucial findings for TBR however, repeatedly assessed TBR as 

measured frontally which was associated with prefrontally-mediated cognitive and emotional processes (Putman 

et al., 2010, 2014; Angelidis et al., 2016; 2018; van Son et al., 2018a; Tortella-Feliu et al., 2014). For example, it 

predicted acute stress-induced changes in self-reported state attentional control in addition to its reported 

correlation with self-reported trait and state attentional control (Putman et al, 2014; Angelidis et al., 2016). 

Moreover, working memory training was found to decrease frontal TBR (Sari et al., 2015). Also, a theta-based brain 

stimulation procedure that has been shown to enhance working memory, decreased frontal and central TBR and 

increased flexible implicit rule learning in motivated decision making (Wischnewski, Zerr & Schutter, 2016). 

Additionally, Schutter and van Honk (2005), used a reward-punishment reversal learning task to measure higher 

order cognitive integration of emotional information, and good performance on this same task correlated 

negatively with baseline frontal TBR; a similar result was also found in another more recent study (Schutte, 

Kenemans, Schutter, 2017). Additionally, several studies from our lab have provided evidence that resting-state 

frontal TBR predicted spatial attentional bias for threatening pictures, also interacting with individual differences 

in trait anxiety (Angelidis et al., 2018; van Son et al., 2018a). Relations between frontal TBR and attentional 

interference from high threat pictures were also altered by administration of caffeine, a catecholamine agonist 

that affects executive functioning in the PFC (van Son, Schalbroeck, Angelidis, van der Wee, van der Does & 

Putman, 2018b). Currently, as in Braboszcz and Delorme (2011), MW-related changes in TBR were not stronger 

over other than frontal areas. Therefore, if future studies would verify our hypothesis concerning relations 

between baseline TBR, executive functions like attentional control and MW, this would imply that research into 

relations between baseline TBR and executive function should also consider non-frontal areas more extensively 

(see also Putman et al., 2014a; Putman, Verkuil, Arias-Garcia, Pantazi, & Van Schie, 2014b). Combination of EEG and 

other neuro-imaging techniques, like functional magnetic resonance imaging (fMRI), can possibly further 

investigate more precise localization of TBR and MW-correlates in the brain. For instance, since MW has been 
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associated with connectivity of the default mode network (DMN; Karapanagiotidis, Bernhardt, Jefferies, & 

Smallwood, 2017; Smallwood, Beach, Schooler & Handy, 2008; Christoff, Ream, Geddes, & Gabrieli, 2003), MW-

related EEG changes might be related to increased activation of this network and reduced activation of an 

executive control network. Although (dorsolateral) prefrontal cortical areas are importantly involved in the latter 

(Seeley, Menon, Schatzberg, Keller, Glover, Kenna et al., 2007), the DMN consists of other cortical and subcortical 

areas and EEG activity related to activation of this network need not be restricted to frontal areas. 

 Our data confirm and extend the findings by Braboszcz and Delorme (2011), and show that phasic 

changes in TBR are related to variation of mental state between uncontrolled MW and focused attention, or 

perhaps meta-cognitive vigilance. One view of MW is that it represents a state of reduced cognitive control 

(McVay & Kane, 2009; Unsworth & McMillan, 2014), reduced vigilant processing of external stimuli, and increased 

bottom-up, memory-driven self-referential thought (Mason et al., 2007). Changes in brain function that are 

associated with MW and these underlying cognitive processes include increased activation of the posterior 

cingulate cortex, medial PFC and para-hippocampal regions – and decreased activation in (pre-frontal) cortical 

areas such as the dorso-lateral PFC and lateral inferior parietal regions (Hasenkamp et al., 2012; Karapanagiotidis et 

al., 2017; Hopfinger, Buonocore, & Mangun, 2000; Corbetta & Schulman, 2002; Delaveaux, Arruda Sanchez, Steffen, 

Deschet, Jabourian, Perlbarg, & Fossati, 2017). Also, it has been found that ADHD was related to altered 

deactivation of the DMN (Uddin, Kelly, Biswal, Margulies, Shehzad, Shaw, & Milham, 2008), which again 

strengthens the assumption of MW to represent a state of reduced cognitive control. The current data then likely 

again support the conjecture that baseline TBR represents relative activation of top-down (prefrontal) cortical 

versus more bottom-up and subcortical processes, as first suggested by Schutter and van Honk (2005) and 

Knyazev (2007), and supported by our own work (Putman et al., 2010; 2014a; Angelidis et al., 2018; van Son et al., 

2018a), and that from several other labs (Schutter & van Honk, 2004; Schutter & van Honk, 2005; Sari et al., 2016; 

Tortella-Feliu et al., 2014; Morillas-Romero et al., 2015; Keune et al., 2017; Clarke, Barry, McCarthy, & Selikowitz, 

2001). Additionally, the current confirmation that TBR may be used as a marker of MW-related changes in brain 

activity can likely be very useful for the study of MW (Smallwood & Schooler, 2006) and inattention (Jap, Lal, 

Fischer, & Bekiaris, 2009; Lorist, Bezdan, ten Caat, Span, Roerdink, & Maurits, 2009).  

 The breath-counting MW method as used in this study and in Braboszcz and Delorme’s (2011) research 

(see also Hasenkamp et al., 2012, for a closely related method), has the potential limitation that it relies on 

introspection. Since the MW episodes that are examined are self-reported, their underlying brain activity might be 

different from other MW episodes that might have remained undetected, or from earlier phases of the reported 

MW episodes. Also, it is reasonable to assume that participants who were better able to realize that their mind 

wandered off the breath-counting, pressed the button more often, resulting in the results being driven by these 

participants. In other words, one could speculate that using the time periods before a button press might not 

capture episodes representative of all MW, but possibly predominantly MW episodes that are associated with 

more meta-attentional control or awareness. If this were so, one would expect that participants who are more 

aware of their MW episodes (and press the button more often than participants who are less aware of this) would 

show different EEG results. We tested if there was a correlation between the number of button presses and the 
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TBR change, and this was not the case. The absence of this correlation is reassuring and likely indicates that the 

results are not confounded by meta-attentional introspective awareness. Also, if our results and the results from 

Braboszcz and Delorme (2011) partially reflect biased influence of MW episodes that are subsequently 

introspectively detected, one would expect that this should lead to a smaller pre- to post- button press effect. 

One could thus speculate that the results found using this method might, if anything, underestimate the effect of 

spontaneous, inattention related, mind wandering on TBR.  Moreover, given that the currently-used method 

specifically instructed the participants to focus (on counting breaths), the most straight-forward assumption is 

that the periods before and after the button press represent unfocussed and focussed periods, rather than, for 

example, task related interference or deliberate mind wandering (e.g. Ruby et al., 2013), although these options 

cannot be fully excluded. However, future studies might opt to include MW measurements that are not self-

generated, but instead rely on more qualitative experimenter-controlled thought-probing.  

  We used ERSP-derived one-second averages to further investigate slope changes over time in frontal 

TBR. The plotted slopes revealed that frontal TBR after a drop that started just before the button press, increased 

again quite rapidly post-button press. This pattern of pre- versus post-button press raises an interesting 

speculation: is it really high TBR that we see during MW episodes, or perhaps rather low TBR shortly and briefly 

after the button press? Looking at the relatively fast rebound of frontal TBR, one explanation might be that 

individuals start to lapse back into a new MW episode again relatively quickly after the button press. We are 

however unsure how likely it is that they would often start to mind wander again within eight seconds of 

becoming aware of their mind wandering. Another potentially interesting speculation concerning this seemingly 

quick rebound of frontal TBR is that the on-task focused periods might represent a short hypervigilant meta-

awareness or meta-attentional control (realising that one lost count and was mind wandering, and subsequently 

increasing the use of executive resources for goal-directed monitoring of breath counting), which possibly 

contributed to the frontal TBR change post- versus pre-button press. This would be in line with literature on 

increased hypervigilance after error realization (e.g. Hollins, Harper, Gallagher, Owings, Lim, Miller et al., 2009; 

Weymar, Keil & Hamm, 2013). This hypervigilance can be described as meta-cognition of one’s attentional control 

and could possibly disappear relatively quickly without having to engage back into a MW episode per se. It 

should be noted however, that such error realization is associated with short-lived increased theta activity (Hollins 

et al., 2009; Weymar et al., 2013), which seems at odds with our finding of decreased TBR (and theta) around the 

time of mind wandering realization. As mentioned before, future studies could take this speculation into account 

and compare MW periods with non-MW periods by using a design that does not rely on error related realizations.  

 All in all, the current results suggest frontal TBR to be related to changes in focused attention and 

possibly meta-attentional control or awareness. Beta is found to be involved in top- down executive functions like 

behavioural inhibition, inhibitory motoric processes, sequential encoding of processed items in working memory, 

retrieval from long-term memory and visual attention (Brown, 2007; Baker, 2007; Jenkinson & Brown, 2011; Engel & 

Fries, 2010; Marrufo, Vaquero, Cardoso, & Gomez, 2001; Wróbel, 2000). Considering that beta activity has a strong 

coherence between frontal and parietal regions during top-down compared to bottom-up visual attention 

(Buschman & Miller, 2007; 2009; Engel & Fries, 2010) it was speculated that beta activity is to some extent related 
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to the establishment of reciprocal control of bottom-up and top-down processes (Engel & Fries, 2010). Theta 

activity on the other hand has been associated with subjective sleepiness (Strijkstra, Beersma, Drayer, Halbesma, & 

Daan, 2003), decreased vigilance (e.g. Daniel, 1967; Belyavin, & Wright, 1987), and was suggested to be generated 

in limbic structures involved in a brain network subserving more bottom-up automatic attention as opposed to 

more cortically mediated executive control (Hermans et al., 2014; Seidenbecher, Laxmi, Stork, & Pape, 2003). These 

lines of research fit with functional correlates of TBR and its role in mind wandering conceived as a state of 

reduced executive attentional control and automatic self-generated thought (Mason et al., 2007; McVay & Kane, 

2009; Unsworth & McMillan, 2014; Smallwood, 2013; Christoff et al., 2003). 

 Exploratively, we additionally tested differences in the delta and alpha bands, and found that delta was 

significantly higher during MW episodes compared to on-task focus periods, while alpha was significantly higher 

during on-task focus periods compared to MW episodes. Changes in delta were similar to changes in theta, 

possibly because these bandwidths are adjacent and their functions possibly have some overlap. Some studies 

have indeed described overlays in functionality for delta and theta in for example hippocampal – prefrontal 

coherent activity (Aleksanov, Vainstein & Preobrashenskaya, 1986) and homeostatic and motivational processes 

(Knyazev, 2012). Putman et al. (2010) found similar correlations for theta/beta ratio and delta/beta ratio with 

fearful modulation of response inhibition in an emotional go/no-go task. As for alpha, a post-button press 

increase in power similar to beta was found. Alpha activity has been positively related to inhibitory processes 

(Uusberg, Uibo, Kreegipuu, & Allik, 2013; Haegens, Luther, & Jensen, 2012; see also Pfurtscheller, Stancak, & 

Neuper, 1996; Klimesch, Sauseng, & Hanslmayr, 2007, for reviews). Like beta, alpha is found to be involved in top-

down processes, and more specifically, control over stored motoric information via inhibition of the retrieval of 

interfering information (e.g. Hummel, Andres, Altenmüller, Dichgans, & Gerloff, 2002; Klimesch, 2012), and 

attentional control over sensory information (Wolfe & Bell, 2004). Moreover, alpha activity was related to timing of 

neural activity to facilitate different behavioural states (Nicolelis & Fanselow, 2002; Klimesch et al., 2007). As 

described above, beta is also related to top-down executive processes, which might explain why also alpha 

similarly varied as a function of mind wandering. The functions in which these bands are involved might have 

some overlap, explaining their similar increase during focused attention periods in the current results. The 

expected correlations between baseline TBR, changes in TBR pre- versus post-button press and ACS were not 

found in the current study. A relation between baseline TBR and this difference in TBR during MW episodes and 

on-task periods would possibly affirm that higher TBR over the longer period of spontaneous TBR as measured 

during a typical resting state measurement is influenced by episodes of mind wandering, which could 

theoretically explain previously observed relations between such spontaneous TBR and attentional control and 

other cognitive executive processes (e.g. Putman et al., 2010; 2014a; Angelidis et al., 2016). As the current sample 

showed no correlation between spontaneous TBR and ACS, our study confirms that MW is related to changes in 

frontal TBR but did not confirm the larger hypothesis that relations between executive control and baseline TBR 

are related to MW-related changes in brain activity. The absence of a significant correlation between baseline 

frontal TBR and attentional control is unexpected and contrary to several reports of this relation (Putman et al., 

2010; 2014a; Angelidis et al., 2016; van Son et al., 2018a; Keune et al., 2017; but see Morillas-Romero et al., 2015; 
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contributed to the frontal TBR change post- versus pre-button press. This would be in line with literature on 

increased hypervigilance after error realization (e.g. Hollins, Harper, Gallagher, Owings, Lim, Miller et al., 2009; 

Weymar, Keil & Hamm, 2013). This hypervigilance can be described as meta-cognition of one’s attentional control 

and could possibly disappear relatively quickly without having to engage back into a MW episode per se. It 

should be noted however, that such error realization is associated with short-lived increased theta activity (Hollins 

et al., 2009; Weymar et al., 2013), which seems at odds with our finding of decreased TBR (and theta) around the 

time of mind wandering realization. As mentioned before, future studies could take this speculation into account 

and compare MW periods with non-MW periods by using a design that does not rely on error related realizations.  

 All in all, the current results suggest frontal TBR to be related to changes in focused attention and 

possibly meta-attentional control or awareness. Beta is found to be involved in top- down executive functions like 

behavioural inhibition, inhibitory motoric processes, sequential encoding of processed items in working memory, 

retrieval from long-term memory and visual attention (Brown, 2007; Baker, 2007; Jenkinson & Brown, 2011; Engel & 

Fries, 2010; Marrufo, Vaquero, Cardoso, & Gomez, 2001; Wróbel, 2000). Considering that beta activity has a strong 

coherence between frontal and parietal regions during top-down compared to bottom-up visual attention 

(Buschman & Miller, 2007; 2009; Engel & Fries, 2010) it was speculated that beta activity is to some extent related 
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to the establishment of reciprocal control of bottom-up and top-down processes (Engel & Fries, 2010). Theta 

activity on the other hand has been associated with subjective sleepiness (Strijkstra, Beersma, Drayer, Halbesma, & 

Daan, 2003), decreased vigilance (e.g. Daniel, 1967; Belyavin, & Wright, 1987), and was suggested to be generated 

in limbic structures involved in a brain network subserving more bottom-up automatic attention as opposed to 

more cortically mediated executive control (Hermans et al., 2014; Seidenbecher, Laxmi, Stork, & Pape, 2003). These 

lines of research fit with functional correlates of TBR and its role in mind wandering conceived as a state of 

reduced executive attentional control and automatic self-generated thought (Mason et al., 2007; McVay & Kane, 

2009; Unsworth & McMillan, 2014; Smallwood, 2013; Christoff et al., 2003). 

 Exploratively, we additionally tested differences in the delta and alpha bands, and found that delta was 

significantly higher during MW episodes compared to on-task focus periods, while alpha was significantly higher 

during on-task focus periods compared to MW episodes. Changes in delta were similar to changes in theta, 

possibly because these bandwidths are adjacent and their functions possibly have some overlap. Some studies 

have indeed described overlays in functionality for delta and theta in for example hippocampal – prefrontal 

coherent activity (Aleksanov, Vainstein & Preobrashenskaya, 1986) and homeostatic and motivational processes 

(Knyazev, 2012). Putman et al. (2010) found similar correlations for theta/beta ratio and delta/beta ratio with 

fearful modulation of response inhibition in an emotional go/no-go task. As for alpha, a post-button press 

increase in power similar to beta was found. Alpha activity has been positively related to inhibitory processes 

(Uusberg, Uibo, Kreegipuu, & Allik, 2013; Haegens, Luther, & Jensen, 2012; see also Pfurtscheller, Stancak, & 

Neuper, 1996; Klimesch, Sauseng, & Hanslmayr, 2007, for reviews). Like beta, alpha is found to be involved in top-

down processes, and more specifically, control over stored motoric information via inhibition of the retrieval of 

interfering information (e.g. Hummel, Andres, Altenmüller, Dichgans, & Gerloff, 2002; Klimesch, 2012), and 

attentional control over sensory information (Wolfe & Bell, 2004). Moreover, alpha activity was related to timing of 

neural activity to facilitate different behavioural states (Nicolelis & Fanselow, 2002; Klimesch et al., 2007). As 

described above, beta is also related to top-down executive processes, which might explain why also alpha 

similarly varied as a function of mind wandering. The functions in which these bands are involved might have 

some overlap, explaining their similar increase during focused attention periods in the current results. The 

expected correlations between baseline TBR, changes in TBR pre- versus post-button press and ACS were not 

found in the current study. A relation between baseline TBR and this difference in TBR during MW episodes and 

on-task periods would possibly affirm that higher TBR over the longer period of spontaneous TBR as measured 

during a typical resting state measurement is influenced by episodes of mind wandering, which could 

theoretically explain previously observed relations between such spontaneous TBR and attentional control and 

other cognitive executive processes (e.g. Putman et al., 2010; 2014a; Angelidis et al., 2016). As the current sample 

showed no correlation between spontaneous TBR and ACS, our study confirms that MW is related to changes in 

frontal TBR but did not confirm the larger hypothesis that relations between executive control and baseline TBR 

are related to MW-related changes in brain activity. The absence of a significant correlation between baseline 

frontal TBR and attentional control is unexpected and contrary to several reports of this relation (Putman et al., 

2010; 2014a; Angelidis et al., 2016; van Son et al., 2018a; Keune et al., 2017; but see Morillas-Romero et al., 2015; 



Chapter 3

86
 85 

Angelidis et al., 2018), which include negative correlations between TBR and subjectively as well as objectively 

measured attentional control. It is also unexpected in light of many observations of high TBR in AD(H)D (Barry et 

al., 2003; Arns et al., 2013). The current EEG measurements, both during baseline and the breath counting task, 

were recorded with only eyes closed to keep the procedure methodologically consistent with Braboszcz and 

Delorme (2011); this diverged from the alternating eyes-open-closed method that is typically used in previous 

studies of spontaneous TBR. Unpublished data from our lab, however, suggested no systematic differences 

between eyes-open or eyes-closed measurements in terms of frontal TBR in relation to other variables. It is 

therefore not clear if this difference in resting-state method contributed to the absence of a frontal TBR-ACS 

relation in the current data. Note also that previous reports of TBR-ACS relations were based on larger samples 

than the current one. Future studies might seek to investigate the relation between TBR and attentional control 

using both task-based and self-report measures of attentional control (see Angelidis et al., 2018, van Son et al., 

2018a, Morillas-Romero et al., 2015; van Son et al., 2018b). All in all, it is not clear why the current data show no 

relation between baseline TBR, attentional control and MW-related TBR changes. This study confirms that MW, 

here conceived as a state of reduced attentional control, is related to higher TBR, but the larger hypothesis related 

to trait attentional control should be revisited in future studies.  

 Potential limitations of this study include that the implemented method causes a high between-subjects 

variance in the number of button presses. A substantial number of participants had to be excluded from analyses 

as they had too few analysable button presses or clean data epochs around the button press to reliably conduct 

analysis on (as in Braboszcz & Delorme, 2011). However, we retained 26 participants, which is more than twice the 

number of participants (N = 12) as assessed in Braboszcz and Delorme’s (2011) study, providing a robust 

replication of their proof of principle study. Also, the present study assessed only female participants which 

should be taken into account for the generalizability of our findings. No clear gender differences in TBR have been 

found to our knowledge, however, some studies suggest resting-state beta activity to be higher in females 

compared to males (Putman, Arias-Garcia, Pantazi, & van Schie, 2012; Jaušovec, & Jaušovec, 2010; Wada, Takizawa, 

Zheng-Yan, & Yamaguchi, 1994). Such gender differences have not yet been investigated in MW-effects on EEG 

however, and future studies should therefore aim to include male subjects as well. Finally, although the results 

show a strong relation between scalp based EEG and mind wandering, and there is much evidence suggesting 

that TBR might reflect interactions between cortical and subcortical brain processes which could account for this 

finding, this interpretation remains based in indirect evidence. Future studies might attempt to revisit relations 

between TBR and mind wandering using for instance fMRI imaging to directly bridge this empirical gap.  

 In conclusion, this study confirms that increased frontal TBR is related to mind wandering, which is 

thought to reflect, among other things, a state of reduced top-down attentional control over thoughts, but 

unexpectedly found no relations between EEG and self-reported attentional control. This should be revisited in 

future studies, possibly combining EEG and fMRI.  

 
1Used picture numbers in the PEST: Negative: 1120, 1220, 2981, 3053, 3120, 3230, 6315, 6560, 1070, 1205, 2900, 3110, 3261, 6260, 6540, 3000, 3064, 1114, 1300, 2800, 3051, 3060, 

6313, 6570; Positive: 1340, 2058, 8120, 8186, 8200, 8205, 8540, 8350, 1710, 2070, 7325, 8040, 8192, 8370, 8460, 8490, 8470, 1750, 2040, 8161, 8300, 8400, 8497, 8620; Neutral: 

5731, 7000, 7002, 7035, 7041, 7056, 7060, 7491, 5130, 7006, 7040, 7050, 7052, 7059, 7170, 7490, 5740, 7009, 7025, 7090, 7175, 7500, 7710, 7950.   
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Angelidis et al., 2018), which include negative correlations between TBR and subjectively as well as objectively 

measured attentional control. It is also unexpected in light of many observations of high TBR in AD(H)D (Barry et 

al., 2003; Arns et al., 2013). The current EEG measurements, both during baseline and the breath counting task, 

were recorded with only eyes closed to keep the procedure methodologically consistent with Braboszcz and 

Delorme (2011); this diverged from the alternating eyes-open-closed method that is typically used in previous 

studies of spontaneous TBR. Unpublished data from our lab, however, suggested no systematic differences 

between eyes-open or eyes-closed measurements in terms of frontal TBR in relation to other variables. It is 

therefore not clear if this difference in resting-state method contributed to the absence of a frontal TBR-ACS 

relation in the current data. Note also that previous reports of TBR-ACS relations were based on larger samples 

than the current one. Future studies might seek to investigate the relation between TBR and attentional control 

using both task-based and self-report measures of attentional control (see Angelidis et al., 2018, van Son et al., 

2018a, Morillas-Romero et al., 2015; van Son et al., 2018b). All in all, it is not clear why the current data show no 

relation between baseline TBR, attentional control and MW-related TBR changes. This study confirms that MW, 

here conceived as a state of reduced attentional control, is related to higher TBR, but the larger hypothesis related 

to trait attentional control should be revisited in future studies.  

 Potential limitations of this study include that the implemented method causes a high between-subjects 

variance in the number of button presses. A substantial number of participants had to be excluded from analyses 

as they had too few analysable button presses or clean data epochs around the button press to reliably conduct 

analysis on (as in Braboszcz & Delorme, 2011). However, we retained 26 participants, which is more than twice the 

number of participants (N = 12) as assessed in Braboszcz and Delorme’s (2011) study, providing a robust 

replication of their proof of principle study. Also, the present study assessed only female participants which 

should be taken into account for the generalizability of our findings. No clear gender differences in TBR have been 

found to our knowledge, however, some studies suggest resting-state beta activity to be higher in females 

compared to males (Putman, Arias-Garcia, Pantazi, & van Schie, 2012; Jaušovec, & Jaušovec, 2010; Wada, Takizawa, 

Zheng-Yan, & Yamaguchi, 1994). Such gender differences have not yet been investigated in MW-effects on EEG 

however, and future studies should therefore aim to include male subjects as well. Finally, although the results 

show a strong relation between scalp based EEG and mind wandering, and there is much evidence suggesting 

that TBR might reflect interactions between cortical and subcortical brain processes which could account for this 

finding, this interpretation remains based in indirect evidence. Future studies might attempt to revisit relations 

between TBR and mind wandering using for instance fMRI imaging to directly bridge this empirical gap.  

 In conclusion, this study confirms that increased frontal TBR is related to mind wandering, which is 

thought to reflect, among other things, a state of reduced top-down attentional control over thoughts, but 

unexpectedly found no relations between EEG and self-reported attentional control. This should be revisited in 

future studies, possibly combining EEG and fMRI.  

 
1Used picture numbers in the PEST: Negative: 1120, 1220, 2981, 3053, 3120, 3230, 6315, 6560, 1070, 1205, 2900, 3110, 3261, 6260, 6540, 3000, 3064, 1114, 1300, 2800, 3051, 3060, 

6313, 6570; Positive: 1340, 2058, 8120, 8186, 8200, 8205, 8540, 8350, 1710, 2070, 7325, 8040, 8192, 8370, 8460, 8490, 8470, 1750, 2040, 8161, 8300, 8400, 8497, 8620; Neutral: 

5731, 7000, 7002, 7035, 7041, 7056, 7060, 7491, 5130, 7006, 7040, 7050, 7052, 7059, 7170, 7490, 5740, 7009, 7025, 7090, 7175, 7500, 7710, 7950.   
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ABSTRACT 

Background: The ratio between frontal resting state EEG power in the theta and beta frequency bands (theta/beta 

ratio, TBR) has been negatively related to cognitive control, but it is unknown which psychological processes 

during resting state account for this relation. Increased theta and reduced beta power have been observed 

during mind wandering (MW). MW has been related to decreased connectivity in the executive control network 

(ECN) of the human brain and increased connectivity in the default mode network (DMN). Possibly then, high 

resting state TBR might reflect MW-related fluctuations in TBR, associated with variation in ECN and DMN 

connectivity. Direct evidence for these relationships is still lacking. 

Goal: To clarify the relations between TBR during resting state and during MW versus controlled thought, and its 

neural correlates reflected in ECN and DMN connectivity. 

Methods: Thirty-eight healthy participants performed a 40-minute breath-counting task once while EEG was 

measured and again during MRI scanning. Participants indicated awareness of MW-episodes with button presses.   

Results: Frontal TBR was higher during MW-episodes than during controlled thought and this was marginally 

related to resting state TBR. DMN connectivity was higher and ECN connectivity was lower during MW episodes. 

Greater ECN connectivity during focus than MW was correlated to lower TBR during focus than MW.  

Conclusions: These results provide the first evidence of the neural correlates of TBR and its functional dynamics 

and further establish frontal TBR to be a useful tool in the study of executive control, in normal and potentially 

abnormal psychology.  
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Resting state EEG provides measures of neural oscillatory activity in different frequency bands, such as the slow 

theta (4-7 Hz) and faster beta (13-30 Hz). Lubar (1991) reported higher theta-beta ratio (TBR) in attention deficit-

hyperactivity disorder (ADHD) and attention deficit disorder (ADD), which has been frequently replicated since 

(e.g. see Arns, Conners, & Kraemer, 2013; Barry, Clarke, & Johnstone, 2003; Barry, Clarke, Johnstone, McCarthy, & 

Selikowitz, 2009). Research into the relation between TBR and AD(H)D has remained largely descriptive, however 

– with the exception of studies that demonstrated that the administration of catecholamine agonists is 

therapeutic in AD(H)D through restoration of sub-optimal prefrontal cortical control (i.e., normalizing TBR; (Arns et 

al., 2009; Arnsten, 2006; Clarke et al., 2007; Loo, Lenartowicz, & Makeig, 2016; Loo, Teale, & Reite, 1999). This further 

suggests that high TBR scores may reflect the (frontal) cortical hypoactivity which characterizes these disorders 

(e.g. Bush, 2011).  

 The functional cognitive significance of TBR has been further investigated in non-AD(H)D samples. High 

TBR in a healthy sample correlated with sub-optimal performance on motivated decision-making tasks which 

require executive reversal learning and inhibition of dominant approach-motivated behavior (Massar, Rossi, 

Schutter, & Kenemans, 2012; Massar, Kenemans, & Schutter, 2014; Schutter & Van Honk, 2005a). TBR is also 

negatively related to other functions requiring prefrontal executive control: modulation of response inhibition in 

an emotional go/no-go task (Putman, van Peer, Maimari, & van der Werff, 2010) and down-regulation of negative 

affect (Tortella-Feliu, Morillas-Romero, Balle, Llabrés, Bornas, & Putman, 2014). In healthy samples, TBR correlated 

negatively with self-reported trait (Angelidis, van der Does, Schakel, & Putman, 2016; Putman et al., 2010; Putman, 

Verkuil, Arias-Garcia, Pantazi, & van Schie, 2014; van Son, Angelidis, Hagenaars, van der Does & Putman, 2018a) and 

state attentional control (Putman et al., 2014) and with the controlled modulation of threat selective attention 

(Angelidis, Hagenaars, van Son, van der Does, & Putman, 2018; van Son et al., 2018a; van Son, Schalbroeck, 

Angelidis, van der Wee, van der Does, & Putman, 2018b). TBR also correlated inversely with objectively-measured 

attentional control in a sample of multiple sclerosis patients with clinically-impaired attention (Keune et al., 2017). 

Taken together, these studies in non-AD(H)D samples demonstrate that TBR is negatively related to a variety of 

psychological functions that require prefrontal executive regulation of emotional and motivational processes 

which are likely subcortically mediated. It also indicates that TBR reflects a continuum of executive cognitive 

processing efficiency, rather than being a marker of a particular disorder. Almost all previous studies examining 

TBR in relation to executive processes assessing healthy participants focused on frontal TBR, which is also the 

focus of the current study (Angelidis et al., 2018; Angelidis et al., 2016; Putman et al., 2010, 2014; Sari, Koster, 

Pourtois, & Derakshan, 2016; Schutter & Van Honk, 2004, 2005a; van Son et al., 2018a; Tortella-Feliu et al., 2014; van 

Son et al., 2018b).   

 It should be noted, that TBR is typically measured during several minutes of resting state, without 

manipulation of executive processes. Consequently, the evidence that TBR reflects executive control functions 

remains indirect. It is unclear exactly which processes these relations reflect or what are TBR’s neurological 

underpinnings. A more thorough understanding would require continuous measurement of TBR during the 

execution of experimentally identified psychological functions.  

 The processes related to TBR, including threat selective attention, are not restricted to attentional 
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ABSTRACT 

Background: The ratio between frontal resting state EEG power in the theta and beta frequency bands (theta/beta 

ratio, TBR) has been negatively related to cognitive control, but it is unknown which psychological processes 

during resting state account for this relation. Increased theta and reduced beta power have been observed 

during mind wandering (MW). MW has been related to decreased connectivity in the executive control network 

(ECN) of the human brain and increased connectivity in the default mode network (DMN). Possibly then, high 

resting state TBR might reflect MW-related fluctuations in TBR, associated with variation in ECN and DMN 

connectivity. Direct evidence for these relationships is still lacking. 

Goal: To clarify the relations between TBR during resting state and during MW versus controlled thought, and its 

neural correlates reflected in ECN and DMN connectivity. 

Methods: Thirty-eight healthy participants performed a 40-minute breath-counting task once while EEG was 

measured and again during MRI scanning. Participants indicated awareness of MW-episodes with button presses.   

Results: Frontal TBR was higher during MW-episodes than during controlled thought and this was marginally 

related to resting state TBR. DMN connectivity was higher and ECN connectivity was lower during MW episodes. 

Greater ECN connectivity during focus than MW was correlated to lower TBR during focus than MW.  

Conclusions: These results provide the first evidence of the neural correlates of TBR and its functional dynamics 

and further establish frontal TBR to be a useful tool in the study of executive control, in normal and potentially 

abnormal psychology.  
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Resting state EEG provides measures of neural oscillatory activity in different frequency bands, such as the slow 

theta (4-7 Hz) and faster beta (13-30 Hz). Lubar (1991) reported higher theta-beta ratio (TBR) in attention deficit-

hyperactivity disorder (ADHD) and attention deficit disorder (ADD), which has been frequently replicated since 

(e.g. see Arns, Conners, & Kraemer, 2013; Barry, Clarke, & Johnstone, 2003; Barry, Clarke, Johnstone, McCarthy, & 

Selikowitz, 2009). Research into the relation between TBR and AD(H)D has remained largely descriptive, however 

– with the exception of studies that demonstrated that the administration of catecholamine agonists is 

therapeutic in AD(H)D through restoration of sub-optimal prefrontal cortical control (i.e., normalizing TBR; (Arns et 

al., 2009; Arnsten, 2006; Clarke et al., 2007; Loo, Lenartowicz, & Makeig, 2016; Loo, Teale, & Reite, 1999). This further 

suggests that high TBR scores may reflect the (frontal) cortical hypoactivity which characterizes these disorders 

(e.g. Bush, 2011).  

 The functional cognitive significance of TBR has been further investigated in non-AD(H)D samples. High 

TBR in a healthy sample correlated with sub-optimal performance on motivated decision-making tasks which 

require executive reversal learning and inhibition of dominant approach-motivated behavior (Massar, Rossi, 

Schutter, & Kenemans, 2012; Massar, Kenemans, & Schutter, 2014; Schutter & Van Honk, 2005a). TBR is also 

negatively related to other functions requiring prefrontal executive control: modulation of response inhibition in 

an emotional go/no-go task (Putman, van Peer, Maimari, & van der Werff, 2010) and down-regulation of negative 

affect (Tortella-Feliu, Morillas-Romero, Balle, Llabrés, Bornas, & Putman, 2014). In healthy samples, TBR correlated 

negatively with self-reported trait (Angelidis, van der Does, Schakel, & Putman, 2016; Putman et al., 2010; Putman, 

Verkuil, Arias-Garcia, Pantazi, & van Schie, 2014; van Son, Angelidis, Hagenaars, van der Does & Putman, 2018a) and 

state attentional control (Putman et al., 2014) and with the controlled modulation of threat selective attention 

(Angelidis, Hagenaars, van Son, van der Does, & Putman, 2018; van Son et al., 2018a; van Son, Schalbroeck, 

Angelidis, van der Wee, van der Does, & Putman, 2018b). TBR also correlated inversely with objectively-measured 

attentional control in a sample of multiple sclerosis patients with clinically-impaired attention (Keune et al., 2017). 

Taken together, these studies in non-AD(H)D samples demonstrate that TBR is negatively related to a variety of 

psychological functions that require prefrontal executive regulation of emotional and motivational processes 

which are likely subcortically mediated. It also indicates that TBR reflects a continuum of executive cognitive 

processing efficiency, rather than being a marker of a particular disorder. Almost all previous studies examining 

TBR in relation to executive processes assessing healthy participants focused on frontal TBR, which is also the 

focus of the current study (Angelidis et al., 2018; Angelidis et al., 2016; Putman et al., 2010, 2014; Sari, Koster, 

Pourtois, & Derakshan, 2016; Schutter & Van Honk, 2004, 2005a; van Son et al., 2018a; Tortella-Feliu et al., 2014; van 

Son et al., 2018b).   

 It should be noted, that TBR is typically measured during several minutes of resting state, without 

manipulation of executive processes. Consequently, the evidence that TBR reflects executive control functions 

remains indirect. It is unclear exactly which processes these relations reflect or what are TBR’s neurological 

underpinnings. A more thorough understanding would require continuous measurement of TBR during the 

execution of experimentally identified psychological functions.  

 The processes related to TBR, including threat selective attention, are not restricted to attentional 
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processing of external stimuli. ‘Mind wandering’ (MW; Ottaviani et al., 2015) occurs when thoughts are not 

controlled by top-down processes such as attentional control (McVay & Kane, 2009; Unsworth & McMillan, 2014). 

MW is a predictor of performance errors (Smallwood & Schooler, 2006) and poor executive cognitive control 

(Smallwood, Nind, & O’Connor, 2009; Stawarczyk, Majerus, Maquet, & D’Argembeau, 2011; Unsworth & McMillan, 

2014). Consequently, the frequently observed relation between resting-state TBR and indices of executive 

cognitive control might reflect more frequent or prolonged episodes of MW occurring during the resting state 

measurement in people with low attentional control. 

 Higher EEG theta band power and lower EEG beta band power have been observed during states of MW 

compared to focussed attention (Braboszcz & Delorme, 2011). Participants in that study were asked to press a 

button as soon as they realized that their mind had wandered off a breath-counting task. Higher TBR occurred 

during a 6 s window just before a button press and lower TBR during a 6 s window just after the button press, 

when participants refocused on their breath counting. We recently replicated this study and similarly found 

higher frontal TBR during the MW episodes compared to the task focused periods (van Son, De Blasio, Fogarty, 

Angelidis, Barry & Putman, 2018c). These results support a hypothesis that relations between resting state TBR and 

executive control might reflect the brain dynamics which occur when participants engage in MW, or related 

states of reduced cognitive control during the resting state measurement. This warrants a comparison between 

EEG-based TBR and functional-Magnetic Resonance Imaging (fMRI)-based localization of the corresponding 

cortical and subcortical activity.  

 fMRI studies have revealed that areas including the posterior cingulate cortex (PCC), medial prefrontal 

cortex (mPFC), parahippocampal gyrus and the angular gyrus are active during MW (Hasenkamp, Wilson-

Mendenhall, Duncan, & Barsalou, 2012; Ward, Schultz, Huijbers, Van Dijk, Hedden, & Sperling, 2014). These areas 

are jointly referred to as the default mode network (DMN; Greicius, Krasnow, Reiss, & Menon, 2003). Functional 

connectivity within this network is high during task-irrelevant thoughts (Stawarczyk et al., 2011) and is related to 

MW (Christoff, Ream, Geddes, & Gabrieli, 2003; Karapanagiotidis, Bernhardt, Jefferies, & Smallwood, 2017; 

Smallwood, Beach, Schooler, & Handy, 2008) and also to ruminative thoughts (Delaveau et al., 2017). Moreover, it 

has been reported that the dorso-lateral prefrontal cortex (DLPFC), dorsal anterior cingular cortex (dACC) and 

posterior parietal regions became active during awareness of MW, during subsequent attentional shifting back to 

task performance and during subsequent sustained attention in a breath-counting task (Christoff et al., 2003; 

Hasenkamp et al., 2012). These brain regions are elements of the so-called executive control network (ECN, Seeley 

et al., 2007). The ECN is active during cognitive tasks involving demanding top-down processes including working 

memory, mental calculation and spatial working memory (Mazoyer et al., 2001), and this network is associated 

with goal-directed attentional control (Corbetta, Patel, & Shulman, 2008; Corbetta & Shulman, 2002; Seeley et al., 

2007). 

 In summary, states of MW versus controlled attention have been associated with increased TBR 

(Braboszcz & Delorme, 2011; van Son et al., 2018c) and with decreased activity in brain areas that are involved in 

executive control (Hasenkamp et al., 2012), but in separate studies. Together, these findings support the 

hypothesis that low TBR reflects a state of increased top-down cognitive control, involving functional connectivity 
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in the ECN, whereas high TBR reflects uncontrolled thought and functional connectivity in the DMN. The aim of 

the current study was to further clarify the relations between resting state TBR and TBR’s dynamic relation with 

states of increased/decreased cognitive control and their neurobiological underpinning in terms of ECN/DMN 

connectivity. We assessed MW and focused attention during EEG and fMRI measurements in the same 

participants on two separate days, exploiting TBR’s excellent retest reliability (Angelidis et al., 2016; Keune et al., 

2017).  

We tested the following hypotheses:  

I) Frontal TBR is higher during MW episodes than during focused episodes, and this MW-related change in frontal 

TBR is related to resting-state (i.e., baseline) frontal TBR. We also conducted an exploratory assessment of changes 

in the EEG delta and alpha bands in the present investigation, as MW-related changes in these bands were 

observed in van Son et al., (2018c) and Braboszcz and Delorme (2011). 

II) MW-related changes in frontal TBR mediate a e relationship between resting-state frontal TBR and attentional 

control. 

III) Functional connectivity within the ECN is stronger during focused episodes than during MW episodes, with 

the opposite pattern of functional connectivity within the DMN. 

IV) MW-related EEG changes are positively correlated with MW-related changes of the functional connectivity 

within the DMN and negatively with changes of connectivity in the ECN.   

 

 

     Methods 

Participants 

 Eighty-four right-handed participants between 18 and 32 years (35 men) were recruited from Leiden 

University. Exclusion criteria were factors which would likely adversely affect participation, EEG, MRI or attention, 

including severe physical or psychological dysfunction, and/or the use of psychotropic medication, and having 

typical contraindications for MRI scanning. Baseline resting-state TBR and MW-related EEG were assessed during 

the first session, and only those participants who reported sufficient MW episodes for analysis (defined here 

as >24 reported episodes) were invited to return for a second session on a separate day to perform the same task 

in the MRI scanner; this was done in order to increase the chance of obtaining enough button presses during MRI 

for reliable analysis. Informed consent was obtained prior to testing, and participants received a monetary 

reimbursement of €15 at the end of each session to compensate them for their participation. The study was 

approved by the Medical Ethics Committee of Leiden University Medical Center (LUMC). 

 

Materials 

 Questionnaires. Participants completed the trait version of the State-Trait Anxiety Inventory (STAI-t; 

Spielberger, Gorsuch, & Lushene, 1970) and the Attentional Control Scale (ACS; Derryberry & Reed, 2002). The 

STAI-t assesses trait anxiety (20 items, range 20-80; Cronbach’s alpha in the current study = 0.89) with items like ‘I 

feel nervous and restless’ and ‘I have disturbing thoughts’ on a four-point Likert scale. The ACS assesses self-
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EEG-based TBR and functional-Magnetic Resonance Imaging (fMRI)-based localization of the corresponding 
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cortex (mPFC), parahippocampal gyrus and the angular gyrus are active during MW (Hasenkamp, Wilson-

Mendenhall, Duncan, & Barsalou, 2012; Ward, Schultz, Huijbers, Van Dijk, Hedden, & Sperling, 2014). These areas 

are jointly referred to as the default mode network (DMN; Greicius, Krasnow, Reiss, & Menon, 2003). Functional 

connectivity within this network is high during task-irrelevant thoughts (Stawarczyk et al., 2011) and is related to 

MW (Christoff, Ream, Geddes, & Gabrieli, 2003; Karapanagiotidis, Bernhardt, Jefferies, & Smallwood, 2017; 

Smallwood, Beach, Schooler, & Handy, 2008) and also to ruminative thoughts (Delaveau et al., 2017). Moreover, it 

has been reported that the dorso-lateral prefrontal cortex (DLPFC), dorsal anterior cingular cortex (dACC) and 

posterior parietal regions became active during awareness of MW, during subsequent attentional shifting back to 

task performance and during subsequent sustained attention in a breath-counting task (Christoff et al., 2003; 

Hasenkamp et al., 2012). These brain regions are elements of the so-called executive control network (ECN, Seeley 

et al., 2007). The ECN is active during cognitive tasks involving demanding top-down processes including working 

memory, mental calculation and spatial working memory (Mazoyer et al., 2001), and this network is associated 

with goal-directed attentional control (Corbetta, Patel, & Shulman, 2008; Corbetta & Shulman, 2002; Seeley et al., 

2007). 

 In summary, states of MW versus controlled attention have been associated with increased TBR 

(Braboszcz & Delorme, 2011; van Son et al., 2018c) and with decreased activity in brain areas that are involved in 

executive control (Hasenkamp et al., 2012), but in separate studies. Together, these findings support the 

hypothesis that low TBR reflects a state of increased top-down cognitive control, involving functional connectivity 
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in the ECN, whereas high TBR reflects uncontrolled thought and functional connectivity in the DMN. The aim of 

the current study was to further clarify the relations between resting state TBR and TBR’s dynamic relation with 

states of increased/decreased cognitive control and their neurobiological underpinning in terms of ECN/DMN 

connectivity. We assessed MW and focused attention during EEG and fMRI measurements in the same 

participants on two separate days, exploiting TBR’s excellent retest reliability (Angelidis et al., 2016; Keune et al., 

2017).  
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TBR is related to resting-state (i.e., baseline) frontal TBR. We also conducted an exploratory assessment of changes 

in the EEG delta and alpha bands in the present investigation, as MW-related changes in these bands were 

observed in van Son et al., (2018c) and Braboszcz and Delorme (2011). 

II) MW-related changes in frontal TBR mediate a e relationship between resting-state frontal TBR and attentional 

control. 

III) Functional connectivity within the ECN is stronger during focused episodes than during MW episodes, with 

the opposite pattern of functional connectivity within the DMN. 

IV) MW-related EEG changes are positively correlated with MW-related changes of the functional connectivity 

within the DMN and negatively with changes of connectivity in the ECN.   

 

 

     Methods 

Participants 

 Eighty-four right-handed participants between 18 and 32 years (35 men) were recruited from Leiden 

University. Exclusion criteria were factors which would likely adversely affect participation, EEG, MRI or attention, 

including severe physical or psychological dysfunction, and/or the use of psychotropic medication, and having 

typical contraindications for MRI scanning. Baseline resting-state TBR and MW-related EEG were assessed during 

the first session, and only those participants who reported sufficient MW episodes for analysis (defined here 

as >24 reported episodes) were invited to return for a second session on a separate day to perform the same task 

in the MRI scanner; this was done in order to increase the chance of obtaining enough button presses during MRI 

for reliable analysis. Informed consent was obtained prior to testing, and participants received a monetary 

reimbursement of €15 at the end of each session to compensate them for their participation. The study was 
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Materials 

 Questionnaires. Participants completed the trait version of the State-Trait Anxiety Inventory (STAI-t; 

Spielberger, Gorsuch, & Lushene, 1970) and the Attentional Control Scale (ACS; Derryberry & Reed, 2002). The 

STAI-t assesses trait anxiety (20 items, range 20-80; Cronbach’s alpha in the current study = 0.89) with items like ‘I 

feel nervous and restless’ and ‘I have disturbing thoughts’ on a four-point Likert scale. The ACS assesses self-
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reported attentional control in terms of attentional focus, attentional switching and the capacity to quickly 

generate new thoughts (20 items, range 20-80; Cronbach’s alpha in the present study = 0.86), with items like ‘I can 

quickly switch from one task to another’ and ‘I have a hard time concentrating when I’m excited about 

something’.  

 

 Breath counting task. The breath counting task was as in van Son et al. (2018c); based on Braboszcz and 

Delorme (2011). Participants were asked to count their breath cycles (one inhalation and one exhalation) from 1 

to 10 and then start from 1 again (with eyes closed). They were instructed to press a button whenever they 

realized they had stopped counting, continued counting further than 10, or had to reflect intensively on what the 

next count was. Prior to performance of the task, participants were instructed to bring their focus back to breath-

counting after pressing the button. To retain consistency with the procedure of Braboszcz and Delorme (2011), 

and subsequently van Son et al. (2018c), a passive auditory oddball was presented during the task and debriefing 

questions were presented at the end of each block as it is possible that this might influence the occurrence of 

MW episodes. The oddball related EEG and fMRI data were not of interest here and so participants were instructed 

to ignore the tones, and the responses to the debriefing questions were not analyzed. 

 

 EEG recording. Continuous EEG was measured from 31 Ag/AgCl electrodes electrodes located 

according to the 10-20 system, using an ActiveTwo BioSemi system (BioSemi, The Netherlands). Electrodes were 

also placed on the left and right mastoids for offline re-referencing. EEG data were collected at a sampling rate of 

1024 Hz and amplified with a gain of 16x at a bandwidth between DC-400 Hz, and were down-sampled to 256 Hz 

for offline processing. 

 

 MRI recording parameters. A whole-brain 3D T1-weighted structural scan and two task scans (T2*-

weighted echo-planar images; EPIs) were acquired using a 3-T Philips Achieva scanner equipped with a 32-

channel head coil. The T1-weighted scan (field of view (FOV): 224 x 177.33 x 168 mm; 140 slices; in-plane voxel 

resolution = 0.88 × 0.88 mm; slice thickness = 1.2 mm; TR: 9.8 ms; TE: 4.59 ms; flip angle 8o; acquisition matrix: 192 

x 192; scan duration: 5 min.) was used for registration to the standard 2-mm MNI152 template image. The task 

scans consisted of 542 whole brain T2*-weighted EPIs (FOV: 220 x 114.7 x 220 mm; 38 slices; in-plane voxel 

resolution = 2.75 x 2.75 mm; slice thickness = 2.75 mm + 0.275 mm slice gap; TR: 2200 ms; TE: 30 ms; flip angle 

80o; acquisition matrix: 80 x 80; scan duration: 20 min. each). 

 

Procedure 

 General Procedure. During the first session, informed consent was obtained and participants completed 

the ACS and the STAI-t. EEG equipment was then fitted and used to measure activity during a ten minute resting-

state with eyes closed, and then during the breath counting task which comprised two 20 minute blocks (40 

minutes in total) with a  ~2-minute break between. Participants who reported sufficient instances of MW episodes 

(>24) at this session were invited to participate in a second session within seven days. During this second session, 
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participants repeated the breath counting task during MRI acquisition.  

 

Data Reduction 

 Defining epochs for MW and focussed attention. Previous studies (Braboszcz & Delorme, 2011; van Son 

et al., 2018c) analysed the -8 s to -2 s window prior to the button press as MW episodes, and the 2 s to 8 s window 

following the button press as focussed attention. However, due to the reduced temporal precision of MRI data 

acquisition (a repetition time [TR] of 2.2 s), we selected only those TRs that fitted fully within those windows for 

fMRI hypothesis-testing. This resulted in the selection of a pre-button press MW window of -7.1 s to -2.7 s and a 

post-button press focused attention window of 1.7 s to 6.1 s (thus 2 TRs each; corresponding to the TR windows 

of fMRI data of -1.1 s to 3.3 s and 7.7 to 12.1 s when taking into account the standard 6 s for the heamodynamic 

response function [HRF]). These narrower epochs were therefore used to quantify the MW (i.e., -7.1 to -2.7 s) and 

focussed attention (i.e., 1.7 to 6.1 s) windows for both the EEG and fMRI data, facilitating their joint analysis.   

 

 EEG spectral composition: Resting-state. For all EEG analyses, frontal EEG measures were calculated by 

averaging the data from F3, Fz and F4 positions. Resting-state EEG data were re-referenced offline to the linked 

mastoids and automatically corrected for ocular artifacts (Gratton, Coles, & Donchin, 1983) in segments of 4 

seconds using Brain Vision Analyzer V2.04 (Brain Products GmbH, Germany). Baseline resting state EEG was then 

subjected to a Fast Fourier Transformation (Hamming window length 10%) to calculate power density in the 

theta (4-7 Hz) and beta (13-30 Hz) bands. TBR was calculated by dividing the power density in theta by that in 

beta. Baseline EEG values were non-normally distributed and were therefore log-normalized with a log10 

transformation.  

 

 EEG spectral composition: Breath-counting task.  The EEG data recorded during the breath counting 

task was similarly pre-processed in Brain Vision Analyzer V2.0.4 (Brain Products GmbH, Germany). This was used to 

re-reference the data offline, apply an ocular correction, interpolate bad channels, and extract single trial epochs 

for 8.25 s pre- to 8.25 s post- each button-press. The remaining data quantification was completed within MATLAB 

(The Mathworks, Version 8.0.0.783, R2012b) using EEGLAB (Version 13.4; Delorme & Makeig, 2004) and custom 

scripts.   

 Event Related Spectral Perturbation (ERSP) data were derived at each site for each participant using 257 

applications of a 500 ms (128 point) sliding Discrete Fourier Transform (DFT) window. The data in each window 

were DC corrected, multiplied by a 10% Hanning window, and zero padded to 1 s (256 points) prior to the 

application of the DFT, and a subsequent correction was applied for the use of the Hanning window. This yielded 

absolute power ERSP data from -8 to +8 s relative to the button-press at 1 Hz spectral resolution, and 62.5 ms 

temporal resolution. Mean (across button-press) ERSP data were computed within-subjects, and the associated 

mean ERSP band powers were derived at each site for delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta (13-

30 Hz) during the 4.4 s MW (-7.1 to -2.7 s) and focused attention (1.7 to 6.1 s) windows of interest. These data were 
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reported attentional control in terms of attentional focus, attentional switching and the capacity to quickly 

generate new thoughts (20 items, range 20-80; Cronbach’s alpha in the present study = 0.86), with items like ‘I can 
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the ACS and the STAI-t. EEG equipment was then fitted and used to measure activity during a ten minute resting-
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minutes in total) with a  ~2-minute break between. Participants who reported sufficient instances of MW episodes 

(>24) at this session were invited to participate in a second session within seven days. During this second session, 
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following the button press as focussed attention. However, due to the reduced temporal precision of MRI data 
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not normally distributed and were therefore normalized with a log10 transformation prior to analysis. 

 

 Functional MRI analysis. Data were pre-processed using FSL version 5.0.7 (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl). First, brain extraction tool (BET as implemented in FSL) was used to subtract non-brain 

tissue from the structural images. Next, all task data (the EPIs) were motion corrected, high-pass filtered (100 s), 

registered to the structural images (12 dof), and spatially smoothed using a 5mm full width half maximum 

(FWHM) Gaussian kernel. Probabilistic Independent Component Analysis (Beckmann, Mackay, Filippini, & Smith, 

2009) was carried out using MELODIC (Multivariate Exploratory Linear Decomposition into Independent 

Components) Version 3.05 as implemented in FSL. The pre-processed task data of all participants were 

decomposed into 15 components. The components representing DMN and ECN networks were selected based 

on Smith et al., (2009). The set of spatial maps from the DMN component and ECN component were used to 

generate subject-specific versions of the spatial maps, and associated timeseries, using dual regression 

(Beckmann et al., 2009). For each subject, the set of spatial maps was regressed per component (as spatial 

regressors in a multiple regression) into the subject's 4D space-time dataset, resulting in a set of subject-specific 

time-points, one set of beta values for each component. The beta values for the DMN and ECN components were 

selected for further analysis. All beta values were normalized by subtracting the average of each value per brain 

network and then log10 transformed to correct for skewness. 

 

     Results 

Participants 

 Of the 84 participants that completed the first session, 56 participants reported sufficient instances of 

MW episodes (>24) and were invited to participate in the second session within seven days (mean number of 

days between sessions = 2.8, SD = 1.9; range 1-7 days). Only those participants with enough clean EEG data 

epochs (>10), and sufficient instances of MW episodes in the MRI scanner (>14), were considered for inclusion in 

this study, resulting in complete data for 27 participants (16 males). These participants had a mean age of 24.7 (SD 

= 2.7 range: 18-30) years. Their mean ACS score was 51.70 (SD = 7.83, range 39-69), and their STAI-t score was 

39.15 (SD = 8.95, range 26-60). One participant had raw EEG theta and beta values more than three SDs above the 

mean in the breath counting task; the participant’s data were therefore omitted from this study. 

 

Hypothesis I: MW related changes in frontal TBR related to baseline TBR. 

 In the breath-counting task, participants had between 21 and 92 button presses during the EEG session 

(M = 47.96, SD = 20.54), and between 15 and 115 button presses during the MRI session (M = 49.41, SD = 21.55). 

Number of button presses did not differ significantly between these sessions, t(26) = 0.36, p = 0.723, but were 

significantly correlated (r = 0.51; p = 0.007). The grand mean frontal ERSP data (across F3, Fz, F4) are visualized in 

Figure 4.1 for this task. Mean frontal ERSP data (across F3, Fz, F4) in the pre- and post-button press windows of 

interest, representing MW and focused episodes, respectively, were assessed using paired samples t-tests; these 

analyses were conducted independently for the theta and beta bands, and for the TBR. As seen in Figure 4.1, 
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theta power was significantly higher during the MW (pre) then focused (post) episodes (t[25] = 2.38, p = 0.025, d 

= 0.47), and beta was significantly lower during the MW (pre) compared to focused (post) episodes (t[25] = -3.79, 

p = 0.001, d = 0.74). TBR was confirmed to be significantly higher during MW (pre) compared to focused (post) 

episodes (t[25] = 5.72, p < 0.001, d = 1.13), and these values (TBR in MW and focused attention) were highly 

correlated, (r[24] = 0.93, p < 0.001).  

 TBR of the mean frontal resting-state power-densities (across F3, Fz, F4) in these same participants was 

1.09 (SD = 0.60, range 0.35-3.06 [raw, un-normalized values]). Frontal resting-state TBR was correlated marginally 

with the MW-related change in frontal TBR (i.e., MW minus focused frontal TBR, or pre- minus post-button press); 

r(24) = 0.35, p = 0.078. That is, higher resting or baseline TBR predicted a greater difference in TBR between MW 

relative to focus periods. Together these findings confirm Hypothesis I. 

 Additional post-hoc paired-samples t-tests were conducted to test changes in frontal alpha and frontal 

delta band power for the same MW (pre) versus focused (post) episodes. Frontal alpha power was significantly 

reduced during the MW compared to focused episodes (t[25] = -3.19, p = 0.004, d = 0.63), although delta showed 

no significant change between the MW and focused attention episodes (t[25] = 1.62, p = 0.117, d = 0.32).  

 

 

 

 

 

 

 

Figure 4.1. ERSP spectral plot of the frontal average (across F3 Fz F4 sites) at 1 Hz frequency resolution, and 62.5 

ms time resolution. Rectangular frames highlight the epochs of primary interest corresponding to the two ‘real 

time’ 2-TR epochs that fall within the pre-defined periods for MW and focussed attention (the upper, high 

frequency frames are for beta, the lower for theta). 
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Hypothesis II: baseline frontal TBR and attentional control, mediated by changes in TBR   

 Pearson correlation was used to test for a relationship between frontal resting-state TBR and ACS. This 

correlation was not significant (r[24] = -0.14, p = 0.51), and remained non-significant when controlling for STAI-t 

(c.f. Angelidis et al., 2016; Putman et al., 2010, 2014; van Son et al., 2018a); r(23) = -0.03, p = 0.90. Consequently, 

hypothesis II was not supported. Additional analyses revealed that resting-state frontal TBR was correlated 

positively with STAI-t score (r[24] = 0.43, p = 0.029), and this relationship remained significant when controlling for 

ACS (r[24] = 0.41, p = 0.041). 

 

Hypothesis III: Changes in DMN and ECN functional connectivity.  

 One participant had DMN normalized functional connectivity values over all time points of more than 

three standard deviations above the mean, and was therefore removed from all further analyses involving fMRI 

data. Averages for the DMN and ECN were calculated for the MW (pre) and focused (post) periods, and subjected 

to a 2 (time) x 2 (networks) repeated measures (RM) ANOVA on DMN and ECN functional connectivity during MW 

(pre) and focused (post) periods. No main effect was found for time F(1,25) = 0.89, p = 0.354, ηp
2 = 0.04, however, 

there was a main effect for networks, F(1,25) = 5.78, p = 0.024, ηp
2 = 0.19, with activity greater in ECN than DMN 

(see Figure 4.2.). A significant interaction effect was found between time and networks; F(1,25) = 31.04, p < 0.001, 

ηp
2 = 0.55. As seen in Figure 4.2 and confirmed by post-hoc t-tests, DMN functional connectivity was significantly 

higher during MW (pre) than focused (post) episodes; t(26) = 5.59, p < 0.001, d = 1.10, whereas ECN functional 

connectivity was significantly lower during MW (pre) compared to focused (post) episodes; t(25) = -4.66, p < 

0.001, d = 0.92. This supports hypothesis III. 

 

 

Figure 4.2. Slopes of normalized functional connectivity over time for the executive control network (ECN) and 

the default mode network (DMN). Rectangular frames highlight the epochs of interest. After correction for the 

HRF delay, the button press occurs at 6s. The y-axis shows the demeaned beta values resulting from the first stage 

of the dual regression, representing functional connectivity. 

 101 

Hypothesis IV: Relation between MW-related EEG and fMRI changes.  

 The 2 (time) x 2 (networks) RM ANOVA from hypothesis III was repeated, with the MW-related frontal TBR 

change (computed as MW minus focused attention frontal TBR) added as a covariate into the model to assess if 

MW-related TBR is related to MW-related connectivity. A significant interaction effect was found for time x 

networks x MW-related frontal TBR changes; F(1,23) = 7.01, p = 0.014, ηp
2 = 0.23.   

 To further investigate this relation, post-hoc Pearson correlations were calculated between the frontal 

MW-related TBR change scores and the corresponding difference scores (MW minus focused attention) for the 

functional connectivity in DMN and ECN. No association was found between the MW-related changes in both 

frontal TBR and DMN functional connectivity; r(23) = 0.30, p = 0.15. However, a significant correlation was found 

between the MW-related changes in both frontal TBR and ECN functional connectivity; r(23) = -0.58, p = 0.002. 

Figure 4.3 displays the scatterplot of the latter correlation, and visual inspection suggested that this relationship 

may have been driven by one or two influential data points. We therefore repeated each analysis using 

Spearman’s rank order correlation which although less powerful is more robust against such influences 

(Nešlehová, 2007). The outcomes supported the results from the Pearson correlations; the MW-related changes in 

both frontal TBR and DMN functional connectivity were again non-significant (r[23] = 0.19, p = 0.36), while a 

significant correlation was found for the MW-related changes in both frontal TBR and ECN functional connectivity; 

r(23) = -0.54, p = 0.006. These outcomes support hypothesis IV in relation to the ECN, but not for the DMN. 
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Figure 4.3. Scatterplot of the significant relation between the MW-related changes in frontal EEG theta beta ratio 

(TBR; x-axis) and the corresponding changes in ECN functional connectivity (y-axis); r(23) = -0.58, p = 0.002.  

Spearman’s ranked order correlation (insensitive to outliers) was also significant; Spearman’s r(23) = -0.54, p = 

0.006).  The plot shows log-transformed data. 

 

EEG and fMRI pre- and post-differences related to number of button presses.  

 As differences were found pre-versus post-button press, we explored whether these differences were 

related to the number of button presses. Correlational analysis showed a significant correlation between the 

number of button presses during EEG and during fMRI; r(23) = 0.49, p = 0.01. No significant correlations were 

found between the number of button presses during EEG measurement and frontal TBR difference score; r(24) = 

0.12, p = 0.55 or between the number of button presses during fMRI measurement and the difference scores in 

DMN functional connectivity; r(24) = -0.24, p = 0.24, or ECN functional connectivity; r(24) = 0.24, p = 0.23. Thus, 

MW-related EEG and fMRI change were independent of the number of button presses. 

 

           Discussion 

 The aim of this study was to investigate the relations between resting state and MW-related TBR, self-

reported attentional control, and their neurobiological underpinning in terms of ECN and DMN connectivity. We 

found that resting state TBR was related to increased TBR during MW. Furthermore, DMN connectivity was higher 

and ECN connectivity was lower during MW. For ECN this process-related difference was related to the process-

related difference in TBR.  

TBR during rest was first associated with ADHD (Barry et al., 2003; Lubar, 1991), and later linked to various 

psychological functions and cognitive/emotional processes that rely on executive cognitive control, including 

trait and state attentional control, reversal learning, working memory training and control over automatic 

attentional threat-biases (Angelidis et al., 2018; Angelidis et al., 2016; Keune et al., 2017; Putman et al., 2010, 2014; 

Schutter & Van Honk, 2005b; van Son et al., 2018a; Tortella-Feliu et al., 2014; van Son et al., 2018b). The current 
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results support the hypothesis that the association between TBR and executive control functions reflect TBR 

dynamics occurring during the resting state measurement which are caused by fluctuations in the balance 

between cognitive control and associative thoughts.  

 TBR is driven by both the theta and beta power bands. The known functions of these two bands are in 

line with the current findings. Theta power has for example been related to decreased vigilance (e.g. Belyavin & 

Wright, 1987; Daniel, 1967). Beta is involved in behavioural inhibition (Brown, 2007; Engel & Fries, 2010), inhibitory 

motoric processes (Baker, 2007; Jenkinson & Brown, 2011), and other controlled cognitive processes such as 

working memory, visual attention (Jensen & Lisman, 2005; Rosanova et al., 2009; Vázquez Marrufo, Vaquero, 

Cardoso, & Gómez, 2001; Wróbel, 2000) and attentional vigilance (Valentino, Arruda, & Gold, 1993). These lines of 

evidence on beta and theta activity separately support the conjecture that TBR reflects an interplay between top-

down executive control (beta) and activity in limbic, partially subcortical areas (theta: Klimesch, Sauseng, & 

Hanslmayr, 2007; Knyazev, 2007; Schutter & Van Honk, 2005b). This fits with functional correlates of TBR and its 

role in mind wandering, conceived as a state of reduced executive cognitive control and uncontrolled self-

generated thought (Christoff et al., 2003; Mason et al., 2007; McVay & Kane, 2009; Smallwood, 2013; Unsworth & 

McMillan, 2014; van Son et al., 2018c). Our additional finding of increased alpha during ‘controlled thoughts’ 

periods also indicates increased involvement of top-down processes during these periods, as alpha activity has 

been involved in inhibitory processes and attentional control over sensory information (Klimesch et al., 2007; 

Wolfe & Bell, 2004). As beta activity is similarly involved in top-down executive processes, both bands might have 

some overlap in functionality, explaining their similar increase during controlled thought periods in the current 

study.  

 The current data additionally show that the difference score of TBR during controlled versus 

uncontrolled thought was positively correlated to a baseline measure of resting state TBR (as a statistical trend, 

but note that one-sided testing of this directional hypothesis would seem appropriate and would confirm the 

hypothesis). Whereas resting state TBR previously remained a ‘black box’, we suggest that people with less 

cognitive control experience more frequent and/or more profound states of uncontrolled thought during the 

typical EEG measurements of several minutes at rest, as individual differences between mind wandering and 

cognitive control are correlated (Christoff et al., 2003; Mason et al., 2007; McVay & Kane, 2009; Smallwood, 2013; 

Unsworth & McMillan, 2014). Because the relation between resting state TBR and the MW-related TBR increase 

was only marginally significant, this hypothesis needs to be revisited in a more powerful study with a larger 

sample. Unexpectedly, the often-observed negative correlation between TBR and self-reported (trait) attentional 

control was not observed in the present sample and our mediation hypothesis could not be tested. The observed 

positive correlation between MW-related TBR and resting state TBR does however support the likelihood of this 

hypothesis, and future studies should revisit this particular test of our hypothesis. Several factors might explain 

the current null-finding for the relation between TBR and attentional control. Participants in this study were 

preselected on fMRI inclusion criteria, and more than half of the sample was male, whereas previous participant 

samples were predominantly female. Furthermore, a positive relation between trait anxiety and baseline TBR was 

found, which contradicts the occasionally-found negative relation between these two variables (see Angelidis et 
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Figure 4.3. Scatterplot of the significant relation between the MW-related changes in frontal EEG theta beta ratio 

(TBR; x-axis) and the corresponding changes in ECN functional connectivity (y-axis); r(23) = -0.58, p = 0.002.  

Spearman’s ranked order correlation (insensitive to outliers) was also significant; Spearman’s r(23) = -0.54, p = 

0.006).  The plot shows log-transformed data. 
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study.  

 The current data additionally show that the difference score of TBR during controlled versus 

uncontrolled thought was positively correlated to a baseline measure of resting state TBR (as a statistical trend, 

but note that one-sided testing of this directional hypothesis would seem appropriate and would confirm the 

hypothesis). Whereas resting state TBR previously remained a ‘black box’, we suggest that people with less 

cognitive control experience more frequent and/or more profound states of uncontrolled thought during the 

typical EEG measurements of several minutes at rest, as individual differences between mind wandering and 

cognitive control are correlated (Christoff et al., 2003; Mason et al., 2007; McVay & Kane, 2009; Smallwood, 2013; 

Unsworth & McMillan, 2014). Because the relation between resting state TBR and the MW-related TBR increase 

was only marginally significant, this hypothesis needs to be revisited in a more powerful study with a larger 

sample. Unexpectedly, the often-observed negative correlation between TBR and self-reported (trait) attentional 

control was not observed in the present sample and our mediation hypothesis could not be tested. The observed 

positive correlation between MW-related TBR and resting state TBR does however support the likelihood of this 

hypothesis, and future studies should revisit this particular test of our hypothesis. Several factors might explain 

the current null-finding for the relation between TBR and attentional control. Participants in this study were 

preselected on fMRI inclusion criteria, and more than half of the sample was male, whereas previous participant 

samples were predominantly female. Furthermore, a positive relation between trait anxiety and baseline TBR was 

found, which contradicts the occasionally-found negative relation between these two variables (see Angelidis et 
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al., 2018; Putman et al., 2010) and suggests that the current sample differed in some relevant aspect from previous 

samples. Alternatively, the eyes-closed only TBR assessment in this study (resting state TBR is typically based on 

eyes-open and –closed measurement) might explain this null-finding for the TBR-attentional control relation.  

 Our fMRI data during the same task, collected on another day, showed that functional connectivity in the 

ECN was lower during MW compared to controlled thought periods, and that connectivity in the DMN was 

higher during MW compared to controlled thought periods. The DMN includes the posterior cingulate, medial 

PFC, parahippocampal gyrus and the angular gyrus. Functional activity and connectivity within this network was 

found to be high during task unrelated thoughts (Stawarczyk et al., 2011), and also to directly relate to MW 

(Karapanagiotidis et al., 2017; Smallwood et al., 2008). Also, a recent study of Delaveau et al. (2017) found that 

depressed out-patients had a decreased negative functional connectivity (anticorrelation) between the DMN and 

the salience-network when ruminating, as compared to focused-control. They also found an increased 

anticorrelation between the DMN and the so called task-positive network during focused-control. The latter 

network is functionally related to the ECN and involves working memory processes and attention directed to the 

external world. The ECN that was observed in the current study showed stronger functional connectivity after 

than before the button-press. The ECN that was selected for this study was as defined by Smith et al., (2009), and 

covers several frontal areas including the dorsolateral PFC (dl-PFC), anterior cingulate and the para-cingulate. This 

ECN is based on a broad scope of prior (fMRI) research defining executive control. Functional MRI studies showed 

that areas like the lateral prefrontal cortex, dl-PFC, ACC, inferior frontal junction, as well as parietal regions are all 

involved in executive control functions as described by Miyake et al., (2000): attentional inhibition and shifting 

and the updating of working memory representations. 

 Crucially, changes in EEG dynamics in this study were related to fluctuations in the ECN, which, for the 

first time, directly supports the notion that TBR dynamics are related to functional connectivity in brain networks 

involved in executive cognitive control (the relation between TBR change and DMN change of a near medium 

effect size was in the predicted direction, but non-significant). The fMRI results from our study thus demonstrate 

that the transition between MW episodes and episodes of controlled thoughts (and meta-cognitive awareness) as 

measured with the breath-counting task, is associated with increased connectivity between brain areas that have 

been convincingly shown to be crucial for attentional control and executive cognitive processing. The observed 

relation between MW- related changes in TBR and ECN functional connectivity strengthens previous 

conceptualizations of TBR as reflecting voluntary top-down processes of executive control (including attentional 

control), mediated by (dorso-lateral) PFC, over bottom-up processes from limbic areas (Angelidis et al., 2018; 

Angelidis et al., 2016; Bishop, 2008; Knyazev, 2007; Schutter & Knyazev, 2012). For instance, recent studies from our 

lab reported that TBR moderated automatic attentional threat-biases as measured by a dot probe task (Angelidis 

et al., 2018; van Son et al., 2018a), and by an emotional threat interference task (van Son et al., 2018b) in the 

manner predicted by theories explaining the role of catecholamines in PFC mediated executive functioning 

(Arnsten, 2009; Cools & D’Esposito, 2011) and theoretical models describing the role of cognitive control over 

such automatic attentional biases to threat (see Mogg & Bradley, 1998, 2016). It has been suggested that exposure 

to such acute threat prompts a reallocation of resources to the salience network at the cost of the executive 
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control network (Hermans, Henckens, Joëls, & Fernández, 2014). Also, worry (noticeably increased in affective 

disorders of anxiety and depression; see Brosschot, Gerin, & Thayer, 2006; Rood, Roelofs, Bögels, Nolen-Hoeksema, 

& Schouten, 2009, for reviews) represents biased internal activation of threatening cognitions in working memory, 

and shares mechanisms with biased attention (Hirsch & Mathews, 2012). Worry can be seen as self-generated off-

task thought, and is sometimes referred to as a ‘negative form’ of MW (Ottaviani et al., 2015). Our current findings 

support the suggestion that TBR’s role in regulation of automatic attentional threat bias reflects such interplay 

between bottom-up, mainly sub-cortical, and top-down prefrontal cortical networks (Hermans et al., 2014) as first 

suggested by Schutter and van Honk (Schutter & Van Honk, 2005b) and Knyazev (2007), and supported by various 

studies of our own and other labs (Angelidis et al., 2018; Angelidis et al., 2016; Belyavin & Wright, 1987; Clarke, 

Barry, McCarthy, & Selikowitz, 2001; Keune et al., 2017; Massar et al., 2012; Massar et al., 2014; Morillas-Romero, 

Tortella-Feliu, Bornas, & Putman, 2015; Putman et al., 2010, 2014; Sari et al., 2016; Schutter & Van Honk, 2005b; van 

Son et al., 2018a; Tortella-Feliu et al., 2014; van Son et al., 2018b; Wischnewski, Zerr, & Schutter, 2016). Our current 

findings further underline the importance of TBR in executive functions and its possible applicability when 

investigating these. TBR may be used as a marker of MW-related changes in brain activity and can likely be very 

useful for the study of MW (Smallwood & Schooler, 2006) and inattention (Jap, Lal, Fischer, & Bekiaris, 2009; Lorist 

et al., 2009). 

 Interestingly, the ERSP derived spectral plot and the functional connectivity plot (see Figures 4.1 and 

4.2) revealed that after a ‘drop’ that started just before the button press, already within the post-button press 

window of ~6 s, TBR seems to be going up again, and also connectivity of ECN seems to quickly return towards 

pre- button press values. For EEG, this was previously observed (van Son et al., 2018c), and explorative post-hoc 

tests (not reported) confirmed this temporal pattern for TBR/ECN connectivity. This could possibly indicate that 

individuals start to lapse back into a new MW episode again within our defined window of 1.7 to 6.1 s seconds 

after the button press, but that seems unlikely, so shortly after their becoming aware of mind wandering. A 

potentially more interesting speculation is that the focused periods (controlled thought) might represent a short 

hypervigilant meta-awareness (realising that one lost count and was mind wandering, and subsequently 

increasing the use of executive resources for goal-directed monitoring of breath counting), contributing to the 

frontal TBR change pre- versus post-button press (see also van Son et al., 2018c). This would be in line with 

literature on EEG changes in theta and increased hypervigilance after error realization (Hollins et al., 2009; 

Weymar, Keil, & Hamm, 2014). Future studies could take this speculation into account by examining a shorter 

post-button press period. 

    A potential limitation of this study is that the EEG and fMRI measurement took place several days apart 

(M = 2.8 days). Simultaneous testing of EEG and fMRI would be even more powerful. However, the fact that we 

did find the predicted correlation between changes in TBR and fMRI measures validates the robustness of our 

method, and of TBR and its functional neural correlates. Another noteworthy issue is that the breath-counting 

MW method as used in this study and in van Son et al. (2018c), (see also Braboszcz & Delorme, 2011) has the 

potential limitation of relying on introspection. Since the MW episodes that are examined are self-reported and in 

close temporal proximity of this self-reported awareness, their underlying brain activity might not represent all 
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MW-related brain activity. Future studies might correlate EEG and/or connectivity dynamics of this method with 

methods of probing MW that do not solely rely on self-report. On a related note, it might be argued that 

participants who were better capable of detecting their own MW episodes pressed the button more often, 

resulting in data being driven by these participants. This could then potentially imply that our findings are not 

similarly representative for people with good versus poor meta-attentional introspective awareness. However, this 

alternative explanation seems ruled out by the absence of significant correlations between the numbers of 

button presses and the observed effects of MW on EEG and fMRI measures.   

 In sum, the present study importantly contributes to research into TBR as an electrophysiological marker 

of executive control. Our findings provide clear indications of the neuropsychological functional nature of TBR as 

well as its neural underpinnings, something that was much needed after several decades of TBR research. This 

increases our understanding of TBR’s relation to psychiatric symptomatology and more firmly establishes frontal 

TBR as a useful and easy, low-cost tool in the study of executive control in normal as well as abnormal psychology. 
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ABSTRACT 

Background: a growing number of studies suggest that EEG theta/beta ratio (TBR) is inversely related to executive 

cognitive control. Neurofeedback training aimed at reducing TBR (TBR NFT) might provide a tool to study 

causality in this relation and might enhance human performance. 

Goal: to investigate whether TBR NFT lowers TBR in healthy participants 

Method: Twelve healthy female participants were assigned (single blind) to one of three groups. Groups differed 

on baseline durations and one group received only sham NFT. TBR NFT consisted of eight or fourteen 25-minutes 

sessions. 

Results: No evidence was found that TBR NFT had any effect on TBR.  

Conclusions: The current TBR NFT protocol is ineffective. This replicates a previous study with a different protocol. 

TBR NFT may not be effective in healthy participants. 
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Resting state encephalographic (EEG) signals are composed of different frequency components, many of which 

are found to be relatively stable over time (Williams, Simms, Clark, Paul, Rowe & Gordon, 2005). Specific spectrum 

components reflect functional neural activity as an electrophysiological correlate with certain behaviors (Hofman 

& Schutter, 2012; Sutton & Davidson, 2000). For example, the ratio between activity in the theta band (4-7 Hz) and 

activity in the beta band (13-30 Hz), called theta/beta ratio (TBR), has been related to different aspects of cognitive 

control and motivated decision making (Schutter & van Honk 2005a; Massar, Rossi, Schutter & Kenemans, 2012; 

Massar, Kenemans & Schutter, 2014), to attentional control in healthy young adults (Putman, van Peer, Maimari & 

van der Werff, 2010; Putman, Verkuil, Arias-Garcia, Pantazi & van Schie, 2014; Angelidis, Schakel, van der Does & 

Putman., 2016) and to reversal learning (Wischnewski, Zerr & Schutter, 2016). Additionally, a higher baseline TBR 

was found to correlate to a stronger decline in cognitive control after stress-induction (Putman et al., 2014). TBR 

has a high test-retest reliability and predicts attentional control scores over a one-week interval (Angelidis et al., 

2016). All in all, TBR is likely a stable electrophysiological marker of executive control. 

 Attentional control refers to the capacity to efficiently choose where to pay attention to (Posner & 

Petersen, 1990). When attentional control fails, attentional bias towards threat can be the result. This may happen 

when stress or anxiety prioritizes the processing of mildly threatening distracters. In other words, during anxious 

states, bottom-up processing of threatening distracters is facilitated, while top-down executive functions are 

inhibited (Derakshan & Eysenck, 2009). Furthermore, executive control can be decreased by distracting thoughts 

that accompany stress or anxiety, impairing working memory (Coy, O'Brien, Tabaczynski, Northern, Carels, 2011; 

Eysenck, Derakshan, Santos, Calvo, 2007). This is in line with the widely accepted idea that test anxiety causes 

divided attention, leading to for example lower academic performance (Hembree, 1988; Duty Christian , Loftus, 

Zappi, 2016).  

 TBR was found to be related to trait attentional control (Putman et al., 2010; Putman et al., 2014; 

Angelidis, Schakel & van der Does & Putman, 2016), to resilience to the effects of stress on task performance 

(Putman et al., 2014), to down regulation of negative affect (Tortella-Feliu , Morillas-Romero, Balle, Llabrés, Bornas, 

Putman, 2014) and to regulation of automatic attentional bias to threat; (Angelidis, Hagenaars, van der Does, van 

Son & Putman, 2018). The study of TBR is therefore potentially interesting for a range of phenomena, conditions 

and applications, such as stress-cognition interactions, anxious psychopathology or human performance 

enhancement. Experimentally manipulating TBR could give further insights in causal relations between this EEG 

marker, cognitive control and stress effects, as well as possibly pave the way for future development of 

interventions.  

 A method to induce changes in TBR is neurofeedback training (NFT). NFT is a procedure in which 

participants may implicitly learn to gain control over particular aspects of their EEG signal. Providing online 

feedback on people’s EEG spectrum while asking them indirectly to increase or decrease power in certain 

frequency bands (e.g. by keeping a video running) can eventually lead to the ability to do this (Vernon, 2005). An 

increasing number of studies have reported positive effects of NFT in neurological and psychological disorders 

(Marzbani et al., 2016) as well as areas like performance enhancement (for a review, see Gruzelier, 2014a) 

optimized performance in sports (Graczyk et al., 2014), cognitive control (Keizer, Verment & Hommel, 2010), and 
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ABSTRACT 

Background: a growing number of studies suggest that EEG theta/beta ratio (TBR) is inversely related to executive 

cognitive control. Neurofeedback training aimed at reducing TBR (TBR NFT) might provide a tool to study 

causality in this relation and might enhance human performance. 

Goal: to investigate whether TBR NFT lowers TBR in healthy participants 

Method: Twelve healthy female participants were assigned (single blind) to one of three groups. Groups differed 

on baseline durations and one group received only sham NFT. TBR NFT consisted of eight or fourteen 25-minutes 

sessions. 

Results: No evidence was found that TBR NFT had any effect on TBR.  

Conclusions: The current TBR NFT protocol is ineffective. This replicates a previous study with a different protocol. 

TBR NFT may not be effective in healthy participants. 
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Resting state encephalographic (EEG) signals are composed of different frequency components, many of which 

are found to be relatively stable over time (Williams, Simms, Clark, Paul, Rowe & Gordon, 2005). Specific spectrum 

components reflect functional neural activity as an electrophysiological correlate with certain behaviors (Hofman 

& Schutter, 2012; Sutton & Davidson, 2000). For example, the ratio between activity in the theta band (4-7 Hz) and 

activity in the beta band (13-30 Hz), called theta/beta ratio (TBR), has been related to different aspects of cognitive 
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van der Werff, 2010; Putman, Verkuil, Arias-Garcia, Pantazi & van Schie, 2014; Angelidis, Schakel, van der Does & 

Putman., 2016) and to reversal learning (Wischnewski, Zerr & Schutter, 2016). Additionally, a higher baseline TBR 

was found to correlate to a stronger decline in cognitive control after stress-induction (Putman et al., 2014). TBR 

has a high test-retest reliability and predicts attentional control scores over a one-week interval (Angelidis et al., 

2016). All in all, TBR is likely a stable electrophysiological marker of executive control. 

 Attentional control refers to the capacity to efficiently choose where to pay attention to (Posner & 

Petersen, 1990). When attentional control fails, attentional bias towards threat can be the result. This may happen 

when stress or anxiety prioritizes the processing of mildly threatening distracters. In other words, during anxious 

states, bottom-up processing of threatening distracters is facilitated, while top-down executive functions are 

inhibited (Derakshan & Eysenck, 2009). Furthermore, executive control can be decreased by distracting thoughts 

that accompany stress or anxiety, impairing working memory (Coy, O'Brien, Tabaczynski, Northern, Carels, 2011; 

Eysenck, Derakshan, Santos, Calvo, 2007). This is in line with the widely accepted idea that test anxiety causes 

divided attention, leading to for example lower academic performance (Hembree, 1988; Duty Christian , Loftus, 

Zappi, 2016).  

 TBR was found to be related to trait attentional control (Putman et al., 2010; Putman et al., 2014; 

Angelidis, Schakel & van der Does & Putman, 2016), to resilience to the effects of stress on task performance 

(Putman et al., 2014), to down regulation of negative affect (Tortella-Feliu , Morillas-Romero, Balle, Llabrés, Bornas, 

Putman, 2014) and to regulation of automatic attentional bias to threat; (Angelidis, Hagenaars, van der Does, van 

Son & Putman, 2018). The study of TBR is therefore potentially interesting for a range of phenomena, conditions 

and applications, such as stress-cognition interactions, anxious psychopathology or human performance 

enhancement. Experimentally manipulating TBR could give further insights in causal relations between this EEG 

marker, cognitive control and stress effects, as well as possibly pave the way for future development of 

interventions.  

 A method to induce changes in TBR is neurofeedback training (NFT). NFT is a procedure in which 

participants may implicitly learn to gain control over particular aspects of their EEG signal. Providing online 

feedback on people’s EEG spectrum while asking them indirectly to increase or decrease power in certain 

frequency bands (e.g. by keeping a video running) can eventually lead to the ability to do this (Vernon, 2005). An 

increasing number of studies have reported positive effects of NFT in neurological and psychological disorders 

(Marzbani et al., 2016) as well as areas like performance enhancement (for a review, see Gruzelier, 2014a) 

optimized performance in sports (Graczyk et al., 2014), cognitive control (Keizer, Verment & Hommel, 2010), and 
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situations with counterproductive interactions between stress and cognition, such as music performance under 

stressful conditions (Egner & Gruzelier, 2003). NFT has also been applied for reducing symptoms of Attention 

Deficit Hyperactivity Disorder (ADHD). ADHD has very often been associated with high TBR (for review and meta-

analysis, see Arns et al., 2013; Barry, Clarke & Johnstone, 2003)  and NFT targeting TBR has been found to 

successfully reduce TBR and ADHD-related symptoms in individuals diagnosed with ADHD (e.g. hyperactivity, 

impaired attention; e.g. Butnik, 2005; Leins et al., 2007; Lubar et al., 1995; Kouijzer, de Moor, Gerrits, Congedo and 

van Schie, 2009; Janssen, Bink, Weeda, Geladé, van Mourik, Maras & Oosterlaan, 2016; for a review see Vernon, 

2005).  

 The study of the potential beneficial effects of TBR-reducing NFT seems warranted given the 

abovementioned relations between TBR and various psychological regulatory constructs. However, because we 

believe it is imperative to first ascertain that indeed reliable changes in TBR by NFT can be observed, we selected 

healthy participants with mildly elevated TBR. We aimed to investigate whether NFT induces changes in TBR in 

people with mildly elevated TBR but who do not have a clinical diagnosis of psychopathology. The primary 

outcome measure of this study was changes in the targeted EEG parameters. These changes are likely easier to 

detect and more consistent than changes at the more multifaceted and complex behavioral level.  

 Doppelmayr and Weber (2011) previously investigated whether a TBR NFT protocol exerts the intended 

effects on the EEG spectrum level in healthy individuals, not selected on TBR level. The effect of the NFT TBR 

training on its trained EEG indices was compared to the effect of an NFT protocol training the ‘Sensori- Motor 

Rhythms’ (SMR; 12-15 Hz) and a sham-NFT with daily changing frequency bands. Healthy individuals who 

received the SMR training protocol were able to significantly modulate their EEG in the trained frequency band, 

whereas individuals who received the TBR or sham protocol were not. To our knowledge, this is the only study to 

date that directly investigated TBR NFT in healthy individuals by primarily looking at the direct effects on the EEG 

parameters of interest. We aimed to replicate and extend Doppelmayr and Weber’s findings by testing in an 

independent study again if TBR can be changed.  

 Our hypothesis that a TBR NFT can induce changes in EEG for individuals with mildly elevated TBR has 

not been studied extensively yet. Subjecting participants from this population to a very lengthy active NFT TBR 

training is demanding on the participants and could potentially cause unknown side effects. The best approach 

would be to study a small sample in depth, by thoroughly inspecting effects of active-NFT in each individual per 

session. We therefore employed a multiple baseline case series design. This design was chosen in order to closely 

examine any possible change in TBR at the level of the studied individuals so as not to overlook possible leads to 

increase NFT effectiveness and to minimize the chance of prematurely ruling out potential effectiveness of NFT 

for our purposes. A multiple baseline case series design involves the measurement of multiple persons both 

before and after an intervention (Watson & Workman, 1981). In this design the start of the intervention is varied 

sequentially across individuals or small groups of individuals. During the baseline phase before intervention, the 

behavior or measure of interest is measured a number of times to observe its natural variation over time. When a 

change only takes place shortly after a specific intervention is introduced and not following a different 

intervention, the change can be attributed to the intervention (Baer et al., 1968; Kinugasa et al., 2004; Koehler & 
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Levin, 2000). A frequently used method in a case series design is visual inspection, which provides a reliable 

alternative for statistical tests for detecting changes by intervention, when sample sizes are too small for good 

statistical power (Fisher et al., 2003). 

 There are other, mainly ethical benefits to the smaller number of sessions required for a case series 

design. First of all, executing a controlled study with large sample sizes (see Cohen et al., 2014) places a lot of 

burden on the test-participants and implies a big investment of societal resources that may not be warranted yet. 

Additionally, nothing is known about possible negative side-effects in our intended population although the 

literature does suggest that such effects might exist. Low TBR for example has been related to low approach-

driven or hedonically motivated behavior as measured with the IOWA gambling task (which has been associated 

with depression and anxiety; Cella, Dymond & Cooper, 2010; Massar et al., 2012; Massar et al., 2014; Mueller, 

Nquyen, Ray, Borkovec, 2009; Schutter & van Honk, 2005) and as measured with the self-report BIS/BAS scale 

(Putman et al., 2010; Carver & White, 1994). Also, two studies (Putman et al., 2010; Angelidis et al., 2016) 

demonstrate a negative association between TBR and self-reported negative, anxious affect as measured with the 

State-Trait Anxiety Inventory (STAI-State; Spielberger, 1983; van der Ploeg, Defares & Spielberger, 1980). Finally, 

one study (Enriquez-Geppert et al., 2014) has reported beneficial effects of working memory performance of a 

theta-only upregulation using NFT in healthy participants. All in all, at this stage of TBR NFT research in healthy 

adults, where side effects are not yet thoroughly investigated but cannot be ruled out, applying this intervention 

in a large group of participants and over a long time period is not yet defensible.  

  We assessed whether NFT reduces TBR in healthy individuals with mildly elevated TBR. TBR was the 

primary outcome; self-reported attentional control and state anxiety were assessed as secondary outcomes and 

to measure potentially unwanted side effects of NFT. A multiple baseline design was used employing various 

durations of baseline, sham-NFT and active-NFT sessions.  We expected to see a reduction of TBR sometime after 

switching from measurement-only sessions to active treatment. We expected an absence of such measurement-

only-controlled changes in a third sham-only group and, finally, we expected that TBR during the final sessions 

would be clearly lower in the two active NFT groups than in the sham-only group. Our primary interest was 

changes in TBR within the training sessions but we also looked at changes in TBR during resting state 

measurements at the start of the sessions (between-sessions changes). Finaly, we performed in-depth exploration 

of the time course of TBR within and between training sessions, exploiting the case series’ benefits of temporally 

fine grained observation. 

 

      Methods 

Participants 

  Twelve female participants (age 19-23 years; M = 21; SD = 1.04) were included by preselection on 

elevated resting state frontal TBR from three previous studies from our lab (in which no attempts to change EEG 

measures were made in any way). Because of the low number of men in these previous studies, only female 

participants were included in the current study. The preselection was done based on frontal TBR measures 

obtained from previous studies in our lab in unselected female participants who left contact details for further 
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outcome measure of this study was changes in the targeted EEG parameters. These changes are likely easier to 

detect and more consistent than changes at the more multifaceted and complex behavioral level.  
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training on its trained EEG indices was compared to the effect of an NFT protocol training the ‘Sensori- Motor 

Rhythms’ (SMR; 12-15 Hz) and a sham-NFT with daily changing frequency bands. Healthy individuals who 

received the SMR training protocol were able to significantly modulate their EEG in the trained frequency band, 

whereas individuals who received the TBR or sham protocol were not. To our knowledge, this is the only study to 

date that directly investigated TBR NFT in healthy individuals by primarily looking at the direct effects on the EEG 
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training is demanding on the participants and could potentially cause unknown side effects. The best approach 

would be to study a small sample in depth, by thoroughly inspecting effects of active-NFT in each individual per 

session. We therefore employed a multiple baseline case series design. This design was chosen in order to closely 
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change only takes place shortly after a specific intervention is introduced and not following a different 

intervention, the change can be attributed to the intervention (Baer et al., 1968; Kinugasa et al., 2004; Koehler & 
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 There are other, mainly ethical benefits to the smaller number of sessions required for a case series 
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burden on the test-participants and implies a big investment of societal resources that may not be warranted yet. 

Additionally, nothing is known about possible negative side-effects in our intended population although the 

literature does suggest that such effects might exist. Low TBR for example has been related to low approach-

driven or hedonically motivated behavior as measured with the IOWA gambling task (which has been associated 
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demonstrate a negative association between TBR and self-reported negative, anxious affect as measured with the 

State-Trait Anxiety Inventory (STAI-State; Spielberger, 1983; van der Ploeg, Defares & Spielberger, 1980). Finally, 

one study (Enriquez-Geppert et al., 2014) has reported beneficial effects of working memory performance of a 

theta-only upregulation using NFT in healthy participants. All in all, at this stage of TBR NFT research in healthy 

adults, where side effects are not yet thoroughly investigated but cannot be ruled out, applying this intervention 

in a large group of participants and over a long time period is not yet defensible.  

  We assessed whether NFT reduces TBR in healthy individuals with mildly elevated TBR. TBR was the 

primary outcome; self-reported attentional control and state anxiety were assessed as secondary outcomes and 

to measure potentially unwanted side effects of NFT. A multiple baseline design was used employing various 
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switching from measurement-only sessions to active treatment. We expected an absence of such measurement-

only-controlled changes in a third sham-only group and, finally, we expected that TBR during the final sessions 
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changes in TBR within the training sessions but we also looked at changes in TBR during resting state 

measurements at the start of the sessions (between-sessions changes). Finaly, we performed in-depth exploration 
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      Methods 

Participants 

  Twelve female participants (age 19-23 years; M = 21; SD = 1.04) were included by preselection on 

elevated resting state frontal TBR from three previous studies from our lab (in which no attempts to change EEG 

measures were made in any way). Because of the low number of men in these previous studies, only female 

participants were included in the current study. The preselection was done based on frontal TBR measures 

obtained from previous studies in our lab in unselected female participants who left contact details for further 
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study (N = 54). Frontal TBR was chosen as preselection outcome variable since all previous studies had frontal TBR 

as main outcome variable and this is highly correlated with central TBR (r = 0.902, p<0.001 in the current study). 

We invited participants with the highest frontal TBR for the current study. Other inclusion criteria were: age 

between 18 and 24 years; no history of neurologic or psychiatric disorders; no history or current use of drugs 

other than low to moderate alcohol use or nicotine use and no use of medication that is known to directly 

influence the central nervous system. Recruitment took place at Leiden University, The Netherlands, between 

December 2015 and February 2016. All participants signed an informed consent and were free to terminate their 

participation at any time. For monetary compensation we used an incremental pay-off scheme, including 

disproportionately larger rewards for longer participation. This pay-off scheme was applied to minimize drop-out 

from the study. The study was approved by the local ethics review board (CEP16-011413), and pre-registered at 

ClinicalTrials.gov (NCT02763618).  

 

Design 

 A single-blind case series multiple baseline design was used with a baseline (measurement-only period) 

varying prior to training onset and after training offset (Figure 5.1). Before the first lab session, the participants 

were assigned to one of three groups. Care was taken to obtain a more or less equal distribution of frontal TBR 

levels and age across the groups, but other than that the allocation to one of the three study groups was arbitrary. 

Allocation was done by the principal investigator who was not involved in the actual testing of the participants 

and had no contact with them. The experimenters that performed the study were kept blind to this allocation. All 

participants started with a three-session measurement-only phase with only a resting state EEG measurement. 

Participants in Group A continued with 14 sessions of active-NFT. Group B received six extra measurement-only 

sessions before they continued with eight active-NFT sessions. Group C received 14 sham-NFT sessions after the 

three-session measurement-only phase. A minimum of eight sessions active-NFT was applied because changes 

were usually seen around five or six 30-minute sessions in studies that found effects on theta frequency (Kao et al., 

2014; Enriquez-Geppert et al., 2014). All participants were blind to which group they were in but the 

experimenters were not blind to this for reasons of practical feasibility. During all sessions, questionnaires for state 

anxiety and state attentional control were assessed before every EEG measurement, active-NFT or sham-NFT. Our 

primary outcome variable was changes in frontal TBR within each session while our secondary outcome 

measurement was changes in frontal TBR between the sessions.  
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Figure 5.1.  Difference in session course per group.  

  

Materials 

 Self-Report Questionnaires. During the first and last session, participants completed the trait version of 

the State-Trait Anxiety Inventory (STAI-Trait; Spielberger, 1983; van der Ploeg, Defares & Spielberger, 1980) and the 

Attentional Control Scale (ACS; Derryberry & Reed, 2002). The STAI-Trait assesses trait anxiety (20 items, range 20-

80; Cronbach’s alpha = 0.89) and participants had to indicate their agreement with items like ‘I feel satisfied with 

myself’ and ‘I am a steady person’ on a four-point Likert scale. The ACS assesses self-reported attentional control in 

terms of attentional inhibition, attentional focus and the capacity to generate new thoughts (20 items, range 20-

80; Cronbach’s alpha in present study = 0.85), e.g. ‘I can quickly switch from one task to another’. Self-reported 

state anxiety and state attentional control were measured on every session using the state version of the State-

Trait Anxiety Inventory (STAI-State; Spielberger, 1983; van der Ploeg, Defares & Spielberger, 1980) and the state-

Attentional Control questionnaire (s-AC; Angelidis & Putman, manuscript in preparation).  STAI- State measures 

state anxiety at the moment of participation (20 items, range 20-80, Cronbach’s alpha = 0.91) and includes items 

like ‘I am tense’. s-AC measures attentional control at the moment of participation (6 items) and included items 

like ‘I feel very focused’ (Cronbach’s alpha = 0.84). The Behavioral Activation Scale (BAS; part of the Behavioral 

Inhibition and Activation Scale; BIS/BAS Carver & White, 1994) was assessed for the personality trait of behavioral 

activation (Cronbach’s alpha = 0.78). The BAS consists of the subscales BAS Reward, BAS Drive and BAS Fun 

Seeking but we assessed the total BAS score. STAI-t, ACS and BAS were included only to see if their scores 

changed on these measures on the first session compared to the last session to check for potential unwanted 

side-effects. STAI-s and s-AC were used to observe possible unwanted side-effects of NFT over time with a greater 

precision The questionnaires were programmed and presented using E-Prime 2.0 software (Psychology Software 

Tools, Pittsburgh, PA).  

 

 EEG recording and Neurofeedback. The TBR Neurofeedback signal was measured and applied by a 

NeXus-4 amplifier and recording system with BioTrace Software (Mind Media B.V., The Netherlands). The NeXus-4 

amplifier is a DC amplifier in which EEG is sampled at 1024 Hz. One NeXus Ag/AgCl disposable electrode was 

applied on the participant’s scalp between locations Cz and FCz. A ground and a reference electrode were placed 
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study (N = 54). Frontal TBR was chosen as preselection outcome variable since all previous studies had frontal TBR 

as main outcome variable and this is highly correlated with central TBR (r = 0.902, p<0.001 in the current study). 
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between 18 and 24 years; no history of neurologic or psychiatric disorders; no history or current use of drugs 
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were assigned to one of three groups. Care was taken to obtain a more or less equal distribution of frontal TBR 

levels and age across the groups, but other than that the allocation to one of the three study groups was arbitrary. 

Allocation was done by the principal investigator who was not involved in the actual testing of the participants 

and had no contact with them. The experimenters that performed the study were kept blind to this allocation. All 
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Participants in Group A continued with 14 sessions of active-NFT. Group B received six extra measurement-only 

sessions before they continued with eight active-NFT sessions. Group C received 14 sham-NFT sessions after the 

three-session measurement-only phase. A minimum of eight sessions active-NFT was applied because changes 

were usually seen around five or six 30-minute sessions in studies that found effects on theta frequency (Kao et al., 

2014; Enriquez-Geppert et al., 2014). All participants were blind to which group they were in but the 

experimenters were not blind to this for reasons of practical feasibility. During all sessions, questionnaires for state 

anxiety and state attentional control were assessed before every EEG measurement, active-NFT or sham-NFT. Our 

primary outcome variable was changes in frontal TBR within each session while our secondary outcome 
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80; Cronbach’s alpha in present study = 0.85), e.g. ‘I can quickly switch from one task to another’. Self-reported 

state anxiety and state attentional control were measured on every session using the state version of the State-

Trait Anxiety Inventory (STAI-State; Spielberger, 1983; van der Ploeg, Defares & Spielberger, 1980) and the state-

Attentional Control questionnaire (s-AC; Angelidis & Putman, manuscript in preparation).  STAI- State measures 

state anxiety at the moment of participation (20 items, range 20-80, Cronbach’s alpha = 0.91) and includes items 

like ‘I am tense’. s-AC measures attentional control at the moment of participation (6 items) and included items 

like ‘I feel very focused’ (Cronbach’s alpha = 0.84). The Behavioral Activation Scale (BAS; part of the Behavioral 

Inhibition and Activation Scale; BIS/BAS Carver & White, 1994) was assessed for the personality trait of behavioral 

activation (Cronbach’s alpha = 0.78). The BAS consists of the subscales BAS Reward, BAS Drive and BAS Fun 

Seeking but we assessed the total BAS score. STAI-t, ACS and BAS were included only to see if their scores 

changed on these measures on the first session compared to the last session to check for potential unwanted 

side-effects. STAI-s and s-AC were used to observe possible unwanted side-effects of NFT over time with a greater 

precision The questionnaires were programmed and presented using E-Prime 2.0 software (Psychology Software 

Tools, Pittsburgh, PA).  

 

 EEG recording and Neurofeedback. The TBR Neurofeedback signal was measured and applied by a 

NeXus-4 amplifier and recording system with BioTrace Software (Mind Media B.V., The Netherlands). The NeXus-4 

amplifier is a DC amplifier in which EEG is sampled at 1024 Hz. One NeXus Ag/AgCl disposable electrode was 

applied on the participant’s scalp between locations Cz and FCz. A ground and a reference electrode were placed 
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on the jaw and right-ear mastoid respectively. Additionally, nine extra in-cap electrodes (BioSemi, The 

Netherlands) were added on locations F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, with one reference electrode on the left-ear 

mastoid, during every session. Data from these electrodes were collected with the Biosemi ActiveTwo DC 

amplifier. Both devices were active during all measurements, except during the sham-NFT sessions; then both the 

NeXus and the BioSemi system were attached but only the BioSemi system was active.  Each session had a four-

minute baseline measurement and a 25-minute measurement-only, active-NFT or sham-NFT. Active and sham 

neurofeedback were provided by BioTrace Software. Per time window of 15 seconds, individualized thresholds 

were automatically reset in a way that, based on the previous 15 seconds, the feedback signal would likely 

indicate successful performance for +/- 80% of the time, resulting in a standardized NFT protocol. Before feedback 

onset, measurement started 15 seconds earlier to determine the thresholds. When the EEG theta power went 

below the threshold, and the beta power above its threshold simultaneously, the participant was rewarded by the 

continuation of a video (a simulation of an airplane flying over a mountainous terrain). If they failed to reach these 

thresholds, the video stopped. Theta and beta amplitudes were online filtered with a 4 Hz high-pass and 7 Hz 

low-pass filter for theta and a 13 Hz high-pass and 30 Hz low-pass filter for beta. Online calculation of theta and 

beta amplitude (=feedback resolution) was done in epochs of 125 milliseconds using a moving time window; at 

every data sample (sampling rate was 256 per second) calculation was done over the last 125 milliseconds of that 

sample. These amplitude values were calculated by taking the root mean square (RMS) of the band-pass filtered 

data. Since online Fast Fourier transformation needs at least 2 seconds to calculate amplitudes; RMS is a 

representative and practical method of online calculation (Nitschke, Miller and Cook, 1998). Feedback by video 

continuation therefore appeared continuously when theta and beta were below and above the threshold for 125 

milliseconds. The theta and beta amplitudes were visualized in separate bar graphs on the screen, next to the 

video. A third ‘inhibit’ bar represented voluntary eye blinks or muscle artifacts. The filter of this inhibit band was 

set at 2-3 Hz for eyeblinks and above 60 Hz for muscle artifacts. If the amplitude of the eyeblinks or muscle 

artifacts exceeded its threshold, no feedback was provided. The theta bar was a fluctuating bar in blue and beta a 

fluctuating bar in red. The participants were instructed which bar (beta) needed to go up above a threshold (small 

black stripe) and which bar (theta) needed to go down below a threshold, and in this way, they had to keep the 

video running.  No instructions about how to influence their EEG spectrum were given. With respect to this, the 

participants were only told to ‘sit still’ and ‘not to tense their face or jaws’ (to reduce interference from muscle 

activity and to prevent increased beta activity resulting from such volitional motoric action). 

 The sham-NFT was a previously recorded active-NFT session of a participant from Group A (received 14 

active-NFT sessions). Every participant in Group C (sham-NFT) was matched to another participant in group A and 

received the active-NFT video per session of their matched participant. That is, participants in Group C at session 4 

saw the video and bars moving as if it was caused by their own EEG, however they actually watched the feedback 

that their matched participant from Group A in session 4 received. In this way, participants receiving sham-NFT 

were not able to influence the theta or beta bar graphs nor the continuation of the video. By matching every 

participant in Group C to a real participant in Group A, we kept the sham-NFT realistic for the participants in 

Group C, providing an accurate ‘yoked control’ procedure controlling for possible effects of motivation as a result 

 120 

of the received feedback, for instance.    

 

Procedure 

 General procedure. Testing took place at Leiden University, between February 2016 until May 2016. All 

participants visited the lab 17 times. In all sessions, participants received state questionnaires, a four-minute EEG 

passive baseline resting state measurement followed by either a measurement-only, an active NFT or a sham-NFT 

(all 25 minutes; for an overview see Figure 5.1). Sessions were planned minimally three times a week with a 

maximum of five times a week. Every session took place on a separate day with a maximum of three days in 

between. One session approximately took between 60-70 minutes. The complete experiment therefore took 17-

20 hours per participant in approximately four weeks. At the end of every session, all participants performed a 10-

minute cognitive control task (Bishop, 2009). We included this task to pilot its extensively repeated use in a 

multiple baseline design for future studies. Results on this task are irrelevant for the current hypotheses and 

therefore the task and its outcomes will not be further reported.  

 

 First session. During the first session, participants were asked to sign an informed consent in which they 

were informed about the pay-off scheme regarding financial compensation.  After signing the informed consent, 

a questionnaire about general and medical information was completed including questions about drug use and 

health. Participants started with the STAI-Trait, ACS, BAS, STAI-State and s-AC; in that order. Subsequently, 

preparation of the EEG equipment started and the participants continued with the four-minute passive baseline 

measurement followed by a 25 minute ‘measurement-only’ part.  

 

 Session 2 – 16. The second session till the sixteenth session, all maintained the same procedure, except 

that the fourth session till the sixteenth session could either include a measurement-only, an active NFT plus EEG 

measurement or sham-NFT plus EEG measurement (see Figure 5.1). Participants always started with completing 

the STAI-State and s-AC. This was followed by the EEG four-minute passive baseline measurement and the 25 

minute measurement-only (session 2 and 3 for all groups and 2 – 9 for Group B), active-NFT (session 4 – 16 for 

Group A and session 10-16 for Group B) or sham-NFT (session 4-16 for Group C).  

 

 Last session (17). The last session started with completion of the STAI-Trait, BAS and trait ACS 

questionnaires, followed again by the STAI-State and s-AC questionnaires, EEG four-minute passive baseline 

measurement and the 25-minute active NFT or sham-NFT. All participants ended with a funneled debriefing 

interview. In this interview the participants were asked how they experienced the study, what kind of mental 

methods they used to become successful in the training, and which experimental group they thought they were 

in and why. After completing the interview, participants received a financial reward for their participation.  

 

Data Reduction and analysis 

 Data processing was done using Brain Vision Analyzer V2.0.4 (Brain Products GmbH, Germany). Data was 
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fluctuating bar in red. The participants were instructed which bar (beta) needed to go up above a threshold (small 

black stripe) and which bar (theta) needed to go down below a threshold, and in this way, they had to keep the 

video running.  No instructions about how to influence their EEG spectrum were given. With respect to this, the 

participants were only told to ‘sit still’ and ‘not to tense their face or jaws’ (to reduce interference from muscle 

activity and to prevent increased beta activity resulting from such volitional motoric action). 

 The sham-NFT was a previously recorded active-NFT session of a participant from Group A (received 14 

active-NFT sessions). Every participant in Group C (sham-NFT) was matched to another participant in group A and 

received the active-NFT video per session of their matched participant. That is, participants in Group C at session 4 

saw the video and bars moving as if it was caused by their own EEG, however they actually watched the feedback 

that their matched participant from Group A in session 4 received. In this way, participants receiving sham-NFT 

were not able to influence the theta or beta bar graphs nor the continuation of the video. By matching every 

participant in Group C to a real participant in Group A, we kept the sham-NFT realistic for the participants in 

Group C, providing an accurate ‘yoked control’ procedure controlling for possible effects of motivation as a result 
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participants visited the lab 17 times. In all sessions, participants received state questionnaires, a four-minute EEG 

passive baseline resting state measurement followed by either a measurement-only, an active NFT or a sham-NFT 

(all 25 minutes; for an overview see Figure 5.1). Sessions were planned minimally three times a week with a 

maximum of five times a week. Every session took place on a separate day with a maximum of three days in 

between. One session approximately took between 60-70 minutes. The complete experiment therefore took 17-

20 hours per participant in approximately four weeks. At the end of every session, all participants performed a 10-

minute cognitive control task (Bishop, 2009). We included this task to pilot its extensively repeated use in a 

multiple baseline design for future studies. Results on this task are irrelevant for the current hypotheses and 

therefore the task and its outcomes will not be further reported.  

 

 First session. During the first session, participants were asked to sign an informed consent in which they 

were informed about the pay-off scheme regarding financial compensation.  After signing the informed consent, 

a questionnaire about general and medical information was completed including questions about drug use and 

health. Participants started with the STAI-Trait, ACS, BAS, STAI-State and s-AC; in that order. Subsequently, 

preparation of the EEG equipment started and the participants continued with the four-minute passive baseline 

measurement followed by a 25 minute ‘measurement-only’ part.  
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 Last session (17). The last session started with completion of the STAI-Trait, BAS and trait ACS 

questionnaires, followed again by the STAI-State and s-AC questionnaires, EEG four-minute passive baseline 

measurement and the 25-minute active NFT or sham-NFT. All participants ended with a funneled debriefing 

interview. In this interview the participants were asked how they experienced the study, what kind of mental 

methods they used to become successful in the training, and which experimental group they thought they were 

in and why. After completing the interview, participants received a financial reward for their participation.  
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 Data processing was done using Brain Vision Analyzer V2.0.4 (Brain Products GmbH, Germany). Data was 



Chapter 5

124
 121 

high-pass filtered at 0.1 Hz, low-pass filtered at 100-Hz and a 50-Hz notch filter was applied. The data was 

automatically corrected for ocular artifacts (Gratton, Coles & Donchin, 1983) in segments of 4 seconds. Remaining 

segments containing muscle movements, amplitudes above 200 µV or other artifacts were removed. For offline 

amplitude calculation, Fast Fourier transformation (Hamming window length 10%) was applied for theta (4-7 Hz) 

and beta (13-30 Hz) at C3, Cz, and C4 positions. Amplitude values were calculated by taking amplitude spectral 

density (µV*Hz). Amplitude squared provided the power values. Central theta and beta power was calculated by 

taking the average of C3, Cz and C4 positions, and central TBR in turn was calculated by dividing central theta 

power by central beta power. Central TBR was chosen as outcome variable of focus because the NeXus sensor for 

active-NFT was placed between Cz and FCz positions, however we have exploratively looked at frontal average 

TBR too, as well as theta, beta, beta 1 (13-20 Hz) and beta 2 (21-30 Hz) separately. All raw data are freely available 

on (https://tinyurl.com/y948dcsl).   

 For interpreting the results, primarily visual inspection was used to determine the effectiveness of the 

active-NFT. If central TBR in Group A would reduce shortly after the introduction of the active-NFT (and after a 

comparable delay across the four participants) compared to no changes in Group C, the experiment would 

provide compelling evidence for the effectiveness of active-NFT. The effect would be even more strongly 

supported if a similar reduction was seen in Group A and B (after an equal number of active-NFT sessions, 

regardless the longer duration of the baseline). These changes after onset in Group A and Group B are assumed to 

be absent in Group C, where we expected no changes. The expected change in Group B could be considered as a 

direct replication of the effect in Group A. Furthermore, we expected differences in central TBR between Group A, 

B and C at the last session compared to the first session, with Group A showing the strongest reduction in central 

TBR (after performing the most active-NFT sessions), and Group C showing the weakest reduction in central TBR 

(no active NFT sessions). Primarily, we expect to see a consistent reduction in central TBR over active-NFT 

measurements, though we have inspected the four-minute passive baseline measurements as well, despite its 

smaller chance to detect any effect of active NFT. Also, besides inspecting changes in central TBR over all sessions, 

we have inspected changes in central TBR at the end of every session (average of last five minutes) and changes 

over time (25 minutes) within sessions too, since fluctuations might have occurred across the 25 minutes that 

could remain undetected when only inspecting session averages.  

 Trait anxiety and self-reported trait attentional control were measured at the start and the end of the 

study to exploratively relate these measures to possible changes in TBR as indication of potential unwanted side-

effects. State anxiety and state-AC were assessed during every session to allow closer observation of such 

potential side effects. 
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Figure 5.2. Expected pattern of central TBR per group. Central TBR in Group A and B was expected to reduce 

some time after onset of active-NFT (session 4 for Group A and session 10 for Group B). The reduction is expected 

to be relatively constant between individuals. Central TBR in Group C was not expected to show any change over 

time because sham-NFT was introduced in session 4 instead of active-NFT. The thin black line represents the 

point of active-NFT introduction for Group A and Group B.  

 

      Results 

Participants 

 Twelve participants were selected, and all completed the 17 sessions (for a flow diagram of participant 

selection, see Figure 5.3). Age, baseline TBR and questionnaire scores per participant and per group during the 

first session are summarized in Table 3 The first baseline measurement of the selected 12 participants in the 

current study showed a frontal TBR of M = 1.51, SD = 0.76, median = 1.43). Although this was somewhat lower 

than their frontal TBR during their pre-selection measurement (M = 1.68, SD = 0.55, median = 1.47), it was still 

noticeably higher than the frontal TBR that was observed in the N=56 unselected sample that the preselection 

was based on (M = 1.26, SD = 0.54, median = 1.13) and represented the 45th-88th percentile score of this 

unselected sample. In sum, also at the time of testing, the sample had elevated frontal TBR.      
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we have inspected changes in central TBR at the end of every session (average of last five minutes) and changes 

over time (25 minutes) within sessions too, since fluctuations might have occurred across the 25 minutes that 

could remain undetected when only inspecting session averages.  

 Trait anxiety and self-reported trait attentional control were measured at the start and the end of the 

study to exploratively relate these measures to possible changes in TBR as indication of potential unwanted side-

effects. State anxiety and state-AC were assessed during every session to allow closer observation of such 

potential side effects. 
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Figure 5.3. Flow diagram of participant recruitment and testing 
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Figure 5.4(ABC). Central TBR averages per 4 minute baseline measurement per participant (lines) in group A, B 

and C. The thin black vertical lines represent when the active or sham NFT started.  

 

Passive baseline between sessions 

 Each session started with a four-minute passive baseline measurement. Figure 5.4 shows the pattern of 

the average central TBR on the four-minute passive baseline per participant. A vertical line indicates the start of 

active-NFT or sham-NFT. We hypothesized that central TBR would reduce after the onset of active-NFT (in Group 

A and Group B) but would not show a consistent decrease or increase after the onset of sham-NFT (in Group C). 
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Visual inspection provided no support for such pattern. Passive baseline central TBR did not consistently change 

during the study, although some apparently random fluctuations between sessions were observed. This was 

invariably the case for all participants in both Groups A and B. No consistent increase or decrease of baseline 

central TBR was observed at any point in time in all participants. None of the participants that received sham-NFT 

showed a consistent decrease or increase after the onset of sham-NFT (Group C).   

 

Average TBR during the active training phase of the sessions  

 Next, we inspected the pattern of average central TBR on the 25-minute measurements (measurement-

only, active-NFT or sham NFT). This pattern was visually inspected per participant and by calculating the average 

central TBR per session per participant (Figure 5.5). No consistent increase or decrease was observed in any 

participant across sessions on central TBR after active-NFT onset compared to the measurement-only or the 

sham-NFT sessions (nor for any other EEG parameter; see online data repository). Additionally, no group 

differences were observed between Group A, B, and C in central TBR pattern over sessions.  
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Figure 5.4(ABC). Central TBR averages per 4 minute baseline measurement per participant (lines) in group A, B 

and C. The thin black vertical lines represent when the active or sham NFT started.  

 

Passive baseline between sessions 

 Each session started with a four-minute passive baseline measurement. Figure 5.4 shows the pattern of 

the average central TBR on the four-minute passive baseline per participant. A vertical line indicates the start of 

active-NFT or sham-NFT. We hypothesized that central TBR would reduce after the onset of active-NFT (in Group 

A and Group B) but would not show a consistent decrease or increase after the onset of sham-NFT (in Group C). 
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Visual inspection provided no support for such pattern. Passive baseline central TBR did not consistently change 

during the study, although some apparently random fluctuations between sessions were observed. This was 

invariably the case for all participants in both Groups A and B. No consistent increase or decrease of baseline 

central TBR was observed at any point in time in all participants. None of the participants that received sham-NFT 

showed a consistent decrease or increase after the onset of sham-NFT (Group C).   

 

Average TBR during the active training phase of the sessions  

 Next, we inspected the pattern of average central TBR on the 25-minute measurements (measurement-

only, active-NFT or sham NFT). This pattern was visually inspected per participant and by calculating the average 

central TBR per session per participant (Figure 5.5). No consistent increase or decrease was observed in any 

participant across sessions on central TBR after active-NFT onset compared to the measurement-only or the 

sham-NFT sessions (nor for any other EEG parameter; see online data repository). Additionally, no group 

differences were observed between Group A, B, and C in central TBR pattern over sessions.  
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Figure 5.5(ABC). Central TBR averages during the 25-minute sessions of measurement only or active NFT or sham 

NFT training for Groups A, B and C.  

 

Last five minutes of training phase 

 The possibility exists that calculating an average over a longer period of time will obscure any delayed 

within-session effects of active-NFT. In other words, active-NFT might reduce central TBR at the end of sessions 

only, for example because the learning-process takes time. To check for this possibility, we explored changes 

between sessions in average central TBR during the last five minutes of every session. Figure 5.6A, B, and C show 

 128 

the pattern of the central TBR over sessions per participant of the averaged final 5 minutes. No clear differences 

between measurement-only, active-NFT and sham-NFT sessions became visible.  

 

 

  

  

 

 

Figure 5.6(ABC). Central TBR averages of last 5 minutes per measurement-only/active/sham NFT session per 

participant in Group A, B, or C.  
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Inspection per case 

 Finally, we examined whether any consistent change in central TBR could be detected within the 

sessions. We calculated the average central TBR per minute for every session and plotted these over time (25 

minutes on the x-axis) for each session and participant. All plots are available online (https://tinyurl.com/y948dcsl). 

Developments of central TBR over time were compared within sessions between measurement-only, active-NFT 

and sham NFT conditions. The effect of active-NFT might for example have been driven by motivation, or 

inhibited by fatigue, factors that are likely a function of the duration of a session and that are different for each 

session and participant. Visual inspection did not reveal any clear change over central TBR within the active-NFT 

sessions. We here present some detailed data for one of the ‘best cases’, showing some kind of change in central 

TBR/active-NFT effect. This concerns two out of four participants in Group B, in whom central TBR seemed to 

decrease within some active-NFT sessions compared to the measurement-only sessions. Here, we present these 

detailed data only for participant 7 (Figure 5.7C and 7D. See https://tinyurl.com/y948dcsl for all data of all 

participants). The reduction in central TBR occurred in sessions 10 and 13 but not anymore in sessions 15 or 17. 

Furthermore, central TBR always started at approximately the same value in all active NFT sessions of participant 7. 

The data therefore do not show any transfer of a learning process caused by the active-NFT intervention.   

 

 

Figure 5.7(ABCDEF). Central TBR over time for participant 7 within; session 1 (A) session 9 as the last 

measurement-only session (B), session 10 as the first active NFT session (C), session 13 and 15 as two in between 

active NFT sessions (D and E) and session 17 as the last session (F).   

 

State anxiety and state AC over time 

 To check for potential adverse effects, scores on STAI-s and s-AC were plotted for all participants over all 
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sessions and visually inspected for changes over time. The plots show that for all three groups, STAI-s and s-AC 

did not show any consistent increase or decrease over sessions (Figure 5.8A B.). Active-NFT sessions therefore did 

not seem to induce any unwanted effects on state anxiety or state attentional control. Finally, scores on trait 

anxiety, ACS and BAS scores did not show any changes as measured on the first session compared to the last 

session. These plots can be found online via https://tinyurl.com/y948dcsl. No adverse effects were observed nor 

reported by the participants.  
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Figure 5.8(AB). Scores on state anxiety (A) and state attentional control (B) per session per participant in Group A, 

B or C.  

 

Motivation and debriefing     

 All participants generally reported to be motivated performing the NFT over all sessions (M = 3.35; range 

1-4 with 4 being most motivated), although for all three Groups (A, B and C) there was a small drop in motivation 

between the 10th and the 12th session. Motivation returned to their initial level after the 12th session. All 

participants received a funneled debriefing interview after the final session of the study, and it became clear that 

two out of the four participants that received sham-NFT (Group C) were not sure whether they were in the sham-
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controlled group (60% chance of being in the sham controlled group) whilst the two other participants in Group 

C thought that they had received an active-NFT (70% chance).  

 

 

       Discussion 

In this study we aimed to reduce central TBR with NFT in healthy individuals with elevated TBR. The results 

indicate that active-NFT did not alter TBR in any way. No consistent within-session change of TBR was found on 

either the passive baseline measurement or 25-minute active training measurement nor was there any evidence 

of between-session change. This suggests that the active-NFT did not induce any changes in EEG measurements 

of interest. State anxiety and state attentional control did not show a consistent change after active-NFT onset 

either. All participants reported to remain motivated performing the active- or sham-NFT however, and 

participants that received sham-NFT indicated that they believed to have received an active-NFT.   

    The present study was a first step towards intervention studies in a healthy population with elevated 

TBR. We expected that NFT would reduce TBR in healthy participants. Changes in EEG were the primary outcome, 

as these changes are likely easier to detect and more consistent than changes at the more multifaceted and 

complex behavioral level. We used a multiple baseline case series design for a detailed study of all NFT effects.  

    Our finding that active-NFT did not induce any consistent reduction or increase in TBR in healthy 

individuals is in line with the results of Doppelmayr and Weber (2011) who performed a randomized controlled 

trial in 14 healthy participants. Thirty active-NFT sessions did not induce changes in EEG TBR or the separate theta 

or beta frequency bands. Their results do not provide explanation why the active-NFT did not alter TBR. Possibly, 

some changes were simply not detected because TBR changes were not inspected within-sessions. By using a 

multiple baseline case series design, we provide a detailed view of what precisely happened with EEG TBR over 

time after the onset of active-NFT over sessions, as well as a precise view of TBR changes within active NFT 

sessions, over the course of 25 minutes. None of our detailed observations provided any evidence that active-NFT 

had an effect on the primary outcome variable, the EEG spectrum level of TBR, replicating the results of 

Doppelmayr and Weber (2011).  

    In particular, we had the ability to visually inspect what exactly happened with TBR over time on 

different levels of the data, between all participants and all conditions. First of all, we inspected the passive 

baseline measurement, which was done in four minutes before every 25-minute active measurement. No 

consistent decrease or increase of TBR was found in any of the participants. Yet, the passive baseline 

measurement was no main outcome variable because a longitudinal change in TBR was found to be more 

difficult to achieve than a direct change in TBR (van Doren et al., 2016). The main outcome measure was average 

TBR over time per session, for which we expected a consistent decrease in central TBR with a comparable lag after 

the first active-NFT session for the two active NFT groups. No such decrease or any other consistent change in 

central TBR was observed, making it unlikely that with our NFT procedures, TBR can be reduced in healthy 

participants. If any NFT induced changes would not transfer between sessions and take a long time within-

sessions to occur, then reduced TBR might have been only visible at the end of the session, but no consistent 
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change in central TBR was observed in any of the participants in the last-five-minute averages either. Finally, it 

might have been possible that non-linear fluctuations in TBR occurred over the 25-minute active measurement, 

which would remain undetected when solely inspecting session averages. Only two participants in Group B 

showed the least bit of evidence of consistent reduction in TBR over time within the first few active NFT sessions. 

It became clear however that in their fifth active-NFT session this apparent TBR reduction was no longer 

discernable and again from this session onwards no consistent change in TBR was observed. Detailed analyses of 

data per case therefore did not show a transfer of learning caused by the active-NFT intervention in any way.  

    State anxiety and state attentional control were included for prudent use of an intervention like active-

NFT of which no details on its side effects in  a healthy population are known yet. The aim was to check carefully if 

state anxiety did not increase and state attentional control did not decrease. Plots of STAI-s and s-AC scores for all 

participants over all sessions were visually inspected on changes over time and no consistent change in either 

state anxiety or state attentional control was observed. We advise future studies to monitor unwanted effects on 

anxiety, attentional control and hedonically motivated behavior, as existing literature provides some reasons for 

concern (Massar et al., 2012; Massar et al., 2014; Putman et al., 2010; Angelidis et al., 2016). Similar arguments 

remain for the question if TBR down-training might actually reduce working memory in healthy participants (see 

Enriquez-Geppert et al. (2014)). Regarding the main research purposes of our study, the data does not provide any 

evidence for active-NFT causing changes to the EEG spectrum. We were purely interested in reducing TBR and to 

assess whether the NFT manipulation can be considered successful in doing this. Janssen et al. (2016) aimed to 

down-train TBR with NFT in children diagnosed with ADHD, and found no effects of NFT after 30 sessions on 

theta, however they found a significant increase in beta over sessions. These authors noted that this increase in 

beta activity was possibly a result of volitional motoric action as some participants reported to occasionally apply 

this during the active-NFT and cortical beta power is associated with motor control (Hammond et al., 2001).  

    When debriefing our participants, almost all indicated having used a different ‘technique’ to reduce the 

theta and increase the beta band, ranging from counting to imagining music. Neurofeedback is generally seen as 

an operant conditioning process (Kamiya, 2011; Strehl, 2014). However, other aspects like skill learning ability and 

motivation turned out to have a strong influence too (Roberts et al., 1989; Hofmann et al., 2012; Strehl, 2014). 

There seems to be a strong impact of feedback reinforcement, application of trial and error and transferring 

learned skills into everyday life (Abikoff, 2009; Mazur, 2002) making any effect of NFT dependent on individual 

differences. Also, it should be taken into account that the single-blind nature of this study might involuntarily 

have affected the interaction between the experimenter and participant. However, the instructions that the 

experimenters provided were standardized and no signs of such experimenter effects were reported by the 

participants in the debriefing. Moreover, it should be mentioned that our sample is not generalizable to the entire 

population in terms of age and gender, as we have measured female university students between 19 and 24 

years old with elevated TBR (with respect to their previous study samples) only.  

    A few methodological choices in our study must be highlighted here, in order to best interpret the 

data and to increase the informative value of this report’s null findings. Firstly, the use of automatic threshold 

regulation might not correspond to the prerequisites of shaping a learning process (Gruzelier, 2014c). It is 
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reasoned that not all individuals learn at the same speed, and the above-mentioned individual differences may 

also play a role. Manually adjusted thresholds, usually by a trained clinician, is suggested as a solution to this 

potential problem (Bazanova et al., 2007; Bazanova & Vernon, 2014; Klimesh, 1999) but has obvious experimental-

methodological drawbacks. However, positive findings for successful regulation of beta or theta activity have 

been reported for other studies that did not use manual threshold adjustment. For instance, Lubar et al. (1995) 

used an automatic threshold scheme. Leins et al. (2007) used a reward method that automatically changed every 

15 sessions. Fuchs et al, (2003) also used automatic thresholds when applying SMR/beta ratio neurofeedback in 

children diagnosed with ADHD. Neurofeedback training significantly reduced ADHD related behavioral problems. 

In their study, the thresholds were set to accept the signal 70% of the time, which is similar to the protocol as 

used in the current study. Since these studies did report changes in EEG activity, it seems unlikely that our null 

findings result from our use of that method. In general, no studies have been conducted that directly compared 

automatic thresholding to manual thresholding when using NFT, making it difficult to draw firm conclusions on 

this issue that go beyond simple observation (Gruzelier, 2014c). 

    Secondly, our protocol used a ‘continuous’ video feedback procedure. It has been argued that 

entertaining feedback might strengthen reinforcement associated with the stimulus rather than a specific brain-

behavior response, suggesting that discrete feedback (e.g., earning points) might be more effective on the long-

term (Egner & Sterman, 2006). However, Butnik (2005) described cases in which children diagnosed with ADHD 

successfully reduce or increase the targeted frequency bands when being submitted to video-neurofeedback 

trainings. Furthermore, Kouijzer et al. (2009) successfully reduced excessive theta power when applying video 

feedback in children with autism spectrum disorders. No studies have compared the effectiveness of continuous 

vs. discrete feedback.  

  Thirdly, the number of sessions used in NFT varies widely in the literature, and is usually dependent on 

the trained population as well as the specific protocol that is used (for a review see Enriquez-Geppert, Huster and 

Hermann, 2017). Reiner et al. (2014) found posterior theta to change already after one session, followed by some 

studies that observed clear changes in alpha after only one neurofeedback training (Escolano et al., 2014; Ros et 

al., 2014; Xiong et al., 2014). Also, Enriquez-Geppert et al. (2014) found frontal-midline theta to change after eight 

sessions of NFT, making it difficult to explain the absence of changes in theta after 14 training sessions in the 

current study. The duration of a single session is usually between 20-40 minutes, dependent on the participant’s 

ability to focus on the training, which varies across health status and age (see Gruzelier, 2014c and Enriquez-

Geppert, Huster and Hermann, 2017 for systematic reviews). For these reasons and because of the complete lack 

of EEG change throughout the entire duration of our study, it seems unlikely that we would have observed effects 

after more sessions.  

  Fourthly, we opted to select participants with elevated TBR scores, because such participants might 

respond better to the training. Although mean TBR had decreased somewhat between the pre-selection 

measurement and the start of the current study some six months later (regression to the mean may have 

occurred), their TBR was still clearly above the TBR as observed in the unselected samples. For potential 

application of TBR NFT to increase cognitive performance, we had chosen to study the effectiveness of TBR in 
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change in central TBR was observed in any of the participants in the last-five-minute averages either. Finally, it 
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participants over all sessions were visually inspected on changes over time and no consistent change in either 
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theta, however they found a significant increase in beta over sessions. These authors noted that this increase in 

beta activity was possibly a result of volitional motoric action as some participants reported to occasionally apply 

this during the active-NFT and cortical beta power is associated with motor control (Hammond et al., 2001).  

    When debriefing our participants, almost all indicated having used a different ‘technique’ to reduce the 

theta and increase the beta band, ranging from counting to imagining music. Neurofeedback is generally seen as 

an operant conditioning process (Kamiya, 2011; Strehl, 2014). However, other aspects like skill learning ability and 

motivation turned out to have a strong influence too (Roberts et al., 1989; Hofmann et al., 2012; Strehl, 2014). 

There seems to be a strong impact of feedback reinforcement, application of trial and error and transferring 

learned skills into everyday life (Abikoff, 2009; Mazur, 2002) making any effect of NFT dependent on individual 

differences. Also, it should be taken into account that the single-blind nature of this study might involuntarily 

have affected the interaction between the experimenter and participant. However, the instructions that the 

experimenters provided were standardized and no signs of such experimenter effects were reported by the 

participants in the debriefing. Moreover, it should be mentioned that our sample is not generalizable to the entire 

population in terms of age and gender, as we have measured female university students between 19 and 24 

years old with elevated TBR (with respect to their previous study samples) only.  

    A few methodological choices in our study must be highlighted here, in order to best interpret the 

data and to increase the informative value of this report’s null findings. Firstly, the use of automatic threshold 

regulation might not correspond to the prerequisites of shaping a learning process (Gruzelier, 2014c). It is 
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reasoned that not all individuals learn at the same speed, and the above-mentioned individual differences may 

also play a role. Manually adjusted thresholds, usually by a trained clinician, is suggested as a solution to this 

potential problem (Bazanova et al., 2007; Bazanova & Vernon, 2014; Klimesh, 1999) but has obvious experimental-

methodological drawbacks. However, positive findings for successful regulation of beta or theta activity have 

been reported for other studies that did not use manual threshold adjustment. For instance, Lubar et al. (1995) 

used an automatic threshold scheme. Leins et al. (2007) used a reward method that automatically changed every 

15 sessions. Fuchs et al, (2003) also used automatic thresholds when applying SMR/beta ratio neurofeedback in 

children diagnosed with ADHD. Neurofeedback training significantly reduced ADHD related behavioral problems. 

In their study, the thresholds were set to accept the signal 70% of the time, which is similar to the protocol as 

used in the current study. Since these studies did report changes in EEG activity, it seems unlikely that our null 

findings result from our use of that method. In general, no studies have been conducted that directly compared 

automatic thresholding to manual thresholding when using NFT, making it difficult to draw firm conclusions on 

this issue that go beyond simple observation (Gruzelier, 2014c). 

    Secondly, our protocol used a ‘continuous’ video feedback procedure. It has been argued that 

entertaining feedback might strengthen reinforcement associated with the stimulus rather than a specific brain-

behavior response, suggesting that discrete feedback (e.g., earning points) might be more effective on the long-

term (Egner & Sterman, 2006). However, Butnik (2005) described cases in which children diagnosed with ADHD 

successfully reduce or increase the targeted frequency bands when being submitted to video-neurofeedback 

trainings. Furthermore, Kouijzer et al. (2009) successfully reduced excessive theta power when applying video 

feedback in children with autism spectrum disorders. No studies have compared the effectiveness of continuous 

vs. discrete feedback.  

  Thirdly, the number of sessions used in NFT varies widely in the literature, and is usually dependent on 

the trained population as well as the specific protocol that is used (for a review see Enriquez-Geppert, Huster and 

Hermann, 2017). Reiner et al. (2014) found posterior theta to change already after one session, followed by some 

studies that observed clear changes in alpha after only one neurofeedback training (Escolano et al., 2014; Ros et 

al., 2014; Xiong et al., 2014). Also, Enriquez-Geppert et al. (2014) found frontal-midline theta to change after eight 

sessions of NFT, making it difficult to explain the absence of changes in theta after 14 training sessions in the 

current study. The duration of a single session is usually between 20-40 minutes, dependent on the participant’s 

ability to focus on the training, which varies across health status and age (see Gruzelier, 2014c and Enriquez-

Geppert, Huster and Hermann, 2017 for systematic reviews). For these reasons and because of the complete lack 

of EEG change throughout the entire duration of our study, it seems unlikely that we would have observed effects 

after more sessions.  

  Fourthly, we opted to select participants with elevated TBR scores, because such participants might 

respond better to the training. Although mean TBR had decreased somewhat between the pre-selection 

measurement and the start of the current study some six months later (regression to the mean may have 

occurred), their TBR was still clearly above the TBR as observed in the unselected samples. For potential 

application of TBR NFT to increase cognitive performance, we had chosen to study the effectiveness of TBR in 
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individuals with a mildly elevated TBR, also because it is not unlikely (though undocumented) that such 

participants might respond better to the training. Nevertheless, future studies might refrain from such a pre-

selection, which can possibly contribute to the generalizability of study outcomes.  

  In summary, we found no evidence that TBR-targeted NFT affects TBR in healthy participants. Although 

it is possible that different NFT protocols may lead to different results, the present findings indicate that NFT, as 

implemented in the current study (using automatic thresholds, video feedback with a maximum of 14 sessions), 

does not affect TBR. The current study had several methodically strong features; a case series multiple baseline 

design that allowed us to inspect all EEG data per participant per session in detail, and control for unknown side 

effects. A sham controlled NFT group was included that, according to the funneled debriefing, let the participants 

believe that they received an active-NFT. We cannot identify convincing procedural limitations of our study that 

might serve to adequately explain the lack of positive result and thus consider these results a valid null-finding. 

These results are relevant given recent publications on TBR and its relation to executive cognitive control and 

affect regulation (Schutter et al., 2005; Jap, Lal, Fischer, & Bekiaris, 2009; Massar et al., 2014; Wischnewski et al., 

2016; Tortella-Feliu et al., 2014; Angelidis et al., 2016) in healthy adults. The present results, which replicate and 

extend previous results by Doppelmayr and Weber (2011), suggest that TBR-targeted NFT will not likely provide a 

tool to study causality of the relations between cognitive control and affect regulation. Futhermore, TBR NFT does 

not seem to be a promising candidate for human performance enhancement in these functional areas. 
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  In summary, we found no evidence that TBR-targeted NFT affects TBR in healthy participants. Although 

it is possible that different NFT protocols may lead to different results, the present findings indicate that NFT, as 
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does not affect TBR. The current study had several methodically strong features; a case series multiple baseline 
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effects. A sham controlled NFT group was included that, according to the funneled debriefing, let the participants 

believe that they received an active-NFT. We cannot identify convincing procedural limitations of our study that 

might serve to adequately explain the lack of positive result and thus consider these results a valid null-finding. 

These results are relevant given recent publications on TBR and its relation to executive cognitive control and 

affect regulation (Schutter et al., 2005; Jap, Lal, Fischer, & Bekiaris, 2009; Massar et al., 2014; Wischnewski et al., 

2016; Tortella-Feliu et al., 2014; Angelidis et al., 2016) in healthy adults. The present results, which replicate and 

extend previous results by Doppelmayr and Weber (2011), suggest that TBR-targeted NFT will not likely provide a 

tool to study causality of the relations between cognitive control and affect regulation. Futhermore, TBR NFT does 
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The aim of this thesis was to further investigate on the role of attentional processes in anxiety. To this end we 

measured and/or manipulated EEG theta/beta ratio (TBR), self-reported attentional control, trait anxiety, 

catecholamines, functional connectivity, and selective attention to varying levels of threat. The studies were 

carried out in healthy samples. In the first chapter we described that high TBR (low control) was associated with 

more attention to mild than to high threat, independent of trait anxiety or probe-delay in a visual-spatial attention 

task. Lower self-reported attentional control also predicted more attention to mild than to high threat, but only 

after longer stimulus delays. In Chapter 2, we reported that at baseline and after placebo administration, high TBR 

was related to low threat-bias in a modified emotional Stroop task in low trait-anxious people. Caffeine had 

opposite effects on threat-bias in high and low TBR in low trait-anxious people. In the third chapter, it became 

clear that frontal TBR is significantly higher during mind wandering (MW) episodes than focused periods, 

suggesting that previously reported relationships between TBR and attentional control may be related to MW. 

The fourth chapter moreover reported that this effect of controlled versus uncontrolled thought was also found 

for functional connectivity of the ‘executive control network’, which was in turn correlated to the controlled 

versus uncontrolled thought effect on TBR. This provides indications of the neuropsychological functional nature 

of TBR, which remained a ‘black box’ till now. Finally, the fifth chapter reported no evidence that TBR is affected by 

a form of neurofeedback training.  

 These findings will be further discussed below in which the possible applicability and usefulness of TBR 

will be illustrated. 

 

Attentional threat-biases 

 To correctly interpret our results on attentional threat bias and TBR, it can be helpful to briefly describe 

the neural networks and connections involved in threat bias again. Anxiety and attentional biases depend on 

multiple processes. Firstly, exposure to acute threat induces fear and vigilance, and prompts a reallocation of 

resources to a so-called ‘salience network’. This happens at the cost of the executive control network (Hermans, 

Henckens, Joels, & Fernandez, 2014). Salience network activation includes bottom-up detection and attentional 

processing of salient and threat-related stimuli, which are mediated by, for example, the anterior cingulate cortex 

(ACC) and the amygdala (Bishop, 2008). When the threat subsides, resource allocation to both the salience and 

executive control network reverses, normalizing emotional reactivity and enhancing higher-order cognitive 

processes that are important for long-term survival. Top-down attentional control and inhibition of stimulus-

driven attention involves, for example, activation of the dorsal ACC and (dorso-) lateral prefrontal cortex (DLPFC; 

Bishop, 2008; Hermans et al., 2014). The (DL)PFC is involved in working memory and executive cognitive 

processes like attentional control (see e.g., Arnsten & Rubia, 2012; Arnsten, 2006). Importantly, anxiety and stress 

also directly disrupt (DL)PFC function and therewith top-down executive (attentional) control (Bishop, 2008; 

Hermans et al., 2014; Arnsten, 2011). Thus, multiple cognitive functions, organised as coordinated systems or 

networks, underpin salience-driven and top-down processing. Disruption of these systems underlie anxiety, and 

threat-related attentional biases. 

 Before starting this research, we hypothesized that TBR, as a marker for attentional control, plays a role in 
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the disrupted interplay between top-down and bottom-up processes. Using this physiological marker could 

possibly be useful in current treatment consideration for certain mental disorders, since ‘outbalanced’ neural 

system functions as described above have been identified in various mental illnesses. The bottom-up cognitive 

processes (such as perception and pre-attentive perceptual biasing) can in that case interfere with top- down 

processes (e.g., cognitive control, and metacognitive appraisal). In major depression for example, impairments in 

executive function and processing speed related to aberrant activity in prefrontal and limbic system networks are 

for example associated with affect dysregulation (Bowie, Gupta, & Holshausen, 2013; Rive, van Rooijen, Veltman, 

Phillips, Schene, & Ruhé, 2013) and abnormal biasing of attention to negative cognitions (Etkin & Schatzberg, 

2011). Increased knowledge of top-down attentional control and bottom-up processes could therefore possibly 

aid further clinical research. TBR as a marker for attentional control and moderator for attentional threat biases can 

be valuable in these studies as demonstrated in the current thesis. Also, as described in Chapter 2, individual 

differences in TBR and baseline executive function might determine catecholamine functioning and threat 

processing, and hence forms an important feature when investigating neural underpinnings of psychopathology.   

 

Inconsistencies in threat-bias-research  

 Multiple theoretical models exist on the role of threat related attentional processes in pathological 

anxiety (e.g. Bar-Haim, Lamy, Pergamin, Bakermans-Kranenburg, & Van IJzendoorn, 2007; Armstrong & Olatunji, 

2012; Cisler, Bacon, & Williams, 2009; Cisler & Koster, 2010; Mathews, & MacLeod, 2005; Teachman, Joormann, 

Steinman & Gotlib, 2012; van Bockstaele, Verschuere, Tibboel, De Houwer, Crombez, & Koster, 2014; Weierich, 

Treat, & Hollingworth, 2008). These models indicate that anxiety disorders are associated with automatic 

processing biases for threatening information (e.g. Bar-Haim et al., 2007; Teachman et al., 2012). However, certain 

aspects (e.g. individual differences) have not been addressed in the models, while these are possibly vital 

ingredients for our understanding of threat processing (e.g. see Mogg & Bradley, 1998; 2016). Examples of these 

aspects are; subjective threat valence, attentional control and attentional avoidance (van Bockstaele et al., 2014; 

Fox, Russo, Bowles, & Dutton, 2001; Derryberry and Reed, 2002; Eysenck, Derakshan, Santos, & Calvo, 2007). The 

importance of these aspects is also supported by the current findings of our lab. This will be further discussed 

below. 

  In Chapter 1 we manipulated threat value in a dot-probe task (cf. Angelidis, Hagenaars, van Son, van der 

Does, & Putman, 2018). Our findings on the effects of TBR on threat biases were threat-level dependent. The level 

(mild or high) or type of valence (positive or negative) had an impact on threat bias (Angelidis et al., 2018; van Son 

et al., 2018a [Chapter 1]; 2018b [Chapter 2]). This indicates that threat processing and a physiological marker of 

attentional control (TBR) are related to participant’s ‘subjective value’ or how vigilant participants are for these 

stimuli. This is in agreement with findings by Mogg and colleagues (1987) and Mogg and Bradley (2016), who also 

stated that attentional bias towards threat may be opposed by mechanisms of avoidance, and that individual 

differences in cognitive control are crucial in the actual manifestation of threat-bias toward or away from threat 

(Mogg, Weinman & Mathews, 1987; Mogg & Bradley, 2016). 

  Regarding attentional avoidance, the ‘vigilance-avoidance hypothesis’ was introduced some decades 
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The aim of this thesis was to further investigate on the role of attentional processes in anxiety. To this end we 

measured and/or manipulated EEG theta/beta ratio (TBR), self-reported attentional control, trait anxiety, 
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after longer stimulus delays. In Chapter 2, we reported that at baseline and after placebo administration, high TBR 
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of TBR, which remained a ‘black box’ till now. Finally, the fifth chapter reported no evidence that TBR is affected by 

a form of neurofeedback training.  

 These findings will be further discussed below in which the possible applicability and usefulness of TBR 

will be illustrated. 

 

Attentional threat-biases 

 To correctly interpret our results on attentional threat bias and TBR, it can be helpful to briefly describe 

the neural networks and connections involved in threat bias again. Anxiety and attentional biases depend on 

multiple processes. Firstly, exposure to acute threat induces fear and vigilance, and prompts a reallocation of 

resources to a so-called ‘salience network’. This happens at the cost of the executive control network (Hermans, 

Henckens, Joels, & Fernandez, 2014). Salience network activation includes bottom-up detection and attentional 

processing of salient and threat-related stimuli, which are mediated by, for example, the anterior cingulate cortex 

(ACC) and the amygdala (Bishop, 2008). When the threat subsides, resource allocation to both the salience and 

executive control network reverses, normalizing emotional reactivity and enhancing higher-order cognitive 

processes that are important for long-term survival. Top-down attentional control and inhibition of stimulus-

driven attention involves, for example, activation of the dorsal ACC and (dorso-) lateral prefrontal cortex (DLPFC; 

Bishop, 2008; Hermans et al., 2014). The (DL)PFC is involved in working memory and executive cognitive 

processes like attentional control (see e.g., Arnsten & Rubia, 2012; Arnsten, 2006). Importantly, anxiety and stress 

also directly disrupt (DL)PFC function and therewith top-down executive (attentional) control (Bishop, 2008; 

Hermans et al., 2014; Arnsten, 2011). Thus, multiple cognitive functions, organised as coordinated systems or 

networks, underpin salience-driven and top-down processing. Disruption of these systems underlie anxiety, and 

threat-related attentional biases. 

 Before starting this research, we hypothesized that TBR, as a marker for attentional control, plays a role in 
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for example associated with affect dysregulation (Bowie, Gupta, & Holshausen, 2013; Rive, van Rooijen, Veltman, 
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ago (Mogg et al., 1987): this hypothesis stated that the initial attentional bias towards threat in healthy adults may 

be followed by avoidance, which possibly reflects an attempt to reduce subjective discomfort or danger (e.g., 

avoiding threat). While avoidant attention strategies may reduce immediate stress, they may be detrimental when 

used long-term, by refraining from coping with the actual threat and thus maintaining anxiety. Bardeen and 

Daniel (2017) for example found that trauma-exposed participants with high post-traumatic stress symptoms, 

who habitually shifted attention from threatening stimuli to neutral stimuli, showed reduced distress in the short 

term but maintained and even increased post-traumatic stress symptoms in the long term. Later, also other 

models indicated that attentional bias towards threat may be opposed by mechanisms of avoidance and that 

individual differences in cognitive control are crucial in the actual manifestation of threat-bias towards or away 

from threat (e.g. Algom, Chajut & Lev, 2004; Bar-Haim et al., 2007; Eysenck et al., 2007; Mogg et al., 1987; Mogg & 

Bradley, 1998; 2016). Whether participants direct attention towards or away from a stimulus, depends on whether 

stimuli are highly or mildly threatening, which is also supported by our studies (Angelidis et al., 2018; van Son et 

al., 2018a). This altogether indicates that threat value or vigilance to threat, and attentional avoidance, are 

important aspects when investigating attentional bias to threat, and it is therefore troublesome that these 

mechanisms have not always been incorporated in threat bias studies. 

 

Attentional control 

  Attentional control in general as well seems a partly neglected factor in attentional threat bias literature 

(for an overview see van Bockstaele et al., 2014). Like attentional control, TBR seemed to affect and moderate 

threat selective attention and emotional processes (Angelidis et al., 2018; van Son et al., 2018a; 2018b), as 

examined by a dot probe task and an emotional threat interference task. This finding strengthens the assumption 

of functional overlap of TBR and attentional control. The role of attentional control in automatic emotional and 

cognitive top-down processes as described in the chapters of this thesis, among others, encompasses the 

framework as proposed by Mogg and Bradley, (1998; 2016) and as later described by Bardeen, Daniel, Hinnant & 

Orcutt, (2017). We thus suggest that TBR, as a marker of attentional control, is associated with regulating 

automatic-stimulus salient processes and that it supports goal directed behavior (Angelidis et al., 2018; van Son et 

al., 2018a, 2018b; Mogg & Bradley, 1998; Miyake & Friedman, 2012) since findings of the first two studies in this 

thesis support this assumption. Besides threat value or vigilance to threat, attentional control hence seems 

another important factor when investigating attentional bias to threat which should be taken into account in 

future studies studying threat biases.  

 Furthermore, our results as described in Chapter 2 also indicate that besides that attentional control 

plays an important role in threat processing, the interaction between caffeine and the TBR-related threat-

interference effect, is likely catecholamine-mediated. 

Namely, performance on the Pictorial Emotional Stroop Task (PEST) in participants with low TBR/better attentional 

control after caffeine, resembled more the baseline/placebo performance of participants with less attentional 

control. Performance of people with higher TBR/less attentional control resembled more the baseline/placebo 

performance of people with better attentional control after caffeine administration (van Son et al., 2018b [Chapter 
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2]). These findings fit with the established model of inverted U-shape relations between prefrontal catecholamine 

activity and cognitive attentional control (Arnsten, 2006; Arnsten, 2009a; Cools and D’Esposito, 2011). Our results 

moreover showed that baseline TBR (as a marker for attentional control) of low anxious individuals, had a 

significant direct relation with responding in the PEST, and this was clearly influenced by caffeine administration. 

This pattern of responding is just as the predicted moderation of caffeine’s effects by baseline TBR. It was already 

found that lower TBR is related to better executive (attentional) control (Angelidis, van der Does, Schakel, & 

Putman, 2016; Barry, Clarke, & Johnstone, 2003; Keune, Hansen, Weber, Zapf, Habich, Muenssinger, Wolf, et al., 

2017), and better top-down control over the automatic attentional processing of salient threatening stimuli 

(Putman, van Peer, Maimari, & van der Werff, 2010; Angelidis et al., 2018; van Son et al., 2018a). It can be 

speculated that such basal prefrontal attentional control is regulated by prefrontal catecholamine levels (Arnsten, 

2006; Hermans et al., 2014). Indeed, the TBR-moderated responding pattern fitted with the established model of 

inverted U-shape relations between prefrontal catecholamine activity and cognitive attentional control (Arnsten, 

2006; Arnsten, 2009a; Cools and D’Esposito, 2011). This finding stresses the importance of TBR in such relations 

and TBRs possible applicability in future studies to the effects of catecholamine. Accordingly, attentional control 

can be considered to be an essential factor in threat processes, and the inverted U-shape relation between TBR 

and threat interference highlights the importance of also taking baseline executive function into consideration 

when studying such processes. 

 

Attentional stages 

 Threat processing thus seems rather complex and to depend on a variety of aspects, of which threat 

value, attentional avoidance and attentional control are examples which have not consistently been incorporated 

in the past literature. However, their importance has now been further demonstrated by our current studies. 

Another factor that has scarcely been integrated in threat processing models and related to attentional control 

are the attentional stages of threat processing. The nature of attentional bias is thought to depend on the stage 

of information processing (Cisler & Koster, 2010). Information processing is commonly conceptualized in two 

stages, automatic and strategic processing stages (Shiffrin & Schneider, 1977; Cisler & Koster, 2010). Automatic 

(early) processing generally refers to processing that is effortless, capacity free, unintentional, and outside of 

conscious control, whereas strategic (later) processing generally refers to processing that is effortful, capacity-

limited, intentional, and dependent on conscious control (Shiffrin & Schneider, 1977). The expectation that cue-

target delay would affect threat processing originates from the assumption that the cognitive control 

mechanisms that regulate automatic attention away from threat (attentional avoidance) occur at later – strategic 

stages of attentional processing (Derryberry & Reed, 2002; Cisler & Koster, 2010; Mogg & Bradley, 1998; 2016). We 

therefore expected that TBR would be more strongly related to the attentional bias effect in late compared to 

early attentional stages. The results as described in Chapter 1 and the results of Angelidis et al., (2018) do not 

support this notion. We do not have a clear explanation for the absence of a delay effect for TBR, but the presence 

of this effect for attentional control, especially considering the positive relation between self-reported attentional 

control and TBR as found in this study. Whether attentional stages play a role in the TBR – threat bias relation thus 
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ago (Mogg et al., 1987): this hypothesis stated that the initial attentional bias towards threat in healthy adults may 
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term but maintained and even increased post-traumatic stress symptoms in the long term. Later, also other 
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al., 2018a). This altogether indicates that threat value or vigilance to threat, and attentional avoidance, are 

important aspects when investigating attentional bias to threat, and it is therefore troublesome that these 

mechanisms have not always been incorporated in threat bias studies. 

 

Attentional control 
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(for an overview see van Bockstaele et al., 2014). Like attentional control, TBR seemed to affect and moderate 

threat selective attention and emotional processes (Angelidis et al., 2018; van Son et al., 2018a; 2018b), as 
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 Furthermore, our results as described in Chapter 2 also indicate that besides that attentional control 

plays an important role in threat processing, the interaction between caffeine and the TBR-related threat-

interference effect, is likely catecholamine-mediated. 

Namely, performance on the Pictorial Emotional Stroop Task (PEST) in participants with low TBR/better attentional 

control after caffeine, resembled more the baseline/placebo performance of participants with less attentional 

control. Performance of people with higher TBR/less attentional control resembled more the baseline/placebo 

performance of people with better attentional control after caffeine administration (van Son et al., 2018b [Chapter 
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significant direct relation with responding in the PEST, and this was clearly influenced by caffeine administration. 
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2017), and better top-down control over the automatic attentional processing of salient threatening stimuli 

(Putman, van Peer, Maimari, & van der Werff, 2010; Angelidis et al., 2018; van Son et al., 2018a). It can be 
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2006; Hermans et al., 2014). Indeed, the TBR-moderated responding pattern fitted with the established model of 

inverted U-shape relations between prefrontal catecholamine activity and cognitive attentional control (Arnsten, 

2006; Arnsten, 2009a; Cools and D’Esposito, 2011). This finding stresses the importance of TBR in such relations 

and TBRs possible applicability in future studies to the effects of catecholamine. Accordingly, attentional control 

can be considered to be an essential factor in threat processes, and the inverted U-shape relation between TBR 

and threat interference highlights the importance of also taking baseline executive function into consideration 

when studying such processes. 

 

Attentional stages 

 Threat processing thus seems rather complex and to depend on a variety of aspects, of which threat 

value, attentional avoidance and attentional control are examples which have not consistently been incorporated 

in the past literature. However, their importance has now been further demonstrated by our current studies. 

Another factor that has scarcely been integrated in threat processing models and related to attentional control 

are the attentional stages of threat processing. The nature of attentional bias is thought to depend on the stage 

of information processing (Cisler & Koster, 2010). Information processing is commonly conceptualized in two 

stages, automatic and strategic processing stages (Shiffrin & Schneider, 1977; Cisler & Koster, 2010). Automatic 

(early) processing generally refers to processing that is effortless, capacity free, unintentional, and outside of 

conscious control, whereas strategic (later) processing generally refers to processing that is effortful, capacity-

limited, intentional, and dependent on conscious control (Shiffrin & Schneider, 1977). The expectation that cue-

target delay would affect threat processing originates from the assumption that the cognitive control 

mechanisms that regulate automatic attention away from threat (attentional avoidance) occur at later – strategic 

stages of attentional processing (Derryberry & Reed, 2002; Cisler & Koster, 2010; Mogg & Bradley, 1998; 2016). We 

therefore expected that TBR would be more strongly related to the attentional bias effect in late compared to 

early attentional stages. The results as described in Chapter 1 and the results of Angelidis et al., (2018) do not 

support this notion. We do not have a clear explanation for the absence of a delay effect for TBR, but the presence 

of this effect for attentional control, especially considering the positive relation between self-reported attentional 

control and TBR as found in this study. Whether attentional stages play a role in the TBR – threat bias relation thus 
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remains inconclusive, however it might as well be the case that the short cue target delay was too short for 

sufficient emotional-attentional processing. Another option is that both the automatic and the strategic 

attentional stages when applying a dot-probe task (Cisler & Koster, 2010) are not differently affected by TBR. 

Future studies should investigate this matter and manipulate shorter cue target delays compared to longer cue 

target delays when investigating the role of TBR in attentional stages in a dot-probe task.  

 Nevertheless, an effect of self-assessed attentional control on cue target delay was found, indicating that 

attentional stages are imperative for investigating threat processes. Attentional stages are therefore advised to be 

taken into account when studying the effects of attentional control in threat processing and should be further 

investigated to consider how threat selective attention should be manipulated. Measuring the time-course of 

attention remains however notoriously difficult (see also Mogg & Bradley, 2016). Different methods such as 

emotional cueing tasks (Koster, Crombez, Verschuere, Vanvolsem, & De Houwer, 2007), event-related potential 

tasks (Harrewijn, Schmidt, Westenberg, Tang, & van der Molen, 2017), non-spatial emotional-attention tasks such 

as interference tasks (Clarke, MacLeod, & Guastella, 2013) or serial presentation tasks (Peers & Lawrence, 2009) are 

advised to be used for future studies to more accurately assess the time-course (stages) of selective attention, 

attentional avoidance and attentional control. 

 

Application of attentional bias (attentional bias modification [ABM] trainings) 

 Altogether, the now repeatedly mentioned framework of Mogg and Bradley (1998; 2016) was the first 

important model to signal that essential aspects have not been included when studying threat processing. The 

Mogg and Bradley framework together with the vigilance-avoidance hypothesis also indicate implications for 

research that applies the attentional bias theories; mainly attentional bias modification (ABM) trainings. In ABM, 

attentional biases are conceptualized as the tendency to allocate attention to threat-related information rather 

than non-threat information (MacLeod & Mathews, 2012; MacLeod, Rutherford, Campbell, Ebsworthy, & Holker, 

2002). ABM trainings therefore aim to train attention away from threat (attentional avoidance) and to direct 

attention towards non-threat. Recent reviews and meta-analyses however, conclude that conventional ABM 

trainings have inconsistent effects on anxiety and attentional-bias (e.g. Heeren, Mogoașe, Philippot, & McNally, 

2015; Mogg & Bradley, 2016; 2018; van Bockstaele et al., 2014; Mogg, Waters & Bradley, 2017; Macleod & Grafton, 

2016). The degree of effectiveness of ABM may be dependent on individual differences, which will be further 

discussed in this paragraph. One limitation of ABM-threat-avoidance trainings for example is that not all anxious 

individuals show an attentional bias towards threat (e.g., Dudeney, Sharpe, & Hunt, 2015; Salum, Mogg, Bradley, 

Gadelha, Pan, Tamanaha et al., 2013; van Bockstaele et al., 2014; Waters, Bradley & Mogg, 2014) since attentional 

biases depend on individual differences in the perception of subjective threat (e.g. how threatening a certain 

stimulus is). Mogg and Bradley (1998) already suggested that attentional biases in anxiety are highly dependent 

on stimulus threat-value or threat-level. Results as described in Chapter 1 and 2 confirm the effect of threat-level 

and valence in threat-processing, which suggest implications for ABM as ABM does not always manipulate 

different levels of threat or does not take perception of subjective threat into account (van Bockstaele et al., 2014; 

Waters et al., 2014). 
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 Some ABM trainings instruct to direct attention away from threat (MacLeod & Clarke, 2015) with the goal 

to induce automatic threat avoidance by repeated practice, rather than using effortful controlled strategies. 

Because not all anxious individuals show an attentional bias to threat, another limitation of ABM training is that 

not all individuals should receive a threat avoidance training as some individuals are already threat avoidant (van 

Bockstaele et al., 2014). As found by the first studies of this thesis (van Son et al., 2018a [Chapter 1]; 2018b [Chapter 

2]) and others (e.g. Angelidis et al., 2018; Mogg et al., 1987; Algom et al., 2004; Bar-Haim et al., 2007; Eysenck et al., 

2007), avoidant attentional strategies seem to influence threat processing, possibly in a maladaptive way. 

Attentional avoidance may be detrimental when applied long-term, and might even maintain anxiety (Bradley, 

Mogg, & Lee, 1997; Wald et al., 2011). Among others, our studies therefore implicate that ABM may not be 

beneficial for reducing anxiety; even though attentional biases might be reduced, attentional avoidance can be 

more strongly introduced resulting in such avoidant habituation. This problem however does not apply to all 

types of ABM trainings; ABM-positive search training for example is potentially suitable for threat avoiding 

individuals as it uses a visual search task which presents arrays of pictures, and in each array, one picture is 

positive and the others are negative. Participants are instructed to search for the positive image and ignore the 

others (e.g. Dandeneau, Baldwin, Baccus, Sakellaropoulo & Pruessner, 2007). It would be interesting to investigate 

the role of TBR in threat processing in such positive search trainings as these trainings are not specifically subject 

to the avoidance-implication of ABM.  

 Also, individual differences in attentional control are not incorporated in ABM trainings, however now 

our (Angelidis et al., 2018; van Son et al., 2018a; 2018b) and several other studies (Bardeen et al., 2017; Mogg & 

Bradley, 1998; 2016; Eysenck et al., 2007) argue that attentional control is a critical factor in threat processing. 

Basanovic and colleagues, (2017) moreover found that attentional bias change by ABM was dependent on 

individual differences in two facets of attentional control, control of attentional inhibition and control of 

attentional selectivity (Basanovic, Notebaert, Grafton, Hirsch, & Clarke, 2017). Besides that, we can argue that the 

stages of attentional processes are an important aspect for the role of attentional control in threat processing as 

well (e.g. Ohman, 1993, 1994; Whalen, 1998; Derryberry and Reed, 2002; Bardeen & Orcut, 2011), which most ABM 

trainings also do not take into account.  

 In sum, ABM aims to reduce anxiety by reducing threat biases but should take several individual 

differences into account. Subjective threat value, attentional control and severity of anxiety symptoms for 

example vary among anxious individuals and can influence ABM training outcome. Research on ABM may 

advance by assessing or training other cognitive variables in the framework, for example threat 

evaluation/appraisal, attentional control, and threat avoidance. 

 

Theta/beta ratio 

 While TBR was first found to be related to AD(H)D (see Barry et al., 2003; Arns, Conners, & Kraemer, 2013, 

for reviews), non-clinical research further clarified its cognitive functional significance. High TBR in a healthy 

sample correlated with sub-optimal performance on a motivated decision-making task (Schutter & van Honk, 

2005; Massar et al., 2012; Massar et al., 2014). Later, TBR in healthy people was found to be negatively related to 



General Discussion

149

6

 145 

remains inconclusive, however it might as well be the case that the short cue target delay was too short for 

sufficient emotional-attentional processing. Another option is that both the automatic and the strategic 

attentional stages when applying a dot-probe task (Cisler & Koster, 2010) are not differently affected by TBR. 

Future studies should investigate this matter and manipulate shorter cue target delays compared to longer cue 

target delays when investigating the role of TBR in attentional stages in a dot-probe task.  

 Nevertheless, an effect of self-assessed attentional control on cue target delay was found, indicating that 

attentional stages are imperative for investigating threat processes. Attentional stages are therefore advised to be 

taken into account when studying the effects of attentional control in threat processing and should be further 

investigated to consider how threat selective attention should be manipulated. Measuring the time-course of 

attention remains however notoriously difficult (see also Mogg & Bradley, 2016). Different methods such as 

emotional cueing tasks (Koster, Crombez, Verschuere, Vanvolsem, & De Houwer, 2007), event-related potential 

tasks (Harrewijn, Schmidt, Westenberg, Tang, & van der Molen, 2017), non-spatial emotional-attention tasks such 

as interference tasks (Clarke, MacLeod, & Guastella, 2013) or serial presentation tasks (Peers & Lawrence, 2009) are 

advised to be used for future studies to more accurately assess the time-course (stages) of selective attention, 

attentional avoidance and attentional control. 

 

Application of attentional bias (attentional bias modification [ABM] trainings) 

 Altogether, the now repeatedly mentioned framework of Mogg and Bradley (1998; 2016) was the first 

important model to signal that essential aspects have not been included when studying threat processing. The 

Mogg and Bradley framework together with the vigilance-avoidance hypothesis also indicate implications for 

research that applies the attentional bias theories; mainly attentional bias modification (ABM) trainings. In ABM, 

attentional biases are conceptualized as the tendency to allocate attention to threat-related information rather 

than non-threat information (MacLeod & Mathews, 2012; MacLeod, Rutherford, Campbell, Ebsworthy, & Holker, 

2002). ABM trainings therefore aim to train attention away from threat (attentional avoidance) and to direct 

attention towards non-threat. Recent reviews and meta-analyses however, conclude that conventional ABM 

trainings have inconsistent effects on anxiety and attentional-bias (e.g. Heeren, Mogoașe, Philippot, & McNally, 

2015; Mogg & Bradley, 2016; 2018; van Bockstaele et al., 2014; Mogg, Waters & Bradley, 2017; Macleod & Grafton, 

2016). The degree of effectiveness of ABM may be dependent on individual differences, which will be further 

discussed in this paragraph. One limitation of ABM-threat-avoidance trainings for example is that not all anxious 

individuals show an attentional bias towards threat (e.g., Dudeney, Sharpe, & Hunt, 2015; Salum, Mogg, Bradley, 

Gadelha, Pan, Tamanaha et al., 2013; van Bockstaele et al., 2014; Waters, Bradley & Mogg, 2014) since attentional 

biases depend on individual differences in the perception of subjective threat (e.g. how threatening a certain 

stimulus is). Mogg and Bradley (1998) already suggested that attentional biases in anxiety are highly dependent 

on stimulus threat-value or threat-level. Results as described in Chapter 1 and 2 confirm the effect of threat-level 

and valence in threat-processing, which suggest implications for ABM as ABM does not always manipulate 

different levels of threat or does not take perception of subjective threat into account (van Bockstaele et al., 2014; 

Waters et al., 2014). 
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to induce automatic threat avoidance by repeated practice, rather than using effortful controlled strategies. 

Because not all anxious individuals show an attentional bias to threat, another limitation of ABM training is that 

not all individuals should receive a threat avoidance training as some individuals are already threat avoidant (van 

Bockstaele et al., 2014). As found by the first studies of this thesis (van Son et al., 2018a [Chapter 1]; 2018b [Chapter 

2]) and others (e.g. Angelidis et al., 2018; Mogg et al., 1987; Algom et al., 2004; Bar-Haim et al., 2007; Eysenck et al., 

2007), avoidant attentional strategies seem to influence threat processing, possibly in a maladaptive way. 

Attentional avoidance may be detrimental when applied long-term, and might even maintain anxiety (Bradley, 

Mogg, & Lee, 1997; Wald et al., 2011). Among others, our studies therefore implicate that ABM may not be 

beneficial for reducing anxiety; even though attentional biases might be reduced, attentional avoidance can be 

more strongly introduced resulting in such avoidant habituation. This problem however does not apply to all 

types of ABM trainings; ABM-positive search training for example is potentially suitable for threat avoiding 

individuals as it uses a visual search task which presents arrays of pictures, and in each array, one picture is 

positive and the others are negative. Participants are instructed to search for the positive image and ignore the 

others (e.g. Dandeneau, Baldwin, Baccus, Sakellaropoulo & Pruessner, 2007). It would be interesting to investigate 

the role of TBR in threat processing in such positive search trainings as these trainings are not specifically subject 

to the avoidance-implication of ABM.  

 Also, individual differences in attentional control are not incorporated in ABM trainings, however now 

our (Angelidis et al., 2018; van Son et al., 2018a; 2018b) and several other studies (Bardeen et al., 2017; Mogg & 

Bradley, 1998; 2016; Eysenck et al., 2007) argue that attentional control is a critical factor in threat processing. 

Basanovic and colleagues, (2017) moreover found that attentional bias change by ABM was dependent on 

individual differences in two facets of attentional control, control of attentional inhibition and control of 

attentional selectivity (Basanovic, Notebaert, Grafton, Hirsch, & Clarke, 2017). Besides that, we can argue that the 

stages of attentional processes are an important aspect for the role of attentional control in threat processing as 

well (e.g. Ohman, 1993, 1994; Whalen, 1998; Derryberry and Reed, 2002; Bardeen & Orcut, 2011), which most ABM 

trainings also do not take into account.  

 In sum, ABM aims to reduce anxiety by reducing threat biases but should take several individual 

differences into account. Subjective threat value, attentional control and severity of anxiety symptoms for 

example vary among anxious individuals and can influence ABM training outcome. Research on ABM may 

advance by assessing or training other cognitive variables in the framework, for example threat 

evaluation/appraisal, attentional control, and threat avoidance. 

 

Theta/beta ratio 

 While TBR was first found to be related to AD(H)D (see Barry et al., 2003; Arns, Conners, & Kraemer, 2013, 

for reviews), non-clinical research further clarified its cognitive functional significance. High TBR in a healthy 

sample correlated with sub-optimal performance on a motivated decision-making task (Schutter & van Honk, 

2005; Massar et al., 2012; Massar et al., 2014). Later, TBR in healthy people was found to be negatively related to 
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modulation of response inhibition in an emotional go/no-go task (Putman et al., 2010) and down-regulation of 

negative affect (Tortella-Feliu, Morillas-Romero, Balle, Llabrés, Bornas, & Putman, 2014), which both require 

prefrontal cortical executive control. Studies from our lab then reported negative correlations between self-

reported trait (Putman et al., 2010; Putman, Verkuil, Arias-Garcia, Pantazi, & van Schie, 2014; Angelidis et al., 2016; 

van Son et al., 2018a) and state attentional control (Putman et al., 2014) in healthy samples. TBR also correlated 

negatively to objectively measured attentional control in multiple sclerosis patients with clinically impaired 

attention (Keune et al., 2017). Most recently, again in healthy participants, studies from our lab showed that TBR 

correlates negatively to controlled moderation of threat selective attention (Angelidis, et al., 2018; van Son et al., 

2018a; 2018b). Together, these studies in non-AD(H)D samples demonstrate that TBR is negatively related to a 

variety of psychological functions that require prefrontal executive regulation of subcortically mediated 

emotional and motivational processes. TBR therewith remains an interesting marker when studying a variety of 

functions like emotional/threat processing and executive control. The functions TBR is related to can however be 

both dependent of the EEG theta or beta frequency band, as TBR logically consists of these two. It might therefore 

be helpful to briefly re-evaluate the functions these two bands are related to. 

 

Correlates of Beta 

 Beta was found to be involved in behavioural inhibition (Brown, 2007; Engel & Fries, 2010) and inhibitory 

motoric processes (Baker, 2007; Jenkinson & Brown, 2011). It has been suggested that beta oscillations provide a 

mechanism for sequential encoding of processed items in working memory and for retrieval from long-term 

memory (Jensen & Lisman, 2005; Rosanova, Casali, Bellina, Resta, Mariotti & Massimini, 2009). Several studies found 

beta activity to be related to visual attention (e.g. Marrufo, Vaquero, Cardoso, & Gomez, 2001; Wróbel, 2000). Beta 

was for example found to decrease in elderly who showed lower performance during a visual attentional task 

(Gola, Magnuski, Szumska & Wróbel, 2013). Beta band activity furthermore seems to be related to cognitive 

control, more specifically, the maintenance of sensorimotor or cognitive states (Engel & Fries, 2010). In their 

review, Engel and Fries (2010) propose beta activity to be associated with endogenous top-down influences 

during cognitive tasks. Tempo-parietal regions have been implied to be involved in the salience network which 

regulates automatic attentional processes (bottom-up) as compared to the top-down executive control network 

(Hermans et al., 2014). Subcortical regions seem to connect directly to these tempo-parietal regions in the 

salience network, whilst the executive control network mainly has connections between the dorso-lateral PFC 

and, for example, the frontal eye field (Hermans et al., 2014). Considering that beta activity has a strong coherence 

between frontal and parietal regions during top-down compared to bottom-up visual attention (Buschman & 

Miller, 2007; 2009; Engel & Fries, 2010) it can be speculated that beta activity is to some extent related to the 

establishment of reciprocal control of bottom-up and top-down processes. Altogether, beta seems to be related 

to executive control related processes and possibly maintains prefrontal control over bottom-up automatic 

processes.  
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Correlates of Theta 

 Theta activity on the other hand has been associated with subjective sleepiness (Strijkstra, Beersma, 

Drayer, Halbesma, & Daan, 2003), decreased vigilance (e.g. Daniel, 1967; Belyavin, & Wright, 1987) and mental 

fatigue (e.g. Wascher, Rasch, Sänger, Hoffmann, Schneider, Rinkenauer et al., 2014). One study, for example, asked 

participants to drive for two hours in a driving simulator without any road stimuli, resulting in a significant 

increase of theta activity over time (Lal & Craig, 2002). Theta activity particularly persists in subcortical areas like 

the hippocampus, which is involved in memory processes (Buzsáki, 2006; O'Keefe, & Recce, 1993; Squire, Stark & 

Clark, 2004), and scalp- recorded EEG theta activity might represent volume conducted hippocampal activity 

(Buzsáki, 2006). Also, theta has been related to thalamic and anterior cingulate activity (Asada, Fukuda, Tsunoda, 

Yamaguchi, & Tonoike, 1999; Vertes, Albo, & Di Prisco, 2001). It was found that rhythmically synchronized theta 

activity in these limbic regions together with the amygdala was measured during confrontation with conditioned 

fear stimuli and expression of freezing behaviour in mice (Seidenbecher, Laxmi, Stork, & Pape, 2003). Hence, EEG 

theta activity might be generated in limbic structures involved in a brain network subserving more ‘bottom-up’ 

automatic attention as opposed to more cortically mediated executive control (Hermans et al., 2014). Moreover, 

theta activity over the midfrontal cortex was found to reflect a computation used for realizing the need for 

cognitive control (Cavanagh & Frank 2014). Altogether, the literature on beta and theta activity supports the 

conjecture that TBR reflects an interplay between top-down executive control (beta) and activity in limbic, 

partially subcortical areas (theta; Klimesch, Sauseng, & Hanslmayr, 2007; Knyazev, 2007; Schutter & van Honk, 

2005). This all fits with above outlined functional correlates of TBR, which again indicates that TBR represents 

processes related to executive control and threat selective attention. In our first studies, TBR has however always 

been measured offline as baseline resting state. Its specific ‘online’ correlates and to which brain area-functionality 

TBR is related, was not yet investigated. We therefore decided to conduct additional studies to further clarify the 

relations between TBR, its dynamic relation to states of increased/decreased cognitive control and the brain 

networks TBR might be involved with. 

 

TBR and mind wandering  

 We hypothesized that resting state TBR reflects mind wandering (MW), which would support the 

previously found relations between TBR and bottom up/ top-down (executive control) functions. As described in 

Chapter 3 and 4, high frontal TBR was indeed related to mind wandering (MW). These findings confirm and 

extend the findings of Braboszcz and Delorme (2011), and show that phasic changes in TBR are associated to a 

variation of mental state between uncontrolled MW and focused attention, or perhaps meta-cognitive vigilance. 

Since MW is thought to represent a state of reduced cognitive control (McVay & Kane, 2009; Unsworth & McMillan, 

2014), our results again support the conjecture that baseline TBR represents relative activation of top-down 

(prefrontal) cortical versus more bottom-up and subcortical processes. Whereas associations between resting 

state TBR and psychological functions previously remained unclear, we suggest that people with less cognitive 

control experience more frequent and/or more profound states of uncontrolled thought during the typical EEG 

measurements of several minutes at rest, as individual differences between mind wandering and TBR seem to be 
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modulation of response inhibition in an emotional go/no-go task (Putman et al., 2010) and down-regulation of 

negative affect (Tortella-Feliu, Morillas-Romero, Balle, Llabrés, Bornas, & Putman, 2014), which both require 

prefrontal cortical executive control. Studies from our lab then reported negative correlations between self-

reported trait (Putman et al., 2010; Putman, Verkuil, Arias-Garcia, Pantazi, & van Schie, 2014; Angelidis et al., 2016; 

van Son et al., 2018a) and state attentional control (Putman et al., 2014) in healthy samples. TBR also correlated 
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Correlates of Theta 
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Since MW is thought to represent a state of reduced cognitive control (McVay & Kane, 2009; Unsworth & McMillan, 

2014), our results again support the conjecture that baseline TBR represents relative activation of top-down 

(prefrontal) cortical versus more bottom-up and subcortical processes. Whereas associations between resting 

state TBR and psychological functions previously remained unclear, we suggest that people with less cognitive 

control experience more frequent and/or more profound states of uncontrolled thought during the typical EEG 
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related (Chapter 3; Braboszcz & Delorme, 2011). The often-observed negative correlation between TBR and ACS 

was however unexpectedly not observed. The observed positive correlation between MW-related high-TBR and 

resting state TBR might however support the likelihood of this hypothesis and future studies should retest this 

TBR – ACS relation in the context of controlled versus uncontrolled thought.  

 An important negative consequence of MW emerges through its association with mood. Using 

experience ratings of more than 2000 participants, Killingsworth and Gilbert (2010) observed that MW episodes 

were followed by lowered mood. Similarly, worry is also seen as a form of MW, and inducing negative mood in 

participants increased MW and worry simultaneously (Smallwood, Fitzgerald, Miles, Phillips, 2009; Ottaviani, 

Shahabi, Tarvainen, Cook, Abrams & Shapiro, 2015). In addition, the association between negative affect and worry 

has been documented in individuals with depressive disorders, who excessively ruminate about past failures (e.g. 

Watkins & Teasdale, 2001; Nolen-Hoeksema, Wisco, Lyubomirsky, 2008). Anxious people, for example, worry a lot, 

which is usually accompanied by biased internal activation of threatening cognitions in working memory, and 

shares mechanisms with biased attention (Hirsch & Mathews, 2012). This in turn fits with findings that fear-derived 

automatic bottom-up processes also involve overlapping DMN regions such as the angular gyrus and the inferior 

frontal gyrus (Sreenivas, Boehm, & Linden, 2012) and moreover the joint activity of the medial PFC and amygdala 

(Kim, Sohn, & Jeong, 2011). Altogether, it can be suggested that TBR is related to brain networks that are 

functionally involved in MW, worry and fear evoked bottom-up processes, including their interplay with executive 

functions. These findings underline the importance of TBR in executive functions and its possible applicability 

when investigating these. TBR may be used as a marker of MW-related changes in brain activity and can be very 

useful in general for the study of MW (Smallwood & Schooler, 2006) and inattention (Jap, Lal, Fischer, & Bekiaris, 

2009; Lorist, Bezdan, ten Caat, Span, Roerdink, & Maurits, 2009), specifically in anxious samples. To our knowledge, 

no studies to date have investigated the involvement of TBR in negative-MW or worry in anxious individuals, 

which can possibly aid further study of these populations.  

 

TBR and the executive control network 

 Frontal TBR’s connections to certain psychological functions thus became clearer over the years, 

however, our MW study using fMRI (Chapter 4) was the first to directly relate online measured frontal TBR to task-

dependent brain network activity. We found that controlled versus uncontrolled thought related changes in 

frontal TBR were associated with controlled versus uncontrolled thought related changes in functional 

connectivity in the executive control network (ECN). The ECN covers several medial-frontal areas including the 

dorsolateral PFC (dl-PFC), anterior cingulate cortex (ACC) and the para-cingulate cortex. Miyake and colleagues 

(2000) identified three cognitive functions covering executive control: inhibition, shifting and the updating of 

working memory representations (Miyake, Friedman, Emerson, Witzki, Howerter, & Wager, 2000). Several 

theoretical considerations and empirical research suggest that these three executive control functions are likely to 

be supported by overlapping, yet somewhat distinct brain systems (Miyake & Friedman, 2012; Herd, Hazy, 

Chatham, Brant, & Friedman, 2014). In line with our findings described in Chapter 4, functional MRI studies 

showed that the ability to maintain a task goal and inhibit potential distractors is thought to rely on areas of 
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lateral prefrontal cortex, extending from the mid dl-PFC (Banich, 2009, Herd, Banich, & O'Reilly, 2006; Reineberg, 

Andrews-Hanna, Depue, Friedman, & Banich, 2015), potentially including the ACC as well (Dosenbach, Fair, Cohen, 

Schlaggar, & Petersen, 2008). Our finding that the controlled versus uncontrolled thought related changes were 

correlated for ECN and TBR, fits with previous explanations of TBR reflecting voluntary top-down processes of 

executive control (including attentional control), mediated by (dorso-lateral) PFC, over bottom-up processes from 

limbic areas, such as the ACC, hippocampus and amygdala (Angelidis et al., 2016; 2018; Bishop, 2008; Knyazev, 

2007; Schutter & Knyazev, 2012) as these areas are similarly involved in executive control functions.  

 We moreover found functional connectivity in the DMN to be higher during MW compared to on-task 

periods (Chapter 4). The DMN includes the posterior cingulate, medial PFC and the angular gyrus, and functional 

activity and connectivity within this network was found to be high during task unrelated thoughts (Stawarczyk, 

Majerus, Maquet, & D'Argembeau, 2011) and also to directly relate to MW (Karapanagiotidis, Bernhardt, Jefferies, & 

Smallwood, 2017; Smallwood, Beach, Schooler, & Handy, 2008). In line with our findings, a recent study of 

Delaveau and colleagues (2017) found that rumination in depressed out-patients was accompanied by activity in 

the DMN, but this rumination was also related to a reduced functional connectivity between the DMN and the so 

called ‘task positive network’ (Delaveau, Arruda Sanchez, Steffen, Deschet, Jabourian, Perlbarg et al., 2017). The 

task positive network is a network functionally related to the ECN and involved working memory processes and 

attention directed to the external world, which could in turn be linked to TBR as TBR seems to represent executive 

control.  

 In summary, we found direct empirical relations between MW-related frontal TBR and a MW-related 

functional connectivity between the ECN and TBR. This strongly underlines the already suggested relations of TBR 

with top-down executive vs bottom-up automatic processes and its brain networks involved. Our findings 

generate hypotheses about how TBR is related to psychiatric symptoms, in particular anxiety and avoidance, and 

more firmly establishes frontal TBR as a useful tool in the study of executive control in normal as well as abnormal 

psychology. 

 

Manipulating EEG theta/beta ratio  

 In Chapter 5 we reported that Neurofeedback training (NFT) did not alter TBR in any way. This was 

unexpected, given that past studies using NFT targeting TBR successfully reduced TBR and ADHD-related 

symptoms in individuals diagnosed with ADHD (e.g. hyperactivity, impaired attention; e.g. Leins, Goth, 

Hinterberger, Klinger, Rumpf, & Strehl, 2007; Lubar, Swartwood, Swartwood, & O'Donnell, 1995; Janssen, Bink, 

Weeda, Geladé, van Mourik, Maras & Oosterlaan, 2017). However, no study to date yet investigated whether NFT 

induces changes in TBR in people with mildly elevated TBR but who do not have a clinical diagnosis of 

psychopathology. Our results are somewhat comparable to Doppelmayr and Weber, (2011) who performed a 

randomized controlled trial with a total of 14 healthy participants receiving active-NFT on TBR. After 30 active-NFT 

sessions no change in EEG TBR or the separate theta or beta frequency bands was found. Their results however do 

not provide explanation why the active-NFT did not alter TBR and neither did ours. 
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 Besides NFT, neuromodulation approaches, such as transcranial magnetic stimulation, transcranial 

direct/alternating current stimulation (tDCS/tACS), and vagal nerve stimulation, can potentially enhance 

cognition by modulating neuronal excitability (Miniussi, Cappa, Cohen, Floel, Fregni, Nitsche, Oliveri et al., 2008). It 

has been suggested that the effects of brain stimulation may be determined by the initial neural activation state 

(Silvanto, Muggleton, & Walsh, 2008); thus, manipulating neural activation states may allow one to selectively 

enhance activity in a given neural circuit. Wischnewski, Zerr and Schutter (2016) used tACS to stimulate theta 

which resulted in an enhancement of working memory, decreased frontal and central TBR and increased flexible 

implicit reversal learning in motivated decision making (Wischnewski et al., 2016). Also, as mentioned before, our 

results of Chapter 2 indicate a relation between TBR and catecholamine functioning suggesting that 

pharmacological manipulations could as well modulate TBR, which should be further investigated. Such 

neuromodulation techniques altogether seem more promising for studying whether changing TBR can be used 

as a clinical tool in anxiety disorders or when studying causal relations of TBR.  

 Another possible manipulation method might be derived from cognitive trainings. Cognitive training 

aims to enhance learning and adaptive neuroplastic changes in an individual’s neural system through controlled 

learning events (e.g. Keshavan, Vinogradov, Rumsey, Sherrill & Wagner, 2014). Sari and colleagues (2016) for 

example used an adaptive working memory training to improve attentional control in anxious individuals. They 

found that the training improved attentional control and lowered resting state TBR, and training related gains 

were associated with lower levels of trait anxiety (Sari, Koster, Pourtois, & Derakshan, 2016). Cognitive trainings can 

therefore have beneficial effects on attentional control and cognitive performance that may protect against 

emotional vulnerability in individuals at risk of developing clinical anxiety. Again, as already noted, anxious 

individuals show more problematic top-down regulated executive control over salient thoughts or stimuli, which 

is in line with the findings of Sari et al., (2016). Growing knowledge of the specific processing anomalies, 

developmental features, and distributed neural circuits that characterize TBR as a measure of executive control, 

might aid further development and applicability of TBR-neuromodulation techniques and cognitive training 

approaches, for example anxiety disorder treatment.  

 

Clinical relevance 

 Throughout this thesis it already became clear that TBR is a conceivably interesting tool for clinical 

research. Chapter 2 for example, described that individual differences in TBR and thus baseline executive function 

might determine catecholamine functioning and threat processing, and is considerably important when 

investigating neural underpinnings of psychopathology. Chapter 3 and 4 described the involvement of TBR in 

MW and suggested possible involvement of TBR in ‘negative MW’ or worry in anxious individuals, which can 

possibly provide valuable information for treatment development in these samples. TBR may be used as a marker 

of MW-related changes in brain activity and can be useful for the study of MW and inattention. Also, as anxious 

populations often have disturbed top-down cognitive control over salient stimuli (as well as depressed patients 

as described previously), and our results indicate that TBR represents just that process, the assumption was raised 

that TBR could provide a marker of individuals’ vulnerability to such reduced top-down control over salient 
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stimuli. Modulation of TBR (reduction) might still be expected to improve top-down executive control, however 

our neurofeedback study for example did not provide any evidence for this, and different neuromodulation 

techniques should be further tested. 

 

TBR and Anxiety 

 An important consideration when studying potential clinical applicability of TBR is that the relation 

between TBR and anxiety is still unresolved. Studies from our lab have repeatedly found that TBR is related to self-

reported attentional control (Putman et al., 2010; Putman et al., 2014; Angelidis et al., 2016; van Son et al., 2018a). 

However, two studies from our lab also reported a negative relation between TBR and self-reported anxious affect 

(Putman et al., 2010; Angelidis et al., 2016). This is rather paradoxical, as a robust negative association between 

attentional control and anxiety is generally assumed (e.g. Derryberry & Reed, 2002; Mogg & Bradley, 1998; 2016; 

Mogg et al., 1987), leading to the assumption that independent functional processes are responsible for these 

two associations (TBR and attentional control versus TBR and anxiety). Research done by Schutter & van Honk, 

(2005) suggests that TBR might not represent overall PFC regulated inhibition of subcortical processes, but rather 

reflects the inhibition of specifically approach-motivated decision making (Schutter & van Honk, 2005; replicated 

by Massar et al., 2012; Massar et al., 2014). Anhedonia (thus not approach-driven), or unpleasant emotional states 

however relate to anxiety (e.g. Gilbert, Allan, Brough, Melley, & Miles, 2002), which possibly supports the negative 

relation between TBR and anxiety. Hence, we can speculate that TBR does not solely reflect executive control over 

the processing of negative information (as in Chapter 1 & 2), but also approach-motivation related processes, 

perhaps originating from other neural sources that also produces TBR as measured by EEG. If this applies, high 

TBR should not be perceived only as some form of impairment from a psychopathological viewpoint. One could 

theorize for example that patients suffering from PTSD or depression have increased TBR since their expected 

reduced executive control (Lanius, Vermetten, Loewenstein, Brand, Schmahl, Bremner & Spiegel, 2010, Vasterling,  

Duke, Brailey, Constans, Allain & Sutker, 2002), but considering their lack of hedonic/approach motivation, not 

increased but reduced TBR should be expected. Applying manipulations like transcranial alternating/direct 

current stimulation or neurofeedback in these patient samples should therefore be avoided before the exact 

systems behind TBR are investigated and clarified. Our paradoxical findings thus suggest that TBR might result 

from different neural sources and further (fMRI) research is necessary to investigate this before TBR can be a 

candidate for, for example, more applied research into affective psychopathology. 

 

Final conclusions 

 We conclude that attentional control has an important role in threat processing. The 

electrophysiological marker of executive control, frontal TBR, may be a useful approximation of individual 

differences in baseline prefrontal catecholamine function. Increased frontal TBR is also related to mind wandering 

and as such further supports the notion that low TBR reflects brain processes involved in executive control 

processes. The current findings contribute to the understanding of the functional relation between frontal TBR 

and executive cognitive functions. We did not find any evidence that TBR-targeted neurofeedback training affects 
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as described previously), and our results indicate that TBR represents just that process, the assumption was raised 
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relation between TBR and anxiety. Hence, we can speculate that TBR does not solely reflect executive control over 

the processing of negative information (as in Chapter 1 & 2), but also approach-motivation related processes, 

perhaps originating from other neural sources that also produces TBR as measured by EEG. If this applies, high 

TBR should not be perceived only as some form of impairment from a psychopathological viewpoint. One could 

theorize for example that patients suffering from PTSD or depression have increased TBR since their expected 

reduced executive control (Lanius, Vermetten, Loewenstein, Brand, Schmahl, Bremner & Spiegel, 2010, Vasterling,  

Duke, Brailey, Constans, Allain & Sutker, 2002), but considering their lack of hedonic/approach motivation, not 

increased but reduced TBR should be expected. Applying manipulations like transcranial alternating/direct 

current stimulation or neurofeedback in these patient samples should therefore be avoided before the exact 

systems behind TBR are investigated and clarified. Our paradoxical findings thus suggest that TBR might result 

from different neural sources and further (fMRI) research is necessary to investigate this before TBR can be a 

candidate for, for example, more applied research into affective psychopathology. 

 

Final conclusions 

 We conclude that attentional control has an important role in threat processing. The 

electrophysiological marker of executive control, frontal TBR, may be a useful approximation of individual 

differences in baseline prefrontal catecholamine function. Increased frontal TBR is also related to mind wandering 

and as such further supports the notion that low TBR reflects brain processes involved in executive control 

processes. The current findings contribute to the understanding of the functional relation between frontal TBR 

and executive cognitive functions. We did not find any evidence that TBR-targeted neurofeedback training affects 
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TBR in healthy participants. Although it is not impossible that NFT could work with other parameters than we 

investigated, we suggest that it may be more fruitful to investigate other neuromodulation techniques. Cognitive 

training effects on TBR might also further be investigated. In conclusion, the studies as conducted for this thesis 

are notable for providing a somewhat clearer picture of what online frontal TBR represents on a behavioural and 

neural level. Our results further support the notion that low TBR reflects connectivity in brain networks involved in 

executive control processes. Although our findings might have established a strong groundwork for further 

exploration of frontal TBR and its representations, it remains important for future studies to replicate and extend 

our findings and further investigate, for example, the paradoxical relation between TBR and anxiety as just 

discussed, before considering more direct (clinical) application. 
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Introductie  

Elektro-encefalografie (EEG) is een techniek om neurale activiteit (synchroon vuren van neuronen) te meten. De 

verhouding tussen de (lage) theta en (hoge) beta frequentie-banden als frontaal gemeten in een EEG tijdens rust 

(ook wel de ‘theta/beta ratio’ of TBR genoemd) bleek eerder gekoppeld te zijn aan een veelvoorkomende 

psychische stoornis, ADHD (attention deficit hyperactivity disorder). Later werd TBR ook gekoppeld aan andere 

psychologische functies zoals cognitieve-emotionele processen, vaak afhankelijk van uitvoerende (executieve)-

cognitieve controle. Een hogere TBR was specifiek gerelateerd aan een lagere aandachts-controle in meerdere 

studies. TBR werd ook in verband gebracht met emotionele processen in bijvoorbeeld een respons- remming 

(inhibitie) taak. Deze gevonden relaties tussen TBR en aandacht-emotionele processen suggereren dat TBR zou 

kunnen dienen als unieke voorspeller voor uitvoerende controle over emotionele informatie. Door TBR verder te 

onderzoeken kan er aldus waardevolle informatie verzameld worden, die mogelijk toepasbaar is voor stoornissen 

met een emotie-problematiek, aangezien deze stoornissen vaak gekenmerkt worden door een verstoorde 

aandacht voor dreigende informatie en problemen met uitvoerende controle. Het is bekend dat de rol van 

aandachts-controle en de invloed van deze op de verwerking van en aandacht voor dreigende prikkels (stimuli), 

bij angststoornissen, niet onderschat mag worden (Mogg & Bradley, 2016). TBR is daarom een interessante 

variabele in verschillend psychologisch onderzoek.  

 

Doel van het promotieonderzoek 

Gezien de mogelijke interessante rol van TBR als marker voor aandachts-controle in zowel gezonde als klinische 

populaties, hebben we verschillende onderzoeken met gezonde proefpersonen opgezet en uitgevoerd om de 

relatie van TBR met aandachts-controle en de selectieve aandacht voor dreigende prikkels verder te bestuderen. 

We hebben onder andere het niveau van dreiging van stimuli gevarieerd, net als tijds-stadia van aandacht, 

processen die onder invloed van neurotransmitters staan (catecholamines) en ongecontroleerde gedachten 

(gedachtedwalingen) experimenten. Verder is er getest of TBR te manipuleren is in gezonde volwassen 

proefpersonen met behulp van een neurofeedback training.  

 

Hoofdstuk 1 

In een eerdere studie door Angelidis en collega’s werd gevonden dat EEG theta/beta ratio (TBR) gekoppeld was 

aan een zogenaamde aandacht ‘bias’ voor mild-dreigende prikkels vergeleken met hoog-dreigende prikkels in 

een aandachtstaak (dot-probe task). Deze relatie was verweven met angstigheid als persoonlijkheids-trek. De 

relatie bleek onafhankelijk te zijn van tijd-stadia van aandacht, die aangepast werden in de taak, bij het zien van 

een ‘target’ (een puntje dat in beeld verschijnt) met een vertraging van 200 of 500 ms. Het doel van de huidige 

studie was het herhalen en bevestigen van deze resultaten van Angelidis et al., en daarbij opnieuw het effect van 

tijds-stadia van aandacht te onderzoeken, ditmaal met kortere target verschijningsvertragingen van 80 en 200 ms. 

Daarnaast werd er een negatieve relatie verwacht tussen TBR en aandachts-controle. TBR werd gemeten in rust 
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bij 53 gezonde proefpersonen. Ook werden zelf-gerapporteerde aandachts-controle en angstigheid als 

persoonlijkheids-trek gemeten. De proefpersonen voerden na deze metingen eenzelfde dot-probe taak uit als in 

Angelidis et al., maar dit keer met kortere target vertragingen. In de dot-probe taak moesten de proefpersonen 

aangeven met een knop links en rechts, of het ‘target’ (een zwart puntje) respectievelijk links of rechts verscheen. 

Het target verscheen altijd onder één van twee gecentreerde plaatjes. Deze plaatjes bevatte bij één van de twee 

dreigende en bij de andere neutrale informatie. De dreigende informatie kon een milde dreiging zijn 

(bijvoorbeeld een spin of slang) of een hoge dreiging (afbeelding van ernstig lichamelijke letsels). De aandachts-

bias werd gemeten door de reactietijd van ‘target onder dreiging’ af te trekken van ‘target onder neutraal’. De 

reactietijd wordt namelijk verwacht sneller te zijn wanneer het target onder dreigende informatie zit dan wanneer 

deze zich onder neutrale informatie bevindt. De resultaten gaven aan dat verhoogde TBR meer aandachts-bias 

voorspelde naar prikkels met een milde dreiging, vergeleken met de prikkels met een hoge dreiging. Hetzelfde 

effect was gevonden voor aandachts-controle, wat alleen het geval was bij een target vertraging van 200 ms. De 

TBR en aandachts-controle effecten waren onafhankelijk van angstigheid als persoonlijkheids-trek. TBR hing 

verder negatief samen met aandachts-controle. Concluderend lijkt het modulerende effect van TBR en 

aandachts-controle op een aandachts-bias voor mild-dreigende prikkels herhaald te zijn, maar dit keer was er 

geen interactie-effect gevonden met angstigheid als persoonlijkheids-trek. Het effect van aandachts-controle lijkt 

daarnaast enkel van toepassing in een later tijd-stadium van aandacht. 

 

Hoofdstuk 2 

Aangezien in eerder onderzoek is gevonden dat EEG theta/beta ratio (TBR) de prefrontaal-gereguleerde 

processen als aandachts-controle weerspiegelt, en daarnaast dat TBR een aandachts-bias voor dreigende 

informatie beïnvloedt, zou cafeïne als werkzame stof een invloed kunnen hebben op TBR. Een lage dosis cafeïne 

versterkt namelijk aandachts-controle door een verhoogde werking van zogenaamde catecholamines in de 

prefrontale cortex (PFC), afhankelijk van iemands basale-catecholamine niveau in de PFC. Ons doel was om te 

testen of cafeïne ook invloed heeft op een aandachts-bias voor dreigende informatie en of deze relatie daarnaast 

wordt geregeld door TBR en/of angstigheid als persoonlijkheids-trek. Veertig gezonde vrouwelijke proefpersonen 

bezochten het lab driemaal met steeds een week ertussen. Tijdens de eerste sessie werd TBR gemeten en er werd 

een interferentie taak met positieve en dreigende informatie uitgevoerd. Tijdens de tweede en derde sessie werd 

er (dubbelblind) 30 minuten voor het starten van de sessie 200 mg cafeïne of een placebo toegediend. De 

tweede en derde sessie waren verder exact gelijk aan de eerste sessie. Wanneer de proefpersoon de tweede 

sessie cafeïne toegediend kreeg was dit de derde sessie placebo en andersom, zodat alle proefpersonen beide 

substanties voor één van de sessies kregen. De resultaten gaven aan dat een verhoogde TBR gekoppeld was aan 

een lagere aandachts-bias voor dreigende prikkels. Dit was alleen het geval voor proefpersonen met een lage 

score voor angstigheid als persoonlijkheids-trek, en in de eerste sessie of na placebo toediening. Dit effect was 

niet aanwezig voor positieve prikkels. Na toediening van cafeïne leek dit effect te zijn omgedraaid; een verhoogde 

TBR was gekoppeld aan een hogere aandachts-bias voor dreigende prikkels, onafhankelijk van angstigheid als 

persoonlijkheids-trek. Cafeïne veroorzaakte verder geen verandering in TBR. Deze resultaten suggereren dat, 
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aangezien cafeïne catecholamine niveaus verhoogt, individuen met een lage TBR eerder een negatieve invloed 

(meer aandachts-bias) ondervinden van cafeïne, en individuen met een verhoogde TBR eerder een positieve 

invloed (minder aandachts-bias) ondervinden van cafeïne. TBR lijkt daarmee indirect gekoppeld te zijn aan basale 

catecholamine niveaus in de PFC. De resultaten versterken opnieuw de aanname dat TBR aandachts-controle 

weerspiegelt en benadrukken dat het belangrijk is basale aandachts-controle mee te nemen bij onderzoek naar 

effecten van cafeïne op prestatie.  

 

Hoofdstuk 3 

Naast de eerder gevonden relatie tussen EEG theta/beta ratio (TBR) en aandachts-controle was een verhoogde 

TBR (hogere theta, lagere beta) ook gekoppeld aan ongecontroleerde gedachten (gedachtedwalingen), 

vergeleken met ‘gecontroleerde gedachten’, ofwel tijdens gefocuste aandacht (Braboszcz & Delorme, 2011). Dit 

suggereert dat de eerder gevonden relatie tussen TBR en aandachts-controle eventueel verklaard zou kunnen 

worden door ongecontroleerde gedachten van individuen met een lagere aandachts-controle tijdens de EEG-

meting in rust. Het doel van dit onderzoek was het herhalen en bevestigen van de eerder gevonden relatie tussen 

TBR en gedachtedwalingen, en of deze relatie op zijn beurt gekoppeld is aan aandachts-controle. Zesentwintig 

gezonde proefpersonen voerden een ademhalings-tel taak uit van 40 minuten. TBR was gemeten in rust vóór 

deze taak en daarnaast werd TBR tijdens de taak ‘actueel’ gemeten. Tijdens de ademhalings-tel taak gaven 

proefpersonen aan wanneer de gedachten afdwaalden van het tellen van ademhalingen door op een knop te 

drukken. De resultaten gaven aan dat TBR significant hoger was tijdens periodes van gedachtedwalingen (vóór de 

knop-druk) vergeleken met periodes van gefocuste aandacht (na de knop-druk). De relatie tussen TBR en 

aandachts-controle werd echter niet gevonden. Wij concluderen daarom dat verhoogde TBR een verlaagde 

controle over gedachtedwalingen lijkt te weerspiegelen.  

 

Hoofdstuk 4 

Eerder onderzoek heeft nu laten zien dat EEG theta/beta ratio (TBR) samenhangt met aandachts-controle en 

ongecontroleerde gedachten (gedachtedwalingen). Gedachtedwalingen zijn daarnaast ook gekoppeld aan 

verminderde activiteit in het zogenoemde ‘executieve controle netwerk’ (ECN) een prefrontaal brein-netwerk dat 

betrokken is bij cognitieve/aandacht controle. Ook zijn gedachtedwalingen gekoppeld aan een toegenomen 

activiteit in het zogenoemde ‘default mode-netwerk’ (DMN); dit is een brein-netwerk dat vaak actief is tijdens rust. 

Het is daarom mogelijk dat een verhoogde TBR gekoppeld is aan een verhoogde mate van gedachtedwalingen 

wat zelf weer gekoppeld is aan verandering in activiteit in het ECN en DMN. Dit is echter nog niet eerder 

onderzocht. Deze studie had daarom als doel de relaties te onderzoeken tussen TBR tijdens rust en tijdens 

gerapporteerde gedachtedwalingen ten opzichte van gefocuste aandacht. Daarnaast werd gekeken of deze 

relaties op hun beurt correleerden met functionele verbinding (connectiviteit) binnen het ECN en DMN. 

Achtendertig gezonde proefpersonen voerden twee keer een ademhalings-tel taak uit van 40 minuten; tijdens 

een eerste sessie terwijl TBR actueel werd gemeten en tijdens een tweede sessie terwijl functionele ‘magnetic 

resonance imaging’ (MRI) actueel werd gemeten. TBR werd ook gemeten in rust. Tijdens de ademhalings-tel taak 
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gaven proefpersonen aan wanneer de gedachten afdwaalden van het tellen van ademhalingen door op een 

knop te drukken. De resultaten gaven aan dat TBR significant hoger was tijdens periodes van gedachtedwalingen 

(vóór de knop-druk) vergeleken met periodes van gefocuste aandacht (na de knop-druk) en deze verandering 

was marginaal significant gekoppeld aan TBR tijdens rust. Functionele verbinding binnen het DMN was hoger en 

binnen het ECN lager tijdens periodes van gedachtedwalingen (voor de knop-druk) vergeleken met periodes van 

gefocuste aandacht (na de knop-druk). Daarnaast was de verandering in ECN-connectiviteit tijdens 

gedachtedwalingen ten opzichte van gefocuste aandacht significant gekoppeld aan de verandering in TBR 

tijdens gedachtedwalingen vergeleken met gefocuste aandacht. Deze resultaten suggereren opnieuw dat TBR 

aandachts-controle weerspiegelt en geven een eerste indicatie van de neurale-correlaten van TBR.  

 

Hoofdstuk 5. 

Neurofeedback is een methode waarin hersenactiviteit (bijvoorbeeld gemeten door EEG) wordt omgezet in 

beelden of geluiden. Deze beelden of geluiden dienen dan als ‘feedback’. Met een neurofeedback training wordt 

getracht de hersenactiviteit te beïnvloeden met behulp van operante (werkzame)-conditionering. Met 

bijvoorbeeld videobeelden of een computerspel wordt door middel van beloning getraind de hersenactiviteit 

boven of onder een gestelde drempel te houden. De aanpassing van EEG theta/beta ratio (TBR) door 

neurofeedback training is eerder onderzocht. Aanpassing van TBR zou sterk kunnen bijdragen aan onderzoek 

naar de oorzaak van de eerder gevonden relatie tussen TBR en aandachts-controle. Deze studie had daarom als 

doel om een algemeen gebruikte TBR neurofeedback training te onderzoeken in twaalf gezonde vrouwelijke 

proefpersonen, die waren voorgeselecteerd op een hoger dan gemiddeld TBR. Aangezien dit onderzoek bedoeld 

was als een eerste pilot of TBR daadwerkelijk verandert met neurofeedback training, en bijwerkingen van TBR 

neurofeedback training niet uitgesloten konden worden, werd er gekozen voor een ‘multiple baseline design’. In 

dit design wordt een manipulatie op verschillende momenten in de tijd aangeboden na periodes van het meten 

van de te manipuleren variabele als basis. Op deze manier kunnen veranderingen in de gemanipuleerde variabele 

nauwkeurig bekeken worden voor en na de start van de manipulatie. In deze studie werden de proefpersonen 

verdeeld over drie groepen van vier proefpersonen. De groepen begonnen allen met drie sessies waarin alleen 

TBR werd gemeten in rust voor de duur van een neurofeedback training (25 minuten). Na deze drie ‘baseline’ 

sessies ging één groep verder met 14 sessies actieve TBR neurofeedback training (geprogrammeerd om TBR te 

verlagen), één groep kreeg nog zes extra baseline sessies voordat ze verder gingen met acht actieve TBR 

neurofeedback training sessies, en de laatste groep ging verder met 14 sessies placebo neurofeedback training 

(niet werkzame voor-opgenomen neurofeedback training). De EEG van beta, theta en TBR werd per minuut per 

proefpersoon en per groep in detail bekeken. De resultaten gaven geen enkele aanwijzing dat neurofeedback 

training de TBR verlaagde tijdens, of over de sessies, noch aan het einde van de 14 sessies. Ons onderzoek toont 

daarmee niet aan dat neurofeedback training TBR verandert in gezonde proefpersonen met een hoger dan 

gemiddeld TBR.  
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aangezien cafeïne catecholamine niveaus verhoogt, individuen met een lage TBR eerder een negatieve invloed 

(meer aandachts-bias) ondervinden van cafeïne, en individuen met een verhoogde TBR eerder een positieve 

invloed (minder aandachts-bias) ondervinden van cafeïne. TBR lijkt daarmee indirect gekoppeld te zijn aan basale 

catecholamine niveaus in de PFC. De resultaten versterken opnieuw de aanname dat TBR aandachts-controle 

weerspiegelt en benadrukken dat het belangrijk is basale aandachts-controle mee te nemen bij onderzoek naar 

effecten van cafeïne op prestatie.  

 

Hoofdstuk 3 

Naast de eerder gevonden relatie tussen EEG theta/beta ratio (TBR) en aandachts-controle was een verhoogde 
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proefpersonen aan wanneer de gedachten afdwaalden van het tellen van ademhalingen door op een knop te 

drukken. De resultaten gaven aan dat TBR significant hoger was tijdens periodes van gedachtedwalingen (vóór de 
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Hoofdstuk 4 
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gaven proefpersonen aan wanneer de gedachten afdwaalden van het tellen van ademhalingen door op een 

knop te drukken. De resultaten gaven aan dat TBR significant hoger was tijdens periodes van gedachtedwalingen 

(vóór de knop-druk) vergeleken met periodes van gefocuste aandacht (na de knop-druk) en deze verandering 
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Hoofdstuk 5. 
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Discussie 

De onderzoeken in dit proefschrift toonden tezamen aan dat de EEG-marker ‘theta/beta ratio’ (TBR) mogelijk 

aandachts-controle weerspiegelt. Er is gevonden dat een verhoogde TBR samenhangt met verhoogde aandacht 

voor ‘mild’ dreigende prikkels ten opzichte van ‘hoog’ dreigende prikkels. TBR leek daarnaast indirect gekoppeld 

te zijn aan basale catecholamine niveaus in de prefrontale-cortex in individuen met een lage score op 

angstigheid als persoonlijkheidstrek. Er is meerdere keren gevonden dat een verhoogde TBR samenhangt met 

verlaagde (zelf-gerapporteerde) aandachts-controle. TBR bleek daarnaast hoger tijdens ongecontroleerde 

gedachten (gedachtedwalingen) vergeleken met gecontroleerde gedachten (gefocuste aandacht). Dit effect was 

hetzelfde voor functionele verbinding in het ‘executieve controle netwerk’, wat op zijn beurt weer gekoppeld was 

aan het ongecontroleerde versus gecontroleerde gedachten- effect van TBR. Ons onderzoek heeft echter niet aan 

kunnen tonen dat TBR aangepast zou kunnen worden door een neurofeedback training. De bevindingen zoals 

beschreven in dit proefschrift bieden nieuwe inzichten op de neuropsychologische functie van TBR en 

ondersteunen het gegeven dat TBR de verbinding weerspiegelt in brein-netwerken van aandachts-controle. Deze 

bevindingen dragen bij aan een breder begrip van fysiologische weergaven van aandachts-controle en cognitief 

functioneren. Ondanks dat deze bevindingen al een sterke basis vormen voor wat TBR vertegenwoordigt, blijft 

toekomstig onderzoek essentieel, met name voor het herhalen en bevestigen van onze bevindingen en het 

verder uitzoeken van TBR’s relaties tot psychologische functies, zowel in gezonde populaties als populaties met 

een psychopathologische achtergrond.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 167 

About the author 

 

Dana van Son was born on May 11th, 1990 in Naarden, The Netherlands, and lived in Almere throughout her 

childhood where she completed high school at ‘Baken Park Lyceum’ in 2008. She then started the Bachelor of 

Psychology at VU University in Amsterdam. After completing her first year, she however switched to the University 

of Amsterdam (UvA) where she finished her Bachelor’s degree (2011) and (Research) Master’s degree in Cognitive 

Psychology (2013). During her Master’s, she was involved in research projects on attention trainings and alcohol 

addiction in the lab of Prof. Wiers, and conducted an internship on fMRI grey and white (brain) matter in gamblers 

and cocaine addicts at the University of Granada, Spain. After her graduation, she worked as a research assistant in 

Amsterdam in the same lab of Prof. Wiers, helping out in fMRI projects and attentional trainings for heavy drinkers. 

In September 2014 she started her PhD project on ‘Anxiety and cognitive performance’ at Leiden University under 

the supervision of Dr. Putman and Prof. van der Does. In a series of studies as explained in this dissertation, she 

explored the role of EEG theta/beta ratio in cognitive/emotional processes. In 2018, she visited the University of 

Wollongong, Australia, for a three-month collaboration project, conducting EEG time frequency analysis on data 

collected at Leiden University. Dana now works as workgroup teacher at Leiden University.  

 

 

Publications 

 

van Son, D., De Blasio, F. M., Fogarty, J. S., Angelidis, A., Barry, R. J., & Putman, P. (2019). Frontal EEG theta/beta ratio 

during mind wandering episodes. Biological psychology, 140, 19-27. 

 

van Son, D., Angelidis, A., Hagenaars, M. A., van der Does, W., & Putman, P. (2018). Early and late dot-probe 

attentional bias to mild and high threat pictures: Relations with EEG theta/beta ratio, self-reported trait attentional 

control, and trait anxiety. Psychophysiology, e13274. 

 

van Son, D., Schalbroeck, R., Angelidis, A., van der Wee, N. J., van der Does, W., & Putman, P. (2018). Acute effects of 

caffeine on threat-selective attention: moderation by anxiety and EEG theta/beta ratio. Biological psychology, 136, 

100-110. 

 

Angelidis, A., Hagenaars, M., van Son, D., van der Does, W., & Putman, P. (2018). Do not look away! Spontaneous 

frontal EEG theta/beta ratio as a marker for cognitive control over attention to mild and high threat. Biological 

psychology, 135, 8-17. 

 

van Son, D., Wiers, R. W., Catena, A., Perez-Garcia, M., & Verdejo-García, A. (2016). White matter disruptions in male 

cocaine polysubstance users: Associations with severity of drug use and duration of abstinence. Drug and alcohol 

dependence, 168, 247-254. 



About the Author

171

A

 166 

Discussie 

De onderzoeken in dit proefschrift toonden tezamen aan dat de EEG-marker ‘theta/beta ratio’ (TBR) mogelijk 

aandachts-controle weerspiegelt. Er is gevonden dat een verhoogde TBR samenhangt met verhoogde aandacht 

voor ‘mild’ dreigende prikkels ten opzichte van ‘hoog’ dreigende prikkels. TBR leek daarnaast indirect gekoppeld 

te zijn aan basale catecholamine niveaus in de prefrontale-cortex in individuen met een lage score op 

angstigheid als persoonlijkheidstrek. Er is meerdere keren gevonden dat een verhoogde TBR samenhangt met 

verlaagde (zelf-gerapporteerde) aandachts-controle. TBR bleek daarnaast hoger tijdens ongecontroleerde 

gedachten (gedachtedwalingen) vergeleken met gecontroleerde gedachten (gefocuste aandacht). Dit effect was 

hetzelfde voor functionele verbinding in het ‘executieve controle netwerk’, wat op zijn beurt weer gekoppeld was 

aan het ongecontroleerde versus gecontroleerde gedachten- effect van TBR. Ons onderzoek heeft echter niet aan 

kunnen tonen dat TBR aangepast zou kunnen worden door een neurofeedback training. De bevindingen zoals 

beschreven in dit proefschrift bieden nieuwe inzichten op de neuropsychologische functie van TBR en 

ondersteunen het gegeven dat TBR de verbinding weerspiegelt in brein-netwerken van aandachts-controle. Deze 

bevindingen dragen bij aan een breder begrip van fysiologische weergaven van aandachts-controle en cognitief 

functioneren. Ondanks dat deze bevindingen al een sterke basis vormen voor wat TBR vertegenwoordigt, blijft 

toekomstig onderzoek essentieel, met name voor het herhalen en bevestigen van onze bevindingen en het 

verder uitzoeken van TBR’s relaties tot psychologische functies, zowel in gezonde populaties als populaties met 

een psychopathologische achtergrond.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 167 

About the author 

 

Dana van Son was born on May 11th, 1990 in Naarden, The Netherlands, and lived in Almere throughout her 

childhood where she completed high school at ‘Baken Park Lyceum’ in 2008. She then started the Bachelor of 

Psychology at VU University in Amsterdam. After completing her first year, she however switched to the University 

of Amsterdam (UvA) where she finished her Bachelor’s degree (2011) and (Research) Master’s degree in Cognitive 

Psychology (2013). During her Master’s, she was involved in research projects on attention trainings and alcohol 

addiction in the lab of Prof. Wiers, and conducted an internship on fMRI grey and white (brain) matter in gamblers 

and cocaine addicts at the University of Granada, Spain. After her graduation, she worked as a research assistant in 

Amsterdam in the same lab of Prof. Wiers, helping out in fMRI projects and attentional trainings for heavy drinkers. 

In September 2014 she started her PhD project on ‘Anxiety and cognitive performance’ at Leiden University under 

the supervision of Dr. Putman and Prof. van der Does. In a series of studies as explained in this dissertation, she 

explored the role of EEG theta/beta ratio in cognitive/emotional processes. In 2018, she visited the University of 

Wollongong, Australia, for a three-month collaboration project, conducting EEG time frequency analysis on data 

collected at Leiden University. Dana now works as workgroup teacher at Leiden University.  

 

 

Publications 

 

van Son, D., De Blasio, F. M., Fogarty, J. S., Angelidis, A., Barry, R. J., & Putman, P. (2019). Frontal EEG theta/beta ratio 

during mind wandering episodes. Biological psychology, 140, 19-27. 

 

van Son, D., Angelidis, A., Hagenaars, M. A., van der Does, W., & Putman, P. (2018). Early and late dot-probe 

attentional bias to mild and high threat pictures: Relations with EEG theta/beta ratio, self-reported trait attentional 

control, and trait anxiety. Psychophysiology, e13274. 

 

van Son, D., Schalbroeck, R., Angelidis, A., van der Wee, N. J., van der Does, W., & Putman, P. (2018). Acute effects of 

caffeine on threat-selective attention: moderation by anxiety and EEG theta/beta ratio. Biological psychology, 136, 

100-110. 

 

Angelidis, A., Hagenaars, M., van Son, D., van der Does, W., & Putman, P. (2018). Do not look away! Spontaneous 

frontal EEG theta/beta ratio as a marker for cognitive control over attention to mild and high threat. Biological 

psychology, 135, 8-17. 

 

van Son, D., Wiers, R. W., Catena, A., Perez-Garcia, M., & Verdejo-García, A. (2016). White matter disruptions in male 

cocaine polysubstance users: Associations with severity of drug use and duration of abstinence. Drug and alcohol 

dependence, 168, 247-254. 



Publications

172
 168 

 

Moreno-López, L., Perales, J. C., van Son, D., Albein-Urios, N., Soriano-Mas, C., Martinez-Gonzalez, J. M., ... & Verdejo-

García, A. (2015). Cocaine use severity and cerebellar gray matter are associated with reversal learning deficits in 

cocaine-dependent individuals. Addiction biology, 20(3), 546-556. 

 

(Submitted) 

 

van Son, D., de Rover, M., De Blasio, F. M., van der Does, W., Barry, R. J., Putman, P. (2019). EEG theta/beta ratio co-

varies with mind wandering versus controlled thought and their functional brain network connectivity 

(submitted). 

 

van Son, D., van der Does, W., Band, G. P. H., Putman, P. (2019). EEG Theta/Beta Ratio neurofeedback training in 

healthy females (submitted). 

 

Hamstra, D. A., Franke, L. K., de Kloet, R., de Rover, M., van Son, D., & van der Does, A. J. W. (2019). Mineralocorticoid 

receptor haplotype, not oral contraceptives use, influences resting state EEG theta/beta ratio in healthy women 

(submitted). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 169 

Acknowledgements (Dankwoord) 

 

Het aantal personen die ik graag zou willen bedanken is aanzienlijk, het was daarom een moeilijke taak een niet al 

te lang dankwoord te schrijven. Hieronder een aantal personen die ik in het bijzonder wil bedanken. 

 

 Allereerst mijn directe promotoren; Willem, je hebt mij goed wegwijs gemaakt in de wereld van de 

klinische psychologie, waar ik als nieuweling om de hoek kwam kijken. Je hebt mij daarnaast altijd goed advies 

gegeven en mij uitgedaagd mijn eigen standpunten en wensen te verdedigen. Bedankt voor je goede 

vertrouwen en steun de afgelopen jaren.  

 Peter, ik heb ontzettend veel van je geleerd. We hadden af en toe onze verschillen van inzicht maar met 

jouw grote kennis van het vakgebied en je ervaring kon je me (bijna) altijd overtuigen. Op deze manier hebben 

we samen een aantal mooie studies kunnen uitvoeren en publiceren. Je hebt mij de mogelijkheid gegeven 

kennis op te doen van nuttige technieken, en zelfs, al dan na wat twijfels, de mogelijkheid gegeven een hippe 

nieuwe EEG-analyse techniek te leren in Australië, waarvan ik denk dat de nieuw-gevormde kennis en connecties 

mij een flinke steun in de toekomst geven. Bedankt voor de leerzame jaren die mij tot beginnend-onderzoeker 

hebben gevormd.  

 I would also like to thank Prof. Robert (Bob) Barry for receiving me at the University of Wollongong in 

Australia to conduct EEG time frequency analysis and to form a new collaboration. I had a never-to-be-forgotten 

experience working in your lab, boosting my motivation to continue in science as never before. The kind and 

patient analysis-help of Frances and Jack contributed immensely to my experience, without even counting in our 

fairy-bread and chocolate-coated liquorice breaks.  

 Mijn naaste promovendi-collega’s van Universiteit Leiden zijn van onbetaalbare waarde geweest. My 

‘roomie’ Angelos, thanks for the nice four-years of sharing together our frustrations, successes, comfort during our 

broken relationships, mocking the Dutch culture and bureaucracy and your great and kind support during good 

and bad times. Verder Andreas en Sanne, onze hardloop challenges met shotjes als straf zal ik niet snel vergeten. 

Sanne opnieuw, en ook Sandy dank dat jullie altijd voor mij klaar stonden en o.a. voor vele leuke uitstapjes, salsa 

dansjes, borrels en feestjes zorgde. Partypsycho’s (men weet zelf wie bedoeld wordt) dank ook voor het maken 

van de sfeer op deze feestjes tijdens mijn promotie traject. Danielle, ik heb een enorme steun in de rug van je 

ervaren, onze gesprekken over promotieonderzoek-tegenslagen hebben mij altijd gemotiveerd onvermoeid 

verder te gaan. Verder dank aan alle andere collega’s waar ik mee heb gewerkt, in het bijzonder Charlotte, 

Melanie, Stephanie, Margit, Lemmy, Lisa, Aleksandrina, Nathan, Milan, Daphne, Kaya, Loes, Mirjam, Dianne, 

Lisanne, Maartje, and our visiting friend Alfonso, dank ieder van jullie voor de lunches, koffies, de gezellige EPP’s, 

het prettige contact en de leuke sfeer op de afdelingen.   

 Graag wil ik ook de (voormalige) onderzoekassistenten en studenten bedanken die keihard gewerkt 

hebben data te verzamelen voor onze studies, en zonder wie dit proefschrift niet tijdig af was gekomen: Akrivi, 

Anastasia, Alexandros, Cevdet, Daíre, Delia, Fan, Fanni, Jennifer, Joni, Julia, Kristina, Lieke, Marilisa, Mariëlle, Nil, 

Niamph, Poliniki, Rick, Samantha, Samu, Yiannis en Winglet. 



Dankwoord

173

A

 168 

 

Moreno-López, L., Perales, J. C., van Son, D., Albein-Urios, N., Soriano-Mas, C., Martinez-Gonzalez, J. M., ... & Verdejo-

García, A. (2015). Cocaine use severity and cerebellar gray matter are associated with reversal learning deficits in 

cocaine-dependent individuals. Addiction biology, 20(3), 546-556. 

 

(Submitted) 

 

van Son, D., de Rover, M., De Blasio, F. M., van der Does, W., Barry, R. J., Putman, P. (2019). EEG theta/beta ratio co-

varies with mind wandering versus controlled thought and their functional brain network connectivity 

(submitted). 

 

van Son, D., van der Does, W., Band, G. P. H., Putman, P. (2019). EEG Theta/Beta Ratio neurofeedback training in 

healthy females (submitted). 

 

Hamstra, D. A., Franke, L. K., de Kloet, R., de Rover, M., van Son, D., & van der Does, A. J. W. (2019). Mineralocorticoid 

receptor haplotype, not oral contraceptives use, influences resting state EEG theta/beta ratio in healthy women 

(submitted). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 169 

Acknowledgements (Dankwoord) 

 

Het aantal personen die ik graag zou willen bedanken is aanzienlijk, het was daarom een moeilijke taak een niet al 

te lang dankwoord te schrijven. Hieronder een aantal personen die ik in het bijzonder wil bedanken. 

 

 Allereerst mijn directe promotoren; Willem, je hebt mij goed wegwijs gemaakt in de wereld van de 

klinische psychologie, waar ik als nieuweling om de hoek kwam kijken. Je hebt mij daarnaast altijd goed advies 

gegeven en mij uitgedaagd mijn eigen standpunten en wensen te verdedigen. Bedankt voor je goede 

vertrouwen en steun de afgelopen jaren.  

 Peter, ik heb ontzettend veel van je geleerd. We hadden af en toe onze verschillen van inzicht maar met 

jouw grote kennis van het vakgebied en je ervaring kon je me (bijna) altijd overtuigen. Op deze manier hebben 

we samen een aantal mooie studies kunnen uitvoeren en publiceren. Je hebt mij de mogelijkheid gegeven 

kennis op te doen van nuttige technieken, en zelfs, al dan na wat twijfels, de mogelijkheid gegeven een hippe 

nieuwe EEG-analyse techniek te leren in Australië, waarvan ik denk dat de nieuw-gevormde kennis en connecties 

mij een flinke steun in de toekomst geven. Bedankt voor de leerzame jaren die mij tot beginnend-onderzoeker 

hebben gevormd.  

 I would also like to thank Prof. Robert (Bob) Barry for receiving me at the University of Wollongong in 

Australia to conduct EEG time frequency analysis and to form a new collaboration. I had a never-to-be-forgotten 

experience working in your lab, boosting my motivation to continue in science as never before. The kind and 

patient analysis-help of Frances and Jack contributed immensely to my experience, without even counting in our 

fairy-bread and chocolate-coated liquorice breaks.  

 Mijn naaste promovendi-collega’s van Universiteit Leiden zijn van onbetaalbare waarde geweest. My 

‘roomie’ Angelos, thanks for the nice four-years of sharing together our frustrations, successes, comfort during our 

broken relationships, mocking the Dutch culture and bureaucracy and your great and kind support during good 

and bad times. Verder Andreas en Sanne, onze hardloop challenges met shotjes als straf zal ik niet snel vergeten. 

Sanne opnieuw, en ook Sandy dank dat jullie altijd voor mij klaar stonden en o.a. voor vele leuke uitstapjes, salsa 

dansjes, borrels en feestjes zorgde. Partypsycho’s (men weet zelf wie bedoeld wordt) dank ook voor het maken 

van de sfeer op deze feestjes tijdens mijn promotie traject. Danielle, ik heb een enorme steun in de rug van je 

ervaren, onze gesprekken over promotieonderzoek-tegenslagen hebben mij altijd gemotiveerd onvermoeid 

verder te gaan. Verder dank aan alle andere collega’s waar ik mee heb gewerkt, in het bijzonder Charlotte, 

Melanie, Stephanie, Margit, Lemmy, Lisa, Aleksandrina, Nathan, Milan, Daphne, Kaya, Loes, Mirjam, Dianne, 

Lisanne, Maartje, and our visiting friend Alfonso, dank ieder van jullie voor de lunches, koffies, de gezellige EPP’s, 

het prettige contact en de leuke sfeer op de afdelingen.   

 Graag wil ik ook de (voormalige) onderzoekassistenten en studenten bedanken die keihard gewerkt 

hebben data te verzamelen voor onze studies, en zonder wie dit proefschrift niet tijdig af was gekomen: Akrivi, 

Anastasia, Alexandros, Cevdet, Daíre, Delia, Fan, Fanni, Jennifer, Joni, Julia, Kristina, Lieke, Marilisa, Mariëlle, Nil, 

Niamph, Poliniki, Rick, Samantha, Samu, Yiannis en Winglet. 



Acknowledgements

174
 170 

 Dan ouders, dankzij jullie als voorbeeld-wetenschappers ben ik met nieuwsgierigheid opgegroeid, en 

heb geleerd met een kritische maar scherpe blik met informatie om te gaan. Dank voor jullie steun, liefde en 

vertrouwen. Lieve Lieke, liefste zus, jij blijft nummer één support in zware en goede tijden. Dank dat je mij hebt 

meegesleept op mooie reizen en uit de sleur haalde door in het knusse Leiden samen onder zussen-praat wat 

koffie te drinken, bij een feestje aan te sluiten of een rondje singels te rennen.  

 Lieve Joeri, hoe alles ook is gelopen, ik wil je erg bedanken voor alle jaren van 24/7 steun, aanmoediging 

en troost. Je hebt mij het grootste deel van mijn promotie-traject doorgeholpen. Als ik weer eens down 

thuiskwam, triest dat het allemaal niet meer ging, was jij daar om mij nieuwe moed in te spreken. Ik wens je al het 

goeds in de toekomst.  

 Lieve familie, tantes, ooms, oma’s, opa, vrienden en vriendinnen, ik heb erg veel gehad aan jullie 

persoonlijke contact, diepgaande gesprekken, gezelligheid en andere support. Reismaatje Laura, ik heb heerlijk 

met jou kunnen bijkomen in mooie oorden. Verder wil ik in het bijzonder bedanken; Sarah, Fidessa, Fleur, Diana, 

Maria, Joren, Irma, Emma, Jannet, Rianne1, Rianne2, Vincent, Laura (Muns), Helena, Melle, Bram, Anya, Yentl en 

mijn hofjesburen.  

 

Als laatste, eerder ook persoonlijk genoemd, maar veel dank aan mijn Paranimfen (Lieke en Laura) voor jullie 

uitmuntende hulp en inzet voor een onvergetelijke promotie dag!  

 

 

 

 

 

 

 

 

 

 

 

 

 

 





UITNODIGING

voor het bijwonen van de 
openbare verdediging van het 

proefschrift: 

EEG Theta/Beta Ratio as a 
Marker of Executive Control 

and its Relation with Anxiety-
Linked Attentional Bias for 

Threat

door Dana van Son

op 24 April 2019 
om 16:15 precies 

In het Groot Auditorium 
van het Academiegebouw
van de Universiteit Leiden,

Rapenburg 73, Leiden.

Receptie na afloop.

Dana van Son
06 195 365 77

Paranimfen

Lieke van Son
Laura de Leur

paranimfjes.dana@gmail.com

EEG  theta / beta ratio as a marker of executive 

control and its relation with anxiety-linked 

attentional bias for threat

Dana van Son

EEG
 theta/beta ratio as a m

arker of executive control and its relation w
ith anxiety-linked attentional bias for threat 

             D
ana van Son

EEG theta/beta ratio 
A marker of executive control and 

its relation with anxiety-linked 
attentional bias for threat

EEG theta/beta ratio 

A marker of executive control and 
its relation with anxiety-linked 

attentional bias for threat


