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absTracT

It has been argued that survival bias may distort results in Mendelian 
randomization studies in older populations. Through simulations of a simple 
causal structure we investigate which factors influence the extent of this bias 
in the context of exposures which affect survival. We observed that selecting 
on survival may decrease instrument strength and will, for exposures with 
directionally concordant effects on survival (and the outcome), introduce bias 
towards the null for the instrument-outcome association if the true causal effect 
is not equal to null, and bias from the null if the true causal effect is null. Stronger 
selection effects and higher ages at study inclusion generally increased this 
bias when the true causal effect was not equal to null. Moreover, the impact of 
this bias may differ depending on the distribution of the exposures. The bias 
in the estimated exposure-outcome relation depended on whether Mendelian 
randomization estimation was conducted in the one- or two-sample setting. 
Finally, we discuss how survival bias may be detected in epidemiological 
cohorts, and which statistical approaches might help to alleviate this and other 
types of selection bias.
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inTroducTion

An increasing number of studies are proposing genetic instruments to examine 
the causal effect of (typically modifiable) exposures on health states or disease. 
This approach is known as Mendelian randomization. The basic idea is that a 
genetic marker (polymorphism or haplotype) serves as a proxy for a particular 
exposure, under the assumption that the potential effect of the genetic marker 
on the outcome of interest is only through this exposure. Given the continued 
methodological developments in the field of Mendelian randomization (1), and 
that summary level statistics from genome-wide association studies (GWAS) are 
increasingly made publicly available, it is expected that this trend will continue 
for the foreseeable future. Considerable efforts are being made to facilitate and 
standardize this advance in Mendelian randomization studies (2-4). 

Although often assumed to give a valid causal estimate in contexts where 
observational evidence might be biased due to residual confounding or reverse 
causation, Mendelian randomization studies can give biased results when 
analyses are performed in selected subgroups, as spurious associations may 
emerge when selection is performed on a common effect of two variables – 
“one of which is either the treatment or a cause of treatment, and the other is 
either the outcome or a cause of the outcome” (5). Formally known as collider-
stratification bias in causal graph theory, this specific form of selection bias has 
been suggested to contribute to several counterintuitive phenomena in the clinical 
literature. These include observations that maternal smoking is associated with 
lower infant mortality amongst low birthweight infants (the ‘birthweight paradox’) 
(6, 7), that obesity is associated with greater survival in individuals with certain 
chronic diseases (the ‘obesity paradox’) (8), and that higher levels of serum 
cholesterol and blood pressure appear protective in the oldest old (9-12). The 
latter examples are thought to exemplify a subtype of selection bias, known as 
survival bias, caused by only recruiting or analyzing the non-random subset of 
the population who have survived long enough to be included. 

It has been argued that in Mendelian randomization studies in older 
populations, survival bias may distort results (13, 14). While this issue has 
received limited attention in the literature, some researchers have recognized 
this potential source of bias. For example, Østergaard and colleagues noted 
that the protective associations of systolic blood pressure with Alzheimer’s 
disease observed in their Mendelian randomization study might arise as a result 
of differential survival bias (15). Another notable discussion of survival bias 
followed the observation that variants known to increase BMI associated with 
a lower risk of Parkinson’s disease (16), which contrasted with the null effect 
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observed in a large meta-analysis of cohort studies on the topic (17). We aimed 
to investigate the impact of survival bias on Mendelian randomization analyses 
through a simulation study. In this paper, we will describe which factors influence 
the extent of this bias. We will also discuss how to determine whether survival 
bias is present in epidemiological cohorts, and which (statistical) approaches 
may help to minimize or address this bias.

MeThods

review of the theory

We define X as the exposure and Y as the outcome of interest (figure 1). Drawing 
valid conclusions from a Mendelian randomization analysis requires using a 
genetic instrument G (e.g. a single-nucleotide polymorphism) that meets three 
key assumptions: i.) G explains variation in exposure X, ii.) G is independent of 
the (known and unknown) confounders U of the association between X and the 
outcome Y, and iii.) G is independent of Y given X and U (18). In addition, in order 
to obtain a point estimate of a causal estimate, a fourth assumption is required. 
This may either be the assumption of homogeneity, or the sometimes more 
plausible, alternative assumption of monotonicity (19). If these assumptions 
hold, a causal effect of X on Y can be reliably estimated, as the association 
between G and Y should be essentially free from reverse causality and residual 
confounding (20). 

Consider the following example where we are interested in a causal effect of 
X (e.g. cholesterol) on a continuous outcome Y (e.g. cognitive test performance)  
(figure 2). The inherent concept of Mendelian randomization, that alleles are 
randomly assigned at conception, would normally ensure that the association 
measure between G and Y can be attributed solely to the effect of the exposure X 
on Y. However, we must consider that for older populations the study population 
is restricted by design, including only those who have survived until a certain 
age. 

In this situation, survival until study inclusion (S) is influenced by the exposure 
of interest X  and a second exposure R (e.g. smoking) (figure 2a). For the 
purpose of simplicity we assume that these two exposures are uncorrelated in 
the unselected population. However, if we condition on a common effect of X and 
R, i.e. survival (S=1), we induce an association between X and R, and therefore 
also between G and R. More intuitively, if someone survives until study inclusion 
with risk factor R (i.e. smokes), they are less likely to also have high levels of 
risk factor X (i.e. hypercholesterolemia), and in extension less likely to have 
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figure 1. Schematic outline of the Mendelian randomization approach

figure 2. In the example of two exposures affecting probability of survival, conditioning 
on survival (S) may induce an association between previously uncorrelated risk factors 
X (and its genetic proxy G) and R (dashed lines shown in A). More intuitively, if you are 
a smoker and still alive at study inclusion, you are less likely to also have a high level 
of LDL-cholesterol (LDL-C), and vice versa. Additionally, conditioning on survival may 
induce an association between the genetic instrument G and any confounders U of the 
X-Y association (dashed line shown in B), even in the absence of risk factor R. In both 
situations, the association between the genetic instrument and the outcome of interest 
might thus become biased. Please note that while we did not include a line from X to Y in 
either causal structure, we also simulate scenarios where X does have a causal effect on 
Y. Adapted from Boef AG, et al. (13)
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inherited trait G that causes hypercholesterolemia. We therefore expect that the 
previously uncorrelated, competing variables will become negatively associated 
when restricting the analyses to the ‘survivors’. It follows that the estimated G-Y 
association can therefore no longer be solely attributed to the effect of exposure 
X on outcome Y (i.e. will become biased), as conditioning on the common effect 
of X and R has opened an indirect path from G to Y going through R (21). 

In the example above we have assumed no confounders exist of the X-Y 
association. However, their presence may be problematic (figure 2b). This is 
because restricting the analysis to survivors means that entry into the study 
becomes conditional upon the value of X. As X in turn depends both on the 
genetic instrument G and the confounder U (e.g. alcohol intake), G and U may 
become correlated. 

In essence, the third assumption described at the start of this paragraph has 
become violated through survival bias in both examples. While our simulations 
will primarily focus on the causal structure shown in figure 2a, we present 
simulations on figure 2b and on a combination of these causal structures in the 
supplemental material.

data generation

All simulation scenarios assume the basic causal structure shown in figure 2a. 
All causal associations between variables are chosen such that an increase 
in cause will lead to an increase in the consequence, except for the effect on 
survival where higher values in exposure, confounder or risk factor correspond 
to lower survival times. In addition, our simulations assumed constant treatment 
effects. For each scenario we generated a dataset of 10 million observations 
with multiple randomly generated variables: a binary genetic instrument (G), a 
continuous exposure (X) influenced by G, a second exposure (R), a continuous 
outcome (Y) principally influenced by R and in later scenarios also by X, and 
finally an age of death influenced by both X and R. In secondary analyses 
we additionally generate a continuous confounder (U) with equal effects on 
X and Y (appendix). All simulations were performed separately for binary and 
continuously distributed R’s. 

Details of data generation and parameters values are presented in Table 
1. Of note, X was standardized to have a mean of 0 and standard deviation 
of 1. The effect of G on X was chosen such that the corresponding strength 
of the instrument, measured by the partial R2, equaled 1, 5, 10, and 15%. In 
addition, while the per-unit effect size was the same for the two types of R, 
the different scales of measurement (dichotomous (e.g. presence or absence 
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of hypercholesterolemia) against per standard deviation increase) means their 
impact on other variables will differ.

Table 1. Parameters values and details of data generation

Parameter (scale) data generation and alternative values standard 
value

G (binary) Prevalence of 25, 50, 75% 50%

X (continuous)
Normally distributed with mean 0 and var(X|G)=1, 
with varying contribution of G (and if applicable U)

Variance of X explained by G 1, 5, 10, 15% of X 5%

U (continuous)
Normally distributed with μ=0, σ=1. Only included 
in scenarios in appendix

Effect of U on X Increase of 0.5 per one unit increase in U None

R (binary) Prevalence of 12.5, 25, 50% 25%

R (continuous) Normally distributed with μ=0, σ=1

Age of death
Gompertz distributed with baseline parameters 
a=4.59053×10-5 and b=8.76978320×10-2, with 
varying (additional) contribution of X and R

Effects of X on age of death HR of 1.1, 1.25, or 1.5 per one unit increase in X HR 1.25

Effects of R on age of death
HR of 1.25, 1.5, 2, or 4 if R=1 (binary R) or per 
one unit increase in R (continuous R)

HR 1.5

S (binary)
Indicates whether age of death is larger than age 
at inclusion

y (continuous)
Normally distributed with mean 0 and 
variance(y|X,R)=1, with varying contribution of X 
and R (and if applicable U)

Effects of X on y
Increase of 0, 0.5, 1, or 2 per one unit increase 
in X

0

Effects of R on y
Increase of 0.25, 0.5, or 1 if R=1 (binary R) or per 
one unit increase in R (continuous R)

0.5

Effect of U on y Increase of 0.5 per one unit increase in U None

Number of observations 10.000.000 in all scenarios

S.D. denotes standard deviation.

To generate survival time we obtained the 2016 mortality data of the United 
States from the Human Mortality Database (22). Using the MortalityLaws 
R-package (23) we estimated the parameters of the Gompertz model (24) within 
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this real-world dataset (efigure 1), which were subsequently used to generate 
survival times for our simulated population. Effects of both X and R on age of 
death were modelled as hazard ratios, with having higher levels of X and/or R 

translating into an earlier death (on average), and lower levels of X and/or R in a 
later death (on average). Subsequently, we considered different age boundaries 
for study inclusion, from 75-95 years, thereby steadily decreasing the number 
of surviving participants (S=1). We used R (version 3.4.1) for all data generation 
and analyses (25). Sample code is provided as supplemental material.

effects on instrument strength

Firstly, we examined whether selecting on survival may influence the strength 
of instrument G, reflected by the squared correlation between G and X (R2), 
which indicates how much variance of X is explained by G. Given that selecting 
on survival will yield smaller data sets, and that the F-statistic strongly depends 
on sample size, we did not consider the F-statistic as a measure of instrument 
strength (26). We chose different strengths of the instrument, while all other 
parameter values were kept fixed at a standard value given in Table 1. No effect 
of X on Y  was assumed.

effects on association between the genetic instrument G and 
exposure r

Secondly, we considered the effect of different parameters on the induced 
correlation between G and R within an increasingly selected population. Effects 
of changing the following parameters were considered: 
i. variance of X explained by G (R2);
ii. effects of X on age at death;
iii. effects of R on age at death;
iv. effects of R on Y;
v. prevalence of G;
vi. prevalence of R (for dichotomous R).
In each simulation, the other parameters were held at their standard values, and 
no effect of X on Y was assumed. Accompanying confidence intervals for the 
correlation between G and R were calculated using Fisher’s z-transformation. (27)
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effects on association between genetic instrument G and outcome 
of interest y

Thirdly, we examined how this induced correlation between G and R influences 
the Y~G association, estimated with linear regression. Different true effects of 
X on Y were assumed (Table 1). Other parameters were again held at their 
standard value.

effects on instrumental variable (iV) estimators

Finally, we considered how the induced correlation between G and R might 
influence an IV-estimator. In its simplest form this estimator equals the ratio of 
regression coefficients, known as the Wald ratio (28), defined for our continuous 
outcome Y as

The Wald ratio thus quantifies the causal effect of the exposure on the outcome 
and estimates the mean increase in outcome per unit increase in exposure. 
Increasingly, summarized data (coefficients and standard errors) from large 
genome-wide association study (GWAS) consortia are made publicly available, 
which enable researchers to perform two-sample Mendelian randomization even 
if their own study does not allow for estimation of both coefficients necessary to 
calculate the Wald ratio (29). These external datasets are generally more likely to 
have primarily included middle-aged participants (30-32), and thus less likely to 
be affected by survival bias. Therefore, under the assumption of no age-related 
effect modification, we not only considered the scenario where both coefficients 
are estimated with linear regression in the same increasingly selected dataset 
(i.e. ‘internal’ estimation), but also what happens if the association measure 
between G and X were to be taken from an external dataset not selected on 
survival (i.e. ‘external’ estimation, by taking the fixed value of our total population). 
Confidence intervals for the internally estimated Wald ratio were calculated using 
the tsls function from the sem R-package (33). 
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resulTs

instrument strength

As shown in the main plot of figure 3, the variance explained in exposure X by 
G decreases when higher ages-at-inclusion are considered. The decline in R2 
between age 75 and 95 years is greater in absolute terms, but comparable in 
relative terms, for stronger genetic instruments. For example, for the instrument 
explaining 1% of variance in X in the unselected (i.e. entire) sample R2 declined 
from 0.99% at 75 years to 0.90% at 95 years, set against a decline from 14.75% 
to 13.35% for the instrument originally explaining 15% of variance in X. Shown in 
the figure’s insets are the a) the change in prevalence of G and b) the survival 
curve for the population from 75 years until 95 years. The prevalence of G was 
observed to decline from 0.49 at age 75 years to 0.46 at age 95. Furthermore, of 
the population alive at 75 years, 15.6% was still alive at 95 years. Results for the 
continuously distributed R were comparable (efigure 2).

figure 3. Variance explained in the exposure of interest X by its genetic proxy G for an 
increasingly selected population, when incorporating a binary R. Shown in the insets are 
A) the prevalence of G and B) the accompanying survival curve, both with the true (i.e. 
unselected) R2 set at 5%. 
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correlation between G and r

The induced negative correlation due to selection on age between the causally 
independent variables G and R across different simulation scenarios is shown in 
figure 4. Keeping all other parameters constant, the correlation becomes more 
negative as i. the instrument is stronger (i.e. more variance in X is explained by G) 
(4a,b), ii. X has greater effects on age at death (4c,d), iii. R has greater effects 
on age at death (4e,f), and iv. as R’s prevalence becomes greater (dichotomous 
R) (4K). However, once the prevalence of R exceeds 0.5 the induced correlation 
between G and R decreases again. In contrast, the correlation remains constant 
for different effects of R on Y (4G,h), and is largely unchanged by changing the 
prevalence of G (4i,J). Of note, the association between age-at-inclusion and 
the induced G~R correlation attenuates at higher ages when the deleterious 
effect of R on S corresponds to an hazard ratio of 4 (4e), with the nadir of the 
curve occurring between 80 and 85 years of age. This specific example likely 
results from the rapid depletion of the R-carrying participant pool, an effect also 
visible but less extreme for the simulations incorporating a continuous R (4f).

bias to y ~ G association

Varying the true underlying effect of X on Y reveals how the association between 
G and Y is biased by selecting on S=1 (figure 5). In cases where the true 
effect ≠ 0, a bias towards the null is seen, underestimating the true effect. 
While this bias is greater in absolute terms, in relative terms we observe a slight 
attenuation across different effects of X on Y when considering a dichotomous 
R (at 95 years: 12.3% underestimation for true effect of 0.5 (5c) versus 10.1% 
for true effect of 2 (5e). A different pattern was observed for the situation where 
the true effect of X on Y is null. In this case, where the statistical association 
between the genetic variant and the outcome of interest is completely due to 
bias, the resulting association becomes nominally negative (5a). The same, but 
slightly exaggerated pattern occurs for a continuously distributed R. The Y~G 
association namely moves away from the null to a considerably greater extent 
when the true effect of X on Y is null (5b), and greater attenuation of the bias 
towards the null occurs for greater effects of X of Y when the true effect is not 
equal to 0 (5d,f). 

bias to iV estimator

The IV estimator is influenced by survival bias, where magnitude and direction 
of the bias are dependent on i. whether the association measure between G 
and X is estimated within the same selected dataset as the association measure 
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figure 4. Effect of varying different parameters on the induced correlation (95% CI) 
between the genetic instrument G and the second exposure R for an increasingly selected 
population. Shown for binary (left column) and continuously (right column) distributed R. 
S.D. denotes standard deviation.



7

SURVIVAL BIAS IN MENDELIAN RANDOMIZATION | 125

figure 5. Effect of survival bias on the association between the genetic instrument G 
and the outcome of interest Y, for different true effects of exposure X on Y. Data are 
presented as regression coefficients (95% CI) estimated with linear regression. The true 
(i.e. unselected) regression coefficient for G on Y is shown as a dashed line in each plot. 
Shown for binary (left column) and continuously (right column) distributed R. 
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figure 6. Wald ratios (95% CI) based on internally (white ribbon) versus externally (grey 
ribbon) estimated association between exposure X and the outcome Y, for different true 
effects of exposure X on Y. Shown for binary (left column) and continuously (right column) 
distributed R. Dashed lines denote the true (i.e. unselected) Wald ratio, which equals the 
true causal effect of X on Y. 
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between G and Y was, or within an external source not selected on age, and ii. 
whether the true effect of X on Y is null or not (figure 6). When both the numerator 
(Y~G) and denominator (X~G) of the Wald ratio (i.e. our causal effect estimate) 
are taken from the same selected dataset, we observe that they will be similarly 
biased. Taking the ratio of these two therefore seemingly cancels out much of 
the bias to the IV estimator, compared to the situation where only the numerator 
is taken from a population selected on survival. In this latter situation, the relative 
degree of the bias equals that seen for the association measure between G 
and Y. The two IV estimators diverge more strongly as stronger true effects of 
X on Y are considered. This is more clearly observed when a dichotomous R is 
considered. For a continuously distributed R, selection bias partially persists for 
the internally estimated IV estimator (6b,d,f).

alternative causal structures

Simulation results for the causal structure depicted under figure 2b, and 
for the combination of 2a and 2b, did not show markedly different results 
(efigures 4-10).

discussion

In this paper we show that previously uncorrelated, competing risk factors may 
become associated due to selection on survival, consequently biasing estimates 
from Mendelian randomization studies. More specifically we observed that, if the 
effect of the exposure of interest on the outcome of interest is genuinely non-null 
and the selection-related exposures have directionally concordant effects on 
the outcome, the association measure between genetic proxies of that exposure 
and the outcome will become biased towards the null. Of further importance 
is the observation that as the population size decreases instrument strength 
also weakens, as measured by R2. The combination of a smaller population 
size with a weaker instrument strength will be detrimental to statistical power 
in hypothesis testing. It should be noted here that the decrease in instrument 
strength not just results from the decreasing prevalence of the genetic instrument, 
but also due to the genetic instrument becoming associated with the random 
noise contributing to the exposure (efigure 3). We additionally observed that 
the induced correlation between G and R is greater for stronger instruments. 
However, as bias amplification is smaller for stronger instruments, we expect 
that instrument strength will not substantially affect the degree of bias of either 
Y~G or IV estimators. 
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A fundamental assumption in inferring causality using Mendelian randomization 
is that the genetic instrument should not independently associate with traits of 
aetiological significance to the outcome other than the exposure of interest. 
In the simple causal structure considered in our simulations, we observe that 
this assumption is violated by selection on survival. While we solely explored 
scenarios with one genetic instrument, this problem will also occur for any 
combination of genetic instruments for exposures which jointly influence the 
probability of surviving until study inclusion. In essence, quasi-pleiotropic effects 
are induced by conditioning on survival till study inclusion. More specifically, 
given that these pleiotropic effects are unlikely to average to zero across a 
combination of genetic instruments proxying the same exposure, survival bias 
is equivalent to introducing directional pleiotropy into Mendelian randomization 
analyses. To our knowledge it has not been examined whether robust analysis 
methods specifically aimed at correcting for bias due to unbalanced directional 
pleiotropy, such as MR Egger regression (34), would be able to cope with this 
problem. Of particular interest would be whether sets of polygenic instruments, 
whose individual metabolic pathways to the intermediate phenotype may differ, 
might be differentially affected by survival bias. 

While our simulations specifically examined age-related selection, researchers 
with data on (younger) populations selected on alternative characteristics (e.g. 
disease status) will similarly have to consider the possible influence of selection 
bias in genetic analyses, including genome-wide association testing (35-37). 
This also holds for investigations within increasingly popular mega-biobanks 
such as population-based UK Biobank and the Million Veterans Program, both 
of which have had relatively limited response rates (38-40). Alternative causal 
structures which might give rise to selection bias in Mendelian randomization 
studies have been presented elsewhere (40). 

There exist several ways for researchers to substantiate the claim that 
survival bias may be present in their study population, most of which require 
individual level data. One approach is to examine the associations between the 
genetic instrument(s) and confounders of the association between exposure and 
outcome of interest (X and Y), and/or with variables upon which the population 
was selected. A key point here is that no association should be present in younger, 
less-selected populations. Theoretically, if no trends across age are found, it 
is unlikely that the genetic variant significantly influences mortality. However, 
this approach will generally only be feasible if large-scale data across different 
age groups is available on a variety of phenotypic traits, or if the population is 
strongly enriched or depleted for the trait of interest (35). Leveraging summary 
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statistics from genome-wide testing performed in large-scale population-based 
studies may make it possible to differentiate between survival bias-induced 
associations and alternative pleiotropic mechanisms. Alternatively, researchers 
can examine whether the strength of the instrument (i.e. the explained variance 
in the exposure of interest by the instrument) is significantly lower in older than 
that reported in younger populations. In extension, allele frequencies of high-risk 
variants are likely to decline in an age-dependent manner, as observed in our 
simulations, as individuals with a substantially deleterious genetic predisposition 
will gradually be phased out of the population. This is in line with previously 
described observations of a large-scale genetic risk score for low-density 
lipoprotein cholesterol decreasing with increasing age (41). However, it should be 
noted there does not exist a failsafe method of ruling out survival bias, nor were 
the above approaches developed for the IV-context under bias amplification. 
In addition, these methods assume that cohort effects are not present, with 
younger and older populations coming from the same source population.

Recent work by Canan and colleagues suggests that for the causal structure 
under investigation in our simulations, selection bias may be corrected via inverse 
probability weighting (14). In general, we expect that if the selection gradient 
solely depends on measured variables which are available for the entire original 
study population (i.e. also for those individuals who are not selected in the study 
sample), and assuming a constant treatment effect, both inverse probability 
weighting and multiple imputation could be suitable solutions for selection bias. 
If data are  only available for the selected individuals, but a sufficient set of 
selection-related variables are precisely measured, then inclusion of these 
selection-related variables in multivariable regression models may resolve the 
bias if the models are well-specified. The value of representative cohorts with 
little selection (e.g. birth cohorts) cannot be overstated in this context (40, 42), 
though genotyping genetically informative family members may hold promise 
as well (43). Alternative strategies have been proposed in the context of hazard 
models (44-46), which may fare better when selection depends on (partially) 
unobserved variables. In addition, methods of using covariate balance to detect 
dependent censoring in longitudinal studies exist, though these approaches 
have not been extended to IV-analysis where bias amplification may occur (47, 
48).

We must acknowledge several limitations of our study. In our simulations we 
made a number of assumptions, due to which caution must be taken in making 
generalizations. These include that exposures but also genotypes had constant 
effects during life, ignoring possible antagonistic pleiotropy (49), and that 
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survival bias would similarly affect different components of the causal structure 
(e.g. both the numerator and denominator of the Wald ratio). In addition, we 
solely considered one commonly occurring genetic instrument and uncorrelated 
exposures with directionally concordant effects on survival (and the outcome of 
interest). R could however be considered a combined vector for many possible 
competing causes of death before study inclusion. Furthermore, we did not 
consider a binary outcome of interest, to avoid the issue of non-collapsibility, 
and restricted our investigations to a linear instrument-exposure association. 
We also did not examine the effect of possible effect modification between the 
two exposures, which might lead to stronger correlations between the genetic 
instrument and exposure R and therefore increased bias (50). These choices 
were aimed at examining the basic underpinnings of survival bias in the context 
of Mendelian randomization studies, in absence of real-world complexities. 

In conclusion, using a simple causal structure we were able to demonstrate that 
survival bias may lead to biased estimates in Mendelian randomization studies. 
It will be of interest to examine more detailed simulations in the future, using 
greater numbers of instruments and exposures to derive bias formulas (as others 
have done for collider bias in binary variable structures (51)), ideally coupled with 
comparing the performance of the possible correction methods for survival bias 
described above. Finally, future work should explore the implications of using 
different instrumental variable assumptions such as monotonicity, instead of the 
assumption of homogenous treatment effects of our simulations.
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supplemental Material

efigure 1. Results of fitting Gompertz-model using mortality-data (USA 2016)
efigure 2. Variance explained in X by G for continuously distributed R, for causal 
structure presented under Figure 2A (main text)
efigure 3. Genetic instruments and noise in X
efigure 4: Causal structure also presented in Figure 2B (main text)
efigures 5-6: Results of simulations for causal structure shown in eFigure 4
efigure 7: Causal structure combining those presented in Figure 2 (main text)
efigures 8-10: Results of simulations for causal structure shown in eFigure 7

efigure 1. Results from fitting the Gompertz-model (a*eb*age) onto the 2016 mortality data 
of the United States (age range 35-95) obtained from the Human Mortality Database 
(www.mortality.org), using the MortalityLaws R-package. Estimated model parameters: 
a, 0.0000459053; b, 0.0876978320.
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efigure 2. Variance explained in the exposure of interest X by its genetic proxy G for an 
increasingly selected population, for a continuously distributed R. Shown in the insets are 
A) the prevalence of G and B) the accompanying survival curve, both with the true (i.e. 
unselected) R2 set at 5%. 

efigure 3. Genetic instruments for exposures which affect the likelihood of surviving until 
study inclusion will become weaker if only due to becoming increasingly associated with 
the random noise in the exposure.
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efigure 4. Causal structure in which selection bias occurs in the presence of confounder 
U. Conditioning on survival S induces an assocation between genetic instrument G and 
confounder U. Also presented in Figure 2B.
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efigure 5. Effect of varying different parameters on the induced correlation (95% CI) 
between the genetic instrument G and the confounder U for an increasingly selected 
population. 
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efigure 6. Effect of survival bias on the association between the genetic instrument 
G and the outcome of interest Y (left panels), and on the Wald ratio IV-estimator (right 
panels), for different true effects of exposure X on Y. The true (i.e. unselected) regression 
coefficient for G on Y, and of true (i.e. unselected) Wald ratio, are shown as a dashed line 
in each plot. 
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efigure 7. Causal structure in which selection bias occurs in the context of both a second 
exposure R and confounder U.



140 | CHAPTER 7 SURVIVAL BIAS IN MENDELIAN RANDOMIZATION | 141

efigure 8. Effect of varying different parameters on the induced correlation (95% CI) 
between the genetic instrument G and the second exposure R for an increasingly selected 
population. Shown for binary (left column) and continuously (right column) distributed R. 
S.D. denotes standard deviation.
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efigure 9. Effect of survival bias on the association between the genetic instrument G 
and the outcome of interest Y, for different true effects of exposure X on Y. Data are 
presented as regression coefficients (95% CI) estimated with linear regression. The true 
(i.e. unselected) regression coefficient for G on Y is shown as a dashed line in each plot. 
Shown for binary (left column) and continuously (right column) distributed R. 
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efigure 10. Wald ratios (95% CI) based on internally (white ribbon) versus externally 
(grey ribbon) estimated association between exposure X and the outcome Y, for different 
true effects of exposure X on Y. Shown for binary (left column) and continuously (right 
column) distributed R. Dashed lines denote the true (i.e. unselected) Wald ratio, which 
equals the true causal effect of X on Y. 
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