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Abstract 
Background: The production of 1L of ethanol from sugarcane generates up to 12 
L of vinasse, which is a liquid waste containing an as-yet uncharacterized micro-
bial assemblage. Most vinasse is destined for use as a fertilizer on the sugarcane 
fields because of the high organic and K content; however, increased N2O emis-
sions have been observed when vinasse is co-applied with inorganic N fertilizers. 
Here we aimed to characterize the microbial assemblage of vinasse to determine 
the gene potential of vinasse microbes for contributing to negative environmental 
effects during fertirrigation and/or to the obstruction of bioethanol fermentation.  

Results: We measured chemical characteristics and extracted total DNA from six 
vinasse batches taken over 1.5 years from a bioethanol and sugar mill in Sao 
Paulo State. The vinasse microbial assemblage was characterized by low alpha 
diversity with 5 to 15 species across the six vinasses. The core genus was Lacto-
bacillus. The top six represented bacterial genera across the samples were Lacto-
bacillus, Megasphaera and Mitsuokella (Phylum Firmicutes, 35 – 97% of sample 
reads); Arcobacter and Alcaligenes (Phylum Proteobacteria, 0 – 40%); Dys-
gonomonas (Phylum Bacteroidetes, 0 – 53%); and Bifidobacterium (Phylum Acti-
nobacteria, 0 – 18%). Potential genes for denitrification but not nitrification were 
identified in the vinasse metagenomes, with putative nirK and nosZ genes the 
most represented. Binning resulted in 38 large bins with between 36.0 and 99.3% 
completeness, and five small mobile element bins. Of the large bins, 53% could 
be classified at the phylum level as Firmicutes, 15% as Proteobacteria, 13% as 
unknown phyla, 13% as Bacteroidetes and 6% as Actinobacteria. The large bins 
spanned a range of potential denitrifiers; moreover, the genetic repertoires of all 
the large bins included the presence of genes involved in acetate, CO2, ethanol, 
H2O2, and lactose  metabolism; for many of the large bins, genes related to the 
metabolism of mannitol, xylose, butyric acid, cellulose, sucrose, “3-hydroxy fatty 
acids and antibiotic resistance genes were present. In total, 21 vinasse bacterial 
draft genomes were submitted to the genome repository.  

Conclusions: Identification of the gene repertoires of vinasse bacteria and assem-
blages supported the idea that microbiological variation of vinasse might lead to 
varying patterns of N2O emissions during fertirrigation. Furthermore, we uncov-
ered draft genomes of novel strains of known bioethanol contaminants, as well as 
draft genomes unknown at the phylum level. This study will aid efforts to improve 
bioethanol production efficiency and sugarcane agriculture sustainability. 
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6.1 Introduction 
Sao Paulo State contains a total of 5.7 million hectares of land planted with 

sugarcane. These fields supply the input for Brazil’s large bioethanol industry, 
which is the second largest producer of bioethanol worldwide (UNICA). Brazil 
has more than 300 sugarcane processing plants, including sugar mills (producing 
only sugar), mills with distillery plants (sugar and ethanol production), and inde-
pendent distilleries (only ethanol production). In the 2013/2014 season, the total 
ethanol production was 13.9 thousand m3 (UNICA, 2013/2014 harvest). The ma-
jor by-product of sugarcane ethanol production is vinasse; up to 12 L of vinasse is 
generated per liter of ethanol [1]. Sugarcane vinasse consists of water (about 93%) 
and organic compounds, and contains K, Ca and Mg, though the amount of these 
components depends on the characteristics of the input sugarcane and subsequent 
processing steps [2]. The major organic components of sugarcane vinasse are low 
molecular-weight organic compounds, mainly glycerol, lactic acid, ethanol, and 
acetic acid [3]. In general, vinasse has a low pH of around 4 and high chemical 
oxygen demand of 100 - 500 g per L.  

The large volumes of vinasse and its chemical properties of high organic 
and K content have led to its widespread reuse as a fertilizer supplement for sug-
arcane crops. Most often the vinasse is sprayed onto the fields, which is a process 
termed fertirrigation. This method is low-cost and contributes to net energy sav-
ings in sugarcane bioethanol production cycles because the vinasse is locally 
transported and applied [4]. Benefits of using vinasse as fertilizer include im-
proved short-term soil quality, crop production and crop quality [5-8]. However, 
negative effects include decreasing long-term soil fertility (lead leaching, N im-
mobilization) and increasing greenhouse gas emissions, especially the emission of 
N2O when used in conjunction with an N fertilizer [2, 9-12]. These effects depend 
on the soil and environmental characteristics as well as vinasse-specific nutrient 
contents (reviewed in [12]). The increased N2O emissions from vinasse fertirriga-
tion may be due to the stimulation of soil microbes by vinasse-derived organic 
material (i.e. a form of priming) or the activity of vinasse-derived cells containing 
genes in N2O-producing pathways[8].  

Nitrous oxide emissions are produced through two main microbially-medi-
ated processes in soil: nitrification (NH4+ to NH2OH to NO3-) and denitrification 
(NO3- to NO2- to NO to N2O to N2). Nitrification is carried out by microbes con-
taining the ammonia monooxygenase enzyme, which is encoded by the gene 
amoA, and generally used as a functional marker of nitrifiers. Denitrifier bacteria 
may contain the nitrite reductase genes nirS and nirK, the nitric oxide reductase 
gene norB and/or the nitrous oxide reductase gene norB, which each encode for 
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the enzymes involved in the respiration of nitrite to nitric oxide to nitrous oxide to 
dinitrogen gas, respectively. The abundance of the different microbes containing 
denitrification genes, and the abundance of these genes when measured as func-
tional markers, is known to correlate with the actual N2O emission rates from soils 
[8]. While much is known regarding the chemical characteristics of vinasse, there 
are only a few indirect studies of its biotic components despite recent attention to 
the environmental effects of its use in fertirrigation.  

The microbiota present in vinasse likely encompasses the microorganisms 
present in the bioethanol production process. The most common raw material for 
ethanol production in Brazil is the mixture of diluted molasses and cane juice, 
used in the distilleries annexed to sugar producing mills. The ethanol pipeline 
starts with crushing the unwashed sugarcane stalk to separate the sugarcane juice 
from the pulpy stalk residue known as bagasse. The sugarcane juice is heated and 
clarified with lime; the clarified juice is concentrated in an evaporator at 115 de-
grees C followed by vacuum boiling pan, at which point sugar and molasses crys-
tallize. By centrifugation, the sugar crystals are separated from the mother liquor. 
This liquor is again crystallized in vacuum pans and then passed through continu-
ous sugar centrifuges. The last residual solution is called molasses, which has high 
sucrose content suitable for ethanol production. The raw material for ethanol pro-
duction is a mixture of unsterilized sugarcane juice, molasses and water [13]. The 
fermented material is then distilled at temperatures of at least 78 0C to separate the 
ethanol from the remaining waste vinasse. This vinasse is then transported via 
open channels or trucks to the sugarcane site for fertirrigation. The mixed sugar-
cane juice is fermented using proprietary Saccharomyces cerevisiae strains 
through two methods: batch (85% of distilleries as of 2011) or continuous fermen-
tation (15%). In batch processing, the fermentation occurs in parallel, while in 
continuous fermentation the process occurs in series (reviewed in [14]). In either 
method, the yeast cells are treated with sulfuric acid, antibiotics, hop products 
and/or chemical biocides to reduce bacterial contamination, recovered by cen-
trifugation, and reapplied to the fermentation tanks. This recycling step occurs be-
tween 400 and 600 times in a harvest season and despite the antibacterial treat-
ment, bacteria remain the major contaminants.  

The main bacterial contaminants of the bioethanol pipeline are lactic acid 
bacteria, which tend to dominate the samples taken from the ethanol pipeline in 
the steps prior to vinasse [15, 16]. These bacteria, in particular Lactobacillus 
species, compete with the commercial yeast strains for sugar or form ex-
opolyssacharides that floccule yeast cells [17-19]. Contamination by bacteria – 
through sucrose competition, flocculation of the commercial yeast strain or fer-
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mentation inhibition – can lower the efficiency of the bioethanol process by up to 
30% [16, 20]. Furthermore, because of the antibiotic treatment of the yeast cells 
during the recycling step, contaminant bacteria may be a source of antibiotic resis-
tance genes, as has been recently reported in a field study [21]. Other sources of 
contamination are wild yeast strains from the input sugarcane stalks, which are 
not sterilized prior to the production pipeline [22]. To date, no studies have inves-
tigated the presence of bioethanol pipeline contaminants in vinasse. 

Here we investigated concurrently the chemical and microbial properties of 
vinasse in order to characterize the vinasse assemblage. We explored metagenom-
ic data taken from vinasse samples over 1.5 years of production from a bioethanol 
mill in Piracicaba, SP, Brazil. The mill processes sugarcane produced in the region 
within a rough 40 km radius. Vinasse is distributed by trucks for fertirrigation dur-
ing the harvest season (April to November). To characterize the microbial assem-
blage of this vinasse, we sequenced total DNA from six vinasse samples. We ana-
lyzed the resulting 18 shotgun metagenomes through metagenomics and differen-
tial abundance binning. To investigate the potential for N2O emissions from fertir-
rigation with vinasse, special attention was given to sequences and reconstructed 
genomes annotated as genes involved in N2O-related metabolism. Furthermore, 
we also identified genes relating to bioethanol production concerns to identify fu-
ture research directions. To date this is the first culture-independent study of the 
vinasse microbial assemblage. Our main questions were (1) what are the overall 
and sample-wise taxonomic and functional characteristics of the vinasse microbial 
assemblages? and (2) what is the potential of the vinasse microbes for N2O emis-
sions, obstruction of fermentation and/or antibiotic resistance? 

6.2 Materials and Methods 
6.2.1 Sampling description 

The bioethanol mill from which we sampled is in the region of Piracicaba in 
SP, Brazil. The mill takes in sugarcane from the region and produces sugar and 
ethanol. We obtained six time points of vinasse taken from transport trucks prior 
to their departure to the fields for chemical and molecular analyses. The trucks 
hold about 10,000 L of vinasse. Prior to sampling, the vinasse was held in the 
trucks for 24 hours. Of the vinasse, 0.5 L sampled from the truck was immediately 
kept at 4 degrees C. The six sampling dates were 13/11/2013 (A, Nov. 2013), 
13/12/2013 (B, Dec. 2013), 15/07/2014 (C, July 2014), 15/08/2014 (D, Aug. 
2014), 14/10/2014 (E, Oct. 2014) and 10/11/2014 (F, Nov. 2014). The dates of the 
vinasse sampling corresponded to summer (October, November and December) or 
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winter (July and August) sugarcane harvests. Because each vinasse was a random 
assemblage of contaminants from the bioethanol process, we considered each time 
point an independent measure for statistical analysis. 

6.2.2 Chemical analyses, DNA extraction, and qPCR quantification and se-
quencing 

For each vinasse sample, 500 ml was used for chemical analyses. The re-
maining three subsamples of 100 ml per time point were used for DNA extraction. 
First, the samples were centrifuged at 10,621 x g (Sigma 2-16P) for 10 min to 
separate cells from the liquid. Total DNA was extracted from the pellets with the 
MoBio PowerSoil kit according to the manufacturer's instructions. Between 553 
and 5310 ng was sent for sequencing (Additional file 1). The DNA was prepared 
as a MiSeq Illumina paired-end library and sequenced (3 replicates x 6 samples = 
18 metagenomes) or used for quantitative PCR of genes that encode for the en-
zymes involved in the sequential biochemical steps leading to N2O production 
(amoA, nirK, nirS, norB) or removal (nosZ). The qPCR reactions were performed 
in a 96-well plate (Bio-Rad) using CFX96 Touch™ Real-Time PCR Detection 
System (Bio-Rad). The qPCR reaction, primers combinations and thermal cycler 
conditions of each gene amplification are listed in Additional file 2.  The qPCR 
data was acquired at 72 °C and melting curve analysis was performed to confirm 
specificity. Amplicon sizes were checked by agarose gel electrophoresis. Samples 
were analyzed with two technical replicates. Reaction efficiency varied from 80 
to105% and R2 values ranged from 0.94 to 0.99. 

6.2.3 Metagenome processing and read-based sample comparisons 

Bioinformatics processing was performed on a Linux server 
(Linux-3.13.0-76-generic-x86_64-with-Ubuntu-14.04-trusty) with 64 nodes and 
250 GB RAM. Processing was performed in a Snakemake v3.7.1 workflow or 
with bash or perl scripts (available upon request). The 18 shotgun metagenomes 
were checked for tag sequences and evaluated for statistics using FastQC v0.10.1 
(Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc) 
and PRINSEQ-lite version 0.20.4 [23]. Raw reads were filtered out using PRIN-
SEQ if they had more than 1% of ambiguous (N) characters, had a mean quality 
score of less than 25 or were exact duplicates. Reads were trimmed at the 3’end if 
the mean quality score was less than 20 within a sliding window size of 10 (clean 
reads). The clean paired-end reads were used in further analyses unless otherwise 
noted. The raw paired-end reads were merged using PEAR v0.9.5; these merged 
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read ends were trimmed by quality and filtered out if the merged read had more 
than 1% ambiguous characters (parameters: -q 20 –n 0.01) with PEAR (merged 
reads) [24]. For downstream normalization of annotation counts, calculations of 
average genome size per sample were carried out using MicrobeCensus [25]. To 
compare the metagenomes directly, sample distances were determined from the 
partial de Bruijn assembly of the clean forward reads using MetaFAST 0.1.0 (revi-
sion 57253a1) [26]. 

6.2.4 Taxonomy, phylogeny and alpha diversity 

To characterize the taxonomic composition, functional potential and diversi-
ty of the microbial assemblages in the vinasse samples, we profiled the 
metagenomes using different databases. First, the merged reads were uploaded to 
the metagenome analysis platform MG-RAST version 3.6 [27]. The metagenomes 
were compared using the default presets to the RefSeq or Subsystems databases to 
obtain taxonomic or functional profiles, respectively. Refseq annotations, includ-
ing eukaryota, bacteria, archaea and viruses, were determined using the last com-
mon ancestor approach. The MG-RAST taxonomic (phylum-level) and functional 
(Subsystems Level 1) profiles were analyzed with the Statistical Analysis of 
Metagenome Profiles (STAMP) software [28]. Taxonomic or functional level 
abundances significantly different among vinasse samples were evaluated using 
ANOVA. The Tukey-Kramer post-hoc test with a 95% confidence interval and the 
Benjamini-Hochberg correction was used to identify differing phyla or Subsys-
tems Level 1 category abundances between the vinasse metagenomes with signifi-
cance determined at corrected p<0.001 or 0.05, respectively. The taxonomic pro-
files at genus level were kept to visualize the relative abundance of genera across 
samples. 

Because the metagenomes were well-represented in the MG-RAST databas-
es, we further characterized the taxonomy and functional potential of the 
metagenomes using metaphlan2 version 2.6.0 and humann2 version 0.9.9 pipe-
lines [29,30]. For metaphlan2 analysis, we used the “relab” analysis with the “--
ignore_eukaryotes” flags to obtain taxonomic profiles. To gain an overall view of 
the taxonomy present in the vinasse samples and the phylogenetic relationships 
between the species in the samples, the average taxonomic distributions of the 
vinasse samples from metaphlan2 were visualized as a cladogram using Graphlan 
[31]. To examine the taxonomic profiles of vinasse across samples, these were vi-
sualized through heatmaps with average linkage clustering on Euclidean distances 
using hclust2. For the humann2 analysis, we annotated the forward clean reads 
against the UniRef90 database [32]. Pathway abundances were visualized exclud-
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ing the “UNMAPPED” and “UNKNOWN” categories using hclust2 heat maps 
with average linkage clustering on Euclidean distances. To obtain a measure of 
alpha diversity, we ran metaphlan2 with previously mentioned flags on samples 
rarified to the smallest library size (280,161 reads).  

To infer the phylogenetic relationships between the organisms present in the 
vinasse samples, full-length 16S rRNA genes were recruited from the vinasse 
metagenome reads using REAGO version 1.1 on forward clean reads truncated to 
201 bp [33]. The resulting full-length 16S rRNA vinasse sequences were aligned 
and taxonomically classified against the SSU 128 SILVA reference database using 
SINA [34,35]. The five nearest neighbors for each full-length 16S rRNA sequence 
were downloaded in addition to two Verrucomicrobia outgroup sequences. The 
16S rRNA sequences were aligned without gaps using ClustalW in MEGA7 (121 
sequences in total)[36]. A neighbor-joining tree was created with evolutionary dis-
tances computed using the Maximum Composite Likelihood method [37,38]. Phy-
logenetic distances were evaluated with bootstrap tests (1000 replicates) [39]. To 
obtain a measure of alpha diversity we recruited full-length 16S rRNA genes us-
ing REAGO as above on the rarified metagenomes. Further, we evaluated a mea-
sure of genus-level relative abundance across samples by mapping the 
metagenome reads to the extracted 16S sequences grouped by taxonomic affilia-
tion using bowtie2. These abundances were calculated as percentages of the num-
ber of aligned pairs from the total number of metagenome reads per sample. 

6.2.5 Putative denitrification and nitrification gene abundances 

To investigate the potential for N2O emissions from the vinasse samples, we 
used two approaches: 1) metagenome read matching to profile HMMs of denitri-
fication and nitrification genes and 2) recruitment of denitrifying and nitrifying 
genes from the reads. Profile HMMs for the amoA_AOA, amoA_AOB, nirK, nirS, 
norB, nosZ, nosZ_atypical_1 and nosZ_atypical_2 genes were downloaded from 
the Functional Gene Repository (FUNgene version 8.3; available at http://fun-
gene.cme.msu.edu/). Reads were translated to protein sequences with the “meta” 
setting using Prodigal version 2.6.2. The ORFs were queried for HMM matches 
using HMMsearch (command: hmmsearch --noali -o <filename.fasta> <gene.h-
mm> <filename.fasta>; available at https://www.ebi.ac.uk/Tools/hmmer/search/
hmmsearch). The HMM matches were normalized to reads per kilobase per 
genome equivalent (RPKG = (# mapped reads / HMM gene length (KB)) / 
genome equivalents). The RPKG normalization accounts for genome size, library 
size and gene length biases, allowing for gene and sample comparisons.  
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In parallel, the gene-targeted assembler pipeline megagta version 0.1_alpha 
was used to recruit full-length genes from the metagenomes [33,40]. Gene-target-
ed assemblies (i.e. recruitments) were carried out on amoA_AOA, amoA_AOB, 
nirS, nirK, norB_cNor, norB_qNor, nosZ and nosZ_a2 genes using megagta. Fur-
ther, to infer alpha diversity, the ribosomal rplB gene was recruited from the rari-
fied metagenomes.  

6.2.6 Cross-assembly and binning 

We evaluated the performance of three assemblers (Ray-meta [41], Megahit 
[42] and metaSpades[43]) in cross-assembling the 18 vinasse metagenomes; the 
best cross-assembly was that from the metaSPADES assembler version 3.8.2 
based on assembly characteristics evaluated using MetaQUAST (QUAST Version 
3.0, build 07.07.2015 05:57 [44]). The 18 metagenomes were cross-assembled 
with metaSpades using kmer sizes 77, 99 and 127. The sample reads were mapped 
to the cross-contigs using bowtie2 to obtain cross contig abundances [45] . The 
final metaSPADES cross-assembly was binned using three tools for comparison: 
CONCOCT (with anvio version 2.3.2), Metabat [46] and MaxBin2 version 2.1.1 
[47]. The contig annotation tool (CAT version 2) was used to determine the taxo-
nomic affiliation of all ORFs identified in each bin using prodigal to find ORFs 
and diamond blastp against the NCBI-nr database [48]. CAT taxonomy results 
were formatted using custom Perl scripts and visualized with TreeMap to aid with 
the taxonomic characterization of the bins. Because more genomes with >90% 
completeness and coherent taxonomies were found from the MaxBin2 binning, 
these were selected for downstream analysis. CheckM was used to check the orig-
inal MaxBin2 bins [49]. These bins were manually refined using anvi’o version 
2.3.2 based on cross-contig taxonomy (from CAT), hierarchical clustering of the 
cross-contigs and sample coverage information [50]. The relative sample abun-
dances of the bins were noted as the percent of sample reads recruited to the bin 
out of the total sample reads recruited to all the bins (i.e. percent recruitment an-
vi’o results).  

The “good bins” were identified as having >90% completeness and <10% 
redundancy. Further “interesting bins” were further identified as those with >20% 
completeness and <10% redundancy and/or coherent contig taxonomies. Func-
tional annotation of the “good and interesting bins” were carried out using prokka 
with the “kingdom” flag set to bacteria or viruses depending on the taxonomic 
classification [51]. To characterize the bins by their potential functional type, 
prokka annotation results were mined for lines matching EC numbers of KEGG 
enzymes of compounds related to bioethanol production interests and N2O emis-
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sions. These KEGG compounds were acetate (C00033), cellulose (C00760), xy-
lose  (C00181), lactose (C00242), caproic acid (C01585, carbon dioxide 
(C00011), diacetyl (C00741), hydrogen peroxide (CC00027), lactaldehyde 
(C05999) and phenyllactate (C05607).   The lists of EC numbers were obtained by 
querying the KEGG REST API on each compound ID. Keyword searches of “3-
hydroxy” fatty acids, “cyclic dipeptide,” antibiotic “resistance,” and nitrification 
and denitrification genes were additionally used to identify the potential presence 
of these functions in the bins.  

In parallel, to confirm potential denitrification and nitrification gene pres-
ence, bin sequences were compared to HMMs of nitrification and denitrification 
genes from FunGene as described previously but with the prodigal setting 
“single.” The HMM matches were normalized by bin size (number of ORFs and 
total number of bp in ORFs) and HMM length in bp.  

6.3 Results 
6.3.1 Vinasse chemical characteristics and metagenome overview 

The chemical characteristics of the vinasse samples are listed in Table 1. 
Average pH was low at 4.4±0.4, ranging between 3.9 (D) and 4.8 (C). Total organ-
ic carbon averaged 29±1.8 g L-1 and ranged between 25.7 (B) and 31.4 g L-1 (D). 
Total N averaged 0.64±0.15 g L-1, while that of P and K was 0.16±0.07 and 
3.43±1.02, respectively. The C/N ratio averaged 42±13 and ranged between 19 (F) 
and 57 (C). After processing, the 18 vinasse metagenomes contained a total of 
2,126 Mbp distributed into 7.82 million reads. The number of reads ranged be-
tween 280,161 and 542,208 sequences per sample with between 77 and 150 Mbp 
(Additional file 1). When the metagenome distances were compared using partial 
de Bruijn assembly, A and C were most similar, followed by F, followed by E; 
least similar were B and last D (Additional file 3). 

Table 1. Chemical characteristics of the six vinasse samples. 

Group 
Name

Sampling 
Date pH C org N tot N-NH4+ N-NO3- P K C:N

g L-1 g L-1 mg L-1 mg L-1 g kg-1 g kg-1

A Nov. 2013 4.7 28.2 0.53 65.8 17.6 0.08 2.9 53
B Dec. 2013 4.1 25.7 0.53 63.4 10.8 0.17 2.6 49
C July 2014 4.8 28.8 0.51 45.7 8.8 0.11 3.5 57
D Aug. 2014 3.9 31.4 0.89 41.6 4.1 0.23 4.7 35
E Oct. 2014 4.2 29.6 0.74 37.7 6.8 0.10 2.1 40
F Nov. 2014 4.7 30.3 1.57 75.9 6.6 0.25 4.8 19
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6.3.2 Taxonomic characterization 

When compared to the M5NR database containing eukaryota, bacteria, ar-
chaea and viruses on MG-RAST (Additional file 4), 21 to 55% of the merged 
reads could be classified. Of the classified reads, 96 to 100% were annotated as 
bacteria. The top phyla present in the vinasse samples with relative abundances 
greater than 1% and/or that significantly co-varied among the samples (ANOVA at 
p<0.001 and Kruskal-Wallis post-hoc test) were Firmicutes (35 to 97% of merged 
reads), Bacteroidetes (0.8 to 53%), Actinobacteria (0.4 to 17.5%) and Proteobacte-
ria (0.3 to 39.4%; Additional file 5). The “core” phylum observed in all vinasse 
samples was Firmicutes. Similarly, when compared to the metaphlan2 marker 
gene database containing bacteria, archaea and viruses (excluding eukaryotes), 
between 68 and 100% of classified reads were identified as bacteria and 0 to 32% 
as viruses (Figure 1).  The previous four main bacterial phyla again dominated the 
vinasse samples: Firmicutes (48 to 100% of classified reads), Actinobacteria (0 to 
19%) and Proteobacteria (0 to 18%), as well as viruses (0 to 32%; Figure 2). The 
most abundant bacterial genera were Lactobacillus (Phylum Firmicutes), Megas-
phaera (Firmicutes), Mitsuokella (Firmicutes) and Bifidobacterium (Actinobacte-
ria). Further supporting these taxonomic results, the full-length 16S rRNA genes 
recruited from the vinasse metagenomes were classified as Bifidobacterium (Phy-
lum Actinobacteria), Olsenella (Phylum Actinobacteria), Prevotella (Phylum Bac-
teroidetes), Lactobacillus (Phylum Firmicutes), Megasphaera (Phylum 
Firmicutes), Mitsuokella (Phylum Firmicutes) and Comamonas (Phylum Pro-
teobacteria) genera (Additional file 6 and 13).  

When the samples were clustered based on the MG-RAST taxonomic pro-
files at phylum level, E and C formed a cluster while A, F, and D were separated 
based on the first principal component and B was separated based on the second 
(Additional file 7). When the metaphlan2 profiles were clustered at the level of 
class, order, family and genus, samples A, C and F formed a cluster while B, D 
and E formed a separate cluster (Figure 2).  
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Figure 1. Average abundance of taxa in the vinasse samples. The metagenomes were analyzed 
using metaphlan2 and visualized with GraPhlan. Node sizes correspond to average relative abun-
dance across the vinasse metagenomes while colors correspond to phylum. Species are noted with 
letters: A=Lactobacillus phage Lc Nu, B=D. mossii, C=A. intestini, D=S. bovis, E=M. elsdenii, 
F=Megasphera unclassified, G=Mitsuokella unclassified, H=L. salivarius, I=L. equicursoris, J=L. 
delbrueckii, K=L. amylovorus, L=L. mucosae, M=L. fermentum, N=L. vini, O=B. thermophilum, 
P=Olsenella unclassified, Q=Pseudomonas unclassified, R=Acetobacter unclassified, S=Glu-
conacetobacter unclassified, T=Ochrobactrum unclassified, U=A. faecalis, V=A. butzleri and 
W=Arcobacter unclassified. 
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Figure 2. Taxonomic distributions across the vinasse samples at the level of A) Phylum, B) Class, 
C) Order, D) Family, E) Genus and F) Species. The taxonomic group and sample profiles were 
clustered using hclust2 from metaphlan2 results. 
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6.3.3 Functional potential characterization 

When compared to the M5NR databases through MG-RAST, the percentage 
of sequences with ORFs that could be classified into functional categories ranged 
between 16 and 42% (Additional file 8). At Subsystems Level 1, the top signifi-
cantly different categories were Carbohydrate metabolism, Clustering-based sub-
systems, Amino Acids and Derivatives, Miscellaneous, Protein metabolism, DNA 
metabolism, RNA metabolism, Cofactors/vitamins, Cell wall/capsule, Phages/
prophages and Nucleosides and Nucleotides. When sample distances were deter-
mined using the functional profiles at Subsystems Level 1, C, A, B and F formed a 
cluster while E was separated based on the first principal component and D was 
separated based on the second (Additional file 9). When the vinasse 
metagenomes were analyzed using the humann2 framework, abundant pathways 
were found in sample D, which was dominated by one Lactobacillus – the top 
abundant pathways included PWY-5100: pyruvate fermentation to acetate and lac-
tate II and PWY-7219: adenosine ribonucleotides de novo biosynthesis (Addi-
tional file 10). Combining the real-time PCR, gene recruitment and gene mapping 
results, the vinasse metagenomes had few to no genes matching nitrification 
genes; in contrast, a range of denitrification genes was found (Figure 3). Sample 
B presented the most diversity of denitrification genes, with nirK, nirS, norB and 
nosZ present based on the recruitment and mapped results. The presence of puta-
tive nosZ was supported in all samples except D. In addition, putative nirK was 
found in all samples except F. 

6.3.4 Alpha diversity of the vinasse samples 

Several methods were employed to obtain estimates of the alpha diversity of the 
vinasse samples (Table 2). The normalized effective number of species from MG-
RAST averaged 29±14 and ranged between 3 (D) and 53 (B) species. When 
metaphlan2 was applied to the rarified vinasse samples, the number of classified 
species averaged 11±3 and ranged between 5 (D) and 14 (B) species. Partial 16S 
rRNA fragments recruited from the rarified samples using REAGO averaged 10±4 
and ranged between 4 (D) and 17 (E). Further, when the rplB gene was recruited 
from the rarified samples with megaGTA analysis, and average of 17±3 fragments 
could be found across the vinasse samples with between 13 (E) and 22 (C) rplB 
fragments identified. When the 16S rRNA gene was amplified using real time 
PCR of the vinasse samples, the number of genes per kg of dry matter averaged 
12e12±9e12 and ranged between 0.8 (E) and 25.7 (A); the gene abundance of 18S 
rRNA gene averaged 100e3±71e3 and ranged between 17e3 (D) and 208e3 (B). 
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Figure 3. Putative gene abundances in the vinasse metagenomes. Partial gene fragments were re-
cruited from the vinasse metagenomes using megagta on A) all reads and B) rarified reads. In par-
allel, vinasse metagenomes were compared to profile HMMs and the number of matches was nor-
malized to C) reads per kilobase per genome equivalent (RPKG). In D) the gene copy numbers 
from real time PCR of the nosZ, nirS and nirK genes are depicted. Note that no qPCR of the norB 
gene was made. 
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Table 2. Alpha diversity estimates of the vinasse samples. Diversity was quantified by the number 
of partial genes recruited (REAGO and megaGTA), or the estimated number of species 
(metaphlan2 and MG-RAST) from the vinasse metagenomes; results from real-time PCR of the 
16S gene was also included. Rarified forward reads were used as input for metaphlan2, reago and 
megagta analysis; merged reads were used in the MGRAST analysis and these results were nor-
malized by library size.  

6.3.5 Bin characteristics, taxonomy and functional types 

The cross-assembly resulted in 221,975 cross-contigs totaling 216 Mbp. 
Of the cross-contigs, 40,815 were longer than 1Kbp, and 40,186 of these could be 
binned. After refining the bins, 20,825 cross-contigs remained distributed within 
the 36 good or interesting large bins (0.6 to 3.9 Mbp; hereafter referred to as the 
large bins). The large bins represented 39 to 68% of the sample reads. Fifty-eight 
percent of the large bins were classified at the phylum level as Firmicutes, 8% as 
Bacteroidetes, 17% as Proteobacteria, 11% as Unknown and 6% as Actinobacteria 
(Table 4). Overall, the GC percent of these bins ranged between 28 and 66%. Of 
the large bins, 24 were potential denitrifiers and three potential nitrifiers. The 
presence of genes related to acetate, CO2, ethanol, H2O2 and lactose metabolism 
were found in all large bins while the potential presence of genes related to Lac-
taldehyde, mannitol, xylose, butyric acid, cellulose, diacetyl, phenyllactate, su-
crose and “3-hydroxy” was variable across the large bins (Table 5). Last, when 
multidrug resistance was identified in the bin annotations, all large bins but Un-
known-19 and Lactobacillus-30 contained these genes. In addition to the large 
bins, eight small bins (0.03 to 0.20 Mbp) lacking bacterial marker gene presence 
were found (Table 3 and Additional files 11 and 12). The largest of the small 
bins, 4.2 and 8.1 were most abundant in samples E and D, respectively. 

REAGO megaGTA metaphlan2 MGRAST qPCR

Sample Name # recruited 
16S rRNA genes

# recruited 
rplB genes # Species Effective # 

species

# 16S rRNA copies (/
1000000) kg dry 

matter-1

A 13 ± 2 21 ± 2 10 ± 1 37 ± 1 25750 ± 13900

B 10 ± 3 16 ± 3 14 ± 1 47 ± 4 16839 ± 11664

C 12 ± 1 22 ± 2 13 ± 0 38 ± 1 16281 ± 1104

D 4 ± 0 15 ± 2 5 ± 0 3 ± 0 10749 ± 3336

E 17 ± 2 13 ± 1 10 ± 0 20 ± 1 839 ± 840

F 6 ± 2 17 ± 1 12 ± 1 29 ± 3 1135 ± 1142
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Table 3. The “good and interesting” vinasse bin characteristics and relative sample abundances 
(indicated by heatmap per sample).  

!  
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Table 4. Taxonomy of the “good and interesting” vinasse bins based on CAT classification.  

#  

K=Kingdom, F=Firmicutes, B=Bacteroidetes, A=Actinobacteria, P=Proteobacteria, E=Euryarchaeota, U=Unknown, 
Bact=Bacteroidia, Nega=Negativicutes, Clos=Clostridia, Mega=Megasphaera, Lact=Lactobacillales, Metha=Methanobac-
teria 
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Table 5. Putative gene repertoires of the large vinasse bins. Keyword searches of prokka annota-
tion results (grey, “Y”) were supplemented in the case of the N2O metabolism-related genes with 
hmm profile search results (colors). Substrates for the genes related to N2O metabolism are includ-
ed.

#  

ABR = antibiotic resistance; Notes: no genes related to the metabolism of caproic acid were found in the bin annotations. 
No amoABC, hao, nxr nor, nirS genes were found in the bin annotations, but the amoA AOA gene was identified in Bin 23 
and 40.1 and the amoA AOB gene was identified in Bin 33 by HMM matches.  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6.4 Discussion 
Here, we explored concurrently the chemical and microbiological character-

istics of vinasse produced over 1.5 years from one bioethanol mill in Sao Paulo 
State. The aims were to characterize, for the first time, the taxonomy and potential 
functions of the microbial assemblage in vinasse; we further recovered draft 
genomes from vinasse bacteria. We combined metagenomic analyses with binning 
techniques to characterize the vinasse assemblages and bacteria, respectively. We 
discuss below both potential ethanol pipeline contamination traits of vinasse bac-
teria and the potential ecology of vinasse fertirrigation. The vinasse chemical 
characteristics fell within the range of other sugarcane vinasses [52, 53].  Differ-
ent vinasse inputs are known to contribute different nutrition; this is taken into 
account in that vinasse fertirrigation is applied depending on the amount of K 
present in the input vinasse [54]; however, that different vinasse inputs contribute 
different bacteria was not known until now. The different nutrient contents of 
vinasse originate from the differences in the input of sugarcane stalks to the 
bioethanol production process; this might also be the source of the vinasse bacte-
ria.  

The vinasse draft genomes most likely represented the bacteria that survived 
the selective bottleneck of the bioethanol production pipeline. The potential for 
bacteria found in vinasse originating from later steps in the bioethanol pipeline, 
such as the truck from which we sampled the vinasse, was considered a minor 
source of bacteria due to the large capacity (10,000 L), making this a negligible 
source of bacteria. The core genus found in the vinasse samples was Lactobacillus 
(Phylum Firmicutes), which is a previously known ubiquitous ethanol pipeline 
contaminant due to its tolerance of low pH [15]. Other known contaminants found 
prior to the distillation stage that we observed in our vinasse samples included 
representatives of the Acetobacter, Bacillus, Bifidobacterium, Clostridium, Glu-
conacetobacter, Lactobacillus and Pseudomonas genera [16, 55, 56]. Strikingly, 
we identified members of the genera Megasphaera and Mitsuokella that have not 
previously been reported as bioethanol pipeline contaminants. Members of the 
genus Megasphaera and Mitsuokella are Gram negative ruminant fermenters that 
have been found in pig hindguts, cow rumen and human dental plaque and feces; 
gram-positive Bifidobacterium have also been used as probiotics in humans and 
are found in the gut, vagina and mouth of mammals and bovine rumens. Whether 
these bacteria interact with each other within each vinasse sample – e.g. Megas-
phaera and Mitsuokella utilizing lactose provided by Lactobacillus – is unknown, 
as is the direction of the interactions.  
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Uncovering the physiological mechanisms by which these particular bacte-
ria survive the selection bottlenecks of the bioethanol process was outside the 
scope of the current research since our goals were to characterize fully the 
metagenomic data. However, we speculated that plausible protective mechanisms 
are biofilm formation [16, 57], strain-dependent temperature tolerance, and un-
known pipeline management considerations. For the latter, the distillation material 
might not homogenized, thus creating pockets of lower temperatures where the 
bacteria can remain. Other management considerations that might affect the via-
bility of bacterial cells are length of time exposed to the distillation temperature 
and the highest temperature reached. Evaluating the physiology of cultured iso-
lates from vinasse, which can be done building upon the work described here, is 
an interesting topic for further research.  

Here, using differential abundance binning, we successfully obtained 21 
draft genomes from vinasse bacteria likely representing bioethanol contaminants. 
We confirmed that roughly half of the vinasse bins were of the genus Lactobacil-
lus (Phylum Firmicutes), which is the most ubiquitous bacterial bioethanol pipe-
line contaminant [16]. We also uncovered contaminants with up to 70% of sample 
coverage from the Prevotella (Phylum Bacteroidetes), Megasphaera (Phylum Fir-
micutes), and Mitsuokella (Phylum Firmicutes) genera, which have not been as 
well-studied. Five of the draft genomes were from bacteria unknown at the phy-
lum level. Furthermore, most of the bins recovered here were partly uncharacter-
ized at the species level, supporting the idea that we obtained genomes from novel 
strains of bioethanol contaminants.  Studies of bioethanol contaminants to date 
have used culture-based methods, which do not capture the entire microbial diver-
sity; or profiling of 16S rRNA genes, which does not capture the functional poten-
tial of the contaminants [13, 14]. Bacterial contaminants in general are known to 
compete with commercial yeast strains, lowering ethanol yield; contaminants may 
also flocculate with the yeast or produce compounds such as acetate, butyric acid 
or lactose which might inhibit yeast fermentation [16]. Many bins contained su-
crose metabolism-related genes, suggesting that these might compete with the 
commercial yeast strain for sugarcane sucrose. Annotation of the bins revealed the 
potential presence of bioethanol contaminant genes related to the metabolism of 
acetate, ethanol, mannitol, cellulose, hydrogen peroxide, lactose, sucrose and 3-
hydroxy fatty acids. These results support the idea that vinasse bacteria are an ad-
ditional source in identifying likely bioethanol process contaminants.  

Interesting bins included Lactobacillus/Methanobrevibacter-bin30 and Ar-
cobacter/Methanobrevibacter-bin40.2, which contained cross-contigs annotated as 
both bacterial and archaeal. Methanobrevibacter is an archaeal genus whose 
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methanogenic members are often found in vertebrate guts consuming the end 
products of bacterial fermentation. Finding them here suggests that this interaction 
might also be present in vinasse. In addition, we binned potential phage genomes, 
which suggest that phages are present in the fermentation tanks along with the 
host contaminants. The large phage genome bin 8.2 was most abundant in vinasse 
sample D, corresponding to a low diversity assemblage with a dominant bin, sug-
gesting that the host of this phage was L. amylovorous-bin27. The phage bins 4.1, 
4.2 and 8.1 were all most abundant in vinasse sample D, corresponding to a more 
diverse assemblage of bacterial hosts across the phyla Firmicutes and Bac-
teroidetes. These associations suggest that phage lysis may be a factor controlling 
bacterial population sizes in the fermentation tanks. Attention has recently been 
paid to using phage therapy to control bacterial contamination in bioethanol pipe-
lines [58-59].  

 In addition to investigating the potential for vinasse bacteria to be 
contaminants in the production of bioethanol, we evaluated the potential for 
vinasse bacteria to contribute to N2O emissions during fertirrigation. Vinasse fer-
tirrigation can be considered a disturbance on the soil microbial community; the 
success of the vinasse assemblage in the soil likely depends on the connectivity 
(e.g. strength and direction of the vinasse species interactions). Pitombo et al.[11] 
identified significantly abundant bacterial genera under treatments of vinasse 
compared to unfertilized control plots using 16S rRNA marker abundance, and the 
significantly differentially abundant genera in the plots amended with vinasse in-
cluded the vinasse bacteria (as identified here) Lactobacillus, Bacillus, Prevotella, 
Gluconacetobacter, Megasphaera, Mitsuokella and Acetobacter [11]. Further, un-
published research suggests that vinasse bacteria on a field experiment may per-
sist at low abundances. These results together suggest that vinasse bacteria may 
successfully invade the soil microbial community. Furthermore, the vinasse bacte-
ria may transfer to the sugarcane stalks during plant growth and at harvest time 
become the contaminants that are inputted with the sugarcane to the ethanol pro-
cessing pipeline. In support, a survey of the bacteria associated with the sugarcane 
plant found the vinasse taxa Bacillus, Acetobacter and Gluconacetobacter as part 
of the “core” sugarcane microbiome [59].  While this is interesting speculation, 
we note that caution should be taken because the referenced studies were few and 
based on gene marker surveys at higher taxonomic levels, which hinders robust 
and precise interpretation. We recommend further research into the ecological in-
teractions of vinasse bacteria with the soil bacterial community at the species or 
strain level during fertirrigation with vinasse.  

- �  -177



Actual N2O emissions from a soil are the result of the sequential biochemi-
cal processes nitrification and denitrification carried out collectively by the mi-
crobial communities in a soil. The total rate of N2O emissions through nitrification 
or denitrification is controlled by carbon availability, moisture, oxygen availabili-
ty, pH, temperature, and nitrate concentrations. These factors limit enzyme activi-
ty, gene transcription levels and microbial cell growth [61]. Furthermore, the 
abundance of the genes involved in the production (amoA, nirK, nirS, norB) or 
removal (nosZ) of N2O is correlated with the actual N2O emissions [62]. In the 
case of vinasse fertirrigation, if many denitrifiers invade a soil conducive to deni-
trification, we would expect more denitrification to occur. Whether net N2O or N2 
(the end product of denitrification) emissions would occur would depend on the 
number and genetic repertoires of the invading bacteria. Therefore, vinasse con-
taining an assemblage with a higher partial (containing nirK, nirS and/or norB) to 
full (containing at least nosZ) denitrifier ratio may lead to higher N2O emissions 
during fertirrigation. 

Four phyla (Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes) 
were represented across the vinasse samples, although at the genus level the di-
versity of each assemblage fluctuated. The samples could generally be classified 
as dominated by Megasphaera (A, C, F) or Lactobacillus (B, D, E) at the genus 
level. The second assemblage (B) was the most diverse; it was dominated by Lac-
tobacillus and containing, uniquely compared to the other time points, Proteobac-
teria such as Alcaligenes, as well as phage (Lactobacillus phage Lc Nu). The least 
diverse assemblage was D, containing mostly Lactobacillus and phage. Of the 22 
potential vinasse denitrifiers, two were potential complete denitrifiers (containing 
nirK or nirS, norB and nosZ) and eight were potential incomplete denitrifiers 
(containing nirK or nirS and norB). The abundances of these potential denitrifiers 
varied across timepoint, suggesting varied effects on N2O during vinasse fertirri-
gation with different vinasses. For example, the Lactobacillus-bin 27 dominated to 
97% of the sample D abundance, and this contained a putative nirK gene; when 
this vinasse is sprayed onto the fields, one would expect nitrate degradation and 
an increase in N2O or N2 depending on the gene content of the endogenous mi-
crobial community. Another abundant potential denitrifier present in sample A 
(Prevotella-Bin 2) contained only potential nosZ, suggesting that if the vinasse A 
were to be used in fertirrigation, the actual emission of N2O may be reduced due 
to the further reduction of N2O into N2. Furthermore, vinasse denitrifiers might 
directly contribute to the N2O emissions observed when vinasse is added in con-
junction with a nitrate fertilizer [63]. This suggests that vinasse application in con-
junction with a reduced nitrogen source such as ammonium sulfate may be a fea-
sible management practice to reduce N2O production. Further research investigat-
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ing the microbes involved in N2O emissions during fertirrigation with vinasse 
would greatly aid in steering future vinasse management strategies.  

Vinasse fertirrigation has raised human health concerns that vinasse bacteria 
may carry antibiotic resistance genes (ARGs) [21]. These genes can enter the soil 
resistome and can be transferred using horizontal gene transfer to other soil bacte-
ria, with potential spreading of antibiotic resistance genes to soil-derived human 
pathogens. Here a search of the annotation results of the recovered vinasse bins 
found multidrug resistance genes in 34 of the 36 large bins. Surprisingly, no drug 
resistance genes were found in the phage bins; this may indicate, that the phages 
from which these genomes were not prophage that confer auxiliary metabolic 
genes in the form of antibiotic resistance to the vinasse bacteria. These results 
warrant further study of the fate of ARG’s from vinasse during fertirrigation.  

While significant progress has been made in metagenome assembly and 
binning, some caveats should be noted to the bins we recovered here. Misassem-
bly and misbinning can occur and bias the final results, in our case identifying rel-
evant genes present in the bins. We addressed these issues by comparing three as-
semblers and three binning tools and choosing the best of each. Further, we used 
large kmer sizes for the final cross-assembly, and this successfully allowed Max-
Bin2 to bin to the level of species. We additionally used the manual refinement 
feature of anvi’o to improve the bins. Because bins with low completeness as de-
termined by the presence of universal marker genes can still contain useful infor-
mation regarding potential gene content, we used all useful bins to characterize 
the vinasse assemblage. Eight bins could not be refined, and these represent un-
binned vinasse bacterial genome content; however, the information from this ge-
nomic material was characterized in the metagenomic analyses. We included sev-
eral different methods for each analysis to supplement each other as database cov-
erage and read length can bias results based on sequence alignment. Moreover, we 
used the metagenomic analysis to complement the bin results. Interestingly, com-
paring the qPCR, putative gene abundances and gene recruitment results suggest-
ed that the qPCR primers we used do not cover the entire diversity of vinasse bac-
teria or alternately that the HMM results may be biased toward false positives.  

Here we used metagenomic analysis and genome binning to characterize in 
depth the assemblage of six vinasse samples from one bioethanol mill. We identi-
fied previously unknown vinasse taxa compared to taxa identified through culture- 
or 16S rRNA survey-based studies of the ethanol processing pipeline steps prior to 
vinasse. Furthermore, we obtained 21 draft genomes and 8 phage or mobile ele-
ment genomes from vinasse, which to our knowledge is the first study to do so. 
Vinasse bacteria included mainly putative denitrifiers, which may directly affect 
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soil N2O or N2 emissions when applied during fertirrigation, although more re-
search is needed into the ecological interactions during this event. In the vinasse 
bins we found the putative presence of antibiotic resistance genes and genes af-
fecting yeast fermentation, which potentially implicate vinasse bacteria in nega-
tive impacts on human health and bioethanol production, respectively. We suggest 
that monitoring the vinasse assemblage is a promising option to screen both for 
bioethanol production contaminants and to identify vinasse batches which, when 
added to the fields during fertirrigation, may lead to higher N2O emissions. Be-
cause of the decreasing costs of high-throughput sequencing, we suggest that 
monitoring of vinasse assemblages can be widely implemented to improve sugar-
cane bioethanol production sustainability. 
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6.6 Additional files 
Additional file 1. Data description of the 18 vinasse metagenomes. 

Date 
Sampled

Sample 
Name

Sample 
Id

DNA Weight 
(g)

DNA Conc. 
(ng/µl) # reads

Forward 
# bases 
(Mbp)

Reverse 
# bases 
(Mbp)

Reads 
mapped to 

cross-
contigs (%)

Nov. 
2013

A-1 1V1-1 0.297 32.5 461,784 131 117 92.77
A-2 1V1-2 0.250 39.6 454,721 130 115 92.69
A-3 1V1-3 0.295 20.4 469,527 130 115 92.19

Dec. 
2013

B-1 1V2-2 0.300 39.2 417,625 110 94 73.20
B-2 1V2-3 0.295 53.1 517,039 142 131 73.67
B-3 1V2-4 0.292 38.5 542,208 150 139 74.67

July 
2014

C-1 2V1-1 0.301 13.9 362,499 100 89 92.38
C-2 2V1-2 0.267 14.2 501,511 138 123 92.53
C-3 2V1-3 0.291 14.4 432,207 119 107 92.12

Aug. 
2014

D-1 2V2-1 0.295 17.2 489,336 138 132 95.12
D-2 2V2-2 0.291 18.6 280,161 77 74 95.33
D-3 2V2-3 0.294 21.0 351,407 971 935 95.3

Oct. 
2014

E-1 3V1-1 0.294 6.19 363,382 981 914 91.30
E-2 3V1-2 0.280 5.57 434,111 117 108 91.18
E-3 3V1-3 0.290 7.22 472,732 135 124 91.47

Nov. 
2014

F-1 3V2-1 0.294 7.29 444,056 122 114 91.14
F-2 3V2-2 0.285 6.64 500,636 136 128 91.29
F-3 3V2-3 0.292 5.53 323,376 883 794 91.66
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Additional file 2. Primers and thermocycler conditions used in gene abundance analysis by real 
time qPCR of the vinasse samples. 

1. Francis CA, Roberts KJ, Beman JM, Santoro AE & Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea 
in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 2005;102:14683–88. 

2. Rotthauwe JH, Witzel KP & Liesack W. The Ammonia monooxygenase structural gene amoA as a functional marker: 
molecular fine-Scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol. 1997;63: 4704 12. 

3. Henry S, Bru D, Stres B, Hallet S & Philippot L. Quantitative detection of the nosZ gene, encoding nitrous oxide re-
ductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. App. Environ Microbi-
ol. 2006;72: 5181–89. 

4. Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A & Philippot L. Quantification of denitrifying 
bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods. 2004;59:327–35. 

5. Throbäck IN, Enwall K, Jarvis A & Hallin S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for com-
munity surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol. 2004;49:401–17. 

Target 
gene Primer Primer Sequence Size 

(bp) 12 µL of reaction Thermal profile
AOA 
amoA 

Arch-
amoAF 
Arch-
amoAR

5’-
STAATGGTCTGGCTTA
GACG-3’ 
5’-
GCGGCCATCCATCTGT
ATGT-3’

635 
491

6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.125 µL of each 
primer (10 pmol), 1.75 µL of BSA  and 4 
µL of DNA (3 ng). 
6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.125 µL of each 
primer (10 pmol) and 4 µL of DNA (3 
ng).

95°C-5 min.; 40x 
95°C-10s, 
64°C-10s, 
72°C-20s 
95°C-10min.; 
40x 95°C-10s, 
65°C-25s,AOB 

amoA
amoA1F 
amoA2R

5’-
GGGGTTTCTACTGGT
GGT-3’ 
5’-
CCCCTCKGSAAAGCC
TTCTTC-3’

AOA 
amoA

Arch-
amoAF 
Arch-
amoAR

5’-
STAATGGTCTGGCTTA
GACG-3’ 
5’-
GCGGCCATCCATCTGT
ATGT-3’

635 6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.125 µL of each 
primer (10 pmol), 1.75 µL of BSA  and 4 
µL of DNA (3 ng).

95°C-5 min.; 40x 
95°C-10s, 
64°C-10s, 
72°C-20s

amoA2R 5’-
CCCCTCKGSAAAGCC
TTCTTC-3’

NosZ [3] nosZ2F 5’-
CGCRACGGCAASAAG
GTSMSSGT-3’

267 6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.250 µL of each 
primer (10 pmol), 1.20 µL of BSA  and 4 
µL of DNA (1.25 ng).

95°C-5 min.; 40x 
95°C-10s, 
64°C-10s, 
72°C-20snosZ2R 5’-

CAKRTGCAKSGCRTG
GCAGAA-3’

nirK [4] NirK876 5'-
ATYGGCGGVAYGGCG
A-3'

165 6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.250 µL of each 
primer (10 pmol), 1.50 µL of BSA  and 4 
µL of DNA (1.25 ng).

95°C-5 min.; 40x 
95°C-15s, 
62°C-15s, 
72°C-20s NirK1040 5'-

GCCTCGATCAGRTTRT
GGTT-3'

nirS [5] nirScd3aF 5'-
GTSAACGTSAAGGAR
ACSGG-3'

425 6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.250 µL of each 
primer (10 pmol), 1.20 µL of BSA  and 4 
µL of DNA (1.25 ng).

95°C-5 min.; 40x 
95°C-10s, 
63°C-10s, 
72°C-20snirSR3cd 5'-

GASTTCGGRTGSGTCT
TGA-3'
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Additional file 3. Hierarchical clustering of the vinasse metagenomes based on partial de Bruijn 
graph overlap from Metafast analysis. Replicates were most similar to each other. 
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Additional file 4. Data description of the merged vinasse metagenomes uploaded to MG-RAST.  

Additional file 5. Taxonomic distribution of the merged vinasse metagenomes from MG-RAST 
annotation against RefSeq database. Phyla with average relative abundance greater than 1% across 
all samples were included. Samples with significantly different phyla between groups (Tukey-
Kramer post-hoc test, 95% confidence interval, p < 0.001) are indicated by different letters. 

Effect sizes and corrected p-values were calculated using ANOVA on mean relative abundance of phyla in sample groups 
using the Benjamini-Hochberg multiple test correction in STAMP. 

MG-RAST 
ID

Sample 
Date

Sample 
Name

Sample 
ID

Percent 
merged

# merged 
reads

Avg. merged read 
length

# merged bases 
(Mbp)

4678764.3
Nov. 2013

A-1 1V1-1 87.98% 236896 592,17 85
4678762.3 A-2 1V1-2 88.72% 230245 592,38 83
4678758.3 A-3 1V1-3 87.40% 245213 590,59 83
4678765.3

Dec. 2013
B-1 1V2-2 93.07% 263198 582,17 86

4678752.3 B-2 1V2-3 95.62% 359330 580,67 116
4678749.3 B-3 1V2-4 95.15% 376765 581,71 124
4678755.3

July 2014
C-1 2V1-1 88.74% 193318 590,16 64

4678760.3 C-2 2V1-2 91.90% 275242 589,16 91
4678754.3 C-3 2V1-3 91.96% 252621 588,15 83
4678766.3 Aug. 

2014
D-1 2V2-1 95.97% 402629 581,89 139

4678761.3 D-2 2V2-2 95.88% 235413 577,50 79
4678753.3 D-3 2V2-3 96.49% 300148 576,57 100
4678756.3

Oct. 2014
E-1 3V1-1 94.29% 258649 584,54 84

4678751.3 E-2 3V1-2 92.39% 293786 585,17 96
4678759.3 E-3 3V1-3 91.44% 305881 589,63 111
4678757.3

Nov. 2014
F-1 3V2-1 93.26% 320201 586,67 109

4678763.3 F-2 3V2-2 95.37% 383266 583,43 126
4678750.3 F-3 3V2-3 84.59% 269124 575,92 94

Average proportion of sample

Phylum p-values 
(corrected)

Effect 
size A B C D E F

Firm. 1.94E-14 0.998 44.5±0.4 
a

39.2±1.7 
b

61.2±0.9 
c

97.0±0.0 
d

58.8±0.5 
e

35.4±0.3 
f

Bacter. 4.09E-14 0.998 29.4±1.5 
a

9.5±0.2 
b

11.3±0.7 
c

0.8±0.0 
d

11.5±0.3 
e

52.8±1.1 
f

Actino. 1.88E-09 0.985 15.9±1.5 
a

2.1±0.1 
b

17.5±1.4 
a

0.4±0.0 
b

17.8±0.6 
a

3.3±0.8 
b

Proteo. 7.19E-14 0.997 0.8±0.0 
a

39.4±1.8 
b

0.8±0.0 
a

0.3±0.0 
a

1.7±0.0 
a

1.4±0.0 
a
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Additional file 6. Phylogenetic relationships between full-length 16S rRNA genes reconstructed 
from the vinasse metagenomes using REAGO. The 16S rRNA sequences from vinasse and refer-
ence sequences were aligned using ClustalW. The neighbor-joining tree was created with MEGA 
and visualized using iTol ignoring branch lengths. 

- �  -186



 
Additional file 7. Principal component analysis of the phylum-level abundance distributions of the 
vinasse metagenomes. Relative abundance profiles were determined using MG-RAST against the 
RefSeq database and phyla membership was determined using the Last Common Ancestor algo-
rithm.  
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Additional file 8. Functional potential characterization of the vinasse metagenomes from MG-
RAST annotation against the Subsystems database. Only the subsystems at level 1 with average 
relative abundance greater than 2% across all samples were included. Significantly different sub-
systems at level 1 between sample groups (Tukey-Kramer post-hoc test, 95% confidence interval, 
p < 0.05) are indicated by different letters. 

Effect sizes and corrected p-values were calculated using ANOVA on mean relative abundance of Subsystems level 1 in 
sample groups using the Benjamini-Hochberg multiple test correction in STAMP. 

Relative sample abundance
Subsystems 

Level 1 
Category

p-values 
(corrected)

Effect 
size A B C D E F

Carbohydrates 2.84E-08 0.967 16.3±0.3 
ac

12.9±0.2 
b

15.5±0.1 
a

15.5±0.1 
a

13.7±0.3 
b

17.0±0.5 
c

Clustering-
based 

subsystems
4.37E-09 0.977 14.5±0.2 

a
14.6±0.0 

a
15.2±0.1 

b
17.2±0.0 

c
14.8±0.2 

ab
14.2±0.2 

a
Amino Acids 

and Derivatives 6.35E-13 0.997 9.2±0.1  
ac

9.4±0.0   
a

9.3±0.1   
a

4.7±0.1   
b

7.0±0.2   
d

8.9±0.0   
c

Miscellaneous 8.50E-05 0.863 7.6±0.1  
 a

7.5±0.0   
a

7.6±0.1   
a

7.3±0.0  
b

7.0±0.2   
c

7.3±0.1 
bc

Protein 
Metabolism 2.25E-08 0.969 7.1±0.1   

a
6.9±0.1   

a
7.8±0.1   

c
8.3±0.1  

d
7.0±0.1  

ab
6.7±0.2   

b
DNA 

Metabolism 3.86E-11 0.991 5.5±0.1   
a

5.4±0.0   
a

5.4±0.1   
a

7.3±0.1   
c

5.8±0.0   
b

5.7±0.0   
b

RNA 
Metabolism 3.43E-07 0.949 5.7±0.1   

a
5.7±0.1   

a
5.9±0.1   

a
7.0±0.1   

c
5.7±0.2   

a
5.1±0.1   

b
Cofactors, 
Vitamins 3.71E-11 0.991 5.6±0.0   

a
5.8±0.1   

a
5.1±0.1   

b
3.5±0.0   

c
4.0±0.2   

d
5.2±0.0   

b
Cell Wall and 

Capsule 3.04E-06 0.923 4.7±0.1  
ac

4.4±0.1 
bc

4.6±0.1   
c

4.9±0.1   
a

4.2±0.1   
b

4.9±0.0  
 a

Phages and 
Prophages 8.82E-08 0.960 2.9±0.1  

a
2.3±0.0  

a
3.1±0.0   

a
2.4±0.0   

a
10.0±1.4   

b
2.6±0.1   

a
Nucleosides 

and 
Nucleotides

4.42E-10 0.984 3.2±0.0   
a

2.7±0.0  
b

3.3±0.0   
a

3.7±0.1   
c

4.1±0.1   
d

2.9±0.1   
b
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Additional file 9. Principal component analysis of the Subsystems Level 1 category abundances of 
the vinasse metagenomes. The colors correspond to time point. Profiles were determined against 
the Subsystems database using MG-RAST and relative abundances of phyla were calculated out of 
the total number of sample reads. 
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Additional file 10. Functional potential profiles of the top 30 pathways across the vinasse sam-
ples, excluding “unmapped” and “uncategorized” results. The functional group and sample profiles 
were clustered using hclust2 from humann2 analysis against the UniRef90 database. 
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Additional file 11. All vinasse bin characteristics and relative sample abundances (indicated by 
heatmap per sample). Bin id’s highlighted in green indicate “good” bins; yellow id’s indicate “in-
teresting” bins, and red id’s indicate “bad” bins. Continued on next page. 

Bin 
Id A B C D E F

Length 
(Mbp) # Contigs N50

GC 
(%)

Completeness 
(%)

Redundancy 
(%)

1 6 1 2 0 0 1 2.4 209 23171 53 92 2
2 14 2 1 0 4 3 3.5 547 10519 49 94 4
3 8 1 18 0 2 13 2.2 352 10534 53 97 2
5 3 0 4 0 2 1 1.9 298 11078 60 94 3
6 4 1 2 0 1 12 2.4 539 6347 44 91 2
7 9 2 3 0 4 2 4.9 2521 1944 51 63 40
9 2 0 2 0 1 0 2.0 407 6384 60 90 6

10 1 1 1 1 3 0 2.1 183 27583 47 96 1
11 7 2 4 0 2 10 5.8 2606 2396 44 36 9
12 3 0 2 0 5 1 2.3 485 7489 66 91 5
13 2 0 2 0 0 0 1.5 605 2710 63 71 12
14 2 0 1 0 0 1 1.9 947 2190 52 74 15
15 2 0 2 0 1 1 2.2 1017 2297 53 76 9
16 1 1 1 0 0 13 3.0 307 22370 42 99 1
17 2 0 1 0 1 0 1.4 928 1434 60 43 14
18 2 0 1 0 2 0 1.5 893 1665 63 69 22
19 1 0 1 0 3 0 2.0 917 2351 62 60 12
20 0 0 1 0 1 1 1.2 387 3766 54 64 2
21 0 0 1 1 2 1 1.8 298 9992 50 88 1
22 2 1 3 0 1 12 5.3 2375 2491 36 39 7
23 0 1 1 3 2 1 1.9 373 7041 47 95 4
24 0 2 1 0 1 0 1.8 220 13204 53 98 4
25 1 1 1 1 0 2 1.8 729 2822 40 91 9
26 1 1 2 0 1 1 2.1 1236 1733 41 66 15
27 0 1 1 45 3 1 1.9 262 11858 38 99 1
28 0 3 0 0 0 0 2.1 340 8670 38 96 5
29 0 1 0 2 0 0 1.0 439 2658 50 88 9
30 0 3 1 3 2 3 3.9 2021 1897 31 47 16
31 0 0 8 0 0 0 3.3 1595 2241 54 79 37
32 0 0 0 6 0 0 2.0 104 208993 36 99 1
33 0 0 0 1 3 0 1.7 447 4850 48 96 9
34 0 3 0 0 0 0 2.7 343 12289 60 92 1
35 0 4 0 0 0 0 2.7 259 13750 43 96 6
36 0 5 0 0 0 0 1.7 647 2989 49 67 5

36.2 0 4 0 0 0 0 1.4 868 1558 48 38 5
36.3 0 1 0 0 0 0 0.5 245 2503 48 10 0
37.1 0 10 0 0 0 0 3.1 1326 2603 57 77 24
37.2 0 4 0 0 0 0 1.2 784 1533 58 34 6
37.3 0 2 0 0 0 0 0.7 506 1236 49 16 1
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Bin 
Id A B C D E F

Length 
(Mbp) # Contigs N50

GC 
(%)

Completeness 
(%)

Redundancy 
(%)

38 0 9 0 0 0 0 3.0 488 9382 60 89 3
39 0 0 0 4 0 0 1.9 205 15510 47 99 4

39.2 0 0 0 0 0 0 0.1 76 1387 47 5 1
40.1 0 4 0 0 0 0 1.6 190 11919 28 97 2
40.2 0 2 0 0 0 0 0.6 271 2044 27 15 1
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Additional file 12. All vinasse bin taxonomic affiliations based on CAT. Bin id’s highlighted in 
green indicate “good” bins; yellow id’s indicate “interesting” bins, and red indicate “bad” bins. 
Continued on next page. 

#                
F = Firmicutes, B = Bacteroidetes, A = Actinobacteria, P = Proteobacteria, E = Euryarchaeota, U = Unknown, Bact = 
Bacteroidia, Nega = Negativicutes, Clos = Clostridia, Mega = Megasphaera, Lact = Lactobacillales 
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Additional file 12 cont’d. 

"  

F = Firmicutes, B = Bacteroidetes, A = Actinobacteria, P = Proteobacteria, E = Euryarchaeota, U = Unknown, Bact = 
Bacteroidia, Nega = Negativicutes, Clos = Clostridia, Mega = Megasphaera, Lact = Lactobacillales 
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Additional file 13. Comparison of genus abundances across samples from the A) MGRAST, B) 
extracted 16S and the C) bin taxonomy results. The colors correspond to genus and phyla as Phy-
lum Firmicutes (green), Proteobacteria (red), Actinobacteria (brown) and Bacteroidetes (orange). 
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