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Introduction 

Nitrogen is an essential component of living systems. Nitrogen is abundant 
in the atmosphere as inert di-nitrogen gas and its transformation to bioavailable 
forms is limited by biological nitrogen fixation (N2 ! NH3; Canfield et al 2010). 
This latter process is carried out by a few genera of microbes and as the rate of 
conversion is slow, natural ecosystems are often N-limited (Kuypers et al 2018). 
The invention of synthetic nitrogen fixation by Fritz Haber (now called the Haber-
Bosch process) in 1909 led to the mass production and widespread use of nitrogen 
fertilizers and corresponding high yields in agriculture in the next century (Ellis 
2011). The agricultural boom of the past century has substantially attributed to a 
seven-fold increase in the human population, which is now over seven billion 
(Galloway et al 2008). About half of the world’s population relies on food grown 
using synthetic N (Erisman et al 2008). This increased input of N fertilizers into 
agricultural systems has had serious impacts beyond increasing food productivity, 
including long-term decreases in biodiversity, in soil quality, waterway eutrophi-
cation and acidification, and greenhouse gas emissions (Foley et al 2011, Fowler 
et al 2015, Smith 2017). 

As only about 50% of the input N to agricultural soils is used by plants, the 
excess nitrogen is leached out of the soil matrix and into the air and surrounding 
water sources, resulting in an imbalance of nitrogen in surrounding ecosystems 
which contributes to the degradation of surface and groundwater quality 
(Schlesinger et al 2009, Erisman et al 2013). Moreover, N transformations in the 
soil matrix include processes resulting in the greenhouse gases NO and N2O. Be-
fore 2050, global food production is expected to double to feed the projected hu-
man population of 9 billion people (Godfray et al 2010, Tilman et al 2011). Updat-
ing nitrogen fertilizer management strategies toward long-term sustainability 
without decreasing crop productivity is therefore of global importance. This re-
quires deep knowledge of the soil system, especially regarding the effects of ni-
trogen fertilizers on the soil microbes, which are the main players in nutrient cy-
cling, litter decomposition and energy flows in terrestrial and agroecosystems 
(Baggs 2011; Hu et al 2014b). While the astronomical diversity of soil microbes 
has hampered detailed study of the soil microbiome, the recent advances in se-
quencing technology have allowed for an unprecedented glimpse into the “black 
box” of the microbial role in soil functioning (Torsvik et al 1990, Fierer et al 
2012). Here, the overall research aim was to apply next-generation sequencing 
technology and associated advanced data analyses to gain detailed insight into the 
responses of soil microbial communities to various nitrogen fertilizer regimes, 
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including long term fertilization, with a focus on the potentially N2O-producing 
microbial community.  

1.1 Nitrous oxide emissions as a function of N fertilizer input 

Reactive nitrogen generally is supplied to agricultural soils in the form of 
ammonium-based fertilizers, such as urea (CO(NH2)2), ammonium nitrate 
(NH4NO3), ammonium sulphate ((NH4)2SO4) and synthetic ammonia (NH3; 
Mosier 1994). About 220 Tg N yr-1 of nitrogen fertilizers are applied to agricul-
tural soils globally, of which about half is lost into groundwater as soluble NOx or 
as gaseous NOx species (Gruber & Galloway 2008, Fowler et al 2015). This fol-
lows the conceptual “hole-in-the-pipe” model, also known as the nitrogen cas-
cade, which describes soil nitrogen transformations as limited by the availability 
of reactive nitrogen, which then “leak” through a cascade of reactions (Galloway 
et al 2003). Roughly 18.8 Tg of N-N2O are emitted per year, with agricultural 
soils directly contributing to 16% of these emissions (Syakila & Kroeze 2011, 
Smith 2017). A general rule is to consider that 1% of applied fertilizer N is emit-
ted as N2O based on a rough estimation by IPCC (2007). However, recent studies 
show that this value may fluctuate from 0.2 to 4% depending on many factors, 
including site, soil type and management (Carmo et al 2013, Filoso et al 2015). 
Nitrous oxide emissions threaten the global climate because N2O has a global 
warming potential 298 times that of CO2 due to its radiative forcing and long 
presence (114 years/molecule) in the atmosphere (Robertson & Vitousek 2009, 
Snyder et al 2009). Further, once in the atmosphere it is converted to NO which 
reacts with tropospheric ozone; this implicates N2O as a major ozone-depleting 
substance (Ravishankara et al 2009). Efforts to develop N2O mitigation strategies 
focus on efficiency in N fertilizer utilization and more recently on identifying the 
controls and mechanisms of N2O emissions, including the microbial role (Signor 
and Cerri 2013, Butterbach-Bahl et al 2013, Soares et al 2016, Pitombo et al 2016, 
Galloway et al 2017, Bakken & Frostegård 2017, Lourenco et al 2018, Kuypers et 
al 2018).  

Nitrous oxide emissions from agricultural soils are mainly attributed to the 
cumulative effects of the biotic pathways nitrification and denitrification (Butter-
bach-Bahl 2013). Nitrification is the two-step oxidation of NH4+ to NO2- and - 
NO2- to NO3-, in which N2O is an intermediate, while denitrification is the sequen-
tial reduction of NO3-, NO2-, NO, N2O and N2 in which N2O is a product of NO 
reduction and a reactant of N2O reduction to N2 (Baggs et al 2011). In ammonia 
oxidation, the rate-limiting step is ammonia oxidation to hydroxylamine, which is 
generally catalyzed by ammonia monooxygenase and encoded by the gene amoA. 
The other main biotic pathway leading to N2O, denitrification (NO3− ! NO2− ! 
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NO ! N2O ! N2), is catalyzed by a series of enzymes which are encoded by dif-
ferent genes (Hu et  al 2015). The first step (NO3− ! NO2−) is carried out by the 
enzyme nitrate reductase, which is encoded by the narG or napA gene; the second 
step (NO2− ! NO) can be catalyzed by two types of nitrite reductases encoded 
respectively by the the nirK or nirS genes. The third step (NO → N2O) is carried 
out by the genes cnorB or qnorB; last, the enzyme nitric oxide reductase catalyzes 
the reduction of N2O (N2O → N2) and is encoded by the nosZ gene, which exists 
in two forms (nosZ I and II). The relative contributions of nitrification and denitri-
fication to overall N2O production are challenging to untangle due to the many 
interrelated reactions and microbes with overlapping function (Zhu et al 2013; 
Shcherbak, Millar and Robertson 2014). Other sources of N2O emissions are deni-
trification by nitrifiers (nitrifier denitrification), anaerobic ammonium oxidation 
(anammox), complete nitrification (comammox) and dissimilatory nitrate reduc-
tion to ammonium (DNRA, or nitrate ammonification (Hu et al 2015, Kuypers et 
al 2018). However, due to the main contributions of nitrification and denitrifica-
tion to N2O emissions in agriculture, in the current research the focus was on nitri-
fication and denitrification. 

1.2 Nitrification and denitrification 

Nitrification and denitrification are mediated by microbes (archaea, bacteria 
and fungi) which use these pathways to gain energy or assimilate N. Nitrifiers en-
compass a narrow phylogenetic range of a few bacterial and archaeal genera. 
Ammonia oxidation is mediated by the ammonia-oxidizing archaea (AOA), such 
as the Thaumarchaeota Nitrososphaera, and the ammonia-oxidizing bacteria 
(AOB), such as the Betaproteobacteria Nitrosomonas and Nitrosospira; Upon 
ammonium oxidation, nitrite can be formed which can be further oxidized by ni-
trite oxidizing bacteria (NOB), including the Nitrospirae Nitrospira and the Al-
phaproteobacteria Nitrobacter. Further, the process of complete nitrification by 
the recently discovered comammox bacteria, which have so far been found in the 
NOB Nitrospira genus, might also contribute to N2O emissions (Liu et al 2017). 
Comammox bacterial genomes have revealed the full set of nitrification genes, 
that is for ammonia oxidation (NH3 ! NH2OH, amoA) and hydroxylamine oxida-
tion (NH2OH, hao), as well as the genes for nitrite oxidation (NO2- ! NO3-, nxrB; 
Daims et al 2015; van Kessel et al 2015; Camejo et al 2017). Both ammonia and 
nitrite oxidation is an obligately aerobic process, with nitrifiers being chemolitho-
heterotrophic and -autotrophic. 

Denitrification is a facultative anaerobic process carried out by microorgan-
isms widely dispersed over the bacterial, archaeal and fungal domains, and deni-
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trification genes can also be carried by nitrifiers in what is termed nitrifier denitri-
fication. Some denitrifiers contain the full suite of denitrification genes and are 
able to reduce NO3- to N2; these are known as full denitrifiers. Others contain a 
truncated set of denitrification pathway genes and may produce one of the inter-
mediates, such as NO (which is rapidly converted to N2O) or N2O. The genetic 
potential of the denitrification community for full or incomplete denitrification is 
directly linked to the N2O or N2 output of the soil. A community with a higher 
proportion of nosZ to norB or nirS + nirK (full denitrifiers) may present a sink for 
N2O (Jones, Graf et al 2013). In support, Philippot et al (2011) found increased 
N2O emissions from soils when increasing dilutions of bacteria lacking NosZ were 
added to microcosms. Further, recent studies provided evidence for this as well 
(Domeignoz-Horta 2015 and 2018); for example, as the addition of non-denitrifi-
er nosZII-containing bacteria in microcosms was linked to lower N2O emissions 
(Domeingoz-Horta 2016). Thus, the overall genetic potential of a nitrifying or 
denitrifying community, along with environmental controls, impacts the amount 
of N2O emitted.  

1.3 Management factors influencing soil microbial nitrifiers and denitrifiers 

The proximal, or immediate and short-term, factors influencing nitrifier and 
denitrifiers are carbon availability, NO3- concentrations, moisture levels and oxy-
gen availability, while distal, or indirect, and long-term factors are plant growth, 
micronutrient availability, and pH (Hénault 2012 and Saggar, Jha et al 2013). 
When N fertilizers are applied, microbial decomposition can be increased or de-
creased, depending on recalcitrance of the organic substrate and N availability. 
Application of plant residues with low C:N ratios often result in high rates of N 
mineralization, or the conversion of organic N to plant-available NH3 (usually by 
microbial death), while residues with higher C:N ratios stimulate N immobiliza-
tion into microbial biomass (reviewed in Chen et al 2014). Soil organic matter di-
rectly affects N2O production because it provides a diverse suite of substrates for 
heterotrophic denitrifier activity (Schmidt & Torn et al 2011). For instance, solu-
ble sugars, or labile carbon, can easily dissolve into the water-filled spaces in soil 
and become available for microbial or plant uptake. In contrast, the insoluble 
compound lignin requires specialized microbial enzymes for degradation and oth-
erwise remains in the soil as soil organic matter (SOM) (Swift et al 1979). Addi-
tionally, rapid decomposition can drive down oxygen levels faster than the rate of 
oxygen diffusion, establishing anaerobic conditions for denitrification. Parkin 
(1987) showed that the frequencies of N2O emissions correlate with predictions 
based on the spatially heterogeneous distribution of organic compounds that are 
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found in soils. Nitrite levels control the nitrification and denitrification processes 
as it is a reaction intermediate and reactant, respectively. Therefore, N and organic 
matter additions -- such as in agricultural management practices of fertilization 
with N and plant residues -- can either promote or reduce N2O production by their 
effect on the factors controlling the activity and growth of nitrifiers and denitri-
fiers.  

1.4 Sugarcane agriculture  

The N2O emissions of sugarcane production cycles has recently drawn at-
tention due to the use of sugarcane bioethanol as a sustainable biofuel (Crutzen et 
al 2008, Lisboa et al 2011, Seabra et al 2011). The largest producer of sugarcane, 
Saccharum sp., is Brazil, which devotes almost 7.5 million hectares to sugarcane 
production mainly for its use as a biofuel (Christofoletti et al 2013). Sustainability 
of sugarcane production stems partly from the crop characteristics and partly be-
cause of efficiency in its production. After the sugarcane stalk is cut during a har-
vest, the regrowth yields another crop, known as the ratoon crop, during the fol-
lowing harvest season. The growth from the ratoon crop decreases each year, 
which warrants replanting of the plant crop every three to eight years, without till-
ing the soil in the intervening years, and this promotes SOM formation. Histori-
cally, sugarcane leaves were burned to remove the plant leaves from the sugar-
containing stalks prior to harvest. Now, most Brazilian sugarcane is harvested us-
ing a ‘green harvest’ method in which the stalks are stripped of leaves and this so-
called “straw” is left on the field (Carvalho et al 2017). The amount of dry sugar-
cane straw on fields in Brazil ranges between 8–30 Mg ha−1 dry mass of straw 
(Carvalho et al 2017). The green harvest method has several advantages over the 
burning method, namely, that application of the residues increases moisture reten-
tion and provides a long-term source of nutrients (Carvalho et al 2017) and con-
tributes to overall lower greenhouse gas emissions (Capaz 2013). Depending on 
the cultivar and the conditions in which it was grown, sugarcane leaves have a 
C:N of roughly 125:1, which is relatively high (Carvalho et al 2017). Decomposi-
tion of plant residues with C:N of above 30 generally promotes N immobilization, 
or the uptake of available soil-borne N into microbial biomass. This immobilized 
N can turn into soil organic N following microbial death, which serves as a long-
term source of N to subsequent crops (Otto et al 2013). Application of crop 
residues with high C:N content, such as sugarcane leaves, may lead to microbial 
decomposers using soil organic N for their N needs, ultimately lowering the soil N 
pool, unless combined with an N fertilization regime (Trivelin et al 2013, Ferreira 
et al 2015). 
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1.5 Sugarcane bioethanol and vinasse production 

In the bioethanol production cycle, the sugarcane stalk is crushed, and the 
sugarcane juice is separated from the pulpy stalk residue. Sugarcane juice is heat-
ed, clarified with lime and cooled to crystallize sugar and molasses. The molasses 
is further fermented and heated to produce bioethanol and the waste product, 
vinasse. Up to 13 L of vinasse per liter of bioethanol may be generated (Boddey et 
al 2008). Essentially all of the vinasse is recycled onto the sugarcane fields as a K 
fertilizer source according to Brazilian agricultural practices (Moran-Salazar et al 
2016). Vinasse is comprised of about 93% water and organic acids, solids and nu-
trients such as magnesium, calcium and potassium (Christofoletti et al 2013). It is 
effective as a K and P fertilizer (Moran-Salazar et al 2016) and is also used in an-
imal feed and as a source of biogas (Christofoletti et al 2013). Benefits of using 
vinasse as fertilizer include improved soil quality due to the addition of moisture 
and micronutrients (Jiang et al 2012) and improved crop production and crop 
quality (Yi-Ding et al 2006, Zani et al 2018). However, when vinasse is used in 
conjunction with an N fertilizer, potentially detrimental effects on long-term soil 
fertility and greenhouse gas emissions have been observed, especially the emis-
sion of N2O and reduction of soil C stocks due to the addition of labile C from 
vinasse (Fuess et al 2017, Pitombo et al 2016, do Carmo et al 2013). These nega-
tive consequences might outweigh the benefits of sugarcane bioethanol as an en-
ergy source (Lapola et al 2010, Erisman et al 2010). Further, microbial contami-
nants of the bioethanol process are thought to be present in vinasse (Costa et al 
2015) with unknown effects on the soil microbiome upon fertilization. 

1.6 Insight into microbial communities through sequencing 

The soil matrix contains an astronomical number and diversity of microor-
ganisms, which can reach up to 1013 cells and contain between 104-109 genotypes 
in one gram of soil (Torsvik and Øvreås 2002). This great diversity is a challenge 
to study, not least because the majority of soil microbes are unculturable. Recent 
advances in high-throughput sequencing technologies and computational methods, 
largely driven by the less diverse microbial communities of the marine and human 
gut environments, have enabled scientists to begin tackling the soil ecosystem 
(Zhou et al 2015). Briefly, a comparative metagenomics study encompasses ex-
perimental design, DNA or RNA extraction from environmental samples, se-
quencing, quality control of the reads, followed by taxonomic and/or functional 
potential identification of the reads and statistical analysis to address hypotheses. 
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The data subjected to the statistical analyses generally come in the form of taxo-
nomic or functional profiles. Multivariate statistics are then applied, e.g. to identi-
fy taxa differing between groups of samples, or to find the most represented meta-
bolic pathways in a metagenome. Several molecular methods are used to generate 
this data, including amplicon of phylogenetic markers or functional genes and 
shotgun metagenomics (Luo et al 2014, Orellana et al 2017). 

The PCR of phylogenetic markers from microbial DNA in soil samples al-
lows for the surveying of the taxonomic composition and diversity of soil micro-
bial communities (Pace 1997, Huse et al 2008). Generally, the 16S rRNA gene is 
used to profile the bacterial and archaeal community while the 18S rRNA gene 
and/or ITS region are used for eukaryotes, including fungi. Advantages to using 
this method are lower cost per sample and the availability of large databases of 
marker genes representing sequences from millions of species. However, this 
strategy, so-called amplicon metagenomics, is limited by the conservation of the 
primers used, which can miss highly novel, divergent sequences as well as virus-
es; further, only taxonomic information is obtained (Logares et al 2014). Regard-
ing the latter, several bioinformatic analysis methods have tackled gaining func-
tional information by matching 16S taxonomy information to the functional po-
tential of similar genomes, for example Picrust and Tax4Fun (Langille et al 2013 
and Aßhauer et al 2015). These tools depend on prior knowledge of full genomes 
in the reference databases, which might limit the accounting of the true functional 
diversity of the sample. Further, the precision of reference-based methods depend 
on which lineages are represented in the databases. 

 Similar to the information derived from amplicon metagenomics, PCR of 
functional markers can reveal taxonomic and diversity information about a func-
tional subgroup of the soil microbial community, e.g. the amplification and se-
quencing of the amoA gene gives insight into the ammonia-oxidizing bacterial 
community (Ouyang et al 2016). As functional amplicon metagenome techniques 
are limited to revealing relative abundances of taxa in the sample, these surveys 
can be supplemented by alternatives to measuring microbial biomass, such as real-
time PCR, which is a quantitative method for measuring the number of copies of a 
gene, as a proxy for the number of cells, in a sample. The FUNGENE database is 
one such tool that provides a platform for functional amplicon metagenomic 
analysis and includes databases and Hidden Markov Models (HMMs) of a range 
of functional genes, including the main genes involved in nitrification (amoA) and 
denitrification (nirS, nirK, nosZ; Fish et al 2013). Further, the database dbCAN 
provides a stand-alone database for the analysis of genes encoding for enzymes 
involved in carbohydrate metabolism (Zhang et al 2018). 
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Functional potential as well as taxonomic information can be derived from 
shotgun metagenomes, which are genomic sequences derived from all the cells in 
a sample (Thomas et al 2012). Function is inferred by translating the sequences 
through a gene predictor followed by homology searching against a protein se-
quence or protein family database. Common databases for functional potential 
analysis include the Kyoto Encyclopedia of Genes and Genomes (KEGG), in 
which the genes are cross-referenced into metabolic pathways, and the protein 
family database (Pfam), in which protein domains are represented as HMMs 
(Kanehisa et al 2014, Finn et al 2016). The model organism E. coli, humans and 
the human gut microbiome only have 90%, 82% and 75% functionally annotated 
genes, respectively. In a complex, less-studied environment such as soil, the per-
centage of functionally annotated genes may further drop to 55% (Prakash & Tay-
lor 2012). There are several widely used platforms for metagenomic analysis, in-
cluding the MG-RAST and EBI platforms which allow users to upload and store 
data and to run their samples through automated pipelines. In addition to the ap-
plication of amplicon and shotgun metagenomics to DNA, these analyses have 
also been applied to RNA transcripts (metatranscriptomics) and protein sequences 
(proteomics), which allow for gene expression and protein sequence levels to 
quantify soil microbial activity (Urich et al 2008, Hirsch et al 2010). This is useful 
in studies linking the activity of microbes with a potential function, e.g. the abun-
dance of amoA gene transcripts, to responses, e.g. N2O emissions (Theodor-
akopoulos et al 2017). Further, the sheer volume of sequencing coupled with high-
throughput analytical techniques have enabled the binning of draft genomes, or 
metagenome-assembled genomes, from environments with low and medium di-
versity, with soil on the horizon (Sharon & Banfield 2013, Orellana et al 2018). 
Further goals are the linking of metabolomes, or all the proteins in a sample, with 
the metatranscriptome, metagenome and genomic information. 

1.7 Research aims and thesis outline 

The purpose of this dissertation was to investigate the connected system of 
the soil microbial community, nitrogen and organic fertilizers, and N2O emissions. 
This will help to devise strategies targeting the microbes specifically affected by 
nitrogen fertilization. To do this, I analyzed long- and short-term studies of the 
effects of different N fertilizer treatments on the microbial soil communities in 
Dutch pasture soils and in Brazilian sugarcane fields. This was to identify the mi-
crobial taxa that responded to the treatments, with a focus on the microbial taxa 
that were directly involved in N2O emissions. 
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In Chapter 2 I describe potential direct and indirect effects of long-term 
fertilization with N, P and K on the plant and soil bacterial and fungal communi-
ties. To this end I applied co-variation analysis to the taxonomic compositions of 
each community across the treatments and to a suite of soil physicochemical mea-
surements. In Chapter 3 I focus on the effects of long-term inorganic fertilization 
on soil physicochemical characteristics and the soil microbial taxa in Dutch pas-
ture soils. This was done by combining shotgun metagenomic analysis with soil 
physicochemical measurements using multivariate statistics.  

In Chapter 4 I investigated the effect of different urea fertilization treat-
ments with or without nitrification inhibitors on nitrous oxide fluxes, soil physico-
chemical characteristics and the soil microbial community in a field experiment. 
Using 16S rDNA amplicon metagenomes, I evaluated the effect of these treat-
ments on the overall bacterial community composition and diversity, and on func-
tional subgroups using qPCR of nitrification and denitrification genes. In Chapter 
5 I describe further the effect of these urea and nitrification inhibitor treatments on 
the abundance of ammonia-oxidizing bacteria and other nitrifying species by the 
analysis of an amoA amplicon sequences combined with data mining of the previ-
ously published 16S rDNA dataset. Further, I identify the likely species directly 
responsible for the N2O emissions in a tropical soil. 

In Chapter 6 I focused on vinasse, which contains a previously uncharacter-
ized microbial assemblage. I obtained metagenome assembled genomes from 
vinasse samples taken over 1.5 years from a bioethanol factory in Brazil. Based 
on the functional potential described in these genomes, I describe potential effects 
of these vinasse bacteria on N2O emissions in the field when used in fertirrigation. 

Last, in Chapter 7 I provide a general discussion of the research chapters, 
and present conclusions as well as some thoughts on future directions. This thesis 
showcases several advanced statistical and bioinformatic methods applied to 
metagenomic data. Further, the results of this thesis will contribute to the literature 
serving as a reference for farmers and policy-makers to steer the soil microbiome 
in agriculture toward long-term sustainability. 
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Abstract 
Inorganic fertilization and mowing alter soil factors with subsequent effects –di-
rect and indirect - on above- and below-ground communities. We explored direct 
and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice year-
ly mowing on the plant, bacterial and fungal communities and soil factors. We an-
alyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency 
and edaphic factors across treatments. The plant and fungal communities were 
distinct in the NPK and L treatments, while the bacterial communities and soil 
factors were distinct in the N and L treatments. Plant community diversity and 
evenness had low diversity in the NPK and high diversity in the liming treatment, 
while the diversity and evenness of the bacterial and fungal communities did not 
differ across treatments, except of higher diversity and evenness in the liming 
treatment for the bacteria. We found significant co-structures between communi-
ties based on plant and fungal comparisons but not between plant and bacterial 
nor bacterial and fungal comparisons. Our results suggest that plant and fungal 
communities are more tightly linked than either community with the bacterial 
community in fertilized soils. We found co-varying plant, bacterial and fungal 
taxa in different treatments that may indicate ecological interactions. 
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2.1 Introduction 
The plant-soil feedback drives primary productivity and is fundamental to 

terrestrial ecosystem functioning[1]. Plant-derived litter and rhizo-deposits present 
C resources to soil microbes, and microbial decomposition of plant litter and soil 
organic matter (SOM) releases available nutrients to plants[2]. Furthermore, the 
plant-soil feedback underlies plant and soil microbial (bacteria and fungi) species 
interactions, many mediated by nutrient quality and availability. For example, 
plant species select a subset of the soil microbial (bacterial and fungal) communi-
ty around the roots and in the topsoil through the biochemical composition of rhi-
zo-deposits and leaves[3-5]. Nutrient competition, especially for N[6], plays an 
important role in structuring bacterial communities over time in cooperation with 
the overlying plant species[7, 8]. Moreover, plant and microbial species may be 
linked through negative pathogenic interactions or positive symbiotic associa-
tions, for example those of plants with Arbuscular Mycorrhizal Fungi (AMF)[9] or 
N-fixing bacteria1 to enhance plant nutrient uptake. Through micro-climatic 
change, such as modulation of soil pH and subsequent effects on soil nutrient sta-
tus, plant species may also indirectly alter the composition of microbial communi-
ties[2]. Thus, above- and below-ground communities may have significant associ-
ations at the community level. While links between soil microbial community di-
versity and biomass, and plant productivity[1, 2, 10] or soil C storage[8] are 
known, links between above- and below-ground community compositions have 
not received as much attention.  

Altered plant, bacterial and fungal species interactions may have conse-
quences for ecosystem function. Long-term grassland management practices of 
adding nitrogen (N), potassium (K) and phosphate (P) intended to increase vege-
tation productivity affect the composition and diversity of the plant community 
and the composition of the soil bacterial community[11, 12]; this management 
practice can be considered a disturbance on above- and below-ground community 
compositions[13]. Nutrient additions can affect community compositions i) di-
rectly, e.g. by favoring species functionally adapted to the nutrient inputs and over 
time selecting those species so that they increase in abundance, or indirectly; 
these indirect effects include iia) the indirect effect of nutrient additions on soil 
physicochemical status, which can drive community composition changes (e.g. 
nutrient additions alter micronutrient availability which can structure microbial 
community compositions), iib) an indirect effect of nutrient inputs on the biomass 
of other communities which alters the composition of the original community; for 
example, nutrient additions increase plant productivity, which provides more C 
resources, accelerating soil microbial growth, and iic) an indirect effect of nutrient 
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inputs on the compositions of other communities inducing shifts in the original 
community, e.g. nutrient additions favor some plant species, which may also favor 
microbial symbionts of these plants.  

Here, we explored the related effects of long-term nutrient addition on the 
composition, evenness and diversity of three grassland communities –plant and 
soil bacterial and fungal assemblages as measured by 16S and 18S rRNA gene 
sequence surveys. We examined the direct effect of nutrient addition on the plant, 
bacterial and fungal communities across the treatments. We hypothesized H1) that 
each treatment would affect plant, bacterial and fungal communities differently. 
To look at the indirect effect of nutrient additions through altering soil factors, we 
considered the co-variation in soil factor profiles and plant, bacterial and fungal 
communities. In addition, we included a treatment in which lime (L) was added to 
raise the pH of the soil to near-neutral values, consequently altering macro and 
micronutrients availability. We hypothesized H2) that each community – plant, 
bacterial and fungal – would be affected by the L treatment compared to the unfer-
tilized treatment, confirming the indirect effect of nutrient additions through alter-
ing soil factors on each community. We examined the indirect effect of nutrients 
through changes in a different community, in which altering the composition or 
diversity of another communities alters the composition or diversity of the origi-
nal community, by examining the co-variation in communities across the treat-
ments. Because of the importance of the plant-soil feedback, we hypothesized H3) 
that each community would co-vary across the treatments. The third indirect ef-
fect, of plant litter structuring soil microbial community composition, was mini-
mized by the management of removing the plant biomass. Soil bacterial (16S 
rRNA) and soil fungal (18S rRNA) OTU abundances, plant species frequencies 
and soil factor chemical profiles were analyzed using multivariate statistics. Co-
variation, or co-structures, between soil factor profiles and community composi-
tions were determined using co-inertia analysis combining all four data sets. To 
our knowledge, this is the first study to apply co-inertia analysis to examine 
above- and below-ground community links in grasslands under long-term nutrient 
additions. Moreover, this is the first report on fungal community compositions 
sampled with 18S rRNA gene marker sequencing over these long-term fertilizer 
treatments. 
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2.2 Material and Methods 
2.2.1 Site description 

The Ossenkampen Grassland Experiment fields were established in 1958 in 
species-rich meadows on heavy-clay soil in Wageningen, The Netherlands with 
coordinates 51 degrees 58’15”N; 5 degrees 38’18”E. Prior to the experiment, the 
land was grazed and had been used in alternate years for haymaking. Fertilizer 
treatments of chalk (L; 1000 kg CaO ha-1 yr-1), nitrogen (N; ammonium nitrate, 
100 kg N ha-1 yr-1), phosphate (P; superphosphate, 22 kg P ha-1 yr-1) and NP-
potassium (NPK; ammonium nitrate, superphosphate and potassium sulfate, 160 
kg N ha-1 yr-1, 33 kg P ha-1 yr-1 and 311 kg K ha-1 yr-1) were applied to duplicate 
40 m2 (16 m X 2.5 m) plots annually since 1958[34]. The control treatment fields 
were established without nutrient amendment. The five treatment fields were 
mown twice a year, in July and in October, and the biomass was removed toward 
the 2.5 m ends of the plots to prevent seeds from draining into the other treatment 
plots. Treatment and control plots were separated by unfertilized 2.5 m buffer 
strips, which were similarly maintained by mowing. 

2.2.2 Plant sampling regime 

The botanical composition was measured in September 2011, after peak 
plant growth[14]. Briefly, fifty samples of 25 cm2 were clipped from each plot (2 
plots X 5 treatments = 10 plant samples). The presence of each species was 
recorded to determine its frequency percentage (i.e. the proportion of 50 samples 
in which the species was present). In addition, the first, second and third most 
abundant species were recorded in each sample by visual estimation. The Dry 
Weight Rank (DWR) method was developed to estimate the species composition 
of grassland swards on a dry weight basis[35]. The DWR method calculates for 
each species its dry weight proportion (DW percentage for species A) from the 
percentages of cases the species takes the first (A1%), second (A2%) and third 
(A3%) rank. These proportions are multiplied by 0.702, 0.211 and 0.87, respec-
tively, culminating in the following equation: DWA% = 0.702 (A1%) + 0.211 
(A2%) + 0.087 (A3%). This method was tested with different sampling methods, 
including small samples, and it was concluded that the DWR method is well suit-
ed for studying vegetation changes in old, floristically diverse grasslands[36], 
such as ours. For each plant species, the functional classification was noted 
(grass, herb, legume or forb). 
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2.2.3 Soil sampling and total DNA extraction 

In September 2011, nine random soil core samples (10 cm depth, two cm 
diameter) were taken from three independent areas within each duplicate plot of 
the five treatment fields. The nine soil cores were homogenized per area, sieved 
through 5 mm pores stored at -80 degrees C for molecular analyses (see below) or 
stored at -20oC for one night before being sent for physico-chemical analysis as 
follows. The soil samples were combined per plot for physicochemical analyses 
for a total of 10 soil factor samples (3 areas homogenized to 1 sample X 2 plots X 
5 treatment fields). These samples were dried at 60oC to measure moisture con-
tent. Soil pH, extractable N, total carbon and nitrogen concentrations, available 
potassium, phosphate and sulfur, total organic matter and available trace elements 
such as Al, As, Cd, Cr, Cu, Fe, Mg, Zn, Mn, Na, Ni and Pb were analyzed at the 
Soil Science Department of Wageningen University (Supplementary Table S4)
[37]. For the molecular investigations, total DNA was extracted from 0.3 g frac-
tions of each soil sample (3 areas X 2 plots X 5 treatments = total 30 soil 
samples). The Power Soil kit (MolBio, Carlsbad, CA) protocol was followed with 
the modification of 5.5 m s-1 for 10 min. bead beating. Total DNA concentrations 
were measured using an ND-1000 spectrophotometer (Nanodrop, Wilmington, 
DE). 

2.2.4 16S rRNA amplicon library preparation 

The V4 region of the 16S rRNA gene marker was amplified from each sam-
ple, for a total of 30 bacterial samples (3 areas X 2 plots X 5 treatments). Ampli-
cons for barcoded pyrosequencing were obtained using the forward primer 515F 
(5’-GTGCCAGCMGCCGCGGTAA-3’) and the reverse primer 806R (5’-GGAC-
TACVSGGGTATCTAAT-3’). The 515F primer included the Roche 454-A adapter, 
a 10-bp barcode and a GT linker, and the reverse primer included the Roche 454-
B adapter, the same 10-bp barcode as the 515F primer, and a GG linker. Amplifi-
cation reactions were performed using 5 micromolar of each forward and reverse 
primer, 5 mM dNTPs (Invitrogen, Carlsbad, CA), 1 unit of Taq polymerase 
(Roche, Indianapolis, IN), and 1 microliter of sample DNA as the template in a 
total volume of 25 microliters. The PCR was conducted with an initial incubation 
of 5 min. at 94 0C, followed by 25 cycles of 1 min. at 94 0C, 1 min. at the anneal-
ing temperature of 53 0C and 1 min. at 720C, followed by a final incubation of 10 
min. at 72 0C. Each sample was amplified in four reactions, and resulting amplifi-
cation products were pooled to achieve equal mass concentrations in the final 
mixture. 
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2.2.5 18S rRNA amplicon library preparation 

The 18S rRNA gene marker was amplified from two of the three soil sam-
ples per plot, for a total of 20 fungal samples (2 areas x 2 plots x 5 treatments). 
The 18S rRNA gene marker was amplified from the total community DNA sam-
ples using the primers FR1 (5’AICCATTCAATCGGTAIT-3’) and FF390.1 (5’-
CGWTAACGAACGAGACCT-3’) based on published methods[38]. The Roche 
MID tag IDs 24 to 26 and 61 to 69 were added to barcode the samples. Amplifica-
tion reactions were performed using 5 micromolar of each primer, 2 mM dNTPS 
(Invitrogen, Carlsbad, CA), 0.5 microliters of BSA, 10 PCR buffer, 0.56 units of 
Fast Start Exp-Polymerase and 1 microliter of sample DNA template in a total re-
action volume of 25 microliters. The PCR was conducted with initial incubation 
of 5 min at 95 0C C followed by 25 cycles of 30 sec. at 95 0C, 1 min. at the an-
nealing temperature of 57 0C, 1 min. at the extension temperature of 72 0C, fol-
lowed by a final extension for 10 min. at 72 0C. Each sample was amplified in two 
reactions, and resulting amplification products were pooled to achieve equal mass 
concentrations in the final mixture. 

2.2.6 16S and 18S rRNA amplicon library sequencing and processing 

Amplification products were cleaned using the QIAquick PCR Purification 
Kit following the manufacturer’s instructions (Qiagen, Valencia, CA). The puri-
fied 16S and 18S rRNA amplicon products were sequenced on the Roche 454 
FLX Titanium platform (Macrogen Inc, South Korea). The 18S rRNA sequence 
data was processed using QIIME v1.3.0-dev on a local installation of Galaxy[39]. 
The 16S rRNA sequence data was processed using MOTHUR on a local 64-node 
server running Ubuntu (Ubuntu-14.04-trusty). Low-quality sequences that were 
less than 150 bp in length or that had an average quality score of less than 25 were 
removed. Denoising and chimera checking were accomplished using USEARCH 
and UCHIME[40, 41]. Operational Taxonomic Units (OTUs) were identified us-
ing USEARCH with a phylotype defined at 97% sequence similarity level. For 
the 18S rRNA dataset, representative phylotype sequences were taxonomically 
assigned against the SILVA 104 database[42] using BLAST at an e-value of 
0.001. For the 16S rRNA dataset, representative phylotype sequences were as-
signed to the SILVA database using the RDP classifier v10. 
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2.2.7 Statistical analyses 

Statistical analyses were conducted in R v3.1.1 (Team, R. C. R: A language 
and environment for statistical computing). The sequenced datasets (16S and 18S 
rRNA) were handled in R with the “phyloseq” package (McMurdie, P. & Holmes, 
S. phyloseq: an R package for reproducible interactive analysis and graphics of 
microbiome census data). Further methods can be found in the Supplementary 
Methods. 

2.2.7.1 Treatment effects on each component 

To determine the effect of treatment on the plant (n=10), bacterial (n=27) 
and fungal (n=20) community compositions and the soil factor profiles (n=10), 
the “ade4” R package was used[43]. Between-class analysis (BCA) was applied 
to explore the dissimilarity between treatments within each community (plant, 
bacterial, fungal) or soil factors (environmental). Correspondence Analysis (CA) 
was applied to each community dataset while correlation-based Principal Compo-
nent Analysis (PCA) was used for the soil factors[44]. A Monte-Carlo test of the 
treatment groups was conducted using 999 random permutations of sample rows. 
Ordination was used to visualize the BCA results. To determine the effect of 
treatment on the soil factors or community diversities (for calculations, see Sup-
plementary Methods), multiple group comparisons were conducted in R. Of the 
27 measured soil factors, the variable Cu was removed for having the same value 
for all treatments; similarly, the variables PO4 and Fe were removed for contain-
ing values that fell below the detection limit for four or more treatments (Table 
S4). The remaining 24 soil factors were standardized and checked for normality 
with the Shapiro-Wilk test (normal variables: total N, Al, Mg, Mn, Na, Pb, Zn, 
NH4, extractable N, C.1, OM, C.2; non-normal variables: total K, total P, As, Cd, 
Cr, K, Ni, P, S, NO3, pH, moisture). The Kruskal-Wallis H or ANOVA statistical 
test was applied to compare the non-normal and normal variable median and 
means, respectively, between treatments. Post-hoc comparisons (two-tailed) were 
conducted using Tukey’s HSD test (alpha level = 0.05) or Dunn’s method (alpha 
level = 0.10), respectively, and boxplots were constructed. 

2.2.7.2 Between-component analyses 

To examine the common structure in plant, bacterial and fungal community 
compositions and soil factor profiles across the long-term treatments, co-inertia 
analysis was conducted. The “RV.test” R function was used to perform a Monte-
Carlo test on the sum of eigenvalues in the co-inertia[45]. For the co-inertia analy-
ses, the community and soil factor datasets were required to have the same num-
ber of samples per treatment. Because we had two plant samples and two soil fac-
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tor samples per treatment, for these datasets we duplicated the values to result in 
four plant samples and four soil factor samples per treatment. First, co-inertia was 
performed for paired combinations of community CA ordinations and the soil fac-
tor PCA ordination, and visualizations were constructed. Additional co-inertia 
analyses were carried out between the community CA ordinations and PCA ordi-
nations of three subsets of the soil factor dataset: macro-nutrients (total K, total P, 
extractable K, extractable P, NO3-, Nt, NH4+, extractable N, C and OM), micro-
nutrients (As, Cd, Cr, Ni, Al, Mg, Mn, Na, Pb and Zn) and structural components 
(pH, moisture); the community-soil factor subset co-inertia analyses were visual-
ized. To determine whether diversity of another community as well as Treatment 
had an effect on the composition of the original community, we tested these hy-
potheses using PERMANOVA (“vegan” R package). 

2.3 Results 
Overall, the long-term fertilization treatments resulted in considerable shifts 

in the soil factor profiles and plant, bacterial and fungal community composi-
tions, but generally not in community diversity or evenness indexes, with the ex-
ception of the plant community. We found different plant and soil fungal commu-
nities under the nitrogen-phosphate-potassium (NPK) and liming (L) treatments 
compared to the unfertilized control (C) treatment; furthermore, we found differ-
ent soil bacterial communities and soil factor profiles under nitrogen (N) and L 
treatments compared to the unfertilized treatment. Interestingly, the plant-fungal 
phylum co-structure was significant, while that of the plant-bacterial phylum-lev-
el and fungal (phylum) and bacterial (phylum) comparisons were not. From pair-
wise co-inertia comparisons of communities, we identified taxonomic groups that 
co-varied in the N, NPK or L treatments. 

2.3.1Treatment effects on plant and fungal community compositions and di-
versity 

Between-Class Analysis (BCA) revealed similar structures in the plant and fungal 
communities across treatments. For these communities, the unfertilized control 
(C), nitrogen (N) and phosphorous (P) treatments clustered together while the lim-
ing (L) and N-P-potassium (NPK) treatments clustered separately (Figure 1). 
From the BCAs of plant and fungal community compositions, 86% and 72% of 
total variation, respectively, could be attributed to treatment (Monte-Carlo test of 
groups, both P = 0.001). 
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Of the fungal samples across all treatments, 65 to 96% of the sequences 
could be classified at the phylum level. The five most abundant fungal groups rep-
resented an average of 96% of the proportion of classified sequences across the 
five treatments, and these groups were Agaricomycotina (average over all treat-
ments 64%), Saccharomyceta (24%), ”mitosporic” (3%), Ascomycota (3%) and 
Glomerales (2%). Fungal groups that differed significantly between the treatments 
were “mitosporic”, Ascomycota, Glomerales, Paraglomerales, Chytridiales, Ar-
chaeosporales, Lobulomycetales and Rhizophydiales (Tukey-Kramer, corrected p 
less than 0.05; Supplementary Table S1).  

Fungal community evenness and diversity did not differ by treatment com-
pared to the control treatment; similarly, plant community evenness did not differ 
by treatment compared to the control treatment (Supplementary Figure S1 and 
S2). However, the plant communities showed the lowest diversity in the NPK 
treatment while the highest diversity was present in the L treatment (Supplemen-
tary Figure S2a). In addition to treatment and interaction with treatment, plant 
richness, bacterial diversity indices were significant effects on plant community 
compositions. For fungal community compositions, treatment and interaction with 
treatment as well as fungal diversity indices had significant effects (Supplemen-
tary Table S2). 

2.3.2Treatment effects on bacterial community composition and diversity, 
and soil factor profiles 

In contrast to the structures of plant and fungal communities across treat-
ments that was revealed by BCA, the bacterial communities and the soil factors in 
the C, P and NPK treatments were grouped together while the L and N treatments 
each formed separate clusters (Figure 1). The treatments could explain 55% and 
72% of total variation in the BCAs of bacterial community compositions and soil 
factors, respectively (Monte-Carlo tests, P = 0.001). Of the 24 soil factors, 21 dif-
fered significantly between treatments; only the soil factors As, Cr and Na did not 
differ between treatments (Supplementary Figure S3). When the soil factors 
were divided into subsets of micronutrients, macronutrients and structural factors 
BCA revealed that treatment could explain 71% (P = 0.001), 83% (P = 0.001) and 
74% (P = 0.002) of the variation in each soil factor profile subset, respectively 
(Supplementary Figure S4). Furthermore, while all treatments were distinct in 
the macronutrient profiles, only the L treatment was distinct when looking at mi-
cronutrient and structural factor profiles. 
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Figure 1. Between-Class Analysis (BCA) of the (A) plant, B) bacterial, C) fungal community 
compositions and D) soil factor factors based on correspondence analysis (A, B, C) or principal 
components analysis (D) over the long-term control (C), liming (L), nitrogen (N), nitrogen-potas-
sium-phosphorus (NPK) and phosphorus (P) treatments of the Ossenkampen experiment are pre-
sented. Group significances were assessed by Monte-Carlo tests.  

Between 79 and 91% of the bacterial sequences across all treatments could 
be classified at the Phylum level. Of the proportion of sequences classified within 
bacterial phyla, 97% were distributed across the treatments within the six most 
abundant Bacterial phyla, Proteobacteria (average across treatments 40%), Aci-
dobacteria (22%), Verrucomicrobia (15%), Actinobacteria (13%), Bacteroidetes 
(3%) and Planctomycetes (1%). Significantly different bacterial phyla between 
treatments were Proteobacteria, Acidobacteria, Verrucomicrobia, Actinobacteria, 

!  !   

!  !
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Bacteroidetes, Planctomycetes and Nitrospira (Tukey-Kramer, corrected p less 
than 0.05, see Supplementary Table S3).  

Bacterial community diversity and evenness was higher in the L treatment 
compared to the control treatment at all Renyi alpha levels but were the same 
among the other treatments (Supplementary Figure S1 and S2). In addition to 
treatment and interaction with treatment, bacterial diversity (Shannon and Inverse 
Simpson indexes) and plant richness had significant effects on bacterial communi-
ty compositions (Supplementary Table S3). 

2.3.3 Plant, bacterial and fungal community co-structures with soil factors 

Co-inertia analysis allowed us to find the global similarity of the structures 
imposed by the long-term fertilization treatments on the grassland components. 
Co-structures resulting from the community-soil factor comparisons were each 
significant (Table 1). Further, we sub-categorized the soil factors into macronutri-
ents (total K, total P, extractable K, P, NO3, total N, NH4, extractable N, C and 
OM), micronutrients (As, Cd, Cr, Ni, Al, Mg, Mn, Na, Pb and Zn) and structural 
components (pH, moisture), and conducted co-inertia analysis between communi-
ties and the soil factor subsets. Each of the community comparisons with soil fac-
tors subsets (Table 1). 

Table 1. Co-inertia analysis results from community-soil factors and soil factor subset compar-
isons from the Ossenkampen experiment (n=20 per dataset). Significance of co-structures was 
assessed by Monte-Carlo tests.  
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Co-inertia comparison Cumulative projected 
inertia (%) 

Observed Rv P 

Plant species All soil factors 85 0.763 0.001 
Micronutrients 90 0.646 0.001 
Macronutrients 85 0.687 0.001 

Structural 100 0.650 0.001 
Bacterial phyla All soil factors 97 0.346 0.004 

Micronutrients 97 0.251 0.029 
Macronutrients 96 0.400 0.001 

Structural 100 0.221 0.087 
Fungal phyla All soil factors 87 0.437 0.001 

Micronutrients 89 0.300 0.046 
Macronutrients 93 0.496 0.001 

Structural 100 0.308 0.025 
 



2.3.4 Plant, bacterial and fungal co-structures and co-variates 

Co-inertia analysis identified significant co-structures between the plant and 
fungal communities (Figure 2) but not the plant and bacterial (Figure 3) nor the 
bacterial and fungal (Figure 4) communities. The first two co-inertia axes cap-
tured 86, 88, and 92% of the total variance in the plant-fungal, plant-bacterial and 
bacterial-fungal comparisons, respectively. The co-inertia analysis additionally 
identified taxonomic groups that most contributed to each co-inertia axis, i.e. 
groups that contributed the most to the total co-variance between samples (sum-
marized in Table 2). 

In the plant-fungal co-inertia (Figure 2), the second co-inertial axis separat-
ed the NPK treatment from the other treatments, and this distinction was associat-
ed with Heracsph (herb), Anthrsyl (herb), Alopepra (dominant grass) and Ely-
murep (grass) plant species and Monoblepharidales, Basidiomycetales, Ascomyc-
etales and Paraglomerales fungal groups. The P treatment was separated by the 
first co-inertia axis, and this was driven by Cerasfon (grass), Holculan (grass), 
Dactyglo (grass) and Luzulcam (sedge) plant species but not clearly any fungal 
groups. Last, Festupra (grass), Galiumol (herb), Bromuh H (grass), Glechhed 
(herb), Galiuuli (herb) and Ajugarep (herb) plant species and Pucciniomycotina, 
Cladochytriales, Chytridiales and Spizellomycetales fungal groups co-varied in 
the L treatment. 

In the plant-bacterial co-inertia (Figure 3), the NPK treatment was separat-
ed by the first co-inertia axis, and Anthrsyl (herb), Heracsph (herb), Alopepra 
(grass) and Elymurep (grass) plant species co-varied with Nitrospira bacterial 
phyla. The second co-inertia axis separated the N treatment from the other treat-
ments, and this distinction was related to Carexhir (sedge), Carexdit (sedge), Jun-
cuart (sedge) and Filipulm (herb) plant species and the Tenericutes bacterial phy-
lum. Last, the L treatment grouping in the co-inertia between plant and bacterial 
ordinations was driven mainly by Bromuh H (grass), Galiumol (herb), Galiuuli 
(herb) and Glechhed (herb) plant species and WS3 and Bacteroidetes bacterial 
Phyla. 

In the bacterial-fungal comparison (Figure 4), treatments were not distinctly 
clustered. However, the L treatment was weakly separated by the first co-inertial 
axis, and the co-variation was driven by Pucciniomycotina, Cladochytriales, 
Spizellomycetales and Chytridiales fungal groups and the OD1 bacterial group. 
Furthermore, the N treatment was weakly separated by the second co-inertial axis, 
and this separation was driven by variation in the Tenericutes bacterial Phylum 
and the fungal groups Ustilaginomycotina and Rhizophydiales. 
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Table 2. List of co-variate taxonomic groups from pairwise co-inertia analysis of plant, bacterial 
and fungal community composition from the Ossenkampen experiment. Taxonomic groups that 
contributed to the co-inertia axes clearly separating the nitrogen (N), N-phosphate-potassium 
(NPK), P and chalk (L) treatments are listed. Plant functional group information is included 
(s=sedge, h=herb, g=grass). 

Community
Co-variates within treatment

N NPK P L

Plant

              Filipulm (h) 
              Carexhir (s) 
               Carexdit (s) 
               Juncuart (s) 

Heracsph (h) 
Anthrsyl (h) 
Alopepra (g) 
Elymurep (g)

Cerasfon (g) 
Holculan (g) 
Dactyglo (g) 
Luzulcam (s)

Galiuuli (h) 
Glechhed (h) 
Ajugarep (h) 
Galiumol (h) 

Bromuh H (g) 
Festupra (g) 

Poa..tri (g)

Bacteria
Tenericutes Nitrospira -- Bacterioidetes 

WS3 
OD1

Fungus

Ustilaginomycotina 
Rhizophydiales

Paraglomerales 
Basidiomycetales 

Ascomycetales 
Monoblepharidales

-- Pucciniomycotina 
Cladochytriales 

Chytridiales 
Spizellomycetales
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Figure 2. Co-inertia analysis (COIA) between correspondence analysis of plant and fungal com-
munity composition across the long-term control (C), liming (L), nitrogen (N), nitrogen-potassi-
um-phosphorus (NPK) and phosphorus (P) treatments of the Ossenkampen experiment (cumula-
tive projected inertia = 86%). Significance of co-structure was assessed by a Monte-Carlo test. 
Circle = Plant; Square = Fungi. 
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Figure 3. Co-inertia analysis (COIA) between correspondence analysis of plant and bacterial 
community composition across the long-term control (C), liming (L), nitrogen (N), nitrogen-potas-
sium-phosphorus (NPK) and phosphorus (P) treatments of the Ossenkampen experiment (cumula-
tive projected inertia = 88%). Significance of the co-structure was assessed by a Monte-Carlo test. 
Circle = Plant; Square = Bacteria.  
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Figure 4. Co-inertia analysis (COIA) between correspondence analysis of bacterial and fungal 
community composition across the long-term control (C), liming (L), nitrogen (N), nitrogen-potas-
sium-phosphorus (NPK) and phosphorus (P) treatments of the Ossenkampen experiment (cumula-
tive projected inertia = 92%). Significance of the co-structure was assessed by a Monte-Carlo test. 
Circle = Bacteria; Square = Fungi. 
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2.4 Discussion 
Here we explored indirect effects (pH and composition of other communi-

ties but not biomass of the plant community) and the direct effect of nutrient addi-
tions on the composition of three communities (plant, soil bacterial and soil fun-
gal) of improved grassland. Changes in the relative abundances of many taxo-
nomic groups within one community resulted in community-level composition 
changes in some treatments. Our first hypothesis was supported, in that the bacte-
rial communities were altered in the nitrogen (N) treatment but not phosphorus 
(P) nor NP-potassium(K) treatments, and the plant and fungal communities were 
altered in the NPK but not the P nor N treatments, compared to the unfertilized 
treatment. Combining the treatment groupings of each grassland community and 
the links between each community and macronutrients, we confirmed the direct 
effect of the nutrient additions on the communities. 

The nutrient addition and mowing management practice provided selective 
pressures that drove changes in the relative abundances of some plant, bacterial 
and fungal groups. The treatments represented new habitats that allowed some 
functional types to succeed; for instance, in the NPK treatment, faster-growing 
individual plants better able to compete for light and uptake nutrients were most 
successful[14]. This trait selection led to changes in the relative abundances of 
grasses in the NPK treatment. We found a direct effect of the long-term N fertiliz-
er treatment on the bacterial communities, compared to the unfertilized treatment, 
while no direct effect was found in the NPK treatment despite an equivalent rate 
of N application. In our previous work and here, we found so-called copiotrophic 
bacterial groups that were functionally adapted to the N additions to increase in 
relative abundance in the N treatment, which has been found at other grassland 
sites under long-term N additions[15, 16]. Furthermore, the NPK treatment, but 
not the N treatment, had a direct effect on plant and fungal community composi-
tions compared to the unfertilized treatment. 

Community compositions can be altered indirectly by nutrient additions 
through the effect on pH. The liming (L) treatment changed the soil pH, which 
alters other soil factors, such as Al concentration and micronutrient 
availability[17]. Thus, any changes in L community composition were due to the 
increase in pH and mowing management practice. Our second hypothesis, that 
each community would be affected by the L treatment when compared to the un-
fertilized control treatment, and that each community would show a link to soil 
factors, was supported. Each community was altered in the L treatment compared 
to the unfertilized treatment, supporting pH changes and related edaphic factor 
changes as a major driver of bacterial and fungal composition changes[18-20]. As 
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shown previously, the near-neutral pH of the L treatment soils increased nutrient 
availability resulting in native plant species recolonizing the L plots and overall 
increased plant richness[14]. The L treatment was characterized by high plant di-
versity and evenness and additionally by non-pathogenic nematode and earth-
worm biomass, which characterize fertile (e.g. productive) grasslands[21]. 

Here we considered that some of the changes in the relative abundances of 
taxonomic groups reflected not only functional adaptation to the treatment but a 
link with taxonomic groups from other communities. Therefore, we explored the 
indirect effect of nutrient additions on the composition of a community through 
the composition of another community. In other words, these were community 
links apart from the direct effects of the nutrient additions. Most interestingly, our 
third hypothesis, that each community would be significantly linked to each other, 
was not supported. Community-level composition links were not found for plant 
and bacterial, and fungal and bacterial communities. Thus, the indirect effect of 
nutrient additions altering community compositions through changes in other 
community compositions was supported between plant and fungal (phylum) 
communities, and between each community when the soil microbial communities 
were compared at a lower taxonomic level. Recent work has found that the beta 
diversity, or site differences, of grassland soil microbial communities are predict-
ed by the beta diversity of the overlying plant communities[12]. The authors also 
found that the beta diversities of plants and soil microbes were driven mutually by 
mean annual temperature and the C:N ratio. We speculate that our NPK bacterial 
communities may have shifted in association with the plant community if the 
plant biomass had remained on the fields. In support, Millard and Singh[22] sug-
gested that while plant community composition drives fungal community compo-
sition, the bacterial community structure is more influenced by SOM quality, 
hence driven indirectly by plant community composition via plant biomass. 

The acquisition-conservation trade-off hypothesis states that under soil re-
source limitation, the plant community is more dependent on the below-ground 
community for nutrients, resulting in more ecological links between plant and mi-
crobial species[23]. Conversely, during high nutrient availability, fewer links 
should be found between the plant and soil microbial communities, with plants 
less dependent on nutrients from fungal or bacterial sources. Here, plant commu-
nity diversity decreased in the NPK treatment compared to the unfertilized treat-
ment and grasses were better adapted to the high nutrient conditions. Consequent-
ly, fungal groups associated with the grasses might have shifted under the high 
nutrient conditions, thereby changing fungal community composition in the NPK 
treatment. Selection of the grasses on fungal groups that increase grass root nutri-
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ent uptake may have occurred, although whether the plant-fungal link describes 
positive or negative interactions is beyond the scope of the current study. 

One interesting NPK fungal co-variate was Paraglomerales, which are a 
fungal group that includes arbuscular mycorrhizal fungi (AMF); these fungi form 
hyphal networks in association with plant roots to aid plant absorption of P. There 
is evidence that under conditions of high P availability, plants form fewer AMF 
associations because available P is directly absorbed from soil[24, 25], and this 
was supported in our results as the P treatment fungal communities had the lowest 
proportions of AMF compared to the other treatments. However, in the NPK 
treatment with N and K added, there was a high soil Al-content, which may block 
P uptake by plant by fixing it in the soil[26]. Thus, the NPK plants may be invest-
ing in AMF associations in order to improve soil P uptake despite the high Al con-
tent. Alternately, plant-AMF interactions can become competitive under high-nu-
trient conditions, and these results may indicate a negative interaction[27, 28]. 

An interesting bacterial NPK co-variate was the Nitrospira bacterial phyla, 
which are a group of autotrophic, nitrite-oxidizing bacteria[29]. This group was 
abundant in the NPK treatment but not in the N treatment, compared to the con-
trol treatment. Nitrospira are classified as K-strategists, that is, slow-growing, 
oligotrophic and with low affinity for N substrates[30]. Similarly, Nitrospira rela-
tive abundances decreased in grasslands fertilized for 27 years and agricultural 
fields under 8 years of N fertilization consistent with the rate in our plots[15]. 
However, under high nutrient fertilization, plant competition for macro-nutrients 
with bacteria may keep the soil nutrient status poor; thus, we hypothesize that the 
Nitrospira co-varied with NPK plants due to the relatively low-nutrient conditions 
available in these soils for the bacterial community, in contrast to the high N con-
ditions available in the N treatment. 

In the N treatment comparisons, microbial co-variates included potential 
pathogenic taxa. For instance, the N treatment co-variate Rhizophydiales are a 
zoosporic fungal taxa that are found in soils as pathogens and decomposers[31]. 
The Tenericutes bacterial Phyla encompasses the phytoplasmas, which are regard-
ed as plant pathogens, infecting up to 98 plant families[32]. The Ustilaginomy-
cotina are a group of plant parasitic fungi, also known as smut fungi[33]. These 
results suggest that plant health may be negatively impacted under N fertilization, 
with consequences on the long-term stability of plant communities regularly fer-
tilized with N. 

The current study presents a way to investigate concurrently the plant, bac-
terial and fungal communities using a not-widely used statistical analysis. How-
ever, we acknowledge that our results are limited by the low statistical power in-
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duced by having only two plots per treatment for the plant and soil factor data. We 
sampled soil samples from independent sampling areas within each of the two 
plots, resulting in two samples within each plot for the fungal data (n=20), and 
three samples within each plot for the bacterial data (n=27).  

In summary, we explored direct (long-term fertilizer treatments) and indi-
rect (pH and composition of another community) effects of nutrient additions on 
plant, soil microbial community compositions from grassland. This is, to our 
knowledge, the first study of the topsoil fungal community composition to long-
term inorganic fertilization treatments in grasslands using the 18S rRNA gene 
marker. In addition, this is the first study to examine concurrently the above- and 
below-ground community compositions in an improved grassland using co-inertia 
analysis. Nitrogen treatment had a direct effect on bacterial community composi-
tions and soil factors while NPK treatment had a direct effect on plant and fungal 
community compositions. Co-inertia results highlighted the link between plant 
and fungal community compositions, suggesting that indirect effect of nutrient 
additions on plant community compositions are observed due to fungal communi-
ty compositions, or vice versa, while the same is not true for plant and bacterial 
communities, nor for fungal and bacterial communities. However, there was also 
an effect between plant and bacterial community diversities impacting the plant 
and bacterial compositions, respectively, suggesting that these communities also 
are linked. To examine the indirect effects of nutrient additions on the grassland 
communities, we necessarily used symmetric co-inertia analyses; therefore, it 
should be emphasized that these results imply correlations and not causation. In 
addition to community-level links, we found potential association between plant, 
bacterial and fungal taxonomic groups in the N, NPK and L treatments that can be 
explored in future studies. 
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2.6 Supplementary Material 

Supplementary Table S1. Fungal community compositions in the long-term unfertilized control 
(C), liming (L), nitrogen (N), N-phosphate-potassium (NPK) and P treatments of the Ossenkampen 
experiment. Fungal phyla were included if the average proportion of classified sequences was 
above 1% in at least one treatment. 

  +bolded phyla indicate significant difference among treatments (ANOVA, corrected p<0.05 from STAMP analysis) 
*Similar letters represent no significant differences between treatments (Tukey-Kramer, 95% CI, Benjamini-Hochberg 
FDR multiple test correction) 

Fungal Phyla Effect size
Average proportion of classified sequences in treatments (%)

C L N NPK P

Agaricomycotina 0.506 61±17 46±21 62±10 63±9 89±3

Saccharomyceta 0.405 28±15 32±16 30±10 22±7 7±2

“mitosporic”+ 0.679 2±2 a* 8±3 b 1±0 a 5±2 ab 1±0 a

Ascomycota 0.740 6±2 a 5±0 a 3±1 ab 1±1 b 1±1 b

Glomerales 0.682 1±0 a 3±2 b 2±1 ab 4±1 b 1±0 a

Paraglomerales 0.768 a a a 1±1 b a

Chrytidiales 0.608 a 2±1 b a a a

Pucciniomycotina 0.208 1±2 1±1
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Supplementary Table S2. PERMANOVA test results of treatment and diversity effects on plant, 
bacterial and fungal community compositions in the Ossenkampen experiment. 

Community Source of Variation Pseudo-F p-value

Plant 
species

Treatment 3.1444 0.045
Plant Richness 14.9652 0.001
Interaction 3.4186 0.043
Treatment 60.824 0.001
Bacterial Shannon 3.975 0.014
Interaction 3.371 0.002
Treatment 51.359 0.001
Bacterial Inverse Simpson 2.901 0.053
Interaction 2.571 0.016
Treatment 42.879 0.001
Fungal Shannon 1.048 0.351
Interaction 2.077 0.041
Treatment 35.710 0.001
Fungal Inverse Simpson 0.862 0.450
Interaction 1.314 0.245

Bacterial phyla

Treatment 33.772 0.001
Plant Richness 15.379 0.001
Interaction 6.753 0.001
Treatment 20.4142 0.001
Bacterial Shannon 8.8261 0.001
Interaction 3.2105 0.009
Treatment 13.0175 0.001
Bacterial Inverse Simpson 6.1752 0.006
Interaction 1.0046 0.482
Treatment 9.1368 0.001
Fungal Shannon 0.9903 0.395
Interaction 0.7958 0.643
Treatment 8.5066 0.001
Fungal Inverse Simpson 0.7469 0.473
Interaction 0.6123 0.784

Fungal 
phyla 

 

Treatment 5.3954 0.007
Plant Richness 0.6262 0.458
Interaction 3.1178 0.048
Treatment 3.3005 0.033
Bacterial Shannon 0.6617 0.464
Interaction 0.8668 0.548
Treatment 3.2082 0.057
Bacterial Inverse Simpson 0.4438 0.583
Interaction 0.8226 0.582
Treatment 9.3895 0.002
Fungal Shannon 3.6953 0.067
Interaction 6.6252 0.005
Treatment 9.0983 0.001
Fungal Inverse Simpson 5.4546 0.023
Interaction 5.8736 0.004
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Supplementary Table S3. Bacterial community compositions in the long-term unfertilized control 
(C), liming (L), nitrogen (N), N-phosphate-potassium (NPK) and P treatments of the Ossenkampen 
experiment. Phyla were included if the average proportion of classified sequences was above 1% 
in one or more treatments. 

+bolded phyla indicate significant difference among treatments (ANOVA, corrected p<0.05 from STAMP analysis) 
*Similar letters represent no significant differences between treatments (Tukey-Kramer, 95% CI, Benjamini-Hochberg FDR 
multiple test correction) 

Supplementary Table S4. Additional information regarding the soil factors measured in the Os-
senkampen experiment. Horizontal lines group measurements from the same method. 

Bacterial Phyla Effect 
size

Average proportion of classified sequences (%)
C L N NPK P

Proteobacteria+ 0.836 35±2 a* 51±1 c 41±4 b 38±3 ab 37±2 ab
Acidobacteria 0.501 28±4 a 19±4 b 20±3 b 23±2 ab 23±2 ab

Verrucomicrobia 0.642 24±7 ac 8±2 b 13±4 bc 19±4 a 20±2 a
Actinobacteria 0.675 5±2 a 9±3 ab 18±5 c 12±2 b 11±1 ab

Bacteroidetes 0.900 3±0 a 8±1 b 2±1 a 2±1 a 3±0 a
Firmicutes 0.285 2±0 3±1 2±1 2±1 3±0

Planctomycetes 0.709 2±0 abc 1±0 ab ac 1±0 abc 1±0 ab
Gemmatimonadetes 0.527 1±0 1±0 1±1  1±0

Soil Factor Factor ID Units Method Notes
Total K Kt mg/kg F-AES Aqua Regia digestion
Total N Nt g/kg SFA-Nt/Pt H2SO4-H2O2-Se digestion
Total P Pt mg/kg

Al Al mg/kg ICP-AES Thermo 0,01M CaCl2 extraction
As As mg/kg ICP-AES Thermo
Cd Cd mg/kg ICP-AES Thermo
Cr Cr mg/kg ICP-AES Thermo
Cu Cu mg/kg ICP-AES Thermo Factor removed; values all the same
Fe Fe mg/kg ICP-AES ThermoFactor removed; values below detection limit

Extractable K K mg/kg ICP-AES Thermo
Mg Mg mg/kg ICP-AES Thermo
Mn Mn mg/kg ICP-AES Thermo
Na Na mg/kg ICP-AES Thermo
Ni Ni mg/kg ICP-AES Thermo

Extractable P P mg/kg ICP-AES Thermo
Pb Pb mg/kg ICP-AES Thermo
S S mg/kg ICP-AES Thermo

Zn Zn mg/kg ICP-AES Thermo
NH4+ NH4+ mg/kg SFA-CaCl2

NO3- NO3- mg/kg SFA-CaCl2

Extractable N Nts mg/kg SFA-CaCl2

PO4 -- mg/kg SFA-CaCl2 Factor removed; values below detection limit
C C.1 mg/kg SFA-TOC

Organic matter OM % baking oven Loss on ignition (105-550°C)
C C.2 g/kg spectrophotometer Kurmies
pH pH at 20±1˚C pH-meter pH-H2O

Moisture Moisture%  dry-matter dry matter moisture determination
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#  

#

#  
Supplementary Figure S1. Rarefaction curves of the sequenced communities from the Os-
senkampen experiment, including the a) bacterial and b) fungal communities, are presented using 
(i) Shannon and (ii) Inverse Simpson diversity indices. Legend: control (C), liming (L), nitrogen 
(N), nitrogen-potassium-phosphorus (NPK and phosphorus (P) fertilizer treatments. 
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Supplementary Figure S2. Renyi diversities and evenness of a-b) plant (n=10), c-d) fungal 
(n=20) and e-f) bacterial (n=27) communities in the Ossenkampen experiment. Legend: control 
(C), liming (L), nitrogen (N), nitrogen-potassium-phosphorus (NPK) and phosphorus (P) fertilizer 
treatments. 
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a) Non-normal soil factors and diversity indices

#  

#  
Kruskal-Wallis H test significance: ** p<0.01, * p < 0.05, + p < 0.1 
Dunn’s post-hoc test significance: similar letters mean no difference at alpha level 0.10 

Supplementary Figure S3. Boxplots of the a) non-normal soil physicochemical parame-
ters and community diversity indices in the Ossenkampen experiment. Legend: control 
(C), liming (L), nitrogen (N), nitrogen-potassium-phosphorus (NPK) and phosphorus (P) 
fertilizer treatments. Asterisks by variable names indicate significantly different mean or 
median values across all treatments from Kruskal-Wallis or ANOVA tests, respectively. 
Soil factor identifiers (IDs) are listed in Supplementary Table S4. 
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b) Normal soil factors and diversity indices 

#  

# #  
ANOVA test significance: *** p < 0.001, ** p = 0.001, * p = 0.01, + p = 0.1 
Tukey-Kramer post-hoc test significance: similar letters represent no difference at alpha < 0.05 

Supplementary Figure S3 cont’d. Boxplots of the b) normal soil physicochemical pa-
rameters and community diversity indices in the Ossenkampen experiment. Legend: con-
trol (C), liming (L), nitrogen (N), nitrogen-potassium-phosphorus (NPK) and phosphorus 
(P) fertilizer treatments. Asterisks by variable names indicate significantly different 
mean or median values across all treatments from Kruskal-Wallis or ANOVA tests, re-
spectively. Soil factor identifiers (IDs) are listed in Supplementary Table S4. 
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Supplementary Figure S4. Between-Class Analysis (BCA) of the soil factor subsets (A) micronu-
trients, B) macronutrients, C) structural) over the long-term control (C), liming (L), nitrogen (N), 
nitrogen-potassium-phosphorus (NPK) and phosphorus (P) treatments of the Ossenkampen exper-
iment are presented. Significance of groups was assessed by Monte-Carlo tests. 
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2.7 Supplementary Methods 
2.6.1 Diversity and evenness calculations. Renyi diversities and evenness were calculated and 
visualized from the fungal (n=20), bacterial (n=27) datasets and the plant species (n=10) frequency 
dataset using the “BiodiversityR” R package. Plant richness was measured during sampling as the 
total number of species present. To obtain alpha diversity indices for the sequenced datasets, the 
bacterial and fungal OTU tables were rarified to the size of the smallest sample in each dataset. 
For the bacterial and the fungal samples, Renyi diversity indices at alpha = 1 (Shannon) and alpha 
= 2 (Inverse Simpson) were kept for group testing.  

2.6.2 STAMP analysis. The fungal (n=20) and bacterial (n=27) datasets were agglomerated at the 
taxonomic rank of Phylum for the STAMP1 analysis. Missing taxonomy information in the 18S 
rRNA dataset was resolved as follows: 1) if an entry was blank with classified entries before and 
after, then the blank was replaced with a copy of the entry after (eg. “Eukaryota”, ””, ”Fungi”,   
became “Eukaryota”, “Fungi”, “Fungi”), 2) if an entry was blank and the previous or following 
entry was “unclassified”, it was replaced with “unclassified” (eg. “Eukaryota”, ”Fungi”, ””, “un-
classified” became “Eukaryota”, ”Fungi”, ”unclassified”, “unclassified”) and 3) if an entry was 
blank and the previous entry was “Fungi” and the next entry was “fungal”, the blank space was 
replaced with “Fungi.” In addition, for the 18S rRNA dataset, ambiguous classifications (e.g. “en-
vironmental” and “unknown”) were replaced with “unclassified”. Unclassified reads were re-
moved; then, the ANOVA statistical test was selected with a Tukey-Kramer post-hoc test (CI= 
95%). A Benjamini-Hochberg FDR multiple test correction was applied.  

2.6.3 Treatment effects on plant, bacterial and fungal communities and soil factor profiles. 
Between-Class Analysis (BCA) selects the orthogonal axis that maximizes between-group vari-
ance and measures the amount of variance restricted to the grouping factor as a percentage of the 
inertia captured through the new axis over the total inertia2. This allowed us to assess the amount 
of variability that could be explained by treatment for each community. The bacterial and fungal 
OTU abundances were summarized at the Phylum and Genus, or Phylum and Class levels, respec-
tively. The plant species frequencies and the bacterial and fungal abundances were converted to 
relative abundances (contingency tables), and the soil factors were normalized and scaled to unit 
variance. 

2.6.4 Between-component analyses. Co-inertia analysis is a multivariate method that identifies 
the common structure in two tables related by the same samples3. We chose this analysis because it 
can tolerate a high variable-to-sample ratio. Furthermore, we leveraged the imposed structure of 
the long-term fertilizer treatments. The co-inertia of two ordinations is the sum of squares of the 
co-variances of the variables in each table; thus, co-varying variables can be identified through 
correlation with the co-inertia axis3. Here we could simultaneously identify, for example, the taxo-
nomic groups from two communities that contributed to treatment groupings in the factor map. 
The degree of multivariate co-variance between two ordinations is summarized within an array 
correlation and co-variance coefficient, the RV value, which is a measure of the global similarity. 

2.6.5 Supplementary Methods References 
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nomic and functional profiles. Bioinformatics 30, 3123–3124 (2014). 

2. Dray, S. & Dufour, A. B. The ade4 package: implementing the duality diagram for 
ecologists. J. Statist. Software, 22:1-20 (2007). 
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Abstract 
Soil abiotic and biotic interactions govern important ecosystem processes. 

However, the mechanisms behind these interactions are complex and the links be-
tween specific environmental factors, microbial community structures and func-
tions are not well understood. Here, we applied DNA shotgun metagenomic tech-
niques to investigate the effect of inorganic fertilizers N, P, K and NPK on the 
bacterial community composition and potential functions in grassland soils in a 
54-year experiment. Differences in total and available nutrients were found in the 
treatment soils; interestingly, Al, As, Mg and Mn contents were variable in N, P, K 
and NPK treatments. Bacterial community compositions shifted and Actinobacte-
ria were overrepresented under the four fertilization treatments compared to the 
control. Redundancy analysis of the soil parameters and the bacterial community 
profiles showed that Mg, total N, Cd and Al were linked to community variation. 
Using correlation analysis, Acidobacteria, Bacteroidetes and Verrucomicrobia 
were linked similarly to soil parameters, and Actinobacteria and Proteobacteria 
were linked separately to different suites of parameters. Surprisingly, we found no 
fertilizers effect on microbial functional profiles which supports functional redun-
dancy as a mechanism for stabilization of functions during changes in microbial 
composition. We suggest that functional profiles are more resistant to environ-
mental changes than community compositions in the grassland ecosystem.  

Keywords: metagenomics/microbial ecology/microbial function redundancy/envi-
ronmental factors 
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3.1 Introduction  
Soil harbors a huge variety of organisms, including microorganisms which 

are central to terrestrial ecosystem processes such as C and N flows[1]. The recent 
development of culture-independent techniques and high-throughput sequencing 
technologies allows detailed study of bacterial communities and the factors that 
cause shifts in bacterial community structure[2-4]. Many studies apply 16S rRNA 
amplicon sequence profiling to address not only changes in community composi-
tion and function[5, 6] but also the relationship between community components 
and external drivers (to what extent community compositional shifts are influ-
enced by external factors)[7]. Changes in the soil bacterial communities due to 
disturbances or altered resource availability may influence ecosystem processes 
by altering bacterial functions, compositions or interactions. However, the influ-
ence of specific environmental factors on changes in bacterial community compo-
sition and function due to nutrient inputs alone is not clear. 

Studies of bacterial structural drivers at the regional scale have shown that 
bacterial community structure is driven by soil type and general chemical charac-
teristics, including pH. Soil pH is shown as a key environmental factor that influ-
ences bacterial community composition and can explain the distributions of bacte-
rial phyla at local scales[8, 9]. However, there is some indication that pH only in-
directly drives shifts in community composition. For instance, with pH change, 
the soil moisture, cations availability and C:N ratios often co-vary as well[10]. 
Linking bacterial community shifts only to pH does not take into account the in-
dividual influence of soil parameters, e.g., NO3, NH4 and Ca. One study in Ama-
zon soils that measured a wide range of soil parameters found a relationship be-
tween a specific group of Acidobacteria and the available Ca, Mg and Mn[11]. 
Because of the range of abiotic and biotic interactions between bacteria and their 
chemical environment, it is important to investigate a suite of soil paramenters in 
studies of the drivers of bacterial community changes, which we have applied 
here. 

Nutrient amendments in managed grasslands are historically used to im-
prove plant productivity. However, this management practice impacts all compo-
nents of the grassland ecosystem, including soil functioning. The effect of chronic, 
long-term (more than five years) N fertilization is intensively studied, e.g. for the 
relationship between nutrients and plant productivities[12]; or for evaluating an-
thropogenic effects on bacterial and fungal biomass, community structure, compo-
sition and activities[8]. Several studies find long-term N fertilization effects on 
bacterial community compositional shifts and subsequent alteration of ecosystem 
functions[13-15]. Long-term application of N fertilizer affects the abundance of 
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specific groups that are associated with N cycling, as shown in studies targeting 
nitrifiers and denitrifiers[15, 16], ammonium oxidizing Archaea[17, 18] and 
methanotrophs[19]. In general, the long-term addition of N appears to select for 
copiotrophic taxa though these taxa may respond to C dynamics associated with 
the N additions[13]. Whether a similar mechanism affects bacterial community 
composition in long-term P and K fertilization is unknown.  

 In this study, we explored the shifts in abiotic and biotic factors between 
long-term N-, P-, K- and NPK-fertilization. First, we determined the soil chemical 
parameters in each long-term fertilization regime. Next, we tracked the composi-
tional and functional changes in the bacterial communities across fertilization 
regimes. Last, we identified links between soil chemical parameters and bacterial 
community shifts. We hypothesized that soil factors other than pH were linked to 
bacterial community compositional and functional alterations (H1). In addition, 
we hypothesized that each fertilization regime would alter bacterial community 
composition and function (H2). To our knowledge, our study is the first to apply 
shotgun metagenome techniques to the soil bacterial communities in clay-soil 
grassland with yearly addition of inorganic fertilizers for such duration (54 years). 
Advantages over the widely used 16S rRNA amplicon method include the ability 
to examine community functional potential and to exclude PCR biases. In addi-
tion, this study is one of the first to include a suite of soil measurements to explore 
the environmental factors driving simultaneously soil bacterial community com-
position and functions under long-term nutrient input. 

3.2 Material and methods  
3.2.1 Site description 

The Ossenkampen Grassland Experiment fields were established in Wa-
geningen, The Netherlands (51°58'15''N; 5°38'18''E) on heavy-clay soil in 1958 to 
track plant species shifts under long-term application of inorganic fertilizers[20]. 
Fertilizer amendments, including N (ammonium nitrate, 160 kg N ha-1 yr-1), P 
(superphosphate, 22 kg P ha-1 yr-1), K (potassium sulfate, 108 kg K ha-1 yr-1) and 
NPK (ammonium nitrate, superphosphate and potassium sulfate, 160 kg N ha-1 yr-

1, 33 kg P ha-1 yr-1 and 311 kg K ha-1 yr-1) were applied to the fields annually since 
1959. The fields were mown twice a year: once in July and once in October. The 
mown matter was left on the fields. 
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3.2.2 Sampling regime and soil parameters 

Soil samples were collected on September 20, 2011 from the four treatment 
fields and one control field (five treatment fields). Each treatment field included 5 
m × 2.5 m triplicate plots. Twenty-seven soil cores (10 cm depth and 2 cm diame-
ter) were sampled from each plot and then pooled to give one bulk sample for 
each plot (Supplementary Figure 1). Five bulk soil samples (3 replicates/sample) 
were collected and homogenized through a 5 mm sieve. Fractions from two of the 
three soil samples from each field were sent for physical and chemical measure-
ments at the Soil Science Department of Wageningen University. The remaining 
soil fractions were stored at -80oC for molecular analyses. For the physical and 
chemical measurements, levels of soil moisture content, soil pH, extractable N, 
total carbon and nitrogen concentrations, available potassium, phosphate and sul-
fur, total organic matter, and available trace elements Al, As, Cd, Cr, Cu, Fe, Mg, 
Zn, Mn, Na, Ni and Pb were determined.  

3.2.3 Shotgun metagenome preparation and processing  

DNA from soil fractions (0.3 g) was extracted using the Power Soil kit 
(MolBio, Carlsbad, CA) with 5.5 m·s-1 for 10-min bead beating. DNA concentra-
tions were measured using an ND-1000 spectrophotometer (Nanodrop, Wilming-
ton, DE) to ensure at least 500 ng for library preparation.  

The libraries were pyrosequenced on the Roche 454 FLX platform with tita-
nium chemistry (Roche, USA) at Macrogen (South Korea). After demultiplexing 
and barcode removal, the fragments were trimmed to 300 bp with a quality score 
cutoff of 30.  Artificial duplicates were removed (http://microbiomes.msu.edu/
replicates/) from further analysis[21].  

3.2.4 Sequence annotation and abundance normalization 

The metagenomes were uploaded to the Metagenome Rapid Annotation 
with Subsystem Technology (MG-RAST; http://metagenomics.anl.gov) web 
server, version 3.1.2[22]. The sequences were deposited in MG-RAST under ID 
numbers 4485389.3 to 4485403.3. The metagenomes were compared by BLASTx 
to the Clusters of Orthologous Groups (COGs) database for the genome size nor-
malization calculation, to the SEED database for functional annotation and the 
RefSeq microbial database for taxonomic annotation. The sequences with similar-
ity to database entries with the default parameters (E-value of 1x10-5, minimum 
sequence nucleotide identity of 60% and minimum alignment length of 15 bp) 
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were counted. The count of metagenome sequences with similarity to the 35 COG 
marker genes described by Raes et al. (2007) [23] 2323 were filtered from the COG 
tables and used to calculate the effective genome size (EGS) for each 
metagenome. The annotation abundances were normalized by multiplying each 
value by the weight of the sample EGS to the average EGS of all sample 
metagenomes (for detailed method see references[24, 25]. The taxonomic and 
functional annotation profiles were created by calculating the relative abundances 
of annotations within each taxonomic or functional category out of the total num-
ber of annotations for the sample.  

3.2.5 Statistical analyses  

Soil parameter values were compared between the control and treatment 
fields using permutation t-tests (n = 2) and among the five treatments using 
Analysis of Variance (ANOVA). The t-tests and ANOVA were performed using 
PAST software version 2.15[26]. The similarity of treatment groups was calculat-
ed based on the Euclidean distance matrices between the taxonomic and function-
al profiles with the Analysis of Similarity (ANOSIM) test. PCA[27] was applied 
to visualize the samples based on the taxonomic and functional profiles. 

Overrepresentation of bacterial phyla or Subsystem Level 1 and 2 categories 
between the treatment groups and the control group were investigated using the 
Statistical Analysis of Metagenomic Profiles software (STAMP, version 2.0.0)
[28]. Unclassified annotations were not included in the analyses. The two-sided 
Welch’s t-test was applied with Storey’s FDR (taxonomic analysis) or Benjamini-
Hochberg FDR (functional analysis) multiple test correction and significance was 
determined based on a 95% confidence interval. 

Redundancy analysis (RDA) was conducted to combine the soil parameter 
and the taxonomic or functional and data. For this analysis, the average of the two 
values for each soil variable was used as the value for the soil variable of the third 
replicate. The soil variables were tested for normality and standardized and in two 
cases were log (Nts) or inverse (Zn) transformed to achieve normality. Pearson 
correlations were calculated between the soil variables to identify highly correlat-
ed variables. The rda function in the “vegan” package in R (version 3.0.2) was 
applied. The rda function conducts an unweighted linear regression of categories 
(e.g. relative abundances) against variables (e.g. soil parameters) and performs 
unweighted singular value decomposition of the influencing variables.  
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3.3 Results 
3.3.1 Soil parameters along the fertilizations 

The autocorrelation between soil factors did not result in highly correlated 
variables across treatments (p<0.05), except organic matter correlated with total N 
(0.92) and with Mg (0.90). Therefore, no variables were removed for further 
analysis. Seventeen of the 24 analyzed soil parameters differed across the five 
treatment fields (ANOVA, p < 0.05; Table 1). The only soil parameter that dif-
fered in all of the four treatment fields compared to the control was total ex-
tractable N. Several soil parameters differed within the N, P or K and the NPK 
treatments. Expected differences due to the associated fertilizations were found. 
For instance, NO3-NO2-N was higher in the N and NPK treatments; available K 
was higher in the K and NPK treatments; and P was higher in NPK treatments. In 
both the P and NPK treatments, available C was lower than in the control treat-
ment. Al was higher in the N and NPK treatments compared to the control. NH4-N 
was lower in the K and NPK treatments compared to the control treatment. Most 
interestingly, the differences in Mg and Mn values that were found in the N and P 
comparisons were not encountered in the NPK comparison. 

3.3.2 Shotgun metagenome characteristics 

The 15 metagenomes comprised a total of 603 million bp contained in 1.6 
million reads (Supplementary Table 1). Mean lengths of the sequences ranged 
from 362 to 398 bp and the quality scores were 36 and above. MG-RAST annota-
tion to the M5NR database identified 53% to 57% of the predicted protein coding 
regions for the 15 sample metagenomes. Rarefaction curve analysis revealed that 
most of the diversity was sampled in the metagenomes based on number of se-
quences against number of species from the M5NR comparison (Supplementary 
Figure 2). Alpha diversity of the metagenomes averaged ~640 ± 34 species. The 
functional diversity, given by the number of functional categories divided by the 
metagenome size, ranged from 39% to 51%. The samples were dominated by bac-
teria domain sequences (average relative abundance 94.30%) followed by eukary-
ota (1.19%) and archaea (1.18%) sequences based on hits to the RefSeq database. 
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Table 1. Soil physicochemical properties from the non-fertilized (Control) field and the nitrogen 
(N), phosphorous (P), potassium (K) and nitrogen+phosphorous+potassium (NPK) treatment 
fields. Significant treatment values are in bold from the control to treatment comparison and the 
parameters that differed significantly among the five treatments are in bold. 

*p < 0.05, **p < 0.01, ***p < 0.001 

3.3.3 Taxonomic comparison of the sampled communities 

The taxonomic profiles of the treatment metagenomes were similar to those 
of the control metagenomes. Proteobacteria, Acidobacteria, Actinobacteria, Fir-
micutes, Verrucomicrobia and Bacterioidetes were the most abundant phyla in the 
metagenomes. Fifteen additional bacterial phyla with more than 0.8% of represen-
tation in the metagenomes were identified by annotation against the RefSeq data-
base (Supplementary Table 2). Principal Component Analysis (PCA) was used 
to visualize the samples based on relative abundances of annotations within bacte-
rial phyla. Different inorganic fertilizations significantly changed mean relative 

Soil Properties
Values within Treatment Fields

Control N P K NPK

Total

Ct  (g/kg)** 59+1.00 62.7+1.33 58.7+0.33 61+0.01 60.7+1.67
Nt (g/kg)** 5.2+0.03 5.8+0.13 5.1+0.1 5.2+0.01 5.2+0.1
Nt (mg/kg)***48+0.01 68+0.01*** 46.3+0.01** 42+0.01** 51.3+0.01**
Kt (g/kg)*** 10.8+0.24 11.8+0.04 10.5+0.11 12.6+0.06 12.1+0.07
Pt (g/kg)*** 0.7+0.04 0.7+0.01 1.1+0.03 0.07+0.03 1.1+0.04
OM (%)* 14.7+0.23 15.6+0.4 14.3+0.13 14.7+0.03 14.6+0.33
pH* 5.27+0.1 4.85+0.06 5.22+0.04 5.05+0.09 5.04+0.05
moisture (%) 47.2+1.76 37.5+1.09* 43.3+1.14 41.8+3.04 41.9+1.89
C:N 11.3+0.12 10.9+0.02 11.5+0.16 11.7+0.01 11.7+0.09

Available  
(mg/kg)

C 699.7+21.7 716.7+39.3 652+9.0* 702+3.0 642+1.7*
NH4+-N** 13.5+1.3 15.0+1.67 11.1+1.57 7.3+1.17* 5.5+0.47*
NO3-+NO2—N***1.6+0.07 15.3+0.23** 1.9+0.3 1.2+0.13 14.1+1.67*
P*** 2.3+0.1 2.1+0.07 3.7+0.23 2.1+0.1 3.8+0.03*
S 11.0+0.53 12.0+0.70 11.9+0.20 10.2+0.90 10.4+0.47
Al*** 8.7+2.23 20.4+2.73* 15.5+0.53 13.4+1.54 27.9+1.63**
As** 0.11+0.01 0.09+0.01 0.08+0.01 0.09+0.01 0.08+0.01
Cd 0.12+0.01 0.15+0.01 0.13+0.01 0.12+0.01 0.15+0.01
Cu 0.1+0.00 0.1+0.00 0.1+0.00 0.1+0.00 0.1+0.00
K*** 35+0.01 36.3+2.67 37.3+1.67 135.7+11.7* 118.3+11.3*
Mg** 211.3+9.33 259.7+16.33** 179.3+2.67* 222.7+7.33 215.7+1.67
Mn* 26.3+2.23 13.7+0.07* 17.0+2.83* 24.87+4.40 21.7+3.53
Na 36.7+6.67 32.7+7.33 35.0+4.00 34.7+2.33 31+1.00
Ni 1.0+0.02 1.2+0.09 1.00+0.04 1.2+0.04 1.0+0.05
Zn 3.3+0.3 4.3+0.47 2.8.0+0.03 3.5+0.0 4.7+1.53
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abundances of Actinobacteria, Aquificae Chlorobi, Chloroflexi, Cyanobacteria, 
Deferribacteres, Dictyoglomi, Firmicutes, Lentisphaerae, Nitrospirae, Plancto-
mycetes, Proteobacteria, Spirochaetes, Synergistetes and Verrucomicrobia. 
(ANOVA, corrected p < 0.05). The samples were found to form distinct treatment 
groups by the PCA which explained ~96% of the variance between samples. This 
was confirmed by the ANOSIM test (R = 0.835, p < 0.0001; Supplementary 
Figure 3a).  

Two-group comparisons revealed over- and under-represented phyla be-
tween the control and treatment groups, with the exception of the P treatment 
(Figure 1). The N, K and NPK treatments showed an overrepresentation in Acti-
nobacteria compared to the control (corrected p < 0.03). In addition, the N treat-
ment showed an underrepresentation in Aquificae, Chlorobi, Cyanobacteria, Fir-
micutes, Nitrospirae, Planctomycetes, and Verrucomicrobia (corrected p < 0.03), 
the K treatment an underrepresentation in Firmicutes and Verrucomicrobia (cor-
rected p < 0.04) and the NPK treatment an underrepresentation in Planctomycetes 
(corrected p < 0.05). 

#  
Figure 1. The bacterial phyla that were significantly overrepresented in comparisons between the 
treatments (Potassium, Nitrogen and NPK) and the control are shown (Welch’s t-test, p < 0.05). 
Control=black, Potassium=blue, Nitrogen=red, NPK=yellow. In the Control to Phosphorus treat-
ments no overrepresented phyla were found. 
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3.3.4 Functional comparison of the sampled communities 

Functional profiles of the metagenomes were created from relative abun-
dances of annotations to hierarchical subsystems through MG-RAST. The 15 
sample metagenomes exhibited similar functional profiles across the 28 Subsys-
tem Level 1 categories. The top 10 subsystems represented in the metagenomes 
were Carbohydrates (average 15.6%), Clustering-based subsystems (14.0%), 
Amino Acids and Derivatives (9.9%), Miscellaneous (7.6%), Protein Metabolism 
(6.0%), Cofactors, etc. (6.0%), RNA Metabolism (5.0%), Cell Wall and Capsule 
(4.0%), Fatty Acids, etc. (4.1%) and Virulence, etc. (3.3%). Principal Component 
Analysis (PCA) was used to visualize the samples based on relative abundances of 
annotations within Subsystems Level 1 and 2 categories. In the Level 1 compari-
son, the samples did not form distinct treatment groups in the PCA (~60% of the 
variance) which was reflected in the ANOSIM test (R = 0.2889, p < 0.0246; Sup-
plementary Figure 4). In the Level 2 comparison, the treatment effects were 
more distinctly displayed in the PCA (~48% of variance) and this was reflected in 
the ANOSIM test result (R = 0.6193, p < 0.0003; Supplementary Figure 3b). Of 
the Level 2 categories, no category differed between treatments based on the mul-
tiple group comparison. Two-group comparisons revealed no over- or under-rep-
resented functional categories between the control and treatment groups based on 
Subsystems Level 1 and 2.  

3.3.5 Linking environmental variables with bacterial taxa and functional cat-
egories 

The links between the measured soil parameters and the relative abundances 
within bacterial phyla or functional Level 2 categories were investigated through 
RDA. Mn, As, Mg, Cd, Al, Pt, K, Kt, and Nt were found to be related to the sam-
ples based on the taxonomic (RDA, adjusted R-squared = 0.82) and functional 
Level 2 (RDA, adjusted R-squared = 0.34) profiles (Figure 2a and Figure 2b). 

In order to examine the correlation between environmental factors and bac-
terial taxa, Spearman correlations were calculated between the relative abundance 
values of different bacterial taxa and the values for soil parameters for each con-
trol versus treatment comparison (Table 2). Of the soil parameters that were sig-
nificantly different in the control to treatment comparisons, Al, K, Nt, N-NH4, 
NO3-NO2-N, P and Mg were strongly correlated (r > |0.70|) with the relative 
abundances of the six major bacterial phyla. Three groups could be made of the 
bacterial phyla with similar correlations. First, the Acidobacteria, Bacteroidetes 
and Verrucomicrobia were correlated to similar soil parameters in at least two 
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comparisons: negatively correlated to Kt, Al, K and Ni and positively correlated 
with N-NH4, NO3-NO2-N and Nt. The Actinobacteria were positively correlated 
to Kt, Al, K, and Ni and negatively correlated to N-NH4 and Nt in at least two 
comparisons. Last, the Firmicutes and Proteobacteria were positively correlated 
with P, N-NH4, NO3-NO2-N, Nt, Ct, OM and moisture in at least one comparison 
(Supplementary Table 3).  

For investigating the correlation between soil factors and functional cate-
gories, Spearman correlations were also calculated between the relative abun-
dance values within functional categories and the values of soil parameters. The 
relative abundances of certain functional groups were correlated with specific en-
vironmental factors. For example, available Cd, Al and Ni together with total K 
concentrations were highly positively correlated with stress responses related 
genes abundance (Table 3), which had a negative correlation with soil pH and 
moisture content. Available Cd, Ni and total C were negatively correlated with 
virulence related gene abundances whereas soil pH and moisture content were 
positively correlated with this function category. Total extractable N had positive 
correlation with cell division and cell cycle and DNA metabolism related func-
tional profiles abundance.   
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#  
Figure 2. Redundancy analysis (RDA) of the samples based on (a) relative abundances within 
RefSeq Bacterial phyla or (b) relative abundances within Subsystem Level 2 categories and values 
of environmental variables. C=Control, N=N fertilized samples, P=P fertilized samples, K=K fer-
tilized samples, NPK=NPK fertilized samples. 1, 2, 3 = replicates. Only the environmental vari-
ables (blue lines with arrow heads) that explained a significant amount of the variations (Monte 
Carlo test, p value < 0.05) are included in the figure.  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Table 2. Spearman correlation values between the relative abundances of annotations within the 
six major bacterial phyla and soil parameters. Only the correlations values greater than |0.7| are 
shown. Positive correlations=yellow and negative correlations=red. 

C* = control to treatment comparison; soil parameters  

Bacterial 
Phyla

Soil Properties
C* Kt Nt Al As K Mg Ni P S N. 

NH4

N. 
NO3. 

Nts Ct OM pH moistur
e

Acido- 
bacteria

NPK
P
N
K

Actino- 
bacteria

NPK
P
N
K

Bacter- 
oidetes

NPK
P
N
K

Firmi- 
cutes

NPK
P
N
K

Proteo- 
bacteria

NPK
P
N
K

Verruco- 
microbia

NPK
P
N
K
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Table 3. Spearman correlation between soil parameters and functional profiles based on subsys-
tems hierarchy 1 (MG-RAST). Only the correlations values greater than |0.7| are shown. 

a = g/kg; b = mg/kg 

Function 
category 

Soil Properties

pH Moist-
ure C:N Cta Nta Kta Pta 

(NO3 
+NO2)-

Nb
Alb Cdb Mnb Nab Nib Pbb 

Amino Acids 
and 

Derivatives
Cell Division 

and Cell Cycle 0.7

Cofactors, 
Vitamins, 
Prosthetic 

Groups, 
Pigments

-0.7 0.7 0.7 -0.8 0.7 0.7 0.7

DNA 
Metabolism 0.7 0.8 0.7 0.8 0.8

Motility and 
Chemotaxis

Protein 
Metabolism
Regulation 

and Cell 
signaling

-0.7

Respiration 0.7 0.7
Secondary 

Metabolism
Stress 

Response -0.7 -0.7 0.7 0.8 0.8 0.7
Virulence, 

Disease and 
Defense

0.8 0.8 -0.7 -0.8 -0.8
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3.4 Discussion 
Here we explored the correlations between abiotic and biotic factors in a 

long-term N-, P-, K- and NPK-fertilized grassland. We hypothesized that each in-
organic fertilization treatment would alter bacterial community composition and 
functions (H1). Bacterial community compositional and functional alterations 
were hypothesized to be linked to soil parameters other than pH (H2). Our results 
indicated that soil chemical profiles and bacterial community composition but not 
functions shifted with inorganic fertilization. Several soil parameters were corre-
lated to compositional and functional shifts in the bacterial community. 

Chronic deposition of N, P and K fertilizers resulted in distinct soil profiles, 
i.e. with saturated levels of extractable N and NO3-NO2-N, P and K in the respec-
tive treatments (deduced by similar levels of these soil parameters in the NPK 
treatment). Thus, the treatments can be conceptualized as resource manipulations 
in which bacterial community assembly was driven by the four different treatment 
“habitats.” Hereafter we will refer to each treatment as saturated with the associat-
ed fertilizer, e.g. N-saturated for the N fertilizer treatment, to facilitate our discus-
sion on the drivers of compositional shifts that were observed within the habitats.  

Microbial mining hypothesis links phyla and soil properties in N- and K-sat-
urated fields 

N-saturations of 160 kg N ha-1 yr-1 resulted in the largest differences in bac-
terial community compositions compared to the control field. Shen, Zhang [29] 
also showed significant changes in the microbial community composition in a 20-
year inorganic N-fertilized field (135 kg N ha−1 yr-1) in China. Fierer, Lauber [14] 
detected significant differences in microbial community profiles only in fields 
with the highest inorganic N-input of 136 to 145 kg N ha-1 yr-1, which is in the 
range of our N treatment, and not in fields that received intermediate N input of 
17 to 101 kg N ha-1 yr-1. However, in that study, the duration of fertilization of the 
fields was 27 and 8 years while ours was 54 years. These studies and ours results 
confirm that N-saturation has variable effects on microbial community composi-
tion that depend on the duration of the experiment [13]. Total extractable N avail-
ability was significantly higher in our N-saturated soil compared to the control 
treatment while NH4+ levels were the same. Coupled with the taxonomic differ-
ences observed in the N- and K-saturated communities, the microbial mining the-
ory offers a possible explanation. N stored in organic matter is the main source of 
N for microbial growth and maintenance [30] and microbes usually mineralize 
organic N into ammonium-N in order to access this nitrogen. In N-amended soil, 
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there is no need for microbes to mine N and to compete with other microbes to 
provide N sources. Instead, bacteria that utilize high levels of available N may be 
favored. We observed this prediction as a shift to copiotrophic taxa under N and K 
saturation. The copiotroph-oligotroph tradeoff [31] seems to explain our result of 
increased abundances of Actinobacteria and decreased abundances of Acidobacte-
ria/Verrucomicrobia/Firmicutes in  the N and K saturated fields. Actinobacteria 
are regarded as copiotrophs, whereas Acidobacteria, Firmicutes and Verrucomi-
crobia are regarded as oligotrophs. In support, studies have shown that N addition 
may decrease the decomposition of recalcitrant carbon [32], which may affect 
members of the phylum Actinobacteria since they are important decomposers and 
play a vital role in the carbon cycle [33]. The generally oligotrophic phyla Verru-
comicrobia may highly depend on C availability due to a slow-growing life strate-
gy [34, 35]. 

P mobility in N- and P-saturated fields may explain the chemical profiles 

Our finding of no compositional differences in the P-saturated field com-
pared to that of the control field was unexpected. In contrast, in a long-term (42-
year) phosphorus fertilization field, the phosphorus addition resulted in a decrease 
of the relative abundance of Acidobactera and Pseudomonas in pasture soils [36]. 
Long-term (8-year) P-amendment also shifted the bacterial community in an alfal-
fa field [37]. In the P-saturated fields we observed decreased levels of available 
Mg and Mn compared to the control field. Because no compositional differences 
in the bacterial community between control and the P-saturated fields were found, 
a hypothesis based on P mobility may explain the differences in the chemical pro-
files that were observed. In acidic soils, phosphorous conversion to insoluble 
forms may occur by precipitation of phosphate ions with Ca, Mg, Al and Fe (pre-
cipitation); alternatively, phosphate might react to form plant-available soluble 
forms by reacting with Mg or Mn (reactive processes). We hypothesize that both 
precipitation and reactive processes are on-going in the P-saturated fields due to 
the excess availability of P. In support of this hypothesis, Mg and Mn levels were 
decreased in the P-saturated but not the NPK-saturated fields compared to the 
control fields; strikingly, available C levels were decreased in both fields. Our re-
sults suggest that in the P-saturated fields, phosphate reactions involving Mn and 
Mg have removed excess P while in the NPK-saturated fields the additions of N 
and K fertilizers diverted the P to alternate reactions.  
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Under fertilization, total community functions did not shift 

Surprisingly, we found no fertilizer effect on the Level 1 and Level 2 func-
tional profiles. This supports functional redundancy as a mechanism for stabiliza-
tion of functions during changes in microbial composition [7, 38]. Functional re-
dundancy refers to the hypothesis that each member of the community has the 
same functional capability, such that if the composition of the community 
changes, the metabolic output does not. This hypothesis suggests that functional 
profiles are more resistant to environmental changes than community composi-
tions. Our result is in contrast to the observations of Fierer et al. [14]. They found 
distinct different functional profiles in the soils with the highest N-saturation at 
the highest hierarchical level of annotations. However, our observation was sup-
ported by a meta-analysis according to Allison and Martiny [39], who showed that 
microbial community composition is sensitive to environmental changes. There-
fore, it is still difficult to make solid conclusions whether we could predict func-
tional redundancy using whole community data. Further studies are needed to 
compose mock communities to test whether the link between community func-
tions and metagenomic characteristics generally exists or whether the link only 
can be observed within certain taxa.  

Abiotic factors and soil bacterial group correlations 

In many long-term fertilization studies, community composition or func-
tional changes are most often correlated with soil pH and C/N ratio [29, 40]. In 
addition to pH and C and N links, we report strong correlations of bacterial group 
abundances to several other measured parameters as well as functional categories. 
For example, we found that Acidobacteria, Actinobacteria and Verrucomicrobia 
were correlated with Kt, K, Al, Ni, N-NH4 and Nt in at least 2 comparisons. 
Navarrete et al. Navarrete, Kuramae [11]  has reported a correlation between Al 
with Acidobacteria in the Amazon area. Verrucomicrobia are positively correlated 
with soil moisture [41] and negatively correlated with elevated CO2.  Faoro, Alves 
[42] demonstrated the importance of Ca2+/Mg2+ ratio, Al3+ and phosphorus content 
in shaping soil microbial community composition in the Southern Brazilian At-
lantic Forest. The studies suggest that besides pH and C/N ratios other abiotic pa-
rameters may also influence soil microbial community structures. Cd, Al and Ni  
are regarded as toxic (stress) compounds to microbes [43]. In order to survive, the 
microbes need to have the ability to detoxify, which can explain why in our study 
available Cd, Al, Ni and total K concentrations had a high positive correlation 
with stress response-related gene relative abundances. The positive correlations 
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between cell division and DNA metabolism genes and total extractable N suggest 
that the increased N nutrient level may lead to enhanced microbial reproduction 
[44].  

Conclusions 

Of the numerous studies investigating the influence of long-term fertilizers 
on microbial community compositions, many generalize the different soil sources 
e.g., grassland, pasture or forest, and use 16S rRNA amplicon profiling. Here we 
focused on the effects of only inorganic fertilization on long-term bacterial com-
munity changes in clay soil grassland. We applied shotgun sequencing which al-
lowed us to circumvent PCR biases as occurs 16S rRNA amplicon studies and 
also to evaluate the effects of fertilization not only on bacterial community com-
position but also on potential functions. During our analysis, we took a coarse-
grained approach by examining the changes in the bacterial communities at the 
domain, phyla or Subsystems category levels. This was done to overcome data-
base biases and spurious annotations from a finer resolution. Last, we demonstrat-
ed the importance of measuring a suite of soil parameters in future studies that 
aim to find links between abiotic and biotic ecosystem components. Whether our 
findings of the correlations between different soil factors (especially Fe, Al, Mg, 
Mn) and specific bacterial groups and functional categories have biological mean-
ings still needs to be verified in both laboratory and field conditions. 

3.5 Declarations 
Acknowledgements 

We would like to thank AS Pijl and GA Kowalchuk for laboratory assistance and 
support. This work was supported by NWO-FAPESP 729.004.003 program. Pub-
lication number 5636 of the NIOO-KNAW, Netherlands Institute of Ecology. 

- �  -74



3.6 Supplementary Material 
 

Supplementary Figure 1. One field is divided to 3 plots, 27 soil cores from each plot were sam-
pled and pooled as one replicate for the field, and each field has 3 replicates. 
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#  
Supplementary Figure 2. Rarefaction curve analysis of the 15 sample metagenomes and estimat-
ed alpha diversity of the communities. Figure taken from MG-RAST based on subsamples plotted 
against M5NR species annotations. 
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#  
Supplementary Figure 3. Principal Component Analysis (PCA) of the samples based on relative 
abundances of metagenome sequences annotated within (a) RefSeq bacterial phyla and (b) Subsys-
tem Level 2 categories. Only the phyla that contributed to more than |0.1| units of loading and the 
Subsystems categories that contributed to more than |0.2| units of loading are included in the plots. 
C=Control, N=N fertilized samples, P=P fertilized samples, K=K fertilized samples, NPK=NPK 
fertilized samples. 1, 2, 3 = replicates. 
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#  
Supplementary Figure 4. Principal Component Analysis (PCA) of the samples based on relative 
abundances of metagenome sequences annotated within Subsystem Level 1 categories.  Only the 
phyla or Subsystem categories that contributed to more than |0.1| units of loading are included in 
the plots. Control=black, Phosphorus=green, Potassium=blue, Nitrogen=red, NPK=yellow; 1, 2, 3 
= replicates. 

Supplementary Table 1. Sequencing information for the fifteen sample metagenomes. 

Sample Name MGRAST ID # Sequences # bp Mean Sequence Length (bp)
control1 4485389.3 105010 40423549 384 ± 131
control2 4485390.3 114709 44905782 391 ± 127
control3 4485403.3 126331 49728531 393 ± 120
npk1 4485391.3 134389 52721323 392 ± 123
npk2 4485392.3 113883 42073456 369 ± 125
npk3 4485393.3 96793 38425397 396 ± 120
phosphate1 4485394.3 84053 33521299 398 ± 119
phosphate2 4485395.3 76677 29433082 383 ± 121
phosphate3 4485396.3 83399 32356773 387 ± 119
nitrogen1 4485397.3 76859 28573338 371 ± 124
nitrogen2 4485398.3 78248 28396437 362 ± 126
nitrogen3 4485399.3 90340 34738730 384 ± 123
potassium1 4485400.3 130016 51665672 397 ± 123
potassium2 4485401.3 133309 52226427 391 ± 120
potassium3 4485402.3 113565 43656772 384 ± 125
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Supplementary Table 2. Relative abundances of metagenome read annotations within taxonomic 
categories. Values above a cutoff of 0.08% are presented and those in bold were significantly dif-
ferent between treatments (ANOVA, corrected p < 0.05). 

Average Relative Abundance of Reads (%)
Domain Phylum Control Nitrogen Phosphorous Potassium NPK

Archaea
Crenarchaeota 0,14 0,12 0,12 0,12 0,17
Euryarchaeota 0,90 0,64 0,82 0,72 0,79

Bacteria

Acidobacteria 13,78 10,59 10,44 13,36 12,20
Actinobacteria 10,35 23,70 16,18 15,19 17,78
Aquificae 0,26 0,16 0,22 0,19 0,23
Bacteroidetes 4,28 3,82 4,05 3,50 3,57
Chlamydiae 0,15 0,14 0,14 0,15 0,14
Chlorobi 0,61 0,44 0,54 0,53 0,58
Chloroflexi 2,19 1,93 2,39 2,09 2,25
Cyanobacteria 2,90 2,16 2,71 2,56 2,54
Deferribacteres 0,13 0,08 0,09 0,08 0,10
Deinococcus-
Thermus

0,58 0,54 0,60 0,53 0,60
Firmicutes 5,81 4,62 5,63 5,06 5,51

Fusobacteria 0,10 0,10 0,08 0,12 0,09
Gemmatimonadetes 0,35 0,31 0,35 0,33 0,34
Lentisphaerae 0,16 0,11 0,12 0,11 0,14
Nitrospirae 0,32 0,20 0,26 0,24 0,36
Planctomycetes 2,38 1,51 2,37 2,11 1,82
Proteobacteria 45,90 42,19 44,49 44,88 43,46
Spirochaetes 0,26 0,17 0,25 0,21 0,22
Synergistetes 0,14 0,10 0,15 0,13 0,15
Thermotogae 0,21 0,13 0,20 0,17 0,19
Verrucomicrobia 5,60 3,32 4,36 4,58 4,58
Arthropoda 0,12 0,17 0,16 0,09 0,11
Ascomycota 0,79 1,23 1,10 1,30 0,55

Eukaryota Basidiomycota 0,21 0,15 0,44 0,32 0,15
Chordata 0,21 0,21 0,30 0,24 0,25
Streptophyta 0,34 0,43 0,65 0,40 0,41
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Supplementary Table 3. Spearman correlation values between the relative abundances of annota-
tions within bacterial phyla and soil parameters using data from all five sample treatments. Only 
the phyla and parameters with correlations values greater than |0.6| are shown. Positive correla-
tions=yellow and negative correlations=red. Continued on next page. 
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Category C* Kt Nt Pt Al As Cd K Mg Mn Na Ni P S Zn N. 
NH4 

N. 
NO3. 
NO2 

Nt Ct OM pH Moisture 

Acidobacteria 

NPK                      
P                      
N                      
K                      

Actinobacteria 

NPK                      
P                      
N                      
K                      

Aquificae 

NPK                      
P                      
N                      
K                      

Bacteroidetes 

NPK                      
P                      
N                      
K                      

Chlamydiae 

NPK                      
P                      
N                      
K                      

Chlorobi 

NPK                      
P                      
N                      
K                      

Chloroflexi 

NPK                      
P                      
N                      
K                      

Chrysiogenetes 

NPK                      
P                      
N                      
K                      

Cyanobacteria 
 

 

NPK                      
P                      
N                      
K                      

Deferribacteres 

NPK                      
P                      
N                      
K                      

Deinococcus Thermus 

NPK                      
P                      
N                      
K                      

Dictyoglomi 

NPK                      
P                      
N                      
K                      

Elusimicrobia 

NPK                      
P                      
N                      
K                      

Fibrobacteres 

NPK                      
P                      
N                      
K                      

 



Supplementary Table 3 con’t. 
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Category C* Kt Nt Pt Al As Cd K Mg Mn Na Ni P S Zn N. 
NH4 

N. 
NO3. 
NO2 

Nt Ct OM pH Moisture 

Firmicutes 

NPK                      
P                      
N                      
K                      

Fusobacteria 
NPK                      

P                      
N                      
K                      

Gemmatimonadales 

NPK                      
P                      
N                      
K                      

Lentisphaerae 
NPK                      

P                      
N                      
K                      

Nitrospirae 
NPK                      

P                      
N                      
K                      

Planctomycetes 
NPK                      

P                      
N                      
K                      

Poribacteria 
NPK                      

P                      
N                      
K                      

Proteobacteria 
NPK                      

P                      
N                      
K                      

Spirochaetes 
NPK                      

P                      
N                      
K                      

Synergistetes 

NPK                      
P                      
N                      
K                      

Tenericutes 
NPK                      

P                      
N                      
K                      

Thermotogae 

NPK                      
P                      
N                      
K                      

Verrucomicrobia 
NPK                      

P                      
N                      
K                      
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Abstract 
Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high envi-
ronmental impact on ethanol production. This study aimed to determine the main 
microbial processes responsible for the N2O emissions from soil fertilized with 
different N sources, to identify options to mitigate N2O emissions, and to deter-
mine the impacts of the N sources on the soil microbiome. In a field experiment, 
nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 di-
methylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with 
polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N 
applied) and PSCU did not reduce cumulative N2O emissions compared to urea. 
NIs reduced N2O emissions (95%) compared to urea and had emissions compara-
ble to those of the control (no N). Similarly, calcium nitrate resulted in very low 
N2O emissions. Interestingly, N2O emissions were significantly correlated only 
with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abun-
dances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, 
were the main contributors to N2O emissions. Moreover, the treatments had little 
effect on microbial composition or diversity. We suggest nitrate-based fertilizers 
or the addition of NIs in NH4+-N based fertilizers as viable options for reducing 
N2O emissions in tropical soils and lessening the environmental impact of biofuel 
produced from sugarcane. 
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4.1 Introduction 
Agriculture is the main anthropogenic source of N2O emissions, which are 

predicted to increase as nitrogen fertilizer use increases worldwide to meet the 
global food demand[1]. Currently, N2O emissions derived from N fertilizers ac-
count for up to 40% of total greenhouse gases (GHG) emissions in ethanol pro-
duction from sugarcane[2]. High N2O emissions can negate the benefits of GHG 
reduction of biofuels used to replace fossil fuels[3]. 

Emissions of N2O from soils occur mainly through nitrification and denitri-
fication processes. These processes are carried out by autotrophic and heterotroph-
ic microorganisms belonging to Bacteria, Archaea and Fungi divisions[4-6]. Other 
N transformations such as nitrifier denitrification, dissimilatory reduction of NO3- 
to NH4+, chemo-denitrification and co-denitrification may also produce N2O. De-
spite considerable knowledge of the processes evolving N2O, the prevalence of 
these processes in tropical soils has only begun to be addressed. 

The denitrification process has been demonstrated to contribute more to 
N2O emissions than nitrification at soil moisture levels above 75% of the water-
filled pore space (WFPS); however, nitrification has been observed to be more 
prevalent in soil at 60% WFPS[7]. High correlation between N2O emissions and 
bacterial amoA and nirK abundances are observed[8], suggesting that both nitrifi-
cation and denitrification and/or nitrifier denitrification processes are responsible 
for N2O emissions when cattle urine is applied to soils with 100 and 130% of wa-
ter-holding capacity. 

In the central-west and southeast regions of Brazil, about 80% of the land 
area is cultivated with sugarcane[9]. The dominant soils in these regions are Red 
Latosols (Hapludox), which are highly weathered, deep and well-drained soils[10]. 
Here, we expected that denitrification would be low because the optimal condi-
tions are at least 60% WFPS. Though high levels of rainfall and anaerobic condi-
tions in soil micropores may increase the contribution of denitrification to N2O 
emissions[11], we predicted based on the high soil drainage that nitrification 
would be the major pathway contributing to N2O emissions. In this case NH4+-
based fertilizer would result in higher N2O emissions than those from NO3--based 
fertilizers in these soils. Up to date, this process has not been shown for these 
types of soils grown with sugarcane. 

The Intergovernmental Panel on Climate Change (IPCC) estimates that 1% 
of N applied is emitted as N2O as default value[12-14]. However, in practice, dif-
ferent amounts of N2O are emitted depending on N fertilizers and soil types, and 
environmental conditions[12-14]. Therefore, experiment-based nitrogen manage-
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ment is an important tool to decrease N2O emissions and to reduce the environ-
mental impact of agricultural practices[14]. 

Urea is the most widely used fertilizer in the world, and generally has been 
linked to higher N2O emissions compared with other N sources[13]. One way to 
reduce N2O emissions is the addition of specific nitrification inhibitors (NIs) such 
as dicyandiamide (DCD), 3,4 dimethylpyrazone phosphate (DMPP), nitrapyrin, 
and others with urea fertilization[14, 15]. These nitrification inhibitors block the 
enzyme ammonia monooxygenase in the first step of nitrification[16]. The gene 
encoding this enzyme is amoA, present in ammonia-oxidizing bacteria (AOB) and 
archaea (AOA). Several studies indicate that DCD and DMPP reduce AOB or 
AOA gene abundances, depending on which microorganism was prevalent[8, 
17-19]. DCD has been reported to reduce also the abundance of nirK, probably 
because AOB abundances are correlated with nirK abundances, implying reduced 
nitrifier denitrification abundances[8].  

To our knowledge, there are no studies identifying the main microbial pro-
cesses, the effect of different fertilizers on N2O emissions, and the impact of dif-
ferent N fertilizers on the microbial community in tropical soils grown with sug-
arcane. Therefore, the goals of this study were to (i) determine the main microbial 
process responsible for the N2O emissions, (ii) evaluate the efficacy of enhanced-
efficiency fertilizers, including nitrification inhibitors, in reducing N2O emissions, 
and (iii) determine the short-term effects of the fertilizer treatments on bacterial 
community composition and diversity.  

4.2 Methods 
4.2.1 Experimental set up 

The present experiment was carried out in the 2013/14 season, correspond-
ing to the third ratoon cycle of sugarcane, the variety SP791011, in the experimen-
tal area of the Agronomic Institute in Campinas, Brazil (22º52’15” S, 47º04’57” 
W). The soil in the area was classified as Typic Hapludox or Red Latosol[10, 21]. 
The same experiment was carried out during the seasons of 2011/12 and 
2012/13[15]. However, in the 2013/14 season an extra treatment with calcium ni-
trate was included to consider N2O emissions due to nitrification or denitrification 
processes. Here, soil samples were collected in order to associate greenhouse gas-
es (GHG) emissions with the microbial processes that were involved. The treat-
ments were: 1) Control plot without N fertilization (control); 2) urea (UR); 3) UR 
+ DCD; 4) UR + DMPP; 5) Polymer and Sulphur Coated Urea (PSCU); 6) UR + 
DCD-R; 7) UR + DMPP-R; 8) Calcium Nitrate. R stands for reapplication of in-
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hibitors in the same plots during the previous two cycles of the experiment. The 
fertilizers were applied on 19 December 2013, 20 days after the harvest of the 
previous cycle. Phosphorus and potassium were concurrently applied to all plots 
at rates of 20 and 100 kg ha-1 of P and K, respectively. 

Nitrogen was applied at a rate of 120 kg ha-1; the nitrification inhibitor DCD 
(Sigma Aldrich) was added in a dose of 5% DCD-N in relation to urea-N whereas 
DMPP (powder form) was added as 1% DMPP (w/w) to urea-N; PSCU was pro-
duced by Produquímica (Produquímica Ltda, Brazil) and calcium nitrate by Yara 
(Yara International ASA). Fertilizers were incorporated at a 5 cm soil depth to 
avoid NH3 volatilization from urea and the effect of NIs on this N loss[35]. The 
fertilizers were applied on either side of the plant row, 10 cm away from the re-
cently harvested sugarcane plants. On one side of the plant row the greenhouse 
gases were measured; on the opposite side of the same plant, soil for chemical and 
molecular microbial analyses was collected. 

Sugarcane yields were not measured in this study because the amount of N 
lost as N2O is generally much too low to affect yields. Furthermore, the plot size 
necessary to evaluate yields usually exceeds 100 m2. Because our focus was on 
GHGs emissions, which are dependent on localized soil conditions, small plots 
were chosen. In our study, large plots were not only unnecessary but would con-
tribute to noise in the gas flux data.  

4.2.2 Greenhouse gases analysis  

Greenhouse gases were collected using static chambers[15]. Chambers were 
fixed in the soil 5 cm deep along two 25-m long rows of sugarcane. In total, 32 
chambers were used, with four replicates per treatment, in a completely ran-
domised design. Gases were sampled in the morning and three times per week 
during the first three months after fertilizer application, then biweekly as previ-
ously done[15]. In each sampling date, gas samples were taken at three time inter-
vals: 1, 15, and 30 minutes. 

After sampling, the gases were immediately stored in pre-evacuated Extain-
ers vials (Labco Limited, Ceredigion, United Kingdom) and analysed in a Shi-
madzu gas chromatograph (GC-2014). Cumulated gas emissions were calculated 
by linear interpolation between gas samplings periods. Details of the procedures 
used for gas analysis and calculations are described elsewhere[14, 20]. 
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4.2.3 Soil chemical analysis 

Soil samples (0-10 cm depth) were collected more intensively in the first 
two months after fertilizer application, a period corresponding to higher N2O 
emissions. Using an auger, three subsamples were collected as a composite sam-
ple per experimental plot. In total, eight soil sampling campaigns were collected at 
7, 16, 18, 27, 35, 42, 82 and 158 days after fertilizer application. The soil samples 
were stored in plastic bags at -20ºC. Gravimetric moisture after constant weight 
was attained at 105 ºC. The water-filled pore space (WFPS) was calculated con-
sidering soil bulk density and porosity determined at the beginning of the experi-
ment. Soil pH was measured in CaCl2 (0.0125mol L-1) and NH4+-N and NO3--N 
contents were determined by steam distillation after soil extraction in 2 mol L-1 
KCl solution[36]. 

4.2.4 Real-time PCR analysis 

Soil subsamples (20 g) were stored at -80ºC for molecular analyses. Total 
soil DNA was extracted from 0.25 g of soil using the Power Soil kit (Mobio, 
Carlsbad, CA USA) following the manufacturer’s instructions. The quantity and 
quality of DNA was measured by NanoDrop ND-1000 spectrophotometer (Nano-
Drop Technologies, Montchanin, USA). The DNA samples were diluted in water 
free of DNase and RNase (Sigma Aldrich) and the abundance of the genes encod-
ing for nitrification and for denitrification processes were quantified by quantita-
tive real-time PCR with a Qiagen Rotor-Gene Q6000 cycler (RO212226). A reac-
tion was performed in total volume of 12 µl, containing 6 µl Sybrgreen Bioline 
SensiFAST SYBR non-rox mix, 0.5 µl of each primer (5 pmol) and 5 µl of DNA 
(3 ng). Exceptions were the reaction for the nirK amplification, for which the 
Sybrgreen Qiagen Rotor-Gene SYBR Green PCR Kit was used, and the nosZ am-
plification, for which the starting DNA concentration was 30 ng. Reactions were 
performed by a QIAgility robot (003516).  

The thermal conditions of each gene amplification are listed in Supplemen-
tary Table S5. Acquisition was done at 72°C (cycle A) or 82-86°C (cycle B) to 
avoid primer dimers. Melt curve analysis was done at 55-99°C to confirm speci-
ficity; the qPCR products were checked by agarose gel electrophoresis to confirm 
the desired amplicon size. Plasmid DNA from microorganisms containing the 
gene of interest or from environmental samples were used for the standard curve 
and then cloned into vectors as described in Table S5. Normal PCR reactions were 
carried out with similar thermal conditions as qPCR to confirm the fragment size 
of interest, then cloned and transformed into JM109 High Efficiency Competent 
Cells (Promega, In Vitro Technologies, Auckland, New Zealand). After overnight 
bacterial growth in LB medium with ampicillin at 37ºC, plasmids were extracted 
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using the PureLin Quick Plasmid Miniprep Kit (Life Technologies, Auckland, 
New Zealand). The quantity and quality of plasmid DNA were checked by spec-
trophotometer (NanoDrop ND-1000 Technologies, Montchanin, USA). Standard 
dilutions were obtained from 10 to 108 copies/µl of each gene. Each run included a 
DNA template, standard, and a no-DNA control – water free of DNase and RNase 
(Sigma Aldrich) – done in duplicate. Reaction efficiency was 89-105% and R2 
values ranged from 0.94 to 0.99.  

4.2.5 16S rRNA partial gene sequencing 

To assess the impact of the treatments on the bacterial community, we se-
quenced the 16S rRNA gene marker from total DNA extracted from the soil sam-
ples. The V4 region of the 16S rRNA gene was amplified by using archaeal/bacte-
rial primers 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-GGAC-
TACVSGGGTATCTAAT-3'). The samples were PCR-amplified using barcoded 
primers linked with the Ion adapter “A” sequence (5′-CCATCTCATCCCT-
GCGTGTCTCCGACTCAG-3′) and Ion adapter “P1” sequence (5′-CCTCTC-
TATGGGCAGTCGGTGAT-3′) to obtain a sequence of primer composed for A-
barcode-806R and P1-515F adapter and primers. The 16S rRNA gene amplifica-
tions for library preparation were performed on the C1000 thermocycler (Biorad, 
Hercules, CA, USA) with thermal conditions of 95°C-5 min.; 35x 95°C-30s, 
53°C-30s, 72°C-60s; 72°C-10 min. A reaction of 25 µl in total was done, includ-
ing 2.5 µl of 10X PCR Buffer, 2.5 µl dNTPs (200 µM), 0.25 µl of each primer 
(0.1 pmol/µl), 0.2 µl of fast startExp-Polymerase (0.056 U) and 1 µl of DNA (0.6 
ng). The reactions were carried out in duplicate and included a negative control. 
The amplicons were checked by gel electrophoresis. The PCR products were puri-
fied by Agencourt AMPURE XP to remove primer dimers, then quantified by 
Quant-iT PicoGreen and equimolar mixed for sequencing using the PGM Ion Tor-
rent (Life Technologies). 

4.2.6 16S rRNA amplicon sequences processing 

MOTHUR Version 1.34.2 was used to process the 16S rRNA partial genes 
sequences, implemented using a Snakemake workflow on a 32-node server run-
ning Linux Ubuntu 14.4[37]. Forward and reverse primer sequences were re-
moved from each sample FASTQ file using Flexbar version 2.5[38]. Reads were 
filtered based on sequence quality by running the Sickle tool (minimum quality 
score 25, minimum length 150). Filtered reads were converted to FASTA format 
and concatenated into a single file, then clustered into OTUs using the UPARSE 
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strategy of dereplication, sorting by abundance with at least two sequences and 
clustering using the UCLUST smallmem algorithm[39]. These steps were per-
formed with VSEARCH version 1.0.10, which is an open-source and 64-bit multi-
threaded compatible alternative to USEARCH. Chimeric sequences were detected 
using the UCHIME algorithm[40] implemented in VSEARCH. All reads before 
the dereplication step were mapped to OTUs using the USEARCH_global method 
implemented in VSEARCH to create an OTU table and then converted to the 
BIOM-Format 1.3.1[41]. Last, taxonomic information for each OTU was added to 
the BIOM file using the RDP Classifier version 2.10[42]. 

4.2.7 Statistical analysis – gas fluxes and gene abundances 

Daily GHG fluxes, cumulated emissions of N2O, CO2, CH4 and gene abun-
dance values were checked for normal distribution of residues by Shapiro-Wilk 
test, and then submitted to variance analysis (ANOVA) and the means compared 
by Tukey’s test at P ≤ 0.05. Soil pH was transformed to H+: 10-pH before statistical 
analysis. Linear correlations between N2O fluxes and environmental variables 
were evaluated at the 5% level of significance. Multiple linear regressions, which 
were selected by the stepwise process at p ≤ 0.05, were fitted between N2O fluxes 
and environmental variables. When necessary, the N2O flux values were log(x) 
transformed and rechecked to obtain a normal distribution of residues and vari-
ance stability[43]. The calculations were performed with the SISVAR statistical 
software[43] and graphics plotted using Sigma Plot[43]. 

Cumulative N2O emissions as a function of time were fitted by sigmoidal or 
exponential equations, for which the sigmoid equation was: 

#  

where N2O is the cumulative N2O-N emission, g ha-1, t is the time in days after 
fertilizer application, and a, t0 and b are equation parameters, where a is the max-
imum loss and t0 is the time in which 50% of maximum loss occurs. 

The exponential rise to the maximum model had the following equation: 

#  

where N2O is the cumulative N2O-N emission, g ha-1, t is the time in days 
after fertilizer application, and a and b are equation parameters, where a is the 
maximum loss and b is the rate of rise. 
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4.2.8 Statistical analysis – 16S rRNA amplicon sequence data 

The 16S rRNA samples were analysed to compare bacterial community alpha 
diversity and composition across treatments and time point (days 7, 16, 18, 27, 35, 
42, 82 and 158). The BIOM files were handled with the “phyloseq” package[44] 
in R50. Rarefaction curves were generated to ensure adequate sequencing depth 
across samples. Discarding undersequenced samples, the minimum sample size 
was 2000. For alpha diversity analyses, the 16S rRNA samples were rarefied to 
2000 sequences using the “vegan” package51. Renyi diversities at alpha level 1, 
corresponding to the Shannon diversity index were kept (“BiodiversityR” R pack-
age). The Shannon diversity data was furthermore subjected to Kruskal-Wallis 
tests among treatments and the Kruskal-Wallis multiple comparison test between 
treatments using the “pgirmess” R package.  

Comparisons of bacterial community compositions were evaluated using the 
Statistical Analysis of Metagenomic Profiles (STAMP) software52. The top nine 
Bacterial phyla based on relative abundances across all samples were compared 
among and between treatments for each time point. The unclassified sequences 
were removed prior to analysis. The ANOVA statistical and Tukey-Kramer post-
hoc tests (CI 95%) were applied using the Benjamini Hochberg multiple test cor-
rection. To explore beta diversity (treatment differences) of the bacterial commu-
nities, Between-Class Analysis (BCA) of the non-rarefied 16S rRNA samples 
grouped by treatment was performed using the “ade4” R package53. First, with 
unclassified sequences removed, correspondence analyses of the compositional 
data agglomerated at the rank of Phylum and Genus were conducted, followed by 
BCA. Further, the BCA groups for the phyla and genera analyses were tested us-
ing the Monte-Carlo permutation method with 999 repetitions. 

4.3 Results 
4.3.1 Greenhouse gases emissions 

Emissions of N2O were low in the first 10 days after fertilizer application, with 
less than 10 g ha-1 day-1 of N emitted (Figure 1). High N2O emission followed 
rain events coupled with high soil inorganic N availability (Figure 2). The UR 
treatment had the highest peak of N2O emission, on the 14th day, which corre-
sponded to a loss rate of more than 200 g ha-1 day-1 of N. On the 29th day, another 
high emission peak of about 170 g ha-1 day-1 occurred. Between these peaks, N2O 
emissions were still relatively high ranging from 15 to 70 g ha-1 day-1 in the UR 
treatment. The treatments UR+DCD, UR+DMPP, and calcium nitrate had smaller 
N2O fluxes than those of UR, showing emission levels similar to the control 
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treatment (around 5 g ha-1 day-1 of N). Urea containing NIs (UR+DCD-R, 
UR+DMPP-R) had been reapplied in the same plots in the previous two years[15]. 
Emissions in the plots with repeated application of NIs were also low at ≤ 5 g ha-1 
day-1 of N (Figure 1). The controlled release fertilizer PSCU treatment showed 
lower N2O emission (80 g ha-1 day-1) compared to the UR treatment on the 14th 
and 29th days, but was similar to UR treatment levels afterwards, until the 50th 
day. Between 70 and 120 days after fertilizer application, N2O emissions were 
greater in the PSCU treatment (between 10 – 20 g ha-1 day-1) compared to the oth-
er treatments (2 g ha-1 day-1) (Figure 1). 

Cumulated N2O emissions in the control treatment were equivalent to 0.3 
kg ha-1 after 278 days. The UR treatment emitted more than 2.3 kg ha-1 of N2O-N, 
which corresponded to 1.7% of total N applied. The UR+DCD, UR+DMPP treat-
ments resulted in considerable reductions in cumulated N2O emissions compared 
to UR, with emissions that did not differ from those of the control (Table 1). The 
reduction of N2O emissions by addition of NIs to UR varied from 88 to 97% (95% 
in average). The PSCU treatment resulted in cumulative emissions similar to those 
of UR. Calcium nitrate resulted in low N2O emissions that did not differ from 
those of the UR+DCD and UR+DMPP treatments or the control (Table 1). 

Cumulative N2O emissions data were fit with sigmoidal or exponential 
equations for the control, UR and PSCU treatments. These models were not ap-
plied to the UR+DCD, UR+DMPP, and calcium nitrate treatments because in 
these treatments the N2O emissions did not differ from the control. The N2O emis-
sions in the control treatment were low and whether included or excluded did not 
affect the model equations. The UR treatment achieved 90% of maximum N2O 
loss 40 days after fertilizer application. The N2O emission lasted longer with the 
PSCU treatment than with UR; 90% of total N2O emission was achieved 187 days 
after fertilization with PSCU (Figure 3). 

The total CO2 and CH4 emissions were around 6 t ha-1 and -600 g ha-1, re-
spectively. For both CO2 emissions and CH4 consumption, no differences between 
the treatments were observed (Table 1).  
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Figure 1. Rainfall, air temperature, water-filled pore space (WFPS) and nitrous oxide fluxes from 
Control (No N), urea (UR) with or without nitrification inhibitors (DCD and DMPP), polymer 
sulphur coated urea (PSCU) and calcium nitrate applied to sugarcane. R: reapplication of in-
hibitors in the same plots during the previous two cycles of the experiment. N fertilizers were ap-
plied on 13 December 2013. 

!  
Figure 2. Soil concentration of NH4+-N + NO3--N and pH from Control (No N), urea (UR) with 
or without nitrification inhibitors (DCD and DMPP), polymer sulphur coated urea (PSCU) and 
calcium nitrate applied to sugarcane. R: reapplication of inhibitors in the same plots during the 
previous two cycles of the experiment. 
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Table 1. Cumulated nitrous oxide, carbon dioxide and methane emissions from Red Latosol soil 
during 278 days after application of urea with or without nitrification inhibitors (DCD and 
DMPP), polymer sulphur coated urea (PSCU) and calcium nitrate applied to sugarcane. 

* Tukey test, p ≤ 0.05; ns: no significant; N2O-N: g ha-1 transformed in log(X) † Results from treatment without N were 
subtracted for this calculation. - R means reapplication of inhibitors in the same plot in the two preceding years. Different 
characteristics in the column of N2O mean significant differences (p<0.05) between the values. 

4.3.2 Soil analysis 

In the first soil sampling seven days after fertilizer application, the calcium 
nitrate treatment showed N inorganic content (NH4+ + NO3-) around 600 mg kg-1, 
which was lower than the 1000 mg kg-1 of N in the 10 cm soil layer found in the 
UR treatment (Figure 2). Afterwards the N content in soil decreased exponential-
ly; during this time, nitrification inhibitors in the UR+DCD and UR+DMPP 
treatments maintained soil N mostly in the NH4+ form (Supplementary Figure 
S1). At the 82th day, soil treated with PSCU showed N content higher than other 
treatments, near 200 mg kg-1 of N, as opposed to 100 mg kg-1 from the UR treat-
ment. 

The original soil pH (control treatment) was around 5.1 but increased to 8 in 
the UR, UR+DCD and UR+DMPP treatments by seven days after fertilizer appli-
cation, because of urea hydrolysis. PSCU showed pH value 1.4 units lower (pH 
6.6) but treatments with calcium nitrate did not affect soil pH. In the 42th day, the 
soil pH of the UR+DCD and UR+DMPP treatments had dropped to values around 
7 (Figure 2). 

Treatments N2O-N CO2-C CH4-C

g ha-1 log* % N applied† Reduction (%) kg ha-1* g ha-1*

Control 286 2.4 C - - 5835 ns -598 ns

UR 2301 3.4 A 1.68 - 5933 -633

UR+DCD-R 531 2.7 B 0.20 88 5883 -612

UR+DMPP-R 350 2.5 C 0.05 97 5871 -532

PSCU 2165 3.3 A 1.57 7 5912 -648

UR+DCD 410 2.6 Bc 0.10 94 5859 -633

UR+DMPP 353 2.5 C 0.06 97 5897 -656

Calcium nitrate 329 2.5 C 0.04 98 5973 -600

P value <0.00001 0.9769 0.9328
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Figure 3. Cumulative N2O emission (red dots) and sigmoidal or exponential equations fitted 
(black lines) to data of urea (UR) and polymer sulphur coated urea (PSCU) applied to sugarcane. 
(b) net UR and PSCU N2O emissions calculated by subtracting data of the control treatment. 

4.3.3 Nitrogen cycle gene abundances 

The abundances of N cycling genes related to N2O emissions are depicted in 
Figure 4 for one timepoint sampling that featured high N2O emissions: 16 days 
after fertilizer application, corresponding to the second soil sampling. The qPCR 
results from all data sampling timepoints are available in Supplementary Table 
S1. The abundance of amoA belonging to ammonia-oxidizing archaea (AOA) was 
lower in treatments with N sources than in the control plot and did not show sig-
nificant differences among the N sources across nearly all data sampling points. 
The correlation between AOA amoA abundance and N2O emissions was negative 
(Supplementary Table S2). The gene abundance representing total archaea 
showed a similar pattern as the AOA amoA abundance (Figure 4 and Supplemen-
tary Table S1). On the other hand, the amoA abundance of ammonia-oxidizing 
bacteria (AOB) was best correlated with N2O emissions, showing a coefficient 
(R2) of 0.18 (p ≤ 0.05) (Supplementary Table S2). Over almost all data sampling 
points, AOB amoA abundances were higher in the UR treatment than in other 
treatments, following the data from N2O emissions (Figure 4 and Supplementary 
Table S1). For example, concurrent to high N2O emissions at day 16 after fertiliz-
er application, the coefficient of correlation (R2) between N2O and AOB amoA 
was 0.53 (Supplementary Figure S2). 

The denitrification genes nirS and nosZ as well as the 16S rRNA gene of 
total bacteria did not show differences in abundance between treatments over al-
most all data samplings. The nirK occurring in both ammonia-oxidizing and deni-
trification microorganisms had a negative correlation with N2O emissions, while 

- �  -97



the total bacteria abundance resulted in a positive correlation with this emission 
(Supplementary Table S2). In some data samplings, the abundance of the nosZ 
was higher in treatment with N than the control treatment, but no differences in 
nosZ abundance were observed between the N sources treatments (Figure 4 and 
Supplementary Table S1). 

A good fit, with an R2 of 0.47, was obtained by stepwise regression model 
relating N2O emissions to environmental variables, including the AOB amoA 
abundance, rain amount accumulated one week before GHGs measurement, 
NH4+-N and NO3-N contents, total bacteria abundance, pH, and CO2 emission 
(Supplementary Table S3). Removing the treatments without nitrification in-
hibitors, NH4+-N content in soil was correlated with N2O, while NO3--N was not 
(Supplementary Tables S2 and S3). 

4.3.4 Bacterial community composition and diversity 

Because the AOB AmoA abundance was correlated with N2O emissions, we 
sequenced the 16S rRNA genes from our samples to ascertain the effect of the 
treatments on the entire microbial (bacterial and archaeal) community. After pro-
cessing the 16S rRNA amplicon sequences, the 177 samples (8 treatments x 8 
timepoints x 3 replicates, excluding undersampled samples and outliers) contained 
between 2,000 and 56,638 sequences, with a total of 3,607,143 sequences dis-
tributed into 9,267 Operational Taxonomic Units (OTUs). Rarefaction curves in-
dicated that most of the community diversity was captured with our sequencing 
depth (Supplementary Figure S3). The top nine bacterial phyla across the sam-
ples were Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Gemmati-
monadetes, Proteobacteria and Verrucomicrobia (Supplementary Table S4). The 
top phyla that differed between the treatments within at least one timepoint were 
Firmicutes, Bacteroidetes, Nitrospira, Proteobacteria, Verrucomicrobia and Aci-
dobacteria. Shannon diversity indices of the bacterial communities ranged be-
tween 5.3 and 6.3 in treatments over all time points and were significantly differ-
ent between treatments only for days 27 (Control versus UR) and 82 (PSCU ver-
sus UR+DMPP; Table 2).  

Based on phylum-level relative abundances, the samples were significantly 
grouped by treatment on days 7, 27, 35, 42, 85 and 158 (permutation test, P < 
0.100; Table 2) with a range of observed values between 0.83 and 0.44. At day 7, 
three separate clusters were formed respectively with the Control and calcium ni-
trate treatments, the PSCU treatment and the other treatments (Supplementary 
Table S5). However, this clustering pattern was not observed during the remain-
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ing other days, indicating no differences in the bacterial communities between 
treatments. When bacterial community compositions were compared at the taxo-
nomical level of genera, the samples were significantly grouped by treatment and 
the grouping was characterized by low observation values for all days except day 
16 (P=0.119; Table 2 and Supplementary Table S5). The sample treatment 
grouping pattern from day 7 was seen in the genus-level comparisons (Supple-
mentary Table S5). 

Table 2. Shannon indices and Between-Class Analysis (BCA) ordinations of the bacterial commu-
nities present in the Red Latosol soil under treatments with urea with or without nitrification in-
hibitors (DCD and DMPP); polymer sulphur coated urea (PSCU) or calcium nitrate applied to 
sugarcane. 

*DAF: Days after fertilizer application. Means in column followed by same letter did not differ; ns: no significant. † R 
means reapplication of inhibitors in same plots. 

Treatments 16S rRNA gene diversity (Shannon index)

7 DAF* 16 18 27 35 42 85 158

Control 6.2 ns 6.1 ns 6.0 ns 6.2 a 6.1 ns 6.2 ns 6.0 ab 6.1 ns

UR 5.8 6.0 6.0 5.3 b 5.7 5.8 5.6 ab 6.0

UR+DCD-R† 5.9 6.2 5.8 6.0 ab 6.0 6.1 5.8 ab 6.2

UR+DMPP-R 5.6 6.1 5.9 5.8 ab 6.1 6.2 6.1 ab 6.2

PSCU 5.9 5.9 5.8 5.8 ab 5.1 5.2 5.4 a 5.8

UR+DCD 5.7 6.1 5.7 5.8 ab 5.9 6.0 6.0 ab 6.2

UR+DMPP 5.7 6.0 5.9 5.8 ab 5.5 6.1 6.1 b 6.1

Calcium nitrate 6.3 6.0 5.7 5.9 ab 5.9 6.2 6.0 ab 6.2
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Figure 4. Nitrous oxide fluxes, nitrogen cycle genes (amoA bacteria, amoA archaea, nirK, nirS, 
nosZ) abundances and total bacteria and total archaea abundances in the Red Latosol soil 16 days 
after fertilizer application of urea with or without nitrification inhibitors (DCD and DMPP); poly-
mer sulphur coated urea (PSCU) or calcium nitrate applied to sugarcane. R: reapplication of in-
hibitors in the same plots during the previous two cycles of the experiment. 
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4.4 Discussion 
Nitrous oxide emissions from the urea treatment were higher than the emis-

sions found in two previous sugarcane cycles in this experimental area[15]. Here, 
the emission factor was 1.7% of N applied, which is greater than the emission fac-
tors found in other studies of sugarcane soils in Brazil, around 0.7 – 1% of N ap-
plied as urea[12, 15, 20]. The sugarcane plant phenology may give insight into 
higher emissions. The N fertilizer treatments were applied 20 days after the previ-
ous sugarcane ratoon was harvested. At the time of fertilization, the soil was rela-
tively dry – below 30% of the WFPS (Figure 1) and sugarcane plants were still 
beginning to sprout. At this stage the root system was being reformed and nutrient 
uptake was slow, as the high soil N concentration indicated (Figure 2). This prob-
ably led to the greater N2O emissions than expected. The high peaks of N2O emis-
sion occurred after two high rain events in the first 35 days (total 65 mm and 90 
mm) on a mostly dry soil (15 – 20% WFPS) but with high air temperatures as 
shown in Figure 1. Moreover, high correlation between N2O emission and accu-
mulated rain in the week was found (Supplementary Table S2). Thus, the climatic 
conditions in this season contributed to the high N2O emission values.  

A strong reduction in N2O emissions due to the addition of nitrification in-
hibitors to urea was found, as well as a lack of beneficial effects of the controlled 
release fertilizer PSCU, supporting similar observations in the same area[15]. The 
N2O emissions from PSCU were lower than those from UR in the first 30 days 
after N application, as expected from a slow-release fertilizer (Figure 2). There 
was a dry spell from mid-January to the end of March (Figure 1), which may have 
slowed down the release of N from PSCU. Subsequent release of N from the 
PSCU pellets likely led to the observed increase in N2O emissions (Figure 1). In 
this way, the N2O emission from PSCU had lower peaks than those of UR but 
lasted longer (Figure 3). Thus, in the end of the experiment cumulated N2O of UR 
and PSCU emissions were similar, suggesting that PSCU is not an environmental-
ly friendly N source during one cycle of sugarcane. 

In the present study, the calcium nitrate treatment showed very small N2O 
emissions that were similar to those of the control plots or plots with urea and ni-
trification inhibitors (NIs). In the present study intensive GHG measurements un-
der field condition were performed over a whole yearly cycle of sugarcane. We 
maintain that this is the first field study demonstrating much lower N2O emissions 
of a nitrate-N source in comparison to high emissions with urea-N or NH4+-N 
sources; the reduction in N2O emissions were 98% when compared to urea. This 
reduction in emissions might be attributed to the high drainage capacity of the soil 
of the present study, which was classified as Typic Hapludox[21] or Red 
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Latosol[10]. Water accumulation does not tend to occur in these soil profiles, and 
consequently, favourable conditions for denitrifiers are avoided. 

Under controlled conditions with 15N-labeled sources, denitrification was 
more important at the high soil moisture (75% WFPS), while N2O emissions with 
NH4+ fertilizers were two times higher than with NO3- fertilization at 60% 
WFPS[7]. In our study WFPS reached a maximum of 40% (Figure 1), which is 
more favourable for nitrification. The O2 concentrations were likely not low 
enough to favour the denitrification process in relation to nitrification.  

An alternate explanation for the low N2O emissions in the calcium nitrate 
treatment could be NO3- leaching. Indeed, the N concentration in the 0-10 cm soil 
layer of the calcium nitrate treatment was lower than that observed with the other 
N sources (Figure 2). However, with only 70 mm of rain on a dry soil in 15 days, 
nitrate is unlikely to have moved beyond 30 cm. Moreover studies with 15N la-
belling showed little NO3- leaching in sugarcane fields in Brazil[22, 23]. There-
fore, NO3- leaching was not expected to explain the small amount of N2O emis-
sion found with calcium nitrate in the present study. However, further studies 
should include NO3- leaching measurements to confirm the present data.  

Another aspect that may have contributed to the small N2O emission in the 
calcium nitrate treatment was the relatively low organic carbon content in the soil, 
approximately 1%[15]. Sugarcane trash and vinasse have been reported to in-
crease N2O emissions[24], especially under high soil moisture conditions[24]. 
Here, we did not include in our treatments C sources such as vinasse, filter cake or 
sugarcane trash, common sugarcane residues or by-products. These residues can 
favour not only denitrifiers but also nitrifiers and other microorganisms related to 
the N cycle[25]. Application of exclusively NO3--N sources with the addition of C 
sources, as commonly applied during sugarcane production, may result in N2O 
emissions different from those observed here and deserves further attention. 

Smaller N2O emissions from calcium nitrate as compared to UR or NH4-
based fertilizer have been previously reported[26, 27]. However, in one study, 
N2O emissions observed with all the studied N sources were low (around 0.5% of 
the N applied), which makes it difficult to compare the treatments[27]. In a field 
grown with maize in Brazil, no differences were reported between UR and calci-
um nitrate in N2O emissions, but the emission factor was 0.2% of the N 
applied[11]. In our study, the N2O emissions from UR were high at 1.7 % of N 
applied; the low N2O emission under calcium nitrate occurred concurrently to 
high N2O emissions from UR treatment, which highlights the relevance of the 
present study.  
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If soil moisture conditions are favourable to denitrification, nitrate-based N 
fertilizers may produce higher N2O emissions than urea or ammonium fertilizers. 
That is the case of the study conducted in a Gleysol soil in which the WFPS was 
above 60% during most of the experimental period[28]. 

Based on Between-Class ordinations of the 16S rRNA compositional data as 
well as the total 16S rRNA gene copy numbers, the bacterial community appeared 
to be more affected by sampling day than by treatment. This suggests overall a 
minimal impact of the treatments on bacterial community composition and diver-
sity. Though further work should examine the long-term impacts, there appears to 
be a low short-term impact of NIs on the bacterial community. Culturing or shot-
gun metagenomic and metatranscriptomic techniques may provide future avenues 
to illuminate the activity of specific nitrifiers under the environmental conditions 
in this study and to enhance predictions of N2O emissions due to nitrification in 
tropical soils.  

Archaeal amoA abundances were highest in the control treatment compared 
to the treatments with any N sources. Elevated ammonia concentrations and high-
er soil pH are suggested to favour bacteria compared to archaea[8, 17, 29]. Inter-
estingly, the plots with calcium nitrate also showed a reduction in archaeal amoA 
abundance compared to the control. This may reflect the accumulated effect of 
ammonium nitrate applied in the two previous cycles as this was the N source 
previously used in a separate study[15].  

Significant correlations between N2O emissions and amoA abundances were 
found for ammonia-oxidizing bacteria (AOB), indicating that in our study, N2O 
emissions occurred via nitrification. During the first month after UR application, a 
peak in the AOB amoA abundances was observed. Concurrently, the nitrate con-
tent in soil increased whereas ammonium decreased, soil pH decreased from 8 to 
around 6.3, and the soil temperature was 25ºC (Supplementary Figure S5). Thus, 
the soil and climatic conditions were favourable to AOB and N2O emissions from 
nitrification. 

Apart from identifying nitrification as the likely source of N2O emissions 
here, the data also suggest that denitrification was very low. No differences among 
treatments nor significant correlations between N2O emissions and the genes en-
coding denitrification process as nirK, nirS and nosZ abundances were observed. 
Further, the model that best estimated N2O emissions included bacterial amoA 
abundances and N present in the NH4+ form but not in NO3-. Thus, our gene abun-
dance data supported the results of the low N2O emission data obtained from ap-
plication of nitrate as the N source. 
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Significant correlation between AOB amoA abundance and N2O emissions 
was also shown. Under controlled conditions, Venterea et al.[30] found a high cor-
relation of N2O emissions from urea and NO2--N content in soil resulting from 
increased bacterial amoA abundance with no increase in the abundance of the nxr 
gene, which encodes for nitrite oxidation. The authors discussed that N2O emis-
sions occurred more during nitrification than denitrification, similar to the results 
found here. Dicyandiamide (DCD) application with cattle urine effectively inhib-
ited the growth of AOB and reduced N2O emissions as well as the numbers of the 
nirK gene, which encodes for a nitrate reductase[8]. Since DCD did not affect the 
abundance of other denitrification genes, the authors concluded that AOB, includ-
ing nitrifier denitrifiers containing nirK, were the main contributors to N2O emis-
sions[8]. In the present study no evidences relating nirK and N2O emissions was 
found, but the nitrifier denitrification process could have great contribution to 
N2O released due the presence of the gene norB in AOB 4,5,32. Besides nitrifier 
denitrification, nitrous oxide could be emitted during oxidation of hydroxylamine 
by ammonia-oxidizing bacteria[31], heterotrophic nitrifiers[32, 33], and/or abiotic 
chemodenitrification[34]. Abiotic N2O emissions also occur due nitrite reduction 
by organic and inorganic compounds as amine, copper and iron4,37. Others pro-
cesses that could be involved in N2O emissions are abiotic or biotic co-denitrifica-
tion, by archaea, bacteria or fungi. In co-denitrification, a reducing compound as 
NO-, NO2- or NO3- combined with organic N, hydroxylamine or ammonium gen-
erates N2O emissions in oxic and anoxic conditions[6, 34]. More studies targeting 
these reactions can pin down the relative contribution of factors explaining N2O 
fluxes from nitrification. The present study showed high N2O losses from urea, 
but very small from a nitrate fertilizer source and nitrification was the most rele-
vant microbial process associated with such losses, which has not been reported in 
soil with sugarcane. The relationship between N2O emissions and bacterial amoA 
abundances may, therefore be a useful indicator for N management strategies to 
mitigate N2O emissions in tropical soils. Other classes of soils and N sources are 
necessary to confirm our data. 

- �  -104



4.5 Declarations 
Acknowledgments 

The authors thank Dr. Eoin L. Brodie (Lawrence Berkeley National Lab) and Dr. 
Adriana P. D. Silveira (IAC) for scientific discussions, and Rafael M. Sousa (IAC) 
for technical assistance. This research was supported by grants from The Nether-
lands Organization for Scientific Research (NWO) and FAPESP grant number 
729.004.003, CAPES/NUFFIC 037/12-13910/13-2, FAPESP/BIOEN 
2008/56147-1, FAPESP/BE-BASIC 2013/50365-5 and CNPq 471886/2012-2. 
Publication 6124 of the Netherlands Institute of Ecology (NIOO/KNAW). 

Author contribution statement 

J.R.S., J.B.C., H.C. and E.E.K. designed research; J.R.S. and K.S.L. conducted the 
experiment; J.R.S., N.A.C., A.M.K., A.P., H.J.L. and E.E.K. conducted the qPCR 
and the sequencing analyses; J.R.S. and N.A.C. performed the statistical analyses; 
J.R.S., N.A.C., H.J.L., H.C. and E.E.K. wrote the paper. All authors reviewed the 
manuscript. 

Competing interest statement 

The authors declare no conflict of interest.  

Accession codes 

European Nucleotide Archive study accession number PRJEB13027. 

4.6 Supplementary Material 
Starts on next page.  

- �  -105



Table S1. Nitrous oxide fluxes, nitrogen cycling gene abundances and total bacterial and total ar-
chaea abundance in a Red Latosol soil as affected by treatments with urea with or without nitrifi-
cation inhibitors (DCD and DMPP); polymer sulfur coated urea (PSCU) or calcium nitrate applied 
to sugarcane. The R represents the second application of the nitrification inhibitors. 

Treatment N2O-N AOA amoA AOB amoA nirK nirS nosZ Total 
archaea

Toral 
bacteria

7 DAF† µg m-2 
h-1

106 copies 
g-1

105 copies 
g-1

108 copies 
g-1

105 copies 
g-1

106 copies 
g-1

107 copies 
g-1

109 copies 
g-1

No N 3.8 c 7.5 a 2.3 b 7.8 ns 4.2 ns 15.9 ns 9.7 ns 2.6 abc
UR 82.0 a 2.0 b 12.2 a 6.8 4.6 21.3 4.5 5.9 a
UR+DCD - 
R‡ 12.9 c 3.5 b 2.8 b 7.1 3.9 13.9

5.1
4.9 abc

UR+DMPP - 
R 5.8 c 3.2 b 3.0 b 8.5 4.8 18.7

8.6
5.6 ab

PSCU 55.5 b 1.9 b 2.6 b 4.0 1.4 6.7 2.9 1.3 bc
UR+DCD 8.9 c 3.5 b 0.6 b 2.0 0.8 5.3 2.3 1.2 c
UR+DMPP 8.3 c 2.5 b 1.4 b 3.7 2.7 10.2 3.1 2.0 abc
Calcium 
Nitrate 12.8 c 1.6 b 0.5 b 1.1 1.7 3.7

1.5
0.8 c

16 DAF
No N 18.7 c 41.1 a 1.5 b 2.2 ns 5.3 ns 0.7 b 24.5 a 1.2 ns

UR
1781.

3 a 8.7 b 8.7 a 1.3 7.4 3.4 a 8.3 b 1.1
UR+DCD - 
R 238.4 c 13.4 b 2.2 b 0.9 5.2 2.9 ab 9.7 b 0.8
UR+DMPP - 
R 47.7 c 12.9 b 1.2 b 2.2 6.6 2.1 ab 16.3 ab 1.1
PSCU 609.8 b 9.8 b 5.1 ab 0.9 7.4 2.8 ab 8.7 b 1.3
UR+DCD 62.2 c 11.7 b 0.9 b 0.4 3.6 2.5 ab 6.3 b 0.7
UR+DMPP 39.3 c 10.0 b 0.7 b 0.8 4.7 2.8 ab 5.7 b 0.9
Calcium 
Nitrate 36.9 c 11.9 b 0.4 b 0.4 1.8 1.3 ab 6.4 b 0.5
18 DAF
No N 15.3 c 23.6 a 2.8 b 14.5 ns 35.2 ns 0.7 b 18.0 a 1.0 ns

UR
1187.

0 a 8.5 b 10.7 ab 7.9 14.2 1.6 a 3.2 b 0.7
UR+DCD - 
R 110.6 c 4.3 b 16.7 a 10.0 20.0 1.0 ab 5.1 b 1.1
UR+DMPP - 
R 27.6 c 6.4 b 1.7 b 9.3 27.7 1.2 ab 5.2 b 1.0
PSCU 558.0 b 2.2 b 6.6 ab 2.8 6.0 0.8 b 2.0 b 0.3
UR+DCD 53.8 c 7.4 b 4.4 b 5.8 9.6 1.1 ab 7.3 b 0.9
UR+DMPP 20.9 c 3.5 b 1.9 b 5.9 6.4 1.0 ab 4.7 b 0.5
Calcium 
Nitrate 27.4 c 9.0 b 1.1 b 4.1 10.7 0.5 b 9.9 ab 0.5
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Table S1 cont’d. 

Treatment N2O-N AOA amoA AOB amoA nirK nirS nosZ Total 
archaea

Total 
bacteria

27 DAF µg m-2 
h-1

106 copies 
g-1

105 copies 
g-1

108 copies 
g-1

105 copies 
g-1

106 copies 
g-1

107 copies 
g-1

109 copies 
g-1

No N 8.1 c 27.8 a 6.8 bc 15.4 a 5.3 a 1.8 abc 14.4 a 1.3 ns

UR
1356.

3 a 2.1 bc 53.8 a 7.3 ab 4.1 ab 2.2 a 2.0 c 0.9
UR+DCD - R 163.8 c 6.0 bc 31.3 ab 7.3 ab 4.9 ab 1.7 abc 4.1 bc 0.7
UR+DMPP - 
R 10.7 c 8.3 b 3.7 c 11.1 ab 6.5 a 2.1 ab 8.3 ab 1.4
PSCU 704.8 b 1.5 c 17.9 bc 3.9 b 2.1 b 1.3 bc 2.4 bc 0.8
UR+DCD 77.3 c 5.0 bc 10.2 bc 5.2 ab 2.2 b 1.4 abc 3.2 bc 0.8
UR+DMPP 39.3 c 6.0 bc 4.4 bc 7.1 ab 2.6 b 1.7 abc 3.1 bc 0.9
Calcium 
Nitrate 36.9 c 6.8 bc 1.8 c 3.6 b 0.8 b 0.9 c 3.0 bc 0.4
35 DAF
No N 8.4 b 12.4 a 1.2 b 5.5 ns 1.2 ns 2.1 ns 3.7 ns 0.3 ns

UR
1137.

0 a 4.0 ab 11.8 a 6.2 1.3 2.0 2.4 0.5
UR+DCD - R 83.9 b 4.4 ab 5.7 b 2.6 0.9 2.2 2.0 0.3
UR+DMPP - 
R 42.4 b 3.8 ab 1.6 b 5.6 1.3 1.3 3,0 0.5

PSCU
1167.

5 a 1.4 b 2.8 b 2.5 0.3 1.2 1,0 0.2
UR+DCD 264.5 b 4.8 ab 3.4 b 3.0 0.6 1.9 1,7 0.3
UR+DMPP 105.4 b 9.1 ab 1.6 b 4.3 1.4 3.1 2,1 0.4
Calcium 
Nitrate 28.7 b 9.4 ab 1.0 b 4.7 0.7 2.0 2,8 0.3
42 DAF
No N 4.0 b 28.1 a 1.6 ns 13.5 ns 3.4 ns 2.5 ns 7,9 a 0.7 ns
UR 225.3 ab 1.4 b 8.5 4.5 2.0 2.4 0,8 b 0.4
UR+DCD - R 10.8 b 3.3 b 8.0 10.2 2.8 1.7 3,6 ab 0.6
UR+DMPP - 
R 22.1 b 5.7 b 3.0 11.9 4.2 2.1 3,5 ab 0.7
PSCU 312.9 a 1.8 b 6.5 4.0 1.6 1.7 1,0 b 0.3
UR+DCD 15.3 b 6.1 b 9.7 6.0 1.4 1.7 3,3 ab 0.5
UR+DMPP 10.7 b 5.5 b 1.6 7.7 2.4 1.6 3,3 ab 0.6
Calcium 
Nitrate 6.5 b 7.0 b 1.2 5.0 1.0 1.1 2,7 ab 0.4
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Table S1 cont’d. 

Means followed by same letter in column per DAF did not differ by Tukey test 5%. ns: no significant. †Days after fertilizer 
application. ‡ R means reapplication of inhibitors in same plot. 

Treatment N2O-N AOA amoA AOB amoA nirK nirS nosZ Total 
archaea

Total 
bacteria

82 DAF µg m-2 
h-1

106 copies 
g-1

105 copies 
g-1

108 copies 
g-1

105 copies 
g-1

106 copies 
g-1

107 copies 
g-1

109 copies 
g-1

No N 0.2 b 40.7 a 1.7 b 22.1 ns 4.6 ab 0.6 c 13.8 ns 1.3 ns
UR 1.6 b 1.0 b 10.7 a 2.9 1.1 b 1.7 abc 0.8 0.2
UR+DCD - R 0.1 b 1.9 b 2.8 b 13.4 9.2 ab 1.1 bc 6.2 0.8
UR+DMPP - 
R

0.2 b 6.2 b 0.8 b 3.0 3.1 ab 0.8 bc 4.0 0.1

PSCU 8.8 a 1.4 b 4.8 ab 1.9 1.4 b 0.7 c 1.0 0.1
UR+DCD 0.2 b 22.4 ab 3.7 b 19.5 8.8 ab 2.2 ab 9.8 2.2
UR+DMPP 0.1 b 23.2 ab 2.4 b 29.6 13.0 ab 3.1 a 12.6 2.4
Calcium 
Nitrate

0.1 b 51.3 a 2.4 b 19.7 17.4 a 2.0 abc 20.8 2.6

158 DAF
No N 0.1 b 35.3 a 2.9 ab 23.9 ns 14.7 ns 1.0 ns 9.2 a 1.1 ns
UR 0.3 b 2.8 b 4.2 ab 6.3 5.2 1.0 2.4 ab 0.5
UR+DCD - R 0.2 b 10.1 b 5.7 a 13.8 16.5 0.9 6.2 ab 2.0
UR+DMPP - 
R

0.1 b 5.2 b 1.3 b 7.0 5.1 0.8 3.7 ab 0.5

PSCU 4.6 a 7.7 b 4.1 ab 6.6 4.0 0.8 2.4 ab 0.7

UR+DCD 0.1 b 6.5 b 1.7 b 5.5 4.2 0.7 0.5 b 0.5
UR+DMPP 0.2 b 10.0 b 0.9 b 5.5 4.7 0.9 0.3 b 0.4
Calcium 
Nitrate

0.0 b 11.9 b 1.3 b 13.1 4.4 0.7 0.5 b 0.6

- �  -108



Table S2. Linear regression and coefficients (R2) relating daily N2O flux to environmental vari-
ables from Red Latosol soil after application of urea with or without nitrification inhibitors (DCD 
and DMPP), polymer sulfur coated urea (PSCU) and calcium nitrate applied to sugarcane. (n = 
256). 

* p ≤ 0.05. ns: no significant. † N2O-N: µg m-2 h-1 transformed in log(X+10); CO2-C: mg m-2 h-1; CH4-C: µg m-2 h-1; NH4+-
N and NO3--N: mg kg-1 0-10 cm soil; Rainweek and Rainday: mm, Temp. air and soil: ºC; WFPS: Water-filled pore space, 
%; AOB amoA, AOA amoA, nirK, nirS, nosZ, total bacteria and total archaea: copies gene g-1 dry soil; pH-CaCl2: trans-
formed in H+, 10-pH. 

All treatments Without nitrification inhibitors

Variable (x)† Regression* R2 Regression R2

NH4+-N ns - y = 1.87 + 0.00073x 0.0879

NO3--N y = 1.64 + 0.0016x 0.0389 ns -

WFPS y = 0.74 + 0.031x 0.1021 y = 0.82 + 0.034x 0.0864

Temp. air ns - ns -

Temp. soil ns - ns -

pH y = 1.70 + 2.4e4x 0.0214 ns -

Rain day y = 1.58 + 0.013x 0.0818 y = 1.77 + 0.013x 0.0609

Rain week y = 1.40 + 0.0081x 0.1589 y = 1.60 + 0.0078x 0.1017

CO2-C ns - ns -

CH4-C y = 1.78 + 0.0073x 0.0243 y = 2.02 + 0.011x 0.0422

AOA amoA y = 1.88 - 2.83e-8x 0.0990 y = 2.18 - 3.83e-8x 0.2107

AOB amoA y = 1.56 + 2.94e-7x 0.1786 y = 1.71 + 3.02e-7x 0.1944

nirK y = 1.82 - 1.32e-11x 0.0405 y = 2.03 - 1.55e-11x 0.0485

nirS ns - ns -

nosZ ns - ns -

Total bacteria y = 1.80 + 7.83e-11x 0.0297 ns -

Total archaea y = 1.84 - 2.28e-9x 0.0532 y = 2.10 - 3.24e-9x 0.1076
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Table S3. Multiple linear regression parameters (β) and coefficients (R2) relating daily N2O flux to 
environmental variables after fertilizer application to sugarcane (n = 256). 

* Stepwise selection, p ≤ 0.05. † Treatments: No N – control, Urea (UR), UR+DCD, UR+DMPP, Polymer Sulfur Coated 
Urea and calcium nitrate. ‡ N2O-N: µg m-2 h-1 transformed in log(X+10); AOB and Bacteria: amoA from ammonia oxidiz-
ing bacteria and all bacteria, copies gene g-1 dry soil; NH4+-N and NO3--N: mg kg-1 0-10 cm soil; Rainweek: mm; pH-Ca-
Cl2: transformed in H+,  

Model* Parameters R2

All treatments†

N2O-N = β0 + βAOB + βRainweek + 
βpH + βNH4+-N + βBacteria + βCO2 + 
βNO3--N ‡

0.84 + 2.96e-7AOB + 0.0097Rainweek + 
3.3e4pH + 0.0050NH4+-N - 0.9e-10Bacteria + 

0.0019NO3--N + 0.00093CO2

0.4741

Without nitrification inhibitors

N2O-N = β0 + βAOB + βRainweek + 
βNH4+-N + βBacteria + βpH+ βCO2

0.96 + 2.93e-7AOB + 0.0096Rainweek + 
0.0012NH4+-N - 1.8e-10Bacteria + 3.0e4pH + 

0.0023CO2

0.5267
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Table S4. Top-nine bacterial phyla presented in the microbial communities in the Red Latosol soil 
under treatments with urea with or without nitrification inhibitors (DCD and DMPP); polymer 
sulfur coated urea (PSCU) or calcium nitrate applied to sugarcane.  

Significance from Tukey-Kramer post-hoc test based on Benjamini-Hochberg corrected p-values above 0.1 from STAMP 
analysis.  ns: not significant. †Days after fertilizer application. ‡ R means reapplication of inhibitors in same plot.  
Proteo=Proteobacteria, Firm=Firmicutes, Actino=Actinobacteria, Bacter=Bacteroidetes, Verruco=Verrucomicrobia, 
Planct=Planctomycetes, Gemmati=Gemmatimonadetes, Nitro=Nitrospira. 

Treatment Mean relative abundance (%) of Bacterial Phyla, or effect size(corrected p-value)
Proteo Firm Actino Acido Bacter Verruco Plancto Gemmati Nitro

7 DAF†  ns 0.73 (0.07)  ns  ns  ns  ns  ns  ns  ns
No N 24 4 20 21 3 5 2 1 1
UR 27 24 23 5 4 2 1 1 0
UR+DCD - R‡ 26 26 14 12 4 3 2 1 1
UR+DMPP – R 25 28 12 12 7 2 2 1 0
PSCU 44 6 24 7 3 2 2 1 0
UR+DCD 34 20 13 8 5 3 1 1 0

UR+DMPP 23 32 16 7 4 2 1 1 0
Calcium Nitrate 30 9 22 13 4 4 2 1 1
16 DAF† ns ns ns ns 0.65(0.09) ns ns ns 0.63(0.09)
No N 28 10 31 11 3 3 1 1 1

UR 36 15 23 4 8 1 1 1 0
UR+DCD - R‡ 30 12 19 12 6 4 3 1 0
UR+DMPP – R 36 13 20 11 4 2 2 1 0
PSCU 35 18 23 5 7 1 1 1 0
UR+DCD 32 15 22 7 7 3 2 1 0
UR+DMPP 30 11 21 10 4 5 3 1 0

Calcium Nitrate 22 21 24 12 2 3 2 1 0
18 DAF† ns ns ns ns ns ns ns ns ns
No N 25 9 24 15 3 5 2 1 1
UR 34 14 24 6 6 2 2 1 0
UR+DCD - R‡ 41 13 17 2 12 1 3 1 0

UR+DMPP – R 43 10 17 5 10 2 1 2 0
PSCU 38 13 23 6 6 1 1 1 0
UR+DCD 31 20 17 5 11 2 2 1 0
UR+DMPP 34 17 24 5 5 2 1 1 0
Calcium Nitrate 35 18 23 6 5 2 1 1 0
27 DAF† ns ns ns ns ns ns ns ns ns
No N 42 3 23 8 6 2 0 2 1
UR 49 7 13 3 17 1 1 2 0
UR+DCD - R‡ 49 5 16 5 7 3 1 2 0
UR+DMPP – R 48 4 12 6 13 3 1 2 0

PSCU 49 6 20 3 10 1 1 2 0
UR+DCD 48 5 16 3 14 2 1 2 0
UR+DMPP 53 6 18 3 9 1 0 1 0
Calcium Nitrate 45 7 19 6 6 2 1 2 0
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Table S4 cont’d.  

Significance from Tukey-Kramer post-hoc test based on Benjamini-Hochberg corrected p-values above 0.1 from STAMP 
analysis.  ns: not significant. †Days after fertilizer application. ‡ R means reapplication of inhibitors in same plot.  
Proteo=Proteobacteria, Firm=Firmicutes, Actino=Actinobacteria, Bacter=Bacteroidetes, Verruco=Verrucomicrobia, 
Planct=Planctomycetes, Gemmati=Gemmatimonadetes, Nitro=Nitrospira. 

Treatment
Mean relative abundance (%) of Bacterial Phyla, or effect size(corrected p-value)

Proteo Firm Actino Acido Bacter Verruco Planct Gemmati Nitro

35 DAF† 0.71(0.02) ns ns ns ns 0.67(0.04) ns ns ns
No N 32 2 15 18 6 5 1 2 1
UR 48 3 15 5 12 1 1 2 0
UR+DCD - R‡ 46 5 14 8 12 2 1 2 0
UR+DMPP – R 45 6 14 7 12 3 1 2 0
PSCU 57 3 12 5 13 1 1 1 0
UR+DCD 42 5 13 8 12 2 1 3 0
UR+DMPP 43 3 11 8 18 2 1 2 0
Calcium Nitrate 42 10 20 5 8 2 1 3 0
42 DAF† 0.60(0.07) ns ns 0.60(0.09) 0.64(0.08) ns ns ns 0.74(0.02)
No N 31 2 19 17 8 6 1 1 1
UR 39 5 17 7 16 3 1 2 0
UR+DCD - R‡ 43 4 15 6 15 3 1 2 1
UR+DMPP – R 37 6 19 10 11 2 2 2 0
PSCU 53 2 17 4 11 1 1 1 0
UR+DCD 40 4 18 7 13 5 1 2 0
UR+DMPP 38 4 18 11 9 4 2 2 0
Calcium Nitrate 37 4 19 8 13 4 1 2 0
82 DAF† ns 0.80(0.003) ns ns 0.65(0.03) ns ns 0.72(0.01) 0.77(0.004)
No N 37 4 13 14 9 5 1 2 1
UR 47 3 15 5 16 1 1 3 0
UR+DCD - R‡ 37 22 22 2 9 1 0 1 0
UR+DMPP – R 48 15 18 5 7 1 0 1 0
PSCU 50 4 20 3 14 0 0 1 0
UR+DCD 45 3 16 8 11 3 1 3 0
UR+DMPP 42 6 18 9 10 2 1 2 1
Calcium Nitrate 30 20 30 4 4 2 1 1 0
158DAF† ns ns ns ns ns ns ns ns 0.70(0.06)
No N 39 3 21 9 11 3 1 2 0
UR 47 3 15 6 12 3 1 3 0
UR+DCD - R‡ 42 6 22 5 11 1 0 3 0
UR+DMPP – R 43 5 23 7 9 2 1 2 0
PSCU 47 3 20 5 9 2 1 2 0
UR+DCD 43 5 18 8 10 3 1 2 0
UR+DMPP 46 3 17 8 10 2 1 3 0
Calcium Nitrate 40 5 24 5 9 2 1 3 0
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Table S5. Primers and thermocycler conditions used in gene abundance analysis 
by real time qPCR 
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Target gene Primer Primer Sequence Size 
(bp) 

Thermal profile Reference Source of Standard - 
plasmid 

Vector 

AOA amoA Arch-amoAF  5’-STAATGGTCTG 
GCTTAGACG-3’ 

635 95°C-5 min.; 40x 
95°C-30s, 
55°C-45s, 72°C-45s, 
82°C-15s 

Francis et al.54 Environmental Archaea pGEM®-T Vector 
Systems 
 Promega 

Arch-amoAR 5’-GCGGCCATCC 
ATCTGTATGT-3’ 

    

AOB amoA amoA1F 5’-GGGGTTTCT 
ACTGGTGGT-3’ 

491 95°C-5 min.; 40x 
95°C-30s, 
56°C-45s, 72°C-45s, 
82°C-15s 

Rotthauwe et al.55 Nitrosomonas europaea pGEM®-T Vector 
Systems 
 Promega 

amoA2R 5’-CCCCTCKGSA 
AAGCCTTCTTC-3’ 

    

nosZ nosZ2F 5’-CGCRACGGCAA 
SAAGGTSMSSGT-3’ 

267 95°C-5 min.; 40x 
95°C-15s, 
60°C-15s, 72°C-30s, 
82°C-15s 

Henry et al.56 Pseudomonas stutzeri  
(M13R/F) 

Dh5alpha pgemTeasy  
PCR4-topo vector 

nosZ2R 5’-CAKRTGCAKSG 
CRTGGCAGAA-3’ 

    

nirK NirK876 5'-ATYGGCGG 
VAYGGCGA-3' 

165 95°C-5 min.; 40x 
95°C-15s, 
63°C-30s, 72°C-30s, 
82°C-15s 

Henry et al.57 Paracoccus denitrificans  
(DSM 413) 

Dh5alpha pgemTeasy  
PCR4-topo vector 

NirK1040 5'-GCCTCGATCA 
GRTTRTGGTT-3' 

    

nirS nirScd3aF 5'-GTSAACGTSA 
AGGARACSGG-3' 

425 95°C-5 min.; 40x 
95°C-10s, 
60°C-10s, 72°C-20s, 
86°C-5s 

Throbäck et al.58 Pseudomonas stutzeri  
(M13R/F) 

PCR product 

nirSR3cd 5'-GASTTCGGRT 
GSGTCTTGA-3' 

    

Total 
bacteria 

Eub338 5'-ACTCCTACGG 
GAGGCAGCAG-3' 

200 95°C-5 min.; 40x 
95°C-5s, 
53°C-10s, 72°C-20s 

Fierer et al.59 Firmicutes Dh5alpha pgemTeasy  
PCR4-topo vector 

Eub518 5'-ATTACCGC 
GGCTGCTGG-3' 

    

Total 
archaea 

Arch1017R  5'-AGGAATTGGC 
GGGGGAGCAC-3’ 

112 95°C-10 min.; 40x 
95°C-10s, 
60°C-10s, 72°C-20s 

Klindworth et al.60 Environmental Archaea Dh5alpha pgemTeasy  
PCR4-topo vector 

Arch915F 5’-GGCCATGCA 
CCWCCTCTC-3’ 

 



!  
Figure S1. Percentage of NH4+ in relation to total inorganic N (NH4+ + NO3-) at 0 - 10 cm soil 
depth from application of urea with or without nitrification inhibitors (DCD and DMPP) to sugar-
cane. 

- �  -114



#  
Figure S2. Correlation between ammonia oxidizing bacteria (AOB) amoA gene abundance and 
nitrous oxide emission from Red Latosol soil 16 days after application of urea with or without ni-
trification inhibitors (DCD and DMPP), polymer sulfur coated urea (PSCU) and calcium nitrate 
applied to sugarcane (n = 32). 

#  
Figure S3. Rarefaction curves of the microbial communities present in the Red Latosol under 
treatments with urea, incorporated, with or without nitrification inhibitors (DCD and DMPP); 
polymer sulfur coated urea (PSCU) and calcium nitrate applied to sugarcane. Time points are sepa-
rated such that A, B, C, D, E, F, G and H correspond to days 7, 16, 18, 27, 35, 42, 82 and 158 of 
the experiment. 
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Table S4. Shannon indices and Between-Class Analysis (BCA) ordinations of the bacterial com-
munities under treatments of urea, incorporated in the Red Latosol, with or without nitrification 
inhibitors (DCD and DMPP); polymer sulfur coated urea (PSCU) or calcium nitrate applied to 
ratoon sugarcane. Continued on next four pages. DAF = days after fertilization. 
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Table S4 con’t. 

- �  -117



Table S4 con 
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Abstract 
The nitrification inhibitors (NIs) 3,4-dimethylpyrazole (DMPP) and dicyandi-
amide (DCD) effectively reduce N2O emissions; however, which species are tar-
geted and the effect on the nitrifying community is still unclear. Here we charac-
terized the ammonia oxidizing bacteria (AOB) species linked to N2O emissions 
and evaluated the effects of urea and urea with DCD and DMPP on the nitrifying 
community in a 258-day field experiment under sugarcane. Using an amoA AOB 
amplicon sequencing approach and mining a previous dataset of 16S rRNA se-
quences, we characterized the most likely N2O-producing AOB as a Nitrosospira 
spp. and identified Nitrosospira (AOB), Nitrososphaera (archaeal ammonia oxi-
dizer) and Nitrospira (nitrite-oxidizer) as the main nitrifiers. The fertilizer treat-
ments had no effect on the alpha and beta diversities of the AOB communities. 
Interestingly, we found three clusters of co-varying variables with nitrifier OTUs: 
the N2O-producing AOB Nitrosospira with N2O, NO3-, NH4+, WFPS and pH; 
AOA Nitrososphaera with NO3-, NH4+ and pH; and AOA Nitrososphaera and 
NOB Nitrospira with NH4+. These results support the co-occurrence of non-N2O-
producing Nitrososphaera and Nitrospira in the unfertilized soils and the promo-
tion of N2O-producing Nitrosospira under urea fertilization. Further, we suggest 
that DMPP is a more effective NI than DCD in tropical soil under sugarcane. 
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5.1 Introduction 
Anthropogenic inputs of N fertilizers to agriculture have stimulated agricul-

tural soils to contribute up to 59% of anthropogenic N2O emissions [1-4]. Because 
N2O has a global warming potential 298 times that of CO2 [5] and diverts N that 
would otherwise be used by the crop, reducing N2O emissions is a major target for 
sustainable management practices [6]. The N2O emitted from a soil is the cumula-
tive result of abiotic and biotic N2O-generating pathways [7, 8]. The two main bi-
otic processes contributing to N2O in agricultural soils are nitrification (oxidation 
of NH4+ to NO2- to NO3-) and denitrification (anaerobic reduction of NO3- to NO2- 
to N2O to N2; reviewed in [9, 10]. Nitrification is carried out by a few bacterial 
and archaeal genera: ammonia oxidation is mediated by the ammonia-oxidizing 
archaea (AOA), such as the Thaumarchaeota Nitrososphaera, and the ammonia-
oxidizing bacteria (AOB), such as the Betaproteobacteria Nitrosomonas and Ni-
trosospira; nitrite oxidation is carried out by nitrite oxidizing bacteria (NOB), in-
cluding the Nitrospirae Nitrospira and the Alphaproteobacteria Nitrobacter. Deni-
trification is carried out by microorganisms widely dispersed over the bacterial, 
archaeal and fungal domains, and denitrification genes may also be carried by ni-
trifiers in what is termed nitrifier denitrification. Further, the process of complete 
nitrification by the recently discovered comammox bacteria, which have so far 
been found in the NOB Nitrospira genus, might also contribute to N2O emissions 
[11]. 

Nitrification and denitrification processes are regulated by the abiotic fac-
tors temperature, oxygen availability, moisture, ammonia and nitrate availability, 
carbon availability and pH [12, 13]. These factors also affect the distribution and 
niche differentiation of nitrifiers; for example, the AOB numerically dominate in 
neutral soils with high NH4+ concentrations while the AOA dominate in acidic 
soils with low NH4+ concentrations [14, 15]. However, there are also exceptions to 
this general rule, for example the Gammaproteobacteria AOB Candidatus Ni-
trosoglobus recently isolated from acidic soils with survival in conditions down to 
pH 2 [16]. Within the domains there are also niche specializations, as the AOB 
Nitrosomonas is generally isolated from neutral pH soils while the AOB Ni-
trosospira is found in acid soils [17, 18]. Further, the nitrite oxidizer bacteria Ni-
trobacter and Nitrospira have optimal growth under higher and lower nitrite sup-
plies, respectively, which is linked to their ecological niches [19, 20].  

Nitrification is doubly implicated in N2O production, either directly or indi-
rectly by producing NO3- as the basis for denitrification, and has been shown to be 
the main process involved in N2O emissions in sugarcane soils [21-27]. Thus, the 
addition of nitrification inhibitors with nitrogen fertilizers is currently being ex-
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plored as a sustainable management practice in Brazilian sugarcane [24, 28, 29]. 
Nitrification inhibitors include dicyandiamide (DCD) and 3,4-dimethylpyrazole 
phosphate (DMPP), which are thought to be Cu-chelating agents acting on the 
ammonia monooxygenase enzyme [30]. The inhibitors have been shown to effec-
tively reduce N2O emissions by 40-95% in temperate and tropical soils [24, 31, 
32]. This effect is generally restricted to the ammonia oxidizing bacteria, not af-
fecting ammonia oxidizing archaea or the rest of the microbial community at 
coarse-grained levels [24, 33]. Evidence for the interdependence of ammonia and 
nitrite oxidizers as determined in unfertilized grassland soil suggests that the nitri-
fying community may be negatively affected under nitrogen fertilization with ni-
trification inhibitors [34]. It is yet unknown how the nitrification inhibitors DCD 
and DMPP might affect the nitrifying community in tropical soil under sugarcane.  

Here our objectives were to identify the AOB species linked to N2O emis-
sions in a previous experiment and to compare the effects of urea fertilization with 
or without nitrification inhibitors on nitrifier abundances, with a focus on the am-
monia-oxidizing bacterial community [24]. We sequenced amoA AOB amplicons 
from a 258-day field experiment encompassing treatments with urea and two nitri-
fication inhibitors, DCD and DMPP, on soils growing ratoon sugarcane. We com-
bined the amoA dataset with the 16S rRNA gene, nitrification and denitrification 
gene copy numbers and soil environmental variable  datasets previously generated 
to test our hypotheses [24]. We hypothesized that the nitrification inhibitors would 
decrease the amoA AOB community diversity. Further, we hypothesized that the 
two nitrification inhibitors would have similar effects on the abundances of nitri-
fiers, including ammonia oxidizers (AOB and AOA) and nitrite oxidizers (NOB). 
To our knowledge, no studies to date have investigated the effect of nitrification 
inhibitors in urea fertilized soils on the nitrifier community growing in tropical 
soil.  

5.2 Materials and Methods 
5.2.1 Experimental design and sampling summary 

A field experiment on Typic Hapludox soil (also known as Red Latosol) was 
set up at the Agronomic Institute in Campinas, Brazil at 22°52′15″ S, 47°04′57″ 
W, as described previously [24, 35]. Briefly, four treatments containing four repli-
cate plots each were established in the 2013/2014 season on a third cycle of ratoon 
sugarcane (cultivar SP791011). The treatments were 1) no N fertilizer (control), 2) 
urea (UR), 3) urea with dicyandiamide (UR+DCD), 4) urea with 3,4-di-
methylpyrazone phosphate (UR+DMPP). Urea was incorporated into the first 5 
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cm of soil and applied at a rate of 120 kg N ha-1. The DCD (Sigma Aldritch) was 
added at 5% DCD-N per unit N from urea (v/v) while powdered DMPP (Sigma 
Aldritch) was added as 1% DMPP (w/w). Gas emission rates of CO2, CH4 and 
N2O were measured daily to monthly using static chambers. Soil samples were 
taken of the top 10 cm of soil such that three subsamples were combined per plot. 
The soil samples were collected at eight time points: 7, 16, 18, 27, 35, 42, 82 and 
158 days following fertilizer application and stored at -80 °C. Total DNA was ex-
tracted from the soil samples using a Power Soil kit from Mobio without modifi-
cations (Carlsbad, CA, USA). Further, pH, NO3-N and NH4-N were measured 
from the soil samples and water-filled pore space (WFPS) and temperature was 
previously calculated [24]. 

5.2.2 amoA AOB amplification and sequencing 

Amplification of the partial amoA bacterial gene (491 bp) was performed 
using a two-step barcoding approach. The first PCR  from the total DNA samples 
was carried out using forward primer H-AmoA1F-mod ( 5’-GCTATGCGC-
GAGCTGCGGGGHTTYTACTGGTGGT-3’) and reverse primer H-amoA2R (5’-
GCTATGCGCGAGCTGCCCCCTCKGSAAAGCCTTCTTC -3’) [36, 37]. In the 
second PCR, the amoA amplification products were amplified with primers that 
consisted of a 16 bp head sequence and included at the 5’ end a library-specific 8 
bp barcode [38]. Each PCR reaction (20 µl in first step, 50 µl in second step) con-
sisted of 0.025 units of FastStart Taq DNA Polymerase (Roche), 1x reaction buffer 
with MgCl2 (Roche), 0.5 mM  dNTPmix (Fermentas), 0.125 µM of the forward 
and reverse primers, 0.1 mg/ml bovine serum albumin and 1 µl of DNA template. 
Thermocycler (C1000 Touch Thermal cycler, Biorad) conditions were as follows: 
1) 5 minutes at 95 °C; 35 times 30 seconds at 95 °C, 30 seconds at 53 °C, 30 sec-
onds at 72 °C; and 7 minutes at 72 °C and 2) 5 minutes at 95 °C; 10 times 30 sec-
onds at 95 °C, 30 seconds at 53 °C, 1 minute at 72 °C; and 10 minutes at 72 °C. 
The first PCR reaction was performed in duplicate, screened by gel electrophore-
sis and pooled for use as a template in the second step, which used one primer (5’-
BARCODE-HEAD-3’). Second step PCR products were checked by agarose gel 
electrophoresis and the concentration and quality determined using a fragment 
analyzer (Advanced Analytical). The bar-coded PCR products from all samples 
were normalized in equimolar amounts before sequencing. The amoA amplicon 
pool was sequenced using MiSeq V3 (2x300bp) technology (LGC, Germany). To 
complement the analysis of the amoA amplicon sequences, we mined the previ-
ously published dataset of 16S rRNA partial gene amplicons [24]. The amoA AOB 
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amplicons were thus, obtained from the same total DNA samples as the 16S rRNA 
amplicons. 

  

5.2.3 amoA AOB amplicon sequence processing 

Bioinformatics steps were performed on a multi core server with 64 threads 
running Linux Ubuntu 16.04. Processing was accomplished through a Snakemake 
pipeline and bash and perl scripts. The amoA AOB sequences were clipped of 
primers and barcodes using bbduk (bbmap version 35.82) and the paired-ends 
were merged with the “join_paired_ends.py” script from ea_utils version 
1.1.2-537. The AOB merged sequences were dereplicated and clustered into 97% 
AOB OTUs with minimum size of 2 using USEARCH version 9.2.64 (com-
mands: derep_fulllength, and cluster_otus; Edgar, 2010). These parameters were 
chosen based on the recommendation found in the USEARCH manual (see also 
Figure S1). To confirm the functional potential of the OTUs as amoA (KEGG 
pathway K10944), the centroids were compared to the KEGG database (2014-03-
17 version) using uproc-dna (UPROC v1.2.0; [39]). The table of OTU abundances 
across samples was created with the usearch global command based on 97% iden-
tity of sequences to the OTUs. Taxonomy was assigned to OTU centroids by dia-
mond blastx v0.8.20 against the 2016-10-04 NCBI-nr database [40]. When this 
step yielded only classifications in the category “environmental samples,” taxon-
omy was assigned instead by best blastn (e-value cutoff 0.02; blast v2.6.0) com-
parison against the custom amoA database described below.  

To support the taxonomic classification results, a phylogenetic tree was cre-
ated to depict the relationships between the 54 amoA OTUs and their closest 
matches in the custom amoA database. The latter was constructed as follows. 
High-quality amoA AOB sequences were downloaded from the FUNGENE RDP 
database (v9.4.1) with score above 350, HMM coverage above 80% and a mini-
mum amino acid size of 270. Duplicates were reduced to one entry. The amoA 
OTU centroids and reference amoA AOB sequences along with an outgroup amoA 
sequence from Nitrosococcus oceani C-27 were aligned using ClustalW and used 
as input to make a phylogenetic tree in MEGA7 [41, 42]. The Maximum Compos-
ite Likelihood method was used to calculate phylogenetic distances, and bootstrap 
tests with 1000 replicates were performed [43]. The iTOL was used to create the 
final tree with bootstrap values of at least 90% depicted on the branches [44]. 
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5.2.4 amoA AOB OTU processing and beta and alpha diversity analyses 

Statistical analyses were carried out in R version 3.3.1 using R-Studio ver-
sion 1.0.136. The R package phyloseq was used to handle the amplicon datasets. 
To remove outliers, the amoA AOB samples with less than 120 sequences were 
filtered out. To evaluate the sequencing coverage of the AOB communities, 
Good’s coverage was calculated (package jfq3/QsRutils) and rarefaction curves 
were produced. Relative abundances of the amoA AOB OTUs were converted to 
absolute abundances by multiplying by sample the relative abundances by the rel-
evant gene copy numbers previously obtained [24].  

To ascertain the effect of treatment on the AOB community structure, we 
ordinated the amoA AOB samples using Bray-Curtis distances based on OTU rel-
ative abundance profiles. Multivariate homogeneity of dispersion was checked 
with function “betadisp” in the vegan R package. If dispersions were homoge-
neous, the effects of time point, treatment within time point, and time point within 
treatment were assessed through PERMANOVA analyses (“vegan” R package). 
Post-hoc tests of different pairwise group means were carried out using the “pair-
wiseAdonis” R package  [45]. 

To determine the effect of treatment and time point, treatment within time 
point and time point within treatment on the AOB community alpha diversity, the 
data was first rarified to 120 sequences across samples using random seed 42. Af-
ter confirming that all the data were not normal using the Shapiro-Wilk test and 
visual check of quantile plots, two-way crossed analyses of treatment and time 
point, and one-way analyses of treatment within time point and time point within 
treatment were evaluated using Kruskal-Wallis tests. These were supplemented 
with Dunn’s post-hoc tests. 

5.2.5 16S rRNA OTU processing and differential abundance and indicator 
species analyses 

We supplemented the analyses of the amoA AOB dataset using the previous-
ly published 16S rRNA gene sequence dataset [24]. Good’s coverage was calcu-
lated and rarefaction curves were produced as described for the amoA AOB OTU 
dataset. The 16S rRNA OTU abundance dataset was processed as follows. Sam-
ples with less than 3000 sequences and 16S rRNA OTUs with less than 23 se-
quences across all samples were filtered out. To determine significantly different 
nitrifier 16S rRNA OTUs between treatments, differential abundance analysis was 
applied between treatment pairs considering all time points. The DeSeq2 package, 
which applies a negative binomial transformation of the filtered abundance data to 
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stabilize variances, was used for the differential abundance testing [46]. The Wald 
test with local model fit was applied to the 16S rRNA data; orthogonal contrasts of 
the control and all other treatments, and of the urea against the treatments with a 
nitrification inhibitor, were carried out using Bonferroni-Hochberg correction for 
multiple tests. Significantly different 16S rRNA OTUs with Bonferroni-adjusted 
p-values of less than 0.05 were identified.  

The 16S rRNA relative abundances were converted to absolute abundances 
using the 16S rRNA copy numbers previously obtained by real-time PCR [24]. To 
examine the 16S rRNA OTUs that were indicators of combinations of up to three 
treatments, we used the multipatt function from the “indicspec” R package to ap-
ply Legendre’s indicator species analysis on the 16S rRNA absolute abundances. 
Multiple comparison p-values were adjusted using the Benjamini-Hochberg cor-
rection. 

5.2.6 Spearman correlations of amoA AOB and nitrifier 16S rRNA OTUs with 
environmental variables 

To reveal correlations between nitrifier OTU abundances and environmental 
variables, a subset of the previously published environmental data was employed 
[24]. Log transformations of the gene copy numbers obtained by qPCR (nirS, 
nirK, amoA AOB, amoA AOA, total Archaeal, 16S rRNA) were carried out leaving 
the other variables (CO2, N2O, CH4, soil NH4–N, soil NO3–N, soil pH and WFPS) 
untransformed (Figure S2). The nitrifier 16S rRNA and amoA AOB OTU relative 
and absolute abundances, and the nitrifier 16S rRNA normalized abundances, were 
correlated with the environmental variables using Spearman correlations. Signifi-
cant correlations (p<0.01) were kept; for visualization the correlations were clus-
tered using complete linkage clustering through the “corrplot” package. 

5.3 Results 
5.3.1 amoA AOB community sequencing coverage and composition 

Processing of the amoA AOB amplicon data resulted in 68,211 sequences, 
which were clustered into 54 OTUs. The number of sequences ranged between 
121 and 3,019 across the 127 samples (4 treatments X 8 time points X 4 replicates 
with one outlier sample removed). The samples had average Good's coverage of at 
least 94% (Supplementary Table S1), which was supported in the rarefaction 
curve results, with more sequences not adding more species in the samples with 
more sequences (Supplementary Figure S3). At the genus level, the AOB com-
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munity was composed of unclassified Betaproteobacteria, Nitrosomonas and Ni-
trosospira (which included the Nitrosovibrio classification; Figure 1A). The phy-
logenetic tree of the amoA AOB OTUs with reference sequences indicated that 
these aligned with Nitrosospira (52/54 amoA OTUs) and Nitrosomonas (2/54 
amoA OTUs) (Figure 2). In support of the low diversity of the amoA AOB com-
munities, the 16S rRNA gene dataset revealed only two Nitrosospira OTUs 
(abundant OTU 30 and rare 16S rRNA OTU 1102) and one Nitrosomonas OTU 
(rare 16S rRNA OTU 2875). Further, the Nitrosospira 16S rRNA OTUs had simi-
lar absolute abundances as the Nitrosospira amoA AOB OTUs across the treat-
ments (Figure 1B and 1D).  
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!  
Figure 1. Taxonomic distributions of the amoA AOB amplicon samples by A) relative abundances 
or B) absolute abundances within genus, and C) the amoA AOB gene copy numbers. Also included 
are the D) taxonomic distributions of the 16S rRNA amplicon samples by absolute abundances 
within the Nitrosomonadaceae family and E) the gene copy numbers of 16S rRNA gene se-
quences. Mean values within treatments and time points are shown. Treatments were the unfertil-
ized control (C), urea (UR), urea with dicyanimide (UR+DCD) and urea with 3,4-dimethylpyra-
zole phosphate (UR+DMPP). Day = days after fertilization.  
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Figure 2. Phylogenetic analysis of amoA AOB OTUs and reference amoA sequences from the 
FUNGENE database based on the Maximum Likelihood distance method. Bootstrap values (1000 
replicates) of less than 90% are depicted by the blue dots on the branches. The Nitrosospira are 
depicted with purple color bars, Nitrosomonas with green color bars, and the outgroup Nitrososoc-
cus with the yellow color bar. 

5.3.2 Treatment effects on amoA AOB community beta diversity  

Beta dispersion analysis on all the samples revealed that treatment, but not 
time point, had a significant effect on the AOB community dispersions (F=3.6529, 
P<0.05). Subsequent beta diversity analysis revealed that time point, considering 
all treatments, had no effect on the AOB community structures (Supplementary 
Table S2). Ordination plots showed that the amoA AOB communities overlapped 
between treatments, considering all time points, according to 95% confidence in-
tervals (Figure 3A). Within time points and treatments, the beta dispersions of the 
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amoA AOB communities were unaffected by treatment and time point, respective-
ly. Treatment had a significant effect on the amoA AOB community structures 
only within days 7 and 16 (PERMANOVA; P<0.1; Supplementary Table S2). 
However, pairwise comparisons revealed that no amoA AOB community struc-
tures were significantly different between treatments within these time points. 
Time point had no effect on amoA AOB community structures within any treat-
ment. Ordination plots within time point revealed that the amoA AOB communi-
ties did not cluster separately for treatments nor time points at 95% confidence 
intervals (Figures 3C and 3D). 

!  
Figure 3. Ordination plots of the ammonia-oxidizing bacterial communities using PCoA on Bray-
Curtis sample distances based on amoA AOB OTU relative abundances (n=127) A) across all time 
points (n=127) and B) across all treatments, C) by treatment within each time point (n=16) and D) 
by time point within each treatment (n=24). Time points were 7, 16, 18, 27, 35, 42, 82, and 158 
days after fertilization. Treatments were unfertilized (Control, black), urea (UR, red), urea with 
dicyanimide (UR+DCD, purple), urea with 3,4-dimethylpyrazole phosphate (UR+DMPP, green). 
Confidence intervals of 0.95 are drawn around the treatments or days as ellipses.  
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5.3.3 Treatment and time point effects on amoA AOB community alpha di-
versity  

The alpha diversities of the amoA AOB communities ranged from 1 to 3 
based on Shannon index (Figure 4). Considering all time points, treatment had an 
effect on the alpha diversity of the amoA AOB communities (chi-squared value 
33.884, p-value = 2.096e-07), but time point had no effect on the alpha diversities 
when considering all treatments. Post-hoc testing over all time points found that 
the amoA AOB communities in the DMPP treatment had higher alpha diversity 
compared to the other treatments (Dunn’s test, p < 0.05; Figure 4). Within time 
point, treatment had an effect on the amoA AOB alpha diversities for days 7, 18, 
27, with chi-squared values of 7.6103 (p-value 0.05479), 4.7792 (p-value 0.1887) 
and 6.7721 (p-value 0.07953), respectively. However, post hoc testing revealed no 
different pairs. Within treatment, time point had an effect on the amoA AOB 
community alpha diversities only for the Control treatment (chi-squared 12.534, 
p-value=0.08431); further, pairwise post hoc tests revealed no difference in alpha 
diversity between treatments. 

5.3.4 Differential abundance of nitrifier 16S rRNA OTUs and treatment 
group indicators 

From the 16S rRNA gene sequence data, four genera of nitrifiers were rep-
resented: Nitrosomonas (1 OTU), Nitrososphaera (37 OTUs), Nitrosospira (2 
OTUs) and Nitrospira (11 OTUs). The variance-stabilized trajectories of Ni-
trosospira, Nitrososphaera and Nitrospira 16S rRNA OTUs across the four treat-
ments can be seen in Figure S4. The two 16S rRNA Nitrosospira OTUs showed a 
similar trend across the treatments, with higher abundances in the urea and urea 
with DCD treatments compared to the control and the urea with DMPP treat-
ments. The 16S rRNA Nitrososphaera OTUs showed three trends, with OTUs 11 
and 429 having lowest abundances in the control treatment and higher abundances 
in the treatments with urea, with the highest abundances in the urea with DMPP 
treatment; OTUs 40 and 45 having highest abundances in the control treatment, 
lower abundances in the treatments with urea, and the lowest abundance in the 
urea treatment; and OTUs 112 and 39 having highest abundances in the control 
and urea with nitrification inhibitor treatments and the lowest abundance in the 
urea treatment. The 16S rRNA Nitrospira OTU followed the last trend with the 
highest abundances in the control and urea with nitrification inhibitor treatments 
and the lowest abundance in the urea treatment. 
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The differential abundance and indicator species analyses generally support-
ed the abundance trajectories of the 16S rRNA nitrifier OTUs. Differential abun-
dance analysis revealed the nitrifier 16S rRNA OTUs that were significantly over- 
and under-represented between pairwise comparisons of treatments based on vari-
ance-stabilized abundances (Supplementary Table S3). Of the Nitrosospira 16S 
rRNA OTUs, OTU 30 was an indicator of the control, urea and urea with DCD 
treatments, while OTU 1102 was an indicator of only the urea and urea with DCD 
treatments (adjusted p-value < 0.1; Supplementary Table S3). Of the Ni-
trososphaera 16S rRNA OTUs, OTU 45, OTU 112, OTU 40, OTU 39 and OTU 
11 were indicators of the control, urea with DCD and urea with DMPP treatments. 
Of the Nitrospira 16S rRNA OTUs, OTU 79 was an indicator of the control, urea 
with DCD and urea with DMPP treatments. 

5.3.5 Nitrifier amoA and 16S rRNA OTU and environmental correlations 

The correlations of the environmental variables with the gene copy numbers 
of AOB, AOA, nirK, nirS, 16S rRNA total bacteria and total Archaea (Supple-
mentary Figure S5) depict the positive links between AOB, N2O, NO3-, NH4+, 
WFPS and pH, and AOA, nirS, nirK, total archaea and total bacteria; and the neg-
ative links between CO2, CH4+ and WFPS, and AOA, total Archaea, NH4+, N2O 
and NO3- (Figure 5A). As can be seen in Figure 5B which depicts correlations in-
cluding the normalized abundances of 16S rRNA OTUs, N2O emissions were cor-
related with amoA AOB copy numbers, water-filled pore space (WFPS), NO3-, 
NH4+ and pH. Interestingly, the 16S rRNA and amoA AOB OTU correlations clus-
tered with the previous variables with the exception of NH4+ and pH, which nev-
ertheless suggests that Nitrosospira (OTU 30 and OTU 1102) were the N2O-pro-
ducing AOB in these soils. Other interesting clusters were the 16S rRNA Ni-
trososphaera OTUs 429 and 11 with NO3-, NH4+ and pH; the nirS, nirK, total ar-
chaeal and 16S rRNA gene copy numbers; and the amoA AOA, 16S rRNA Nitro-
spira OTU 79, the 16S rRNA Nitrososphaera OTUs 45, 112, 40 and 39. These 
clusters were found in all the correlations with absolute and relative abundances 
of the amoA AOB and the 16S rRNA gene sequence data (Supplementary Figure 
S5). 
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!  
Figure 4. Alpha diversity of the amoA AOB communities as affected by A) treatment, for all time 
points, B) time point, for all treatments, C-J) treatment, within each time point, and K-N) time 
point, within each treatment. Treatments were unfertilized (C), urea (UR), urea with dicyanimide 
(UR+DCD) and urea with 3,4-dimethylpyrazole phosphate (UR+DMPP); time points were 7, 16, 
18, 27, 35, 42, 82,158 days after fertilization. The y-axis label includes the result of a Kruskal-
Wallis chi-squared test (“*” for p<0.05, “.” for p<0.10); the letters above the plots represent the 
results of Dunn’s post hoc tests at alpha < 0.05 in which similar letters denote no difference be-
tween groups. 

!  
Figure 5. Cluster plots visualizing Spearman’s correlations A) between environmental variables 
and gene copy numbers, and B) between environmental variables, gene copy numbers and the 
normalized abundances of the 16S rRNA nitrifier OTUs. Normalization was carried out using De-
Seq2. Only significant correlations are shown (p<0.01). Clusters were determined using complete 
linkage clustering. NOS = Nitrosospira, NOP = Nitrososphaera, NOB = Nitrospira. 
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5.4 Discussion 
From our previous work, we found that bacterial amoA (AOB) but not ar-

chaeal amoA (AOA) nor denitrification gene copy numbers (nirK, nirS) were cor-
related with nitrous oxide emissions from tropical soil growing sugarcane [24]. 
Here we found evidence that the AOB responsible for the N2O emissions was 
most similar to the Nitrosospira spp. (Nitrosovibrio RY3C), based on the decrease 
in abundance of these OTUs in soils with the nitrification inhibitors in comparison 
with the urea treatment and the correlation of these OTUs with N2O emissions. 
The Nitrosovibrio RY3C species was originally isolated from avocado rhizosphere 
and its nitrifying activity was susceptible to DCD [47]. To our knowledge, just 
one other study has identified Nitrosospira spp. as the N2O-generating AOB in 
tropical soil under sugarcane, and that study applied NH4NO3 as the N source 
[25]. The Nitrosospira in general are widespread spiral soil bacteria with generally 
low specificity for ammonia and thus found in soils under high levels of ammonia 
[15, 48, 49]. The only other AOB identified was Nitrosomonas, which was present 
in low abundance in the soils and was not linked to N2O emissions. The Nitro-
somonas are generally found in soils with high N inputs; moreover, Nitrosomonas 
europaea has a 3.5-fold higher Vmax compared to Nitrosospira sp., suggesting 
that these AOB do better in soils with consistently higher N [50]. We suggest that 
the conditions these soils encounter (generally low N with occasional high N in-
puts from fertilization) selects for the Nitrosospira, but that perhaps a Nitro-
somonas species adapted to these conditions is present in low abundance.  

The AOB are widely implicated in N2O emissions under conditions favoring 
nitrification in tropical and temperate soils, in contrast to the AOA [51-55]. This is 
thought to be linked to the enzymatic capabilities of different AOB and AOA 
species, with the former generating higher amounts of N2O through both abiotic 
(nitric oxide oxidation by O2) and biotic (incomplete hydroxylamine oxidation 
and nitrifier denitrification) mechanisms, while the latter likely emits lower N2O 
using only an abiotic (nitric oxidation by O2) mechanism [56, 57]. While the AOB 
Nitrosospira was abundant in the soils under urea and urea with DCD treatments, 
we found that in the unfertilized and in the urea with DMPP treatment, the AOA 
Nitrososphaera were more abundant. More than 5 AOA Nitrososphaera 16S rRNA 
OTUs were identified compared to the two AOB Nitrosospira 16S rRNA OTUs; 
this supports the idea that the conditions in these unfertilized soils normally sup-
port the AOA Nitrososphaera rather than the AOB Nitrosospira or Nitrosomonas 
as the main ammonia oxidizers. Moreover, these native Nitrososphaera appeared 
to be non-N2O-producing AOA. These results support observations that the AOA 
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Nitrososphaera is associated with low concentrations of ammonia linked to the 
stronger affinity of the archaeal ammonia monooxygenase for ammonia [48].  

Interestingly, we identified two types of Nitrososphaera (AOA): one cluster 
of Nitrososphaera OTUs was more abundant in the soils with urea and DMPP, 
while the other cluster was more abundant in the unfertilized soils and co-varied 
with the NOB Nitrospira. The Nitrospira was the only nitrite-oxidizer found in 
our soils according to the 16S rRNA gene sequence data; interestingly, this was 
most abundant in the unfertilized soils and co-varied with AOA Nitrososphaera 
OTUs. The Nitrospira are thought to be adapted to low NO2- availability [20], 
which might explain their presence in our soils instead of Nitrobacter [19, 58]. 
Further, perhaps the Nitrososphaera and Nitrospira naturally interact in these un-
fertilized soils, as has been suggested for unfertilized grassland soils [34]. Future 
work could focus on this hypothesized interaction between non-N2O-generating 
Nitrososphaera and Nitrobacter, which appears to be selected for by low levels of 
available substrate and might be enhanced by adding organic residues with high 
C:N [51, 59]. 

The inhibitors DCD and DMPP are both thought to inhibit ammonia 
monooxygenase by chelating the Cu co-factor in the enzyme [9].The limitation of 
Nitrosospira but not Nitrososphaera by DCD has been shown also in a paddy field 
soil and in microcosms of Nitrosospira multiformis but not Nitrososphaera vien-
nensis [60, 61]. Based on gene copy numbers, the AOB but not the AOA were in-
hibited by DMPP in a sandy soil [62]; and the AOB but not the AOA were inhibit-
ed by DCD in a grazed grassland system [54]. In a Chinese vegetable soil, DMPP 
rather than DCD was revealed to be the more effective inhibitor of N2O-producing 
AOB rather than AOA, although the N source urea was also amended with ma-
nure [63]. In studies of nitrification in agricultural soils, DMPP inhibited AOB 
expression under neutral pH conditions [64, 65]. The different success of the nitri-
fication inhibitors appears to be a function of temperature, Cu-levels, and varia-
tion in abundance, genetic potential and/or expression levels of the targeted nitri-
fiers [9]. The different effects of DCD and DMPP on the abundance of the AOB 
Nitrosospira and the AOA Nitrososphaera found here suggests that evaluating the 
nitrification dynamics of these species in culture would be interesting for future 
work.  

In contrast to our hypothesis that the nitrification inhibitor treatments would 
decrease the amoA AOB community alpha diversity, this diversity remained large-
ly unchanged across treatments. There overall was low alpha diversity of the 
amoA AOB community, which was supported in both the amoA AOB and 16S 
rRNA sequence results. Nitrifiers occupy a specific functional niche in the soil 
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environment, and the nitrifying functions are restricted to a handful of genera; 
new AOB are not likely to appear at least over the relatively short duration of this 
experiment (in total 258 days, subset presented here was 158 days). Moreover, the 
sugarcane plant competes with microbes for NH4+ and NO3- and these substrates 
are not likely to remain immobile long in this soil [66]. The highly weathered soils 
have high soil drainage capacity and have been under more than 20 years of sug-
arcane cultivation. Due to the long  time of cultivation by sugarcane, likely the 
nitrifiers found in this soil are those that are adapted to the natural unfertilized 
conditions, to the brief high inputs of ammonia through urea fertilization, and to 
the competition with the sugarcane plant for ammonia. We speculate that the 
overall low nitrifier diversity and the selection of the nitrifiers that are present in 
these soils are driven by the generally low N levels. 

While we inferred our results from the analysis of two different amplicon 
gene datasets, making our results more robust, some caveats to our methods 
should be acknowledged. The precision of the OTU classification was dependent 
upon the coverage of the databases used; for example, for our 16S rRNA dataset 
we were only able to confidently classify to the genus level. This prevented us 
from directly comparing the classification results between the amoA AOB and 16S 
rRNA datasets at the species level. However, we were reassured by the congruence 
of the amoA and 16S rRNA sequence data relative to the absolute abundances of 
the amoA AOB at genus level. Further, the low diversity of the amoA bacterial 
communities was echoed in the 16S rRNA data with just a few OTUs identified as 
Nitrosospira and only one as Nitrosomonas. Last, though the 16S rRNA samples 
had high Good’s coverage values between 85% and 99%, there is a possibility that 
the nitrifying subset of the community did not have such high coverage values. 
However, the focus of this paper was the amoA AOB community, although future 
studies could target in more depth and with more specificity the nitrifying network 
in these soils.  

In summary, the nitrification inhibitors in our experiment were revealed to 
target the N2O-producing bacterial ammonia-oxidizer Nitrosospira spp. in the 
soils. The low N availability appeared to drive the nitrifier community found in 
these soils. Treatment with urea and DMPP appeared to favor one functional type 
of AOA Nitrososphaera while the unfertilized soils revealed potentially interde-
pendent AOA Nitrososphaera and NOB Nitrospira; it seems these species do not 
greatly contribute to N2O emissions. Our results support the use of DMPP and es-
pecially DCD as inhibitors of N2O-producing Nitrosospira spp. in tropical soils 
under sugarcane. The DMPP treatment may also increase the amount of NH4+ in 
the soil, allowing the sugarcane crop to uptake this N source while blocking the 
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N2O from Nitrosospira. Furthermore, we provide evidence that the nitrification 
process in these soils is controlled by a few bacterial and archaeal species, driven 
mainly by the overall low N levels, and which have contrasting functional poten-
tials for N2O emission rates. 
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5.6 Supplementary Material 
Table S1. Good’s coverage of the 16S rRNA (n=93) and amoA AOB (n=127) datasets. Treat-
ments were unfertilized (C), urea (UR), urea with dicyanimide (UR+DCD) and urea with 3,4-di-
methylpyrazole phosphate (UR+DMPP). Day: days after fertilization. 

Treatment Day 16S rRNA (avg; %) 16S rRNA (sd) amoA (avg; %) amoA (sd)
C 7 92.0 5.8 98.0 0.6

16 96.4 1.9 96.7 1.1
18 95.5 2.0 98.2 0.5
27 93.9 3.2 98.1 0.3
35 93.7 1.7 98.4 0.7
42 91.3 8.0 99.2 0.6
82 94.4 0.8 98.4 0.3

158 90.9 4.6 98.4 0.8
UR 7 91.6 4.0 98.9 0.8

16 96.7 1.0 97.9 1.0
18 95.6 0.8 97.9 0.5
27 95.2 0.1 98.1 1.2
35 93.7 0.9 99.1 0.5
42 94.7 1.3 99.0 0.7
82 97.9 0.2 98.2 0.5

158 91.9 2.1 96.6 2.2
UR+DCD 7 95.6 0.9 98.2 0.8

16 94.4 2.5 98.0 1.1
18 95.8 1.7 98.7 0.7
27 96.4 1.9 98.0 1.9
35 94.6 0.3 98.3 1.2
42 90.2 2.3 99.0 0.5
82 90.4 3.6 98.0 0.8

158 88.7 0.9 98.5 0.8
UR+DMPP 7 94.7 0.4 95.6 1.9

16 95.9 1.2 96.0 1.3
18 96.4 0.6 98.6 1.0
27 95.6 0.9 97.1 1.0
35 96.2 0.5 97.6 1.3
42 91.0 1.9 98.8 0.6
82 93.4 1.0 97.9 0.9

158 95.4 1.5 97.3 1.2
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Table S2. Beta diversity results from PERMANOVA tests of the effects of treatment and time 
point on the AOB communities based on the Bray-Curtis distances between amoA OTU relative 
abundance profiles. Treatments were unfertilized (C), urea (UR), urea with dicyanimide 
(UR+DCD) and urea with 3,4-dimethylpyrazole phosphate (UR+DMPP). Days were 7, 16, 18, 27, 
35, 42, 85 and 158 days after fertilization. 

All treatments df F statistic R2 P-value
Day               7 0.8253 0.0463 0.711
Residuals              119 0.9537

Within Day 7
Treatment   3 2.0553 0.33942 0.005 **
Residuals  12 0.66058

Within Day 16
Treatment   3 1.5286 0.29422 0.085 .
Residuals  12 0.70578

Within Day 18
Treatment   3 0.9178 0.18663 0.623
Residuals  12 0.81337

Within Day 27
Treatment   3 1.2305 0.23525 0.207
Residuals  12 0.76475

Within Day 35
Treatment   3 1.1248 0.21948 0.272
Residuals  12 0.78052

Within Day 42
Treatment   3 1.1308 0.2204 0.271
Residuals  12 0.7796

Within Day 82
Treatment   3 1.4292 0.26324 0.134
Residuals  12 0.73676

Within Day 158
Treatment   3 1.0193 0.20308 0.410
Residuals  12 0.79692

Within Control
Day  7 1.1906 0.25775 0.157
Residuals 24 0.74225

Within UR
Day  7 0.95792 0.22573 0.584
Residuals 23 0.77427

Within UR+DCD
Day  7 0.81333 0.19174 0.821
Residuals 24 0.80826

Within UR+DMPP
Day  7 0.78015 0.18536 0.858
Residuals 24 0.81464

- �  -141



Table S3. Differentially abundant nitrifier 16S rRNA OTUs based on pairwise comparisons of 16S 
rRNA OTU abundances between treatments. Treatments were unfertilized (C), urea (UR), urea 
with dicyanimide (UR+DCD), and urea with 3,4-dimethylpyrazole phosphate (UR+DMPP). The 
16S rRNA OTUs were included if the mean normalized abundance across all samples was greater 
than 4 and had log2 fold changes of more or less than 1. Values are significant log2 fold changes 
from DeSeq2 analysis (p adjusted < 0.05). 

Log2 fold Change
Genus 16S rRNA 

OTU Id
Mean 
Norm. 
Abund.

UR 
vs C

DCD 
vs C

DMPP 
vs C

DCD 
vs UR

DMPP 
vs UR

DMPP vs 
DCD

Nitrosospira 30 102 2.7 2.0 -2.5 -1.8
1102 5 3.2 2.9 -2.1

Nitrososphaera 11 97 2.0 1.7 1.5 1.0
39 49 -1.1
40 44 -1.2
45 22 -3.2 2.0 2.1

112 15 -2.4 1.9
429 9 2.6 2.9 4.0 1.3

Nitrospira 79 36 -1.3 1.1 1.6
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Table S4. Results of the indicator species analysis depicting indicator nitrifiers 16S rRNA gene 
sequence for groups of treatments (asterisk indicates adjusted p-value < 0.1) based on absolute 
abundances of 16S rRNA OTUs. The OTUs were included if the mean normalized abundances 
were at least 4. Treatments were unfertilized (C), urea (UR), urea with dicyanimide (UR+DCD), 
and urea with 3,4-dimethylpyrazole phosphate (UR+DMPP). A “1” is in place if the 16S rRNA 
OTU was an indicator of the treatment or, taken together, the group of treatments. 

Max Order 3

Genus
16S 
rRNA 
OTU Id

C UR UR+DCD UR+DMPP statistic adj. p-
value

Nitrosospira 30 1 1 1 0.95 0.025 *
1102 1 1 0.82 0.015 *

Nitrososphaera 11 1 1 1 0.95 0.553
39 1 1 1 0.92 0.459
40 1 1 1 0.90 0.760
45 1 1 1 0.94 0.033 *
112 1 1 1 0.91 0.015 *
429 1 1 1 0.93 0.009 *

Nitrospira 79 1 1 1 0.94 0.232
Max Order 2

Genus
16S 
rRNA 
OTU Id

C UR UR+DCD UR+DMPP statistic adj. p-
value

Nitrosospira 30 1 1 0.88 0.010 *
1102 1 1 0.82 0.010 *

Nitrososphaera 11 1 1 0.88 0.218
39 1 1 0.77 0.825
40 1 1 0.78 0.752
45 1 1 0.78 0.854
112 1 1 0.77 0.340
429 1 1 0.87 0.022 *

Nitrospira 79 1 1 0.82 0.164
Max Order 1

Genus
16S 
rRNA 
OTU Id

C UR UR+DCD UR+DMPP statistic adj. p-
value

Nitrosospira 30 1 0.66 0.058 *
1102 1 0.63 0.096 *

Nitrososphaera 11 1 0.73 0.176
39 1 0.59 0.836
40 1 0.58 0.843
45 1 0.55 0.971
112 1 0.60 0.375
429 1 0.76 0.036 *

Nitrospira 79 1 0.64 0.188
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#  
Figure S1. Line graph depicting the number of amoA AOB clusters (OTUs) at various percent 
identity levels from the USEARCH clustering algorithm. The percentage of 97% was chosen as 
per the recommendation of the USEARCH manual.  
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Figure S2. The previously published environmental variables and the gene copy numbers which 
were used in the current paper (Soares et al., 2016). Treatments were control (C; black), urea (UR; 
red), urea with dicyanimide (UR+DCD) and urea with 3,4-dimethylpyrazole phosphate 
(UR+DMPP). Time points were 7, 16, 18, 27, 35, 42, 82 and 158 days after fertilization. The gene 
copy numbers (qPCR) are presented as log values. 
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Figure S3. Rarefaction curves of the A) amoA AOB (n=127) and B) 16S rRNA (n=93) 
datasets across time point. Treatments were unfertilized (C, black), urea (UR, red), urea 
with dicyanimide (UR+DCD, purple), and urea with 3,4-dimethylpyrazole phosphate 
(UR+DMPP, green). Days are 7, 16, 18, 27, 35, 42, 85 and 158 days after fertilization. 
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A)

B)

Figure S4. Normalized abundances of the A) AOB Nitrosospira, B) AOA Nitrososphaera and 
C) NOB Nitrospira 16S rRNA OTUs that were differentially abundant across the treatments 
based on DESeq2 analysis. Treatments were control (C), urea (UR), urea with DCD (UR+DCD) 
and urea with DMPP (UR+DMPP). Days are 7, 16, 18, 27, 35, 42, 85 and 158 days after 
fertilization. Note the different limits on the y-axes. Normalization was carried out with 
DeSeq2. Note the differing Y-axis limits.
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Figure S4 continued. Normalized abundances of the A) AOB Nitrosospira, B) AOA Ni-
trososphaera and C) NOB Nitrospira 16S rRNA OTUs that were differentially abundant across the 
treatments based on DESeq2 analysis. Treatments were control (C), urea (UR), urea with DCD 
(UR+DCD) and urea with DMPP (UR+DMPP). Days are 7, 16, 18, 27, 35, 42, 85 and 158 days 
after fertilization. Note the different limits on the y-axes. Normalization was carried out with De-
Seq2. Note the differing Y-axis limits. 
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Figure S5 cont’d. Cluster plots visualizing Spearman’s correlations between environmental vari-
ables and the A) absolute abundances and B) relative abundances of the 16S rRNA nitrifier OTUs. 
Only significant correlations are shown (p<0.01). Clusters were determined using complete link-
age clustering.  
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Figure S5 cont’d. Cluster plots visualizing Spearman’s correlations between environmental vari-
ables and the C) absolute abundances and D) relative abundances of the amoA AOB OTUs classi-
fied as the Nitrosospira spp. Nitrosovibrio RY3C. Only significant correlations are shown 
(p<0.01). Clusters were determined using complete linkage clustering.  
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Abstract 
Background: The production of 1L of ethanol from sugarcane generates up to 12 
L of vinasse, which is a liquid waste containing an as-yet uncharacterized micro-
bial assemblage. Most vinasse is destined for use as a fertilizer on the sugarcane 
fields because of the high organic and K content; however, increased N2O emis-
sions have been observed when vinasse is co-applied with inorganic N fertilizers. 
Here we aimed to characterize the microbial assemblage of vinasse to determine 
the gene potential of vinasse microbes for contributing to negative environmental 
effects during fertirrigation and/or to the obstruction of bioethanol fermentation.  

Results: We measured chemical characteristics and extracted total DNA from six 
vinasse batches taken over 1.5 years from a bioethanol and sugar mill in Sao 
Paulo State. The vinasse microbial assemblage was characterized by low alpha 
diversity with 5 to 15 species across the six vinasses. The core genus was Lacto-
bacillus. The top six represented bacterial genera across the samples were Lacto-
bacillus, Megasphaera and Mitsuokella (Phylum Firmicutes, 35 – 97% of sample 
reads); Arcobacter and Alcaligenes (Phylum Proteobacteria, 0 – 40%); Dys-
gonomonas (Phylum Bacteroidetes, 0 – 53%); and Bifidobacterium (Phylum Acti-
nobacteria, 0 – 18%). Potential genes for denitrification but not nitrification were 
identified in the vinasse metagenomes, with putative nirK and nosZ genes the 
most represented. Binning resulted in 38 large bins with between 36.0 and 99.3% 
completeness, and five small mobile element bins. Of the large bins, 53% could 
be classified at the phylum level as Firmicutes, 15% as Proteobacteria, 13% as 
unknown phyla, 13% as Bacteroidetes and 6% as Actinobacteria. The large bins 
spanned a range of potential denitrifiers; moreover, the genetic repertoires of all 
the large bins included the presence of genes involved in acetate, CO2, ethanol, 
H2O2, and lactose  metabolism; for many of the large bins, genes related to the 
metabolism of mannitol, xylose, butyric acid, cellulose, sucrose, “3-hydroxy fatty 
acids and antibiotic resistance genes were present. In total, 21 vinasse bacterial 
draft genomes were submitted to the genome repository.  

Conclusions: Identification of the gene repertoires of vinasse bacteria and assem-
blages supported the idea that microbiological variation of vinasse might lead to 
varying patterns of N2O emissions during fertirrigation. Furthermore, we uncov-
ered draft genomes of novel strains of known bioethanol contaminants, as well as 
draft genomes unknown at the phylum level. This study will aid efforts to improve 
bioethanol production efficiency and sugarcane agriculture sustainability. 
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6.1 Introduction 
Sao Paulo State contains a total of 5.7 million hectares of land planted with 

sugarcane. These fields supply the input for Brazil’s large bioethanol industry, 
which is the second largest producer of bioethanol worldwide (UNICA). Brazil 
has more than 300 sugarcane processing plants, including sugar mills (producing 
only sugar), mills with distillery plants (sugar and ethanol production), and inde-
pendent distilleries (only ethanol production). In the 2013/2014 season, the total 
ethanol production was 13.9 thousand m3 (UNICA, 2013/2014 harvest). The ma-
jor by-product of sugarcane ethanol production is vinasse; up to 12 L of vinasse is 
generated per liter of ethanol [1]. Sugarcane vinasse consists of water (about 93%) 
and organic compounds, and contains K, Ca and Mg, though the amount of these 
components depends on the characteristics of the input sugarcane and subsequent 
processing steps [2]. The major organic components of sugarcane vinasse are low 
molecular-weight organic compounds, mainly glycerol, lactic acid, ethanol, and 
acetic acid [3]. In general, vinasse has a low pH of around 4 and high chemical 
oxygen demand of 100 - 500 g per L.  

The large volumes of vinasse and its chemical properties of high organic 
and K content have led to its widespread reuse as a fertilizer supplement for sug-
arcane crops. Most often the vinasse is sprayed onto the fields, which is a process 
termed fertirrigation. This method is low-cost and contributes to net energy sav-
ings in sugarcane bioethanol production cycles because the vinasse is locally 
transported and applied [4]. Benefits of using vinasse as fertilizer include im-
proved short-term soil quality, crop production and crop quality [5-8]. However, 
negative effects include decreasing long-term soil fertility (lead leaching, N im-
mobilization) and increasing greenhouse gas emissions, especially the emission of 
N2O when used in conjunction with an N fertilizer [2, 9-12]. These effects depend 
on the soil and environmental characteristics as well as vinasse-specific nutrient 
contents (reviewed in [12]). The increased N2O emissions from vinasse fertirriga-
tion may be due to the stimulation of soil microbes by vinasse-derived organic 
material (i.e. a form of priming) or the activity of vinasse-derived cells containing 
genes in N2O-producing pathways[8].  

Nitrous oxide emissions are produced through two main microbially-medi-
ated processes in soil: nitrification (NH4+ to NH2OH to NO3-) and denitrification 
(NO3- to NO2- to NO to N2O to N2). Nitrification is carried out by microbes con-
taining the ammonia monooxygenase enzyme, which is encoded by the gene 
amoA, and generally used as a functional marker of nitrifiers. Denitrifier bacteria 
may contain the nitrite reductase genes nirS and nirK, the nitric oxide reductase 
gene norB and/or the nitrous oxide reductase gene norB, which each encode for 
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the enzymes involved in the respiration of nitrite to nitric oxide to nitrous oxide to 
dinitrogen gas, respectively. The abundance of the different microbes containing 
denitrification genes, and the abundance of these genes when measured as func-
tional markers, is known to correlate with the actual N2O emission rates from soils 
[8]. While much is known regarding the chemical characteristics of vinasse, there 
are only a few indirect studies of its biotic components despite recent attention to 
the environmental effects of its use in fertirrigation.  

The microbiota present in vinasse likely encompasses the microorganisms 
present in the bioethanol production process. The most common raw material for 
ethanol production in Brazil is the mixture of diluted molasses and cane juice, 
used in the distilleries annexed to sugar producing mills. The ethanol pipeline 
starts with crushing the unwashed sugarcane stalk to separate the sugarcane juice 
from the pulpy stalk residue known as bagasse. The sugarcane juice is heated and 
clarified with lime; the clarified juice is concentrated in an evaporator at 115 de-
grees C followed by vacuum boiling pan, at which point sugar and molasses crys-
tallize. By centrifugation, the sugar crystals are separated from the mother liquor. 
This liquor is again crystallized in vacuum pans and then passed through continu-
ous sugar centrifuges. The last residual solution is called molasses, which has high 
sucrose content suitable for ethanol production. The raw material for ethanol pro-
duction is a mixture of unsterilized sugarcane juice, molasses and water [13]. The 
fermented material is then distilled at temperatures of at least 78 0C to separate the 
ethanol from the remaining waste vinasse. This vinasse is then transported via 
open channels or trucks to the sugarcane site for fertirrigation. The mixed sugar-
cane juice is fermented using proprietary Saccharomyces cerevisiae strains 
through two methods: batch (85% of distilleries as of 2011) or continuous fermen-
tation (15%). In batch processing, the fermentation occurs in parallel, while in 
continuous fermentation the process occurs in series (reviewed in [14]). In either 
method, the yeast cells are treated with sulfuric acid, antibiotics, hop products 
and/or chemical biocides to reduce bacterial contamination, recovered by cen-
trifugation, and reapplied to the fermentation tanks. This recycling step occurs be-
tween 400 and 600 times in a harvest season and despite the antibacterial treat-
ment, bacteria remain the major contaminants.  

The main bacterial contaminants of the bioethanol pipeline are lactic acid 
bacteria, which tend to dominate the samples taken from the ethanol pipeline in 
the steps prior to vinasse [15, 16]. These bacteria, in particular Lactobacillus 
species, compete with the commercial yeast strains for sugar or form ex-
opolyssacharides that floccule yeast cells [17-19]. Contamination by bacteria – 
through sucrose competition, flocculation of the commercial yeast strain or fer-
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mentation inhibition – can lower the efficiency of the bioethanol process by up to 
30% [16, 20]. Furthermore, because of the antibiotic treatment of the yeast cells 
during the recycling step, contaminant bacteria may be a source of antibiotic resis-
tance genes, as has been recently reported in a field study [21]. Other sources of 
contamination are wild yeast strains from the input sugarcane stalks, which are 
not sterilized prior to the production pipeline [22]. To date, no studies have inves-
tigated the presence of bioethanol pipeline contaminants in vinasse. 

Here we investigated concurrently the chemical and microbial properties of 
vinasse in order to characterize the vinasse assemblage. We explored metagenom-
ic data taken from vinasse samples over 1.5 years of production from a bioethanol 
mill in Piracicaba, SP, Brazil. The mill processes sugarcane produced in the region 
within a rough 40 km radius. Vinasse is distributed by trucks for fertirrigation dur-
ing the harvest season (April to November). To characterize the microbial assem-
blage of this vinasse, we sequenced total DNA from six vinasse samples. We ana-
lyzed the resulting 18 shotgun metagenomes through metagenomics and differen-
tial abundance binning. To investigate the potential for N2O emissions from fertir-
rigation with vinasse, special attention was given to sequences and reconstructed 
genomes annotated as genes involved in N2O-related metabolism. Furthermore, 
we also identified genes relating to bioethanol production concerns to identify fu-
ture research directions. To date this is the first culture-independent study of the 
vinasse microbial assemblage. Our main questions were (1) what are the overall 
and sample-wise taxonomic and functional characteristics of the vinasse microbial 
assemblages? and (2) what is the potential of the vinasse microbes for N2O emis-
sions, obstruction of fermentation and/or antibiotic resistance? 

6.2 Materials and Methods 
6.2.1 Sampling description 

The bioethanol mill from which we sampled is in the region of Piracicaba in 
SP, Brazil. The mill takes in sugarcane from the region and produces sugar and 
ethanol. We obtained six time points of vinasse taken from transport trucks prior 
to their departure to the fields for chemical and molecular analyses. The trucks 
hold about 10,000 L of vinasse. Prior to sampling, the vinasse was held in the 
trucks for 24 hours. Of the vinasse, 0.5 L sampled from the truck was immediately 
kept at 4 degrees C. The six sampling dates were 13/11/2013 (A, Nov. 2013), 
13/12/2013 (B, Dec. 2013), 15/07/2014 (C, July 2014), 15/08/2014 (D, Aug. 
2014), 14/10/2014 (E, Oct. 2014) and 10/11/2014 (F, Nov. 2014). The dates of the 
vinasse sampling corresponded to summer (October, November and December) or 
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winter (July and August) sugarcane harvests. Because each vinasse was a random 
assemblage of contaminants from the bioethanol process, we considered each time 
point an independent measure for statistical analysis. 

6.2.2 Chemical analyses, DNA extraction, and qPCR quantification and se-
quencing 

For each vinasse sample, 500 ml was used for chemical analyses. The re-
maining three subsamples of 100 ml per time point were used for DNA extraction. 
First, the samples were centrifuged at 10,621 x g (Sigma 2-16P) for 10 min to 
separate cells from the liquid. Total DNA was extracted from the pellets with the 
MoBio PowerSoil kit according to the manufacturer's instructions. Between 553 
and 5310 ng was sent for sequencing (Additional file 1). The DNA was prepared 
as a MiSeq Illumina paired-end library and sequenced (3 replicates x 6 samples = 
18 metagenomes) or used for quantitative PCR of genes that encode for the en-
zymes involved in the sequential biochemical steps leading to N2O production 
(amoA, nirK, nirS, norB) or removal (nosZ). The qPCR reactions were performed 
in a 96-well plate (Bio-Rad) using CFX96 Touch™ Real-Time PCR Detection 
System (Bio-Rad). The qPCR reaction, primers combinations and thermal cycler 
conditions of each gene amplification are listed in Additional file 2.  The qPCR 
data was acquired at 72 °C and melting curve analysis was performed to confirm 
specificity. Amplicon sizes were checked by agarose gel electrophoresis. Samples 
were analyzed with two technical replicates. Reaction efficiency varied from 80 
to105% and R2 values ranged from 0.94 to 0.99. 

6.2.3 Metagenome processing and read-based sample comparisons 

Bioinformatics processing was performed on a Linux server 
(Linux-3.13.0-76-generic-x86_64-with-Ubuntu-14.04-trusty) with 64 nodes and 
250 GB RAM. Processing was performed in a Snakemake v3.7.1 workflow or 
with bash or perl scripts (available upon request). The 18 shotgun metagenomes 
were checked for tag sequences and evaluated for statistics using FastQC v0.10.1 
(Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc) 
and PRINSEQ-lite version 0.20.4 [23]. Raw reads were filtered out using PRIN-
SEQ if they had more than 1% of ambiguous (N) characters, had a mean quality 
score of less than 25 or were exact duplicates. Reads were trimmed at the 3’end if 
the mean quality score was less than 20 within a sliding window size of 10 (clean 
reads). The clean paired-end reads were used in further analyses unless otherwise 
noted. The raw paired-end reads were merged using PEAR v0.9.5; these merged 
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read ends were trimmed by quality and filtered out if the merged read had more 
than 1% ambiguous characters (parameters: -q 20 –n 0.01) with PEAR (merged 
reads) [24]. For downstream normalization of annotation counts, calculations of 
average genome size per sample were carried out using MicrobeCensus [25]. To 
compare the metagenomes directly, sample distances were determined from the 
partial de Bruijn assembly of the clean forward reads using MetaFAST 0.1.0 (revi-
sion 57253a1) [26]. 

6.2.4 Taxonomy, phylogeny and alpha diversity 

To characterize the taxonomic composition, functional potential and diversi-
ty of the microbial assemblages in the vinasse samples, we profiled the 
metagenomes using different databases. First, the merged reads were uploaded to 
the metagenome analysis platform MG-RAST version 3.6 [27]. The metagenomes 
were compared using the default presets to the RefSeq or Subsystems databases to 
obtain taxonomic or functional profiles, respectively. Refseq annotations, includ-
ing eukaryota, bacteria, archaea and viruses, were determined using the last com-
mon ancestor approach. The MG-RAST taxonomic (phylum-level) and functional 
(Subsystems Level 1) profiles were analyzed with the Statistical Analysis of 
Metagenome Profiles (STAMP) software [28]. Taxonomic or functional level 
abundances significantly different among vinasse samples were evaluated using 
ANOVA. The Tukey-Kramer post-hoc test with a 95% confidence interval and the 
Benjamini-Hochberg correction was used to identify differing phyla or Subsys-
tems Level 1 category abundances between the vinasse metagenomes with signifi-
cance determined at corrected p<0.001 or 0.05, respectively. The taxonomic pro-
files at genus level were kept to visualize the relative abundance of genera across 
samples. 

Because the metagenomes were well-represented in the MG-RAST databas-
es, we further characterized the taxonomy and functional potential of the 
metagenomes using metaphlan2 version 2.6.0 and humann2 version 0.9.9 pipe-
lines [29,30]. For metaphlan2 analysis, we used the “relab” analysis with the “--
ignore_eukaryotes” flags to obtain taxonomic profiles. To gain an overall view of 
the taxonomy present in the vinasse samples and the phylogenetic relationships 
between the species in the samples, the average taxonomic distributions of the 
vinasse samples from metaphlan2 were visualized as a cladogram using Graphlan 
[31]. To examine the taxonomic profiles of vinasse across samples, these were vi-
sualized through heatmaps with average linkage clustering on Euclidean distances 
using hclust2. For the humann2 analysis, we annotated the forward clean reads 
against the UniRef90 database [32]. Pathway abundances were visualized exclud-
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ing the “UNMAPPED” and “UNKNOWN” categories using hclust2 heat maps 
with average linkage clustering on Euclidean distances. To obtain a measure of 
alpha diversity, we ran metaphlan2 with previously mentioned flags on samples 
rarified to the smallest library size (280,161 reads).  

To infer the phylogenetic relationships between the organisms present in the 
vinasse samples, full-length 16S rRNA genes were recruited from the vinasse 
metagenome reads using REAGO version 1.1 on forward clean reads truncated to 
201 bp [33]. The resulting full-length 16S rRNA vinasse sequences were aligned 
and taxonomically classified against the SSU 128 SILVA reference database using 
SINA [34,35]. The five nearest neighbors for each full-length 16S rRNA sequence 
were downloaded in addition to two Verrucomicrobia outgroup sequences. The 
16S rRNA sequences were aligned without gaps using ClustalW in MEGA7 (121 
sequences in total)[36]. A neighbor-joining tree was created with evolutionary dis-
tances computed using the Maximum Composite Likelihood method [37,38]. Phy-
logenetic distances were evaluated with bootstrap tests (1000 replicates) [39]. To 
obtain a measure of alpha diversity we recruited full-length 16S rRNA genes us-
ing REAGO as above on the rarified metagenomes. Further, we evaluated a mea-
sure of genus-level relative abundance across samples by mapping the 
metagenome reads to the extracted 16S sequences grouped by taxonomic affilia-
tion using bowtie2. These abundances were calculated as percentages of the num-
ber of aligned pairs from the total number of metagenome reads per sample. 

6.2.5 Putative denitrification and nitrification gene abundances 

To investigate the potential for N2O emissions from the vinasse samples, we 
used two approaches: 1) metagenome read matching to profile HMMs of denitri-
fication and nitrification genes and 2) recruitment of denitrifying and nitrifying 
genes from the reads. Profile HMMs for the amoA_AOA, amoA_AOB, nirK, nirS, 
norB, nosZ, nosZ_atypical_1 and nosZ_atypical_2 genes were downloaded from 
the Functional Gene Repository (FUNgene version 8.3; available at http://fun-
gene.cme.msu.edu/). Reads were translated to protein sequences with the “meta” 
setting using Prodigal version 2.6.2. The ORFs were queried for HMM matches 
using HMMsearch (command: hmmsearch --noali -o <filename.fasta> <gene.h-
mm> <filename.fasta>; available at https://www.ebi.ac.uk/Tools/hmmer/search/
hmmsearch). The HMM matches were normalized to reads per kilobase per 
genome equivalent (RPKG = (# mapped reads / HMM gene length (KB)) / 
genome equivalents). The RPKG normalization accounts for genome size, library 
size and gene length biases, allowing for gene and sample comparisons.  

- �  -163

http://fungene.cme.msu.edu/
http://fungene.cme.msu.edu/
https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch
https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch


In parallel, the gene-targeted assembler pipeline megagta version 0.1_alpha 
was used to recruit full-length genes from the metagenomes [33,40]. Gene-target-
ed assemblies (i.e. recruitments) were carried out on amoA_AOA, amoA_AOB, 
nirS, nirK, norB_cNor, norB_qNor, nosZ and nosZ_a2 genes using megagta. Fur-
ther, to infer alpha diversity, the ribosomal rplB gene was recruited from the rari-
fied metagenomes.  

6.2.6 Cross-assembly and binning 

We evaluated the performance of three assemblers (Ray-meta [41], Megahit 
[42] and metaSpades[43]) in cross-assembling the 18 vinasse metagenomes; the 
best cross-assembly was that from the metaSPADES assembler version 3.8.2 
based on assembly characteristics evaluated using MetaQUAST (QUAST Version 
3.0, build 07.07.2015 05:57 [44]). The 18 metagenomes were cross-assembled 
with metaSpades using kmer sizes 77, 99 and 127. The sample reads were mapped 
to the cross-contigs using bowtie2 to obtain cross contig abundances [45] . The 
final metaSPADES cross-assembly was binned using three tools for comparison: 
CONCOCT (with anvio version 2.3.2), Metabat [46] and MaxBin2 version 2.1.1 
[47]. The contig annotation tool (CAT version 2) was used to determine the taxo-
nomic affiliation of all ORFs identified in each bin using prodigal to find ORFs 
and diamond blastp against the NCBI-nr database [48]. CAT taxonomy results 
were formatted using custom Perl scripts and visualized with TreeMap to aid with 
the taxonomic characterization of the bins. Because more genomes with >90% 
completeness and coherent taxonomies were found from the MaxBin2 binning, 
these were selected for downstream analysis. CheckM was used to check the orig-
inal MaxBin2 bins [49]. These bins were manually refined using anvi’o version 
2.3.2 based on cross-contig taxonomy (from CAT), hierarchical clustering of the 
cross-contigs and sample coverage information [50]. The relative sample abun-
dances of the bins were noted as the percent of sample reads recruited to the bin 
out of the total sample reads recruited to all the bins (i.e. percent recruitment an-
vi’o results).  

The “good bins” were identified as having >90% completeness and <10% 
redundancy. Further “interesting bins” were further identified as those with >20% 
completeness and <10% redundancy and/or coherent contig taxonomies. Func-
tional annotation of the “good and interesting bins” were carried out using prokka 
with the “kingdom” flag set to bacteria or viruses depending on the taxonomic 
classification [51]. To characterize the bins by their potential functional type, 
prokka annotation results were mined for lines matching EC numbers of KEGG 
enzymes of compounds related to bioethanol production interests and N2O emis-
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sions. These KEGG compounds were acetate (C00033), cellulose (C00760), xy-
lose  (C00181), lactose (C00242), caproic acid (C01585, carbon dioxide 
(C00011), diacetyl (C00741), hydrogen peroxide (CC00027), lactaldehyde 
(C05999) and phenyllactate (C05607).   The lists of EC numbers were obtained by 
querying the KEGG REST API on each compound ID. Keyword searches of “3-
hydroxy” fatty acids, “cyclic dipeptide,” antibiotic “resistance,” and nitrification 
and denitrification genes were additionally used to identify the potential presence 
of these functions in the bins.  

In parallel, to confirm potential denitrification and nitrification gene pres-
ence, bin sequences were compared to HMMs of nitrification and denitrification 
genes from FunGene as described previously but with the prodigal setting 
“single.” The HMM matches were normalized by bin size (number of ORFs and 
total number of bp in ORFs) and HMM length in bp.  

6.3 Results 
6.3.1 Vinasse chemical characteristics and metagenome overview 

The chemical characteristics of the vinasse samples are listed in Table 1. 
Average pH was low at 4.4±0.4, ranging between 3.9 (D) and 4.8 (C). Total organ-
ic carbon averaged 29±1.8 g L-1 and ranged between 25.7 (B) and 31.4 g L-1 (D). 
Total N averaged 0.64±0.15 g L-1, while that of P and K was 0.16±0.07 and 
3.43±1.02, respectively. The C/N ratio averaged 42±13 and ranged between 19 (F) 
and 57 (C). After processing, the 18 vinasse metagenomes contained a total of 
2,126 Mbp distributed into 7.82 million reads. The number of reads ranged be-
tween 280,161 and 542,208 sequences per sample with between 77 and 150 Mbp 
(Additional file 1). When the metagenome distances were compared using partial 
de Bruijn assembly, A and C were most similar, followed by F, followed by E; 
least similar were B and last D (Additional file 3). 

Table 1. Chemical characteristics of the six vinasse samples. 

Group 
Name

Sampling 
Date pH C org N tot N-NH4+ N-NO3- P K C:N

g L-1 g L-1 mg L-1 mg L-1 g kg-1 g kg-1

A Nov. 2013 4.7 28.2 0.53 65.8 17.6 0.08 2.9 53
B Dec. 2013 4.1 25.7 0.53 63.4 10.8 0.17 2.6 49
C July 2014 4.8 28.8 0.51 45.7 8.8 0.11 3.5 57
D Aug. 2014 3.9 31.4 0.89 41.6 4.1 0.23 4.7 35
E Oct. 2014 4.2 29.6 0.74 37.7 6.8 0.10 2.1 40
F Nov. 2014 4.7 30.3 1.57 75.9 6.6 0.25 4.8 19
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6.3.2 Taxonomic characterization 

When compared to the M5NR database containing eukaryota, bacteria, ar-
chaea and viruses on MG-RAST (Additional file 4), 21 to 55% of the merged 
reads could be classified. Of the classified reads, 96 to 100% were annotated as 
bacteria. The top phyla present in the vinasse samples with relative abundances 
greater than 1% and/or that significantly co-varied among the samples (ANOVA at 
p<0.001 and Kruskal-Wallis post-hoc test) were Firmicutes (35 to 97% of merged 
reads), Bacteroidetes (0.8 to 53%), Actinobacteria (0.4 to 17.5%) and Proteobacte-
ria (0.3 to 39.4%; Additional file 5). The “core” phylum observed in all vinasse 
samples was Firmicutes. Similarly, when compared to the metaphlan2 marker 
gene database containing bacteria, archaea and viruses (excluding eukaryotes), 
between 68 and 100% of classified reads were identified as bacteria and 0 to 32% 
as viruses (Figure 1).  The previous four main bacterial phyla again dominated the 
vinasse samples: Firmicutes (48 to 100% of classified reads), Actinobacteria (0 to 
19%) and Proteobacteria (0 to 18%), as well as viruses (0 to 32%; Figure 2). The 
most abundant bacterial genera were Lactobacillus (Phylum Firmicutes), Megas-
phaera (Firmicutes), Mitsuokella (Firmicutes) and Bifidobacterium (Actinobacte-
ria). Further supporting these taxonomic results, the full-length 16S rRNA genes 
recruited from the vinasse metagenomes were classified as Bifidobacterium (Phy-
lum Actinobacteria), Olsenella (Phylum Actinobacteria), Prevotella (Phylum Bac-
teroidetes), Lactobacillus (Phylum Firmicutes), Megasphaera (Phylum 
Firmicutes), Mitsuokella (Phylum Firmicutes) and Comamonas (Phylum Pro-
teobacteria) genera (Additional file 6 and 13).  

When the samples were clustered based on the MG-RAST taxonomic pro-
files at phylum level, E and C formed a cluster while A, F, and D were separated 
based on the first principal component and B was separated based on the second 
(Additional file 7). When the metaphlan2 profiles were clustered at the level of 
class, order, family and genus, samples A, C and F formed a cluster while B, D 
and E formed a separate cluster (Figure 2).  
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Figure 1. Average abundance of taxa in the vinasse samples. The metagenomes were analyzed 
using metaphlan2 and visualized with GraPhlan. Node sizes correspond to average relative abun-
dance across the vinasse metagenomes while colors correspond to phylum. Species are noted with 
letters: A=Lactobacillus phage Lc Nu, B=D. mossii, C=A. intestini, D=S. bovis, E=M. elsdenii, 
F=Megasphera unclassified, G=Mitsuokella unclassified, H=L. salivarius, I=L. equicursoris, J=L. 
delbrueckii, K=L. amylovorus, L=L. mucosae, M=L. fermentum, N=L. vini, O=B. thermophilum, 
P=Olsenella unclassified, Q=Pseudomonas unclassified, R=Acetobacter unclassified, S=Glu-
conacetobacter unclassified, T=Ochrobactrum unclassified, U=A. faecalis, V=A. butzleri and 
W=Arcobacter unclassified. 

- �  -167

A) B)

C) D)



Figure 2. Taxonomic distributions across the vinasse samples at the level of A) Phylum, B) Class, 
C) Order, D) Family, E) Genus and F) Species. The taxonomic group and sample profiles were 
clustered using hclust2 from metaphlan2 results. 
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6.3.3 Functional potential characterization 

When compared to the M5NR databases through MG-RAST, the percentage 
of sequences with ORFs that could be classified into functional categories ranged 
between 16 and 42% (Additional file 8). At Subsystems Level 1, the top signifi-
cantly different categories were Carbohydrate metabolism, Clustering-based sub-
systems, Amino Acids and Derivatives, Miscellaneous, Protein metabolism, DNA 
metabolism, RNA metabolism, Cofactors/vitamins, Cell wall/capsule, Phages/
prophages and Nucleosides and Nucleotides. When sample distances were deter-
mined using the functional profiles at Subsystems Level 1, C, A, B and F formed a 
cluster while E was separated based on the first principal component and D was 
separated based on the second (Additional file 9). When the vinasse 
metagenomes were analyzed using the humann2 framework, abundant pathways 
were found in sample D, which was dominated by one Lactobacillus – the top 
abundant pathways included PWY-5100: pyruvate fermentation to acetate and lac-
tate II and PWY-7219: adenosine ribonucleotides de novo biosynthesis (Addi-
tional file 10). Combining the real-time PCR, gene recruitment and gene mapping 
results, the vinasse metagenomes had few to no genes matching nitrification 
genes; in contrast, a range of denitrification genes was found (Figure 3). Sample 
B presented the most diversity of denitrification genes, with nirK, nirS, norB and 
nosZ present based on the recruitment and mapped results. The presence of puta-
tive nosZ was supported in all samples except D. In addition, putative nirK was 
found in all samples except F. 

6.3.4 Alpha diversity of the vinasse samples 

Several methods were employed to obtain estimates of the alpha diversity of the 
vinasse samples (Table 2). The normalized effective number of species from MG-
RAST averaged 29±14 and ranged between 3 (D) and 53 (B) species. When 
metaphlan2 was applied to the rarified vinasse samples, the number of classified 
species averaged 11±3 and ranged between 5 (D) and 14 (B) species. Partial 16S 
rRNA fragments recruited from the rarified samples using REAGO averaged 10±4 
and ranged between 4 (D) and 17 (E). Further, when the rplB gene was recruited 
from the rarified samples with megaGTA analysis, and average of 17±3 fragments 
could be found across the vinasse samples with between 13 (E) and 22 (C) rplB 
fragments identified. When the 16S rRNA gene was amplified using real time 
PCR of the vinasse samples, the number of genes per kg of dry matter averaged 
12e12±9e12 and ranged between 0.8 (E) and 25.7 (A); the gene abundance of 18S 
rRNA gene averaged 100e3±71e3 and ranged between 17e3 (D) and 208e3 (B). 
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Figure 3. Putative gene abundances in the vinasse metagenomes. Partial gene fragments were re-
cruited from the vinasse metagenomes using megagta on A) all reads and B) rarified reads. In par-
allel, vinasse metagenomes were compared to profile HMMs and the number of matches was nor-
malized to C) reads per kilobase per genome equivalent (RPKG). In D) the gene copy numbers 
from real time PCR of the nosZ, nirS and nirK genes are depicted. Note that no qPCR of the norB 
gene was made. 
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Table 2. Alpha diversity estimates of the vinasse samples. Diversity was quantified by the number 
of partial genes recruited (REAGO and megaGTA), or the estimated number of species 
(metaphlan2 and MG-RAST) from the vinasse metagenomes; results from real-time PCR of the 
16S gene was also included. Rarified forward reads were used as input for metaphlan2, reago and 
megagta analysis; merged reads were used in the MGRAST analysis and these results were nor-
malized by library size.  

6.3.5 Bin characteristics, taxonomy and functional types 

The cross-assembly resulted in 221,975 cross-contigs totaling 216 Mbp. 
Of the cross-contigs, 40,815 were longer than 1Kbp, and 40,186 of these could be 
binned. After refining the bins, 20,825 cross-contigs remained distributed within 
the 36 good or interesting large bins (0.6 to 3.9 Mbp; hereafter referred to as the 
large bins). The large bins represented 39 to 68% of the sample reads. Fifty-eight 
percent of the large bins were classified at the phylum level as Firmicutes, 8% as 
Bacteroidetes, 17% as Proteobacteria, 11% as Unknown and 6% as Actinobacteria 
(Table 4). Overall, the GC percent of these bins ranged between 28 and 66%. Of 
the large bins, 24 were potential denitrifiers and three potential nitrifiers. The 
presence of genes related to acetate, CO2, ethanol, H2O2 and lactose metabolism 
were found in all large bins while the potential presence of genes related to Lac-
taldehyde, mannitol, xylose, butyric acid, cellulose, diacetyl, phenyllactate, su-
crose and “3-hydroxy” was variable across the large bins (Table 5). Last, when 
multidrug resistance was identified in the bin annotations, all large bins but Un-
known-19 and Lactobacillus-30 contained these genes. In addition to the large 
bins, eight small bins (0.03 to 0.20 Mbp) lacking bacterial marker gene presence 
were found (Table 3 and Additional files 11 and 12). The largest of the small 
bins, 4.2 and 8.1 were most abundant in samples E and D, respectively. 

REAGO megaGTA metaphlan2 MGRAST qPCR

Sample Name # recruited 
16S rRNA genes

# recruited 
rplB genes # Species Effective # 

species

# 16S rRNA copies (/
1000000) kg dry 

matter-1

A 13 ± 2 21 ± 2 10 ± 1 37 ± 1 25750 ± 13900

B 10 ± 3 16 ± 3 14 ± 1 47 ± 4 16839 ± 11664

C 12 ± 1 22 ± 2 13 ± 0 38 ± 1 16281 ± 1104

D 4 ± 0 15 ± 2 5 ± 0 3 ± 0 10749 ± 3336

E 17 ± 2 13 ± 1 10 ± 0 20 ± 1 839 ± 840

F 6 ± 2 17 ± 1 12 ± 1 29 ± 3 1135 ± 1142
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Table 3. The “good and interesting” vinasse bin characteristics and relative sample abundances 
(indicated by heatmap per sample).  

!  
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Table 4. Taxonomy of the “good and interesting” vinasse bins based on CAT classification.  

#  

K=Kingdom, F=Firmicutes, B=Bacteroidetes, A=Actinobacteria, P=Proteobacteria, E=Euryarchaeota, U=Unknown, 
Bact=Bacteroidia, Nega=Negativicutes, Clos=Clostridia, Mega=Megasphaera, Lact=Lactobacillales, Metha=Methanobac-
teria 
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Table 5. Putative gene repertoires of the large vinasse bins. Keyword searches of prokka annota-
tion results (grey, “Y”) were supplemented in the case of the N2O metabolism-related genes with 
hmm profile search results (colors). Substrates for the genes related to N2O metabolism are includ-
ed.

#  

ABR = antibiotic resistance; Notes: no genes related to the metabolism of caproic acid were found in the bin annotations. 
No amoABC, hao, nxr nor, nirS genes were found in the bin annotations, but the amoA AOA gene was identified in Bin 23 
and 40.1 and the amoA AOB gene was identified in Bin 33 by HMM matches.  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6.4 Discussion 
Here, we explored concurrently the chemical and microbiological character-

istics of vinasse produced over 1.5 years from one bioethanol mill in Sao Paulo 
State. The aims were to characterize, for the first time, the taxonomy and potential 
functions of the microbial assemblage in vinasse; we further recovered draft 
genomes from vinasse bacteria. We combined metagenomic analyses with binning 
techniques to characterize the vinasse assemblages and bacteria, respectively. We 
discuss below both potential ethanol pipeline contamination traits of vinasse bac-
teria and the potential ecology of vinasse fertirrigation. The vinasse chemical 
characteristics fell within the range of other sugarcane vinasses [52, 53].  Differ-
ent vinasse inputs are known to contribute different nutrition; this is taken into 
account in that vinasse fertirrigation is applied depending on the amount of K 
present in the input vinasse [54]; however, that different vinasse inputs contribute 
different bacteria was not known until now. The different nutrient contents of 
vinasse originate from the differences in the input of sugarcane stalks to the 
bioethanol production process; this might also be the source of the vinasse bacte-
ria.  

The vinasse draft genomes most likely represented the bacteria that survived 
the selective bottleneck of the bioethanol production pipeline. The potential for 
bacteria found in vinasse originating from later steps in the bioethanol pipeline, 
such as the truck from which we sampled the vinasse, was considered a minor 
source of bacteria due to the large capacity (10,000 L), making this a negligible 
source of bacteria. The core genus found in the vinasse samples was Lactobacillus 
(Phylum Firmicutes), which is a previously known ubiquitous ethanol pipeline 
contaminant due to its tolerance of low pH [15]. Other known contaminants found 
prior to the distillation stage that we observed in our vinasse samples included 
representatives of the Acetobacter, Bacillus, Bifidobacterium, Clostridium, Glu-
conacetobacter, Lactobacillus and Pseudomonas genera [16, 55, 56]. Strikingly, 
we identified members of the genera Megasphaera and Mitsuokella that have not 
previously been reported as bioethanol pipeline contaminants. Members of the 
genus Megasphaera and Mitsuokella are Gram negative ruminant fermenters that 
have been found in pig hindguts, cow rumen and human dental plaque and feces; 
gram-positive Bifidobacterium have also been used as probiotics in humans and 
are found in the gut, vagina and mouth of mammals and bovine rumens. Whether 
these bacteria interact with each other within each vinasse sample – e.g. Megas-
phaera and Mitsuokella utilizing lactose provided by Lactobacillus – is unknown, 
as is the direction of the interactions.  
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Uncovering the physiological mechanisms by which these particular bacte-
ria survive the selection bottlenecks of the bioethanol process was outside the 
scope of the current research since our goals were to characterize fully the 
metagenomic data. However, we speculated that plausible protective mechanisms 
are biofilm formation [16, 57], strain-dependent temperature tolerance, and un-
known pipeline management considerations. For the latter, the distillation material 
might not homogenized, thus creating pockets of lower temperatures where the 
bacteria can remain. Other management considerations that might affect the via-
bility of bacterial cells are length of time exposed to the distillation temperature 
and the highest temperature reached. Evaluating the physiology of cultured iso-
lates from vinasse, which can be done building upon the work described here, is 
an interesting topic for further research.  

Here, using differential abundance binning, we successfully obtained 21 
draft genomes from vinasse bacteria likely representing bioethanol contaminants. 
We confirmed that roughly half of the vinasse bins were of the genus Lactobacil-
lus (Phylum Firmicutes), which is the most ubiquitous bacterial bioethanol pipe-
line contaminant [16]. We also uncovered contaminants with up to 70% of sample 
coverage from the Prevotella (Phylum Bacteroidetes), Megasphaera (Phylum Fir-
micutes), and Mitsuokella (Phylum Firmicutes) genera, which have not been as 
well-studied. Five of the draft genomes were from bacteria unknown at the phy-
lum level. Furthermore, most of the bins recovered here were partly uncharacter-
ized at the species level, supporting the idea that we obtained genomes from novel 
strains of bioethanol contaminants.  Studies of bioethanol contaminants to date 
have used culture-based methods, which do not capture the entire microbial diver-
sity; or profiling of 16S rRNA genes, which does not capture the functional poten-
tial of the contaminants [13, 14]. Bacterial contaminants in general are known to 
compete with commercial yeast strains, lowering ethanol yield; contaminants may 
also flocculate with the yeast or produce compounds such as acetate, butyric acid 
or lactose which might inhibit yeast fermentation [16]. Many bins contained su-
crose metabolism-related genes, suggesting that these might compete with the 
commercial yeast strain for sugarcane sucrose. Annotation of the bins revealed the 
potential presence of bioethanol contaminant genes related to the metabolism of 
acetate, ethanol, mannitol, cellulose, hydrogen peroxide, lactose, sucrose and 3-
hydroxy fatty acids. These results support the idea that vinasse bacteria are an ad-
ditional source in identifying likely bioethanol process contaminants.  

Interesting bins included Lactobacillus/Methanobrevibacter-bin30 and Ar-
cobacter/Methanobrevibacter-bin40.2, which contained cross-contigs annotated as 
both bacterial and archaeal. Methanobrevibacter is an archaeal genus whose 
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methanogenic members are often found in vertebrate guts consuming the end 
products of bacterial fermentation. Finding them here suggests that this interaction 
might also be present in vinasse. In addition, we binned potential phage genomes, 
which suggest that phages are present in the fermentation tanks along with the 
host contaminants. The large phage genome bin 8.2 was most abundant in vinasse 
sample D, corresponding to a low diversity assemblage with a dominant bin, sug-
gesting that the host of this phage was L. amylovorous-bin27. The phage bins 4.1, 
4.2 and 8.1 were all most abundant in vinasse sample D, corresponding to a more 
diverse assemblage of bacterial hosts across the phyla Firmicutes and Bac-
teroidetes. These associations suggest that phage lysis may be a factor controlling 
bacterial population sizes in the fermentation tanks. Attention has recently been 
paid to using phage therapy to control bacterial contamination in bioethanol pipe-
lines [58-59].  

 In addition to investigating the potential for vinasse bacteria to be 
contaminants in the production of bioethanol, we evaluated the potential for 
vinasse bacteria to contribute to N2O emissions during fertirrigation. Vinasse fer-
tirrigation can be considered a disturbance on the soil microbial community; the 
success of the vinasse assemblage in the soil likely depends on the connectivity 
(e.g. strength and direction of the vinasse species interactions). Pitombo et al.[11] 
identified significantly abundant bacterial genera under treatments of vinasse 
compared to unfertilized control plots using 16S rRNA marker abundance, and the 
significantly differentially abundant genera in the plots amended with vinasse in-
cluded the vinasse bacteria (as identified here) Lactobacillus, Bacillus, Prevotella, 
Gluconacetobacter, Megasphaera, Mitsuokella and Acetobacter [11]. Further, un-
published research suggests that vinasse bacteria on a field experiment may per-
sist at low abundances. These results together suggest that vinasse bacteria may 
successfully invade the soil microbial community. Furthermore, the vinasse bacte-
ria may transfer to the sugarcane stalks during plant growth and at harvest time 
become the contaminants that are inputted with the sugarcane to the ethanol pro-
cessing pipeline. In support, a survey of the bacteria associated with the sugarcane 
plant found the vinasse taxa Bacillus, Acetobacter and Gluconacetobacter as part 
of the “core” sugarcane microbiome [59].  While this is interesting speculation, 
we note that caution should be taken because the referenced studies were few and 
based on gene marker surveys at higher taxonomic levels, which hinders robust 
and precise interpretation. We recommend further research into the ecological in-
teractions of vinasse bacteria with the soil bacterial community at the species or 
strain level during fertirrigation with vinasse.  
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Actual N2O emissions from a soil are the result of the sequential biochemi-
cal processes nitrification and denitrification carried out collectively by the mi-
crobial communities in a soil. The total rate of N2O emissions through nitrification 
or denitrification is controlled by carbon availability, moisture, oxygen availabili-
ty, pH, temperature, and nitrate concentrations. These factors limit enzyme activi-
ty, gene transcription levels and microbial cell growth [61]. Furthermore, the 
abundance of the genes involved in the production (amoA, nirK, nirS, norB) or 
removal (nosZ) of N2O is correlated with the actual N2O emissions [62]. In the 
case of vinasse fertirrigation, if many denitrifiers invade a soil conducive to deni-
trification, we would expect more denitrification to occur. Whether net N2O or N2 
(the end product of denitrification) emissions would occur would depend on the 
number and genetic repertoires of the invading bacteria. Therefore, vinasse con-
taining an assemblage with a higher partial (containing nirK, nirS and/or norB) to 
full (containing at least nosZ) denitrifier ratio may lead to higher N2O emissions 
during fertirrigation. 

Four phyla (Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes) 
were represented across the vinasse samples, although at the genus level the di-
versity of each assemblage fluctuated. The samples could generally be classified 
as dominated by Megasphaera (A, C, F) or Lactobacillus (B, D, E) at the genus 
level. The second assemblage (B) was the most diverse; it was dominated by Lac-
tobacillus and containing, uniquely compared to the other time points, Proteobac-
teria such as Alcaligenes, as well as phage (Lactobacillus phage Lc Nu). The least 
diverse assemblage was D, containing mostly Lactobacillus and phage. Of the 22 
potential vinasse denitrifiers, two were potential complete denitrifiers (containing 
nirK or nirS, norB and nosZ) and eight were potential incomplete denitrifiers 
(containing nirK or nirS and norB). The abundances of these potential denitrifiers 
varied across timepoint, suggesting varied effects on N2O during vinasse fertirri-
gation with different vinasses. For example, the Lactobacillus-bin 27 dominated to 
97% of the sample D abundance, and this contained a putative nirK gene; when 
this vinasse is sprayed onto the fields, one would expect nitrate degradation and 
an increase in N2O or N2 depending on the gene content of the endogenous mi-
crobial community. Another abundant potential denitrifier present in sample A 
(Prevotella-Bin 2) contained only potential nosZ, suggesting that if the vinasse A 
were to be used in fertirrigation, the actual emission of N2O may be reduced due 
to the further reduction of N2O into N2. Furthermore, vinasse denitrifiers might 
directly contribute to the N2O emissions observed when vinasse is added in con-
junction with a nitrate fertilizer [63]. This suggests that vinasse application in con-
junction with a reduced nitrogen source such as ammonium sulfate may be a fea-
sible management practice to reduce N2O production. Further research investigat-
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ing the microbes involved in N2O emissions during fertirrigation with vinasse 
would greatly aid in steering future vinasse management strategies.  

Vinasse fertirrigation has raised human health concerns that vinasse bacteria 
may carry antibiotic resistance genes (ARGs) [21]. These genes can enter the soil 
resistome and can be transferred using horizontal gene transfer to other soil bacte-
ria, with potential spreading of antibiotic resistance genes to soil-derived human 
pathogens. Here a search of the annotation results of the recovered vinasse bins 
found multidrug resistance genes in 34 of the 36 large bins. Surprisingly, no drug 
resistance genes were found in the phage bins; this may indicate, that the phages 
from which these genomes were not prophage that confer auxiliary metabolic 
genes in the form of antibiotic resistance to the vinasse bacteria. These results 
warrant further study of the fate of ARG’s from vinasse during fertirrigation.  

While significant progress has been made in metagenome assembly and 
binning, some caveats should be noted to the bins we recovered here. Misassem-
bly and misbinning can occur and bias the final results, in our case identifying rel-
evant genes present in the bins. We addressed these issues by comparing three as-
semblers and three binning tools and choosing the best of each. Further, we used 
large kmer sizes for the final cross-assembly, and this successfully allowed Max-
Bin2 to bin to the level of species. We additionally used the manual refinement 
feature of anvi’o to improve the bins. Because bins with low completeness as de-
termined by the presence of universal marker genes can still contain useful infor-
mation regarding potential gene content, we used all useful bins to characterize 
the vinasse assemblage. Eight bins could not be refined, and these represent un-
binned vinasse bacterial genome content; however, the information from this ge-
nomic material was characterized in the metagenomic analyses. We included sev-
eral different methods for each analysis to supplement each other as database cov-
erage and read length can bias results based on sequence alignment. Moreover, we 
used the metagenomic analysis to complement the bin results. Interestingly, com-
paring the qPCR, putative gene abundances and gene recruitment results suggest-
ed that the qPCR primers we used do not cover the entire diversity of vinasse bac-
teria or alternately that the HMM results may be biased toward false positives.  

Here we used metagenomic analysis and genome binning to characterize in 
depth the assemblage of six vinasse samples from one bioethanol mill. We identi-
fied previously unknown vinasse taxa compared to taxa identified through culture- 
or 16S rRNA survey-based studies of the ethanol processing pipeline steps prior to 
vinasse. Furthermore, we obtained 21 draft genomes and 8 phage or mobile ele-
ment genomes from vinasse, which to our knowledge is the first study to do so. 
Vinasse bacteria included mainly putative denitrifiers, which may directly affect 
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soil N2O or N2 emissions when applied during fertirrigation, although more re-
search is needed into the ecological interactions during this event. In the vinasse 
bins we found the putative presence of antibiotic resistance genes and genes af-
fecting yeast fermentation, which potentially implicate vinasse bacteria in nega-
tive impacts on human health and bioethanol production, respectively. We suggest 
that monitoring the vinasse assemblage is a promising option to screen both for 
bioethanol production contaminants and to identify vinasse batches which, when 
added to the fields during fertirrigation, may lead to higher N2O emissions. Be-
cause of the decreasing costs of high-throughput sequencing, we suggest that 
monitoring of vinasse assemblages can be widely implemented to improve sugar-
cane bioethanol production sustainability. 
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6.6 Additional files 
Additional file 1. Data description of the 18 vinasse metagenomes. 

Date 
Sampled

Sample 
Name

Sample 
Id

DNA Weight 
(g)

DNA Conc. 
(ng/µl) # reads

Forward 
# bases 
(Mbp)

Reverse 
# bases 
(Mbp)

Reads 
mapped to 

cross-
contigs (%)

Nov. 
2013

A-1 1V1-1 0.297 32.5 461,784 131 117 92.77
A-2 1V1-2 0.250 39.6 454,721 130 115 92.69
A-3 1V1-3 0.295 20.4 469,527 130 115 92.19

Dec. 
2013

B-1 1V2-2 0.300 39.2 417,625 110 94 73.20
B-2 1V2-3 0.295 53.1 517,039 142 131 73.67
B-3 1V2-4 0.292 38.5 542,208 150 139 74.67

July 
2014

C-1 2V1-1 0.301 13.9 362,499 100 89 92.38
C-2 2V1-2 0.267 14.2 501,511 138 123 92.53
C-3 2V1-3 0.291 14.4 432,207 119 107 92.12

Aug. 
2014

D-1 2V2-1 0.295 17.2 489,336 138 132 95.12
D-2 2V2-2 0.291 18.6 280,161 77 74 95.33
D-3 2V2-3 0.294 21.0 351,407 971 935 95.3

Oct. 
2014

E-1 3V1-1 0.294 6.19 363,382 981 914 91.30
E-2 3V1-2 0.280 5.57 434,111 117 108 91.18
E-3 3V1-3 0.290 7.22 472,732 135 124 91.47

Nov. 
2014

F-1 3V2-1 0.294 7.29 444,056 122 114 91.14
F-2 3V2-2 0.285 6.64 500,636 136 128 91.29
F-3 3V2-3 0.292 5.53 323,376 883 794 91.66
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Additional file 2. Primers and thermocycler conditions used in gene abundance analysis by real 
time qPCR of the vinasse samples. 

1. Francis CA, Roberts KJ, Beman JM, Santoro AE & Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea 
in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 2005;102:14683–88. 

2. Rotthauwe JH, Witzel KP & Liesack W. The Ammonia monooxygenase structural gene amoA as a functional marker: 
molecular fine-Scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol. 1997;63: 4704 12. 

3. Henry S, Bru D, Stres B, Hallet S & Philippot L. Quantitative detection of the nosZ gene, encoding nitrous oxide re-
ductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. App. Environ Microbi-
ol. 2006;72: 5181–89. 

4. Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A & Philippot L. Quantification of denitrifying 
bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods. 2004;59:327–35. 

5. Throbäck IN, Enwall K, Jarvis A & Hallin S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for com-
munity surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol. 2004;49:401–17. 

Target 
gene Primer Primer Sequence Size 

(bp) 12 µL of reaction Thermal profile
AOA 
amoA 

Arch-
amoAF 
Arch-
amoAR

5’-
STAATGGTCTGGCTTA
GACG-3’ 
5’-
GCGGCCATCCATCTGT
ATGT-3’

635 
491

6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.125 µL of each 
primer (10 pmol), 1.75 µL of BSA  and 4 
µL of DNA (3 ng). 
6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.125 µL of each 
primer (10 pmol) and 4 µL of DNA (3 
ng).

95°C-5 min.; 40x 
95°C-10s, 
64°C-10s, 
72°C-20s 
95°C-10min.; 
40x 95°C-10s, 
65°C-25s,AOB 

amoA
amoA1F 
amoA2R

5’-
GGGGTTTCTACTGGT
GGT-3’ 
5’-
CCCCTCKGSAAAGCC
TTCTTC-3’

AOA 
amoA

Arch-
amoAF 
Arch-
amoAR

5’-
STAATGGTCTGGCTTA
GACG-3’ 
5’-
GCGGCCATCCATCTGT
ATGT-3’

635 6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.125 µL of each 
primer (10 pmol), 1.75 µL of BSA  and 4 
µL of DNA (3 ng).

95°C-5 min.; 40x 
95°C-10s, 
64°C-10s, 
72°C-20s

amoA2R 5’-
CCCCTCKGSAAAGCC
TTCTTC-3’

NosZ [3] nosZ2F 5’-
CGCRACGGCAASAAG
GTSMSSGT-3’

267 6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.250 µL of each 
primer (10 pmol), 1.20 µL of BSA  and 4 
µL of DNA (1.25 ng).

95°C-5 min.; 40x 
95°C-10s, 
64°C-10s, 
72°C-20snosZ2R 5’-

CAKRTGCAKSGCRTG
GCAGAA-3’

nirK [4] NirK876 5'-
ATYGGCGGVAYGGCG
A-3'

165 6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.250 µL of each 
primer (10 pmol), 1.50 µL of BSA  and 4 
µL of DNA (1.25 ng).

95°C-5 min.; 40x 
95°C-15s, 
62°C-15s, 
72°C-20s NirK1040 5'-

GCCTCGATCAGRTTRT
GGTT-3'

nirS [5] nirScd3aF 5'-
GTSAACGTSAAGGAR
ACSGG-3'

425 6 µL of Sybrgreen Bioline SensiFAST 
SYBR non-rox mix, 0.250 µL of each 
primer (10 pmol), 1.20 µL of BSA  and 4 
µL of DNA (1.25 ng).

95°C-5 min.; 40x 
95°C-10s, 
63°C-10s, 
72°C-20snirSR3cd 5'-

GASTTCGGRTGSGTCT
TGA-3'
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Additional file 3. Hierarchical clustering of the vinasse metagenomes based on partial de Bruijn 
graph overlap from Metafast analysis. Replicates were most similar to each other. 
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Additional file 4. Data description of the merged vinasse metagenomes uploaded to MG-RAST.  

Additional file 5. Taxonomic distribution of the merged vinasse metagenomes from MG-RAST 
annotation against RefSeq database. Phyla with average relative abundance greater than 1% across 
all samples were included. Samples with significantly different phyla between groups (Tukey-
Kramer post-hoc test, 95% confidence interval, p < 0.001) are indicated by different letters. 

Effect sizes and corrected p-values were calculated using ANOVA on mean relative abundance of phyla in sample groups 
using the Benjamini-Hochberg multiple test correction in STAMP. 

MG-RAST 
ID

Sample 
Date

Sample 
Name

Sample 
ID

Percent 
merged

# merged 
reads

Avg. merged read 
length

# merged bases 
(Mbp)

4678764.3
Nov. 2013

A-1 1V1-1 87.98% 236896 592,17 85
4678762.3 A-2 1V1-2 88.72% 230245 592,38 83
4678758.3 A-3 1V1-3 87.40% 245213 590,59 83
4678765.3

Dec. 2013
B-1 1V2-2 93.07% 263198 582,17 86

4678752.3 B-2 1V2-3 95.62% 359330 580,67 116
4678749.3 B-3 1V2-4 95.15% 376765 581,71 124
4678755.3

July 2014
C-1 2V1-1 88.74% 193318 590,16 64

4678760.3 C-2 2V1-2 91.90% 275242 589,16 91
4678754.3 C-3 2V1-3 91.96% 252621 588,15 83
4678766.3 Aug. 

2014
D-1 2V2-1 95.97% 402629 581,89 139

4678761.3 D-2 2V2-2 95.88% 235413 577,50 79
4678753.3 D-3 2V2-3 96.49% 300148 576,57 100
4678756.3

Oct. 2014
E-1 3V1-1 94.29% 258649 584,54 84

4678751.3 E-2 3V1-2 92.39% 293786 585,17 96
4678759.3 E-3 3V1-3 91.44% 305881 589,63 111
4678757.3

Nov. 2014
F-1 3V2-1 93.26% 320201 586,67 109

4678763.3 F-2 3V2-2 95.37% 383266 583,43 126
4678750.3 F-3 3V2-3 84.59% 269124 575,92 94

Average proportion of sample

Phylum p-values 
(corrected)

Effect 
size A B C D E F

Firm. 1.94E-14 0.998 44.5±0.4 
a

39.2±1.7 
b

61.2±0.9 
c

97.0±0.0 
d

58.8±0.5 
e

35.4±0.3 
f

Bacter. 4.09E-14 0.998 29.4±1.5 
a

9.5±0.2 
b

11.3±0.7 
c

0.8±0.0 
d

11.5±0.3 
e

52.8±1.1 
f

Actino. 1.88E-09 0.985 15.9±1.5 
a

2.1±0.1 
b

17.5±1.4 
a

0.4±0.0 
b

17.8±0.6 
a

3.3±0.8 
b

Proteo. 7.19E-14 0.997 0.8±0.0 
a

39.4±1.8 
b

0.8±0.0 
a

0.3±0.0 
a

1.7±0.0 
a

1.4±0.0 
a
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Additional file 6. Phylogenetic relationships between full-length 16S rRNA genes reconstructed 
from the vinasse metagenomes using REAGO. The 16S rRNA sequences from vinasse and refer-
ence sequences were aligned using ClustalW. The neighbor-joining tree was created with MEGA 
and visualized using iTol ignoring branch lengths. 
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Additional file 7. Principal component analysis of the phylum-level abundance distributions of the 
vinasse metagenomes. Relative abundance profiles were determined using MG-RAST against the 
RefSeq database and phyla membership was determined using the Last Common Ancestor algo-
rithm.  
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Additional file 8. Functional potential characterization of the vinasse metagenomes from MG-
RAST annotation against the Subsystems database. Only the subsystems at level 1 with average 
relative abundance greater than 2% across all samples were included. Significantly different sub-
systems at level 1 between sample groups (Tukey-Kramer post-hoc test, 95% confidence interval, 
p < 0.05) are indicated by different letters. 

Effect sizes and corrected p-values were calculated using ANOVA on mean relative abundance of Subsystems level 1 in 
sample groups using the Benjamini-Hochberg multiple test correction in STAMP. 

Relative sample abundance
Subsystems 

Level 1 
Category

p-values 
(corrected)

Effect 
size A B C D E F

Carbohydrates 2.84E-08 0.967 16.3±0.3 
ac

12.9±0.2 
b

15.5±0.1 
a

15.5±0.1 
a

13.7±0.3 
b

17.0±0.5 
c

Clustering-
based 

subsystems
4.37E-09 0.977 14.5±0.2 

a
14.6±0.0 

a
15.2±0.1 

b
17.2±0.0 

c
14.8±0.2 

ab
14.2±0.2 

a
Amino Acids 

and Derivatives 6.35E-13 0.997 9.2±0.1  
ac

9.4±0.0   
a

9.3±0.1   
a

4.7±0.1   
b

7.0±0.2   
d

8.9±0.0   
c

Miscellaneous 8.50E-05 0.863 7.6±0.1  
 a

7.5±0.0   
a

7.6±0.1   
a

7.3±0.0  
b

7.0±0.2   
c

7.3±0.1 
bc

Protein 
Metabolism 2.25E-08 0.969 7.1±0.1   

a
6.9±0.1   

a
7.8±0.1   

c
8.3±0.1  

d
7.0±0.1  

ab
6.7±0.2   

b
DNA 

Metabolism 3.86E-11 0.991 5.5±0.1   
a

5.4±0.0   
a

5.4±0.1   
a

7.3±0.1   
c

5.8±0.0   
b

5.7±0.0   
b

RNA 
Metabolism 3.43E-07 0.949 5.7±0.1   

a
5.7±0.1   

a
5.9±0.1   

a
7.0±0.1   

c
5.7±0.2   

a
5.1±0.1   

b
Cofactors, 
Vitamins 3.71E-11 0.991 5.6±0.0   

a
5.8±0.1   

a
5.1±0.1   

b
3.5±0.0   

c
4.0±0.2   

d
5.2±0.0   

b
Cell Wall and 

Capsule 3.04E-06 0.923 4.7±0.1  
ac

4.4±0.1 
bc

4.6±0.1   
c

4.9±0.1   
a

4.2±0.1   
b

4.9±0.0  
 a

Phages and 
Prophages 8.82E-08 0.960 2.9±0.1  

a
2.3±0.0  

a
3.1±0.0   

a
2.4±0.0   

a
10.0±1.4   

b
2.6±0.1   

a
Nucleosides 

and 
Nucleotides

4.42E-10 0.984 3.2±0.0   
a

2.7±0.0  
b

3.3±0.0   
a

3.7±0.1   
c

4.1±0.1   
d

2.9±0.1   
b
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Additional file 9. Principal component analysis of the Subsystems Level 1 category abundances of 
the vinasse metagenomes. The colors correspond to time point. Profiles were determined against 
the Subsystems database using MG-RAST and relative abundances of phyla were calculated out of 
the total number of sample reads. 
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Additional file 10. Functional potential profiles of the top 30 pathways across the vinasse sam-
ples, excluding “unmapped” and “uncategorized” results. The functional group and sample profiles 
were clustered using hclust2 from humann2 analysis against the UniRef90 database. 
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Additional file 11. All vinasse bin characteristics and relative sample abundances (indicated by 
heatmap per sample). Bin id’s highlighted in green indicate “good” bins; yellow id’s indicate “in-
teresting” bins, and red id’s indicate “bad” bins. Continued on next page. 

Bin 
Id A B C D E F

Length 
(Mbp) # Contigs N50

GC 
(%)

Completeness 
(%)

Redundancy 
(%)

1 6 1 2 0 0 1 2.4 209 23171 53 92 2
2 14 2 1 0 4 3 3.5 547 10519 49 94 4
3 8 1 18 0 2 13 2.2 352 10534 53 97 2
5 3 0 4 0 2 1 1.9 298 11078 60 94 3
6 4 1 2 0 1 12 2.4 539 6347 44 91 2
7 9 2 3 0 4 2 4.9 2521 1944 51 63 40
9 2 0 2 0 1 0 2.0 407 6384 60 90 6

10 1 1 1 1 3 0 2.1 183 27583 47 96 1
11 7 2 4 0 2 10 5.8 2606 2396 44 36 9
12 3 0 2 0 5 1 2.3 485 7489 66 91 5
13 2 0 2 0 0 0 1.5 605 2710 63 71 12
14 2 0 1 0 0 1 1.9 947 2190 52 74 15
15 2 0 2 0 1 1 2.2 1017 2297 53 76 9
16 1 1 1 0 0 13 3.0 307 22370 42 99 1
17 2 0 1 0 1 0 1.4 928 1434 60 43 14
18 2 0 1 0 2 0 1.5 893 1665 63 69 22
19 1 0 1 0 3 0 2.0 917 2351 62 60 12
20 0 0 1 0 1 1 1.2 387 3766 54 64 2
21 0 0 1 1 2 1 1.8 298 9992 50 88 1
22 2 1 3 0 1 12 5.3 2375 2491 36 39 7
23 0 1 1 3 2 1 1.9 373 7041 47 95 4
24 0 2 1 0 1 0 1.8 220 13204 53 98 4
25 1 1 1 1 0 2 1.8 729 2822 40 91 9
26 1 1 2 0 1 1 2.1 1236 1733 41 66 15
27 0 1 1 45 3 1 1.9 262 11858 38 99 1
28 0 3 0 0 0 0 2.1 340 8670 38 96 5
29 0 1 0 2 0 0 1.0 439 2658 50 88 9
30 0 3 1 3 2 3 3.9 2021 1897 31 47 16
31 0 0 8 0 0 0 3.3 1595 2241 54 79 37
32 0 0 0 6 0 0 2.0 104 208993 36 99 1
33 0 0 0 1 3 0 1.7 447 4850 48 96 9
34 0 3 0 0 0 0 2.7 343 12289 60 92 1
35 0 4 0 0 0 0 2.7 259 13750 43 96 6
36 0 5 0 0 0 0 1.7 647 2989 49 67 5

36.2 0 4 0 0 0 0 1.4 868 1558 48 38 5
36.3 0 1 0 0 0 0 0.5 245 2503 48 10 0
37.1 0 10 0 0 0 0 3.1 1326 2603 57 77 24
37.2 0 4 0 0 0 0 1.2 784 1533 58 34 6
37.3 0 2 0 0 0 0 0.7 506 1236 49 16 1
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Bin 
Id A B C D E F

Length 
(Mbp) # Contigs N50

GC 
(%)

Completeness 
(%)

Redundancy 
(%)

38 0 9 0 0 0 0 3.0 488 9382 60 89 3
39 0 0 0 4 0 0 1.9 205 15510 47 99 4

39.2 0 0 0 0 0 0 0.1 76 1387 47 5 1
40.1 0 4 0 0 0 0 1.6 190 11919 28 97 2
40.2 0 2 0 0 0 0 0.6 271 2044 27 15 1
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Additional file 12. All vinasse bin taxonomic affiliations based on CAT. Bin id’s highlighted in 
green indicate “good” bins; yellow id’s indicate “interesting” bins, and red indicate “bad” bins. 
Continued on next page. 

#                
F = Firmicutes, B = Bacteroidetes, A = Actinobacteria, P = Proteobacteria, E = Euryarchaeota, U = Unknown, Bact = 
Bacteroidia, Nega = Negativicutes, Clos = Clostridia, Mega = Megasphaera, Lact = Lactobacillales 
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Additional file 12 cont’d. 

"  

F = Firmicutes, B = Bacteroidetes, A = Actinobacteria, P = Proteobacteria, E = Euryarchaeota, U = Unknown, Bact = 
Bacteroidia, Nega = Negativicutes, Clos = Clostridia, Mega = Megasphaera, Lact = Lactobacillales 
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Additional file 13. Comparison of genus abundances across samples from the A) MGRAST, B) 
extracted 16S and the C) bin taxonomy results. The colors correspond to genus and phyla as Phy-
lum Firmicutes (green), Proteobacteria (red), Actinobacteria (brown) and Bacteroidetes (orange). 

- �  -195

 

 
 

 
 

 

 

0%

20%

40%

60%

80%

100%

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3

Others + Unknown

Bifidobacterium

Bacteroides

Prevotella

Mitsuokella

Megasphaera

Lactobacillus

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3

Olsenella

Bifidobacterium

Comamonas

Prevotella

Mitsuokella

Megasphaera

Lactobacillus

0

10

20

30

40

50

60

70

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3

Unknown

Bifidobacterium

Alcaligenes

Arcobacter

Prevotella

Pseudoramibacter

Mitsuokella

Megasphaera

Pr
op

or
tio

n 
of

 sa
m

pl
e 

re
ad

s 
cl

as
si

fie
d 

at
 g

en
us

 le
ve

l
Pr

op
or

tio
n 

of
 sa

m
pl

e 
re

ad
s m

ap
pe

d 
to

 th
e 

ex
tra

ct
ed

 1
6S

 se
qu

en
ce

s (
%

)
Pr

op
or

tio
n 

of
 sa

m
pl

e 
re

ad
s 

m
ap

pe
d 

to
 b

in
s (

%
)

A)

B)

C)



6.6 References 
1. Amorim,HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS, Goldman GH. Scientific 

challenges of bioethanol production in Brazil. App Microbiol Biotech. 2011;91:1267-1275. 
2. Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS. Sugarcane vinasse: 

environmental implications of its use. Waste Manage. 2013;33:2752-2761. 
3. Parnaudeau V, Condom N, Oliver R, Cazevieille P, Recous S. Vinasse organic matter quali-

ty and mineralization potential, as influenced by raw material, fermentation and concentra-
tion processes. Biores Tech. 2008;99:1553-1562. 

4. Moore CCS, Nogueira AR, Kulay L. Environmental and energy assessment of the substitu-
tion of chemical fertilizers for industrial wastes of ethanol production in sugarcane cultiva-
tion in Brazil. Intl J Life Cycle Ass. 2017;22:628-643. 

5. Jiang ZP, et al. Effect of long-term vinasse application on physico-chemical properties of 
sugarcane field soils. Sugar Tech. 2012;14:412-417. 

6. Zhou M, Luo Y, Zhou Z, Gong D, Zhou X. The effect of alcohol waste liquid (as a top 
dressing) on growth and yield of sugarcane. Guizhou Ag Sci. 2008;36:102-103. 

7. YunChuan M, YanPing Y, Qiang L, YangRui L. Effects of vinasse on the quality of sugar-
cane and key enzymes in sucrose synthesis. SW China J Agric Sci. 2009;22:55-59. 

8. Yang SD, Liu JX, Wu J, Tan HW, Li YR. Effects of vinasse and press mud application on 
the biological properties of soils and productivity of sugarcane. Sugar Tech. 
2013;15:152-158. 

9. Navarrete AA, et al. Multi-analytical approach reveals potential microbial indicators in soil 
for sugarcane model systems. PloS One. 2015;10:e0129765. 

10. do Carmo JB et al. Infield greenhouse gas emissions from sugarcane soils in Brazil: effects 
from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioen-
ergy. 2013;5:267-280. 

11. Pitombo LM et al. Exploring soil microbial 16S rRNA sequence data to increase carbon 
yield and nitrogen efficiency of a bioenergy crop. GCB Bioenergy. 2015. 

12. Moran-Salazar R, et al. Utilization of vinasses as soil amendment: consequences and per-
spectives. SpringerPlus. 2016;5:1-11. 

13. Rein P. Proc S African Sugar Tech Ass.  196-200. 
14. Lopes ML, et al. Ethanol production in Brazil: a bridge between science and industry. 

Brazilian J Microbiol. 2016;47:64-76. 
15. Costa OY, et al. Microbial diversity in sugarcane ethanol production in a Brazilian distillery 

using a culture-independent method. J Ind Microbiol Biotechnol. 2015;42:73-84. 
16. Brexó RP, Santana AS. Impact and significance of microbial contamination during fermen-

tation for bioethanol production. Ren Sust Energy Rev. 2017a;73:423-434. 
17. Cabrini KT, Gallo CR. Yeast identification in alcoholic fermentation process in a sugar cane 

industry unit of São Paulo state, Brazil. Scientia Agricola. 1999;56:207-216. 
18. Lucena BT, et al. Diversity of lactic acid bacteria of the bioethanol process. BMC Microbi-

ol. 2010;10:298. 
19. de Souza RB, et al. The consequences of Lactobacillus vini and Dekkera bruxellensis as 

contaminants of the sugarcane-based ethanol fermentation. J Ind Microbiol & Biotech. 
2012;39:1645-1650. 

20. Alcarde V, Yokoya F. Effect of the bacterial population on flocculation of yeasts isolated 
from industrial processes of alcoholic fermentation. STAB-Açúcar, Álcool e Subprodutos. 
2003;21:40-42. 

21. Braga LP, et al. Vinasse fertirrigation alters soil resistome dynamics: an analysis based on 
metagenomic profiles. BioData Mining. 2017;10;17. 

22. Antonangelo ATB, Alonso DP, Ribolla PE, Colombi, D. Microsatellite marker-based as-
sessment of the biodiversity of native bioethanol yeast strains. Yeast. 2013;30:307-317. 

23. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. 
Bioinformatics. 2011;27:863-864. 

- �  -196



24. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End 
reAd mergeR. Bioinformatics. 2014;30:614-620. 

25. Nayfach S, Pollard KS. Average genome size estimation improves comparative metage-
nomics and sheds light on the functional ecology of the human microbiome. Genome Biol-
ogy. 2015;16:51. 

26. Ulyantsev VI, Kazakov SV, Dubinkina VB, Tyakht AV, Alexeev DG. MetaFast: fast refer-
ence-free graph-based comparison of shotgun metagenomic data. Bioinformatics. 
2016;32:2760-2770.. 

27. Meyer F, et al. The metagenomics RAST server–a public resource for the automatic phylo-
genetic and functional analysis of metagenomes. BMC Bioinformatics. 2008;9:386. 

28. Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic 
communities. Bioinformatics. 2010;26:715-721. 

29. Segata N, et al. Metagenomic microbial community profiling using unique clade-specific 
marker genes. Nat Methods. 2012;9:811-814. 

30. Abubucker S, et al. Metabolic reconstruction for metagenomic data and its application to 
the human microbiome. PLoS Comp Biol. 2012;8:e1002358. 

31. Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical represen-
tation of phylogenetic data and metadata with GraPhlAn. PeerJ. 2015;3:e1029. 

32. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-
redundant UniProt reference clusters. Bioinformatics. 2007;23:1282-1288. 

33. Yuan C, Lei J, Cole J, Sun Y. Reconstructing 16S rRNA genes in metagenomic data. Bioin-
formatics. 2015;31:35-43. 

34. Quast C, et al. The SILVA ribosomal RNA gene database project: improved data processing 
and web-based tools. Nucleic Acids Res. 2013;41:590-596. 

35. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence 
alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823-1829. 

36. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis ver-
sion 7.0 for bigger datasets. Mol Biol & Evol. 2016;33:1870-1874. 

37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phyloge-
netic trees. Molec Biol & Evol. 1987;4:406-425. 

38. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the 
neighbor-joining method. Proc Nat Aca Sci USA. 2004;101:11030-11035. 

39. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evol. 
1985:783-791. 

40. Li D, et al. ISBRA 2016, Minsk, Belarus. Proceedings June 5-8, 2016. 309 (Springer). 
41. Boisvert S, Raymond F, Godzaridis É, Laviolette F, Corbeil J. Ray Meta: scalable de novo 

metagenome assembly and profiling. Genome Biol. 2012;13:R122. 
42. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution 

for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformat-
ics. 2015;31:1674-1676. 

43. Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to sin-
gle-cell sequencing. J Comp Biol. 2012;19:455-477. 

44. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome 
assemblies. Bioinformatics. 2013;29:1072-1075. 

45. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. 
2012;9:357-359. 

46. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstruct-
ing single genomes from complex microbial communities. PeerJ. 2015;3:e1165. 

47. Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover 
genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605-607. 

48. Cambuy DD, Coutinho FH, Dutilh BE. Contig annotation tool CAT robustly classifies as-
sembled metagenomic contigs and long sequences. bioRxiv. 2016:072868. 

- �  -197



49. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the 
quality of microbial genomes recovered from isolates, single cells, and metagenomes. 
Genome Res. 2015;25:1043-1055. 

50. Eren AM, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. 
PeerJ. 2015;3:e1319. 

51. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 
2014;30:2068-2069. 

52. Moraes BS, Zaiat M, Bonomi A. Anaerobic digestion of vinasse from sugarcane ethanol 
production in Brazil: Challenges and perspectives. Ren & Sust Energy Rev. 
2015;44:888-903. 

53. Reis RCE, Hu B. Vinasse from sugarcane ethanol production: better treatment or better 
utilization? Front Energy Res. 2017;5:7. 

54. Botellho RG, Christofoletti CA, Correira JE, Tornisielo VL. Environmental implications of 
using waste from sugarcane industry in agriculture. Prod Cons & Agr Manage. 2014;91. 

55.  Beckner, M., Ivey, M.L., Phister, T.G. (2011) Microbial contamination of fuel ethanol fermen-
tations. Letters in applied microbiology 53, 387-394. 

56.  Bonatelli, M.L., Quecine, M.C., Silva, M.S., Labate, C.A. (2017) Characterization of the cont-
aminant bacterial communities in sugarcane first-generation industrial ethanol production. 
FEMS microbiology letters 364. 

57.  Brexó, R.P., Sant’Ana, A.d.S. (2017b) Microbial interactions during sugar cane must fermen-
tation for bioethanol production: does quorum sensing play a role? Critical Reviews in 
Biotechnology, 1-14. 

58. Solomon E B, Okull D.     (Google Patents, 2008). 
59. Roach DR, Khatibi PA, Bischoff KM, Hughes SR, Donovan DM. Bacteriophage-encoded lytic 

enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermenta-
tions. Biotechnology for biofuels 6, 20 (2013).  

60. De Souza RSC, et al. Unlocking the bacterial and fungal communities assemblages of sugar-
cane microbiome. Sci Rep. 2016;6:28774. 

61. Wallenstein MD, Myrold DD, Firestone M, Voytek M. Environmental controls on denitrify-
ing communities and denitrification rates: insights from molecular methods. Ecol Appl. 
2006;16:2143-2152. 

62. Philippot L, Andert J, Jones CM, Bru D, Hallin S. Importance of denitrifiers lacking the 
genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob Chang Biol. 
2011;17:1497-1504. 

63. Shade A, et al. Fundamentals of microbial community resistance and resilience. Front Mi-
crobiol. 2012;3:417. 

- �  -198



Chapter 7 
General Discussion 

- �  -199



- �  -200



Discussion 

In this thesis I presented the results of my research regarding the effects of 
nitrogen fertilizers on soil microbial communities in agriculture. Fertilization in 
agricultural soils creates different soil “habitats.” These habitats present different 
levels of soil physicochemical properties from the different fertilizer applications, 
which can lead to differences in the resident communities. Nitrogen fertilization 
appears greatly to affect the composition of the soil bacterial community, while 
the effect of nitrogen fertilization on the plant and soil fungal communities de-
pends on the availability of other macronutrients, in particular P and K. Further, I 
identified specific microbial taxa linked to N2O emissions under different nitrogen 
fertilization regimes. The choice of N fertilizer will affect the actual N2O emis-
sions from a soil, which is also determined by the genetic potential for N2O emis-
sions, e.g. the activity of resident N2O-metabolizing microbes. Elucidating the 
drivers of particular microbial groups, e.g. non-N2O producers vs N2O producers, 
given the soil physicochemical levels, will enable targeted management of N2O 
reduction. Here I further discuss the link between advances in sequencing tech-
nology and soil microbial ecology research as demonstrated here. 

7.1 General effects of N fertilization on the soil microbial and plant communi-
ties 

Under N limitation, as in natural ecosystems, plant growth is dependent 
upon decomposition by soil microbes of N and other nutrients bound in plant litter 
or soil organic matter to bioavailable forms for plant uptake (LeBauer & Treseder 
2008, Aislabie & Deslippe 2013). Moreover, soil microbial communities are struc-
tured in part by plant litter and plant root deposits (Berg & Smalla 2009). This de-
pendence between plants and soil microbes, the so-called plant-soil feedback, en-
compasses the ecological relationships between plants and soil microbes that can 
lead to species co-evolution (van der Heijden et al 2008, van der Putten et al 2013, 
van Nuland et al 2016, ter Horst & Zee 2016). Fertilization can upset nutrient-me-
diated plant-microbe symbioses by removing this nutrient limitation (Wall et al 
2015). Under N fertilization, the resulting excess N availability is thought by 
some to decrease the plant dependence on nutrients made bioavailable by soil mi-
crobial decomposition, furthermore reducing soil microbial diversity; however, 
this is still under investigation by the field (Thiele-Bruhn et al 2012, Bommarco et 
al 2013).  

In practice, plant productivity is limited by N, P and K as these macronutri-
ents are required for growth; subsequently, these macronutrients are often added 
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as fertilizers for crops, which can affect existing beneficial plant-soil microbe de-
pendencies. In Chapter 2, fertilization with NPK but not N alone affected plant 
community composition and diversity. The plant community in the NPK plots dif-
fered from that of the control plots in the dominance of fast-growing plant species 
able to cope with the high NPK inputs without growth of the medium- and slow-
growing species, which led to an overall lower plant diversity. Because there was 
no concomitant change in the bacterial community composition in the NPK plots, 
we concluded that indeed, the plant and bacterial communities were disassociated 
due to the N input. In other words, the plant communities in the N treatment were 
likely limited by the lack of P and K, which in turn limited their proliferation. 
Moreover, the N treatment resulted in a large effect in on the soil bacterial but not 
the plant community, suggesting that the bulk of the added N was used by the bac-
terial community, resulting in their proliferation and differentiation from the bac-
terial communities in the control plots.  In contrast to the soil bacterial communi-
ty, it appeared that the soil fungal community composition co-varied with that of 
the plant community, with a difference in the NPK but not the N treatment (Chap-
ter 2). This suggested that there was co-dependency between the plant species and 
fungal phyla in these plots, which was not affected by the long-term nutrient addi-
tions. Fungi and plant co-dependences are well-known in that fungi (e.g. arbuscu-
lar mycorrhizal fungi) form mutualistic relationships with some plant species (Vá-
lyi et al 2015). It is possible that the co-dependencies between the grasses and 
fungi in these plots were more robust than those of the plant and bacteria.  

The microbial mining hypothesis offers a framework to interpret how the 
increased N to the bacterial community might lead to changes in the bacterial 
community composition, as I observed in Chapter 3. Organic N, or N stored in 
organic matter, is thought to be the main source of N for microbial growth and 
maintenance (Parfitt et al., 2005). Thus, microbial decomposers will usually min-
eralize organic N into ammonium-N to access this nitrogen. However, the N fertil-
ization provides available N so that microbes best equipped to handle the high N 
levels succeed and increase their abundance in the community. We observed this 
in the bacterial community in the N fertilized plots in Chapter 3 as a shift to so-
called copiotrophic phyla under N saturation. The copiotroph– oligotroph trade-
off (Fierer et al 2007) seemed to explain our result of increased abundances of 
Actinobacteria and decreased abundances of Acidobacteria, Verrucomicrobia and 
Firmicutes in the N-saturated fields. Oligotrophs are described as those that grow 
slower but more efficiently and succeed during resource limitation, while copi-
otrophs have fast growth rates and inefficiently transform resources, hence doing 
better during higher resource availability (Roller & Schmidt 2015). While Aci-
dobacteria, Firmicutes, and Verrucomicrobia are regarded as oligotrophs, Acti-
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nobacteria are regarded as copiotrophs (Fierer et al 2012, Leff et al 2015). While 
this hypothesis is a good framework to interpret results, it is clear that this is a 
very simplistic approach, as within a bacterial phylum there can be copiotrophic 
and oligotrophic populations, perhaps even in the same genus, as evidenced by the 
large range of organic substrate degradation by different soil microbial species 
(Goldfarb et al 2011). Further, in Chapter 3 I observed that based on the metage-
nomic analysis, the functional potential of the soil bacterial communities did not 
differ based on treatment, in contrast to the taxonomic composition. This lack of 
difference of functional profiles, at least at a coarse-grained level, seems to be 
widely applicable to bacterial communities in soil (Fierer et al 2012), and suggests 
functional redundancy provided by different taxa. However, fine-grained analyses 
might reveal the specific differences in the functional potential of bacterial com-
munities in N- and NPK- saturated plots. 

7.2 Microbial populations involved in N2O metabolism under N fertilization 

Here, I add to the agricultural and microbial ecology literature cementing 
the idea that nitrogen addition greatly influences the soil microbial community, 
and further describe specific microbial taxa influenced by different N sources. In 
Chapter 3, the effect of the long-term inorganic fertilizations on the soil bacterial 
community were quite large, and the differences in the nitrogen plots clearly visi-
ble even at the phylum level. Going to Chapter 5, this chapter showcased differ-
ences at the OTU-level between the nitrogen source and control plots. The effect 
of nitrogen input occurs first on individual OTUs by promoting certain species, 
which then allows these taxa to succeed over time. Fertilization with urea ap-
peared to select for certain groups as per the microbial mining hypothesis de-
scribed previously. For example, the ammonia-oxidizing bacterial Nitrosospira-
like population that was correlated with N2O emissions also appeared to respond 
to the nitrification inhibitors co-applied with the urea. Further, also in Chapter 5, 
the native population appeared to be an ammonia-oxidizing archaeal Ni-
trososphaera-like population. Sugarcane agriculture practices in Brazil aim to im-
prove nitrogen use efficiency, although this is a challenge due to the tropical cli-
mate, which provides high volumes of rainfall which contribute to nitrogen loss 
through NO3- leaching and N2O gas production (Otto et al 2016). As seen in 
Chapters 4 and 5, no N application in sugarcane soils were found to result in poor 
N availability; the resident community of nitrifiers in the N unfertilized plots was 
adapted to low N conditions, being ammonia-oxidizing archaea and nitrite-oxidiz-
ing bacteria. Many studies also identified ammonia-oxidizing bacteria rather than 
archaea as responsible for N2O emissions in agricultural soils (Wang et al 2016, 
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Meinhardt et al 2018). Recent evidence suggests that this trend of archaea produc-
ing less N2O than bacteria is generally found, which boils down to the differences 
in their biochemical pathways (Stieglmeier et al 2014, Hink et al 2017, Jia & Con-
rad 2009). This is thought to be due to the ammonia preferences of ammonia-oxi-
dizing archaea vs bacteria, with the former having higher affinity to ammonia and 
therefore preferring low ammonia availability, and the latter having lower affinity, 
thus preferring higher ammonia availability (Hink et al 2018).  

Interestingly, as found in Chapter 6 mainly putative denitrifiers were found 
in the metagenome-assembled genomes of vinasse bacteria. Yang et al (2013) 
found that Actinobacteria were stimulated under vinasse fertilization, suggesting 
that copiotrophs might be stimulated by mainly the organic compounds found in 
vinasse. Measuring the precise nutrient conditions is vital for further research on 
the dynamics of N2O emissions in soils under sugarcane. Another important point 
from the system of vinasse fertirrigation was our finding of potential antibiotic-
resistance genes in the vinasse bacterial genomes. This is inferred to be due to the 
antibacterial procedure used during bioethanol distillation, but which can have 
serious environmental effects once used in fertirrigation (Braga et al 2017). 
Namely, there is a potential for the spread of antibiotic-resistance genes in the soil 
microbial community in sugarcane soils as occurs when antibiotic-treated live-
stock waste is used as fertilizer for crops (Thiele Bruhn et al 2003, Tasho et al 
2016). This is an important task for future research into the environmental and 
health effects of vinasse fertirrigation. 

Here I suggest that teasing out the drivers at a finer-grained scale can help 
us to further describe the ecology of all microbes involved in N2O emissions in a 
system. We demonstrated in Chapter 2 that measuring micronutrients as well as 
macronutrients pointed to a correlation between the soil bacterial community 
compositions in the N fertilized plots with Fe, Al, Mg and Mn. This represents a 
link between abiotic and biotic ecosystem components. While the cost of 
metabolomics and proteomics of soil samples remains prohibitive, measuring full 
suites of micronutrients along with macronutrients might allow us to connect mi-
crobial populations with their drivers. Specifically, this could aid in teasing out the 
ecological niches of different N2O-producing microbes and lead to designing fer-
tilizer schemes that minimize nitrogen loss and increase nitrogen fertilizer effi-
ciency.  
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7.3 Sequencing technologies paved the way for soil microbial research 

Advances in next-generation sequencing technology led to decreasing costs 
of sequencing, widespread use and increased representation of soil microbes in 
sequence databases. While the cost of sequencing a bacterial genome of about 5 
Mbp at 100X coverage was about EU 100 in 2012, that cost dwindled to about EU 
2 in the present day (Köser et al 2012, Deurenberg et al 2017). These reductions in 
cost have been largely driven by clinical microbiology, but also studies of plant-
associated microbes. This reduction in cost has also led to overall improvement in 
the field of bioinformatics, as more comprehensive studies are possible when 
more genomic data is deposited to the database. Further, the application of 
metagenomics to improving culturing conditions of microbes has led to increasing 
the “unculturable” fraction of represented microbes, although this reduction has 
been mainly in human-related microbes (Lagier et al 2012). Soil microbial com-
munities, which reach up to 109 cells and between 104-106 species in one gram of 
soil, initially presented a challenge to fully sequence (Roesch et al 2007, Schloss 
& Handelsman 2006). In studies of soil microbial communities, this means that 
the comprehensive sequencing of the full diversity of these communities can be 
realized. Further, more soil genomic information represented in the databases 
strengthens future research of soil microbial communities by providing reference 
sequences with which to compare unknown sequences. In this way, researchers 
can move from coarse- to finer-grained analyses, and to investigate the dynamics 
of microbial populations.  

In the present thesis, my chapters span a course of about five years, in which 
the advances in bioinformatics tools can be seen. The soil microbial communities 
in long-term fertilized grassland or sugarcane soil were evaluated at the phylum-
level (coarse-grained analysis) using 16S and 18S rDNA amplicon (Chapter 2 & 4) 
and shotgun metagenomics (Chapter 3). In Chapter 3, 454 pyrosequencing was 
applied, while in Chapters 4 and 5 Ion Torrent was used and in Chapter 6 Illumina 
MiSeq sequencing was used. A fine-grained analysis (species or OTU-level) was 
used to investigate the ammonia-oxidizing microbial community in sugarcane 
soils (Chapter 5) as well as the vinasse assemblage using shotgun metagenomics 
and metagenome assembled genomes (Chapter 6). Bioinformatic analyses are es-
pecially useful in generating testable hypotheses that future research can address. 
Thus, this consideration highlights the need to study microbially-mediated events 
using relevant molecules at relevant time scales. For example, RNA sequencing is 
a good tool to examine the link between expression of N2O-producing genes from 
microbes and N2O emission peaks in the field (Theodorakopoulos et al 2017). 
Here I showed that the coarse-grained soil bacterial community structure was sus-
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ceptible to long-term (Chapter 3) but not short-term nitrogen addition (Chapter 4) 
in the forms of ammonium nitrate and urea, respectively. While these studies were 
regarding the bacterial communities of different soils, these are considered to be 
comparable due to the inclusion of a control treatment in each experiment. This 
aspect brings up the point that experiments involving microbial community re-
search should be carefully designed, with the inclusion of a control treatment and 
further, enough biological replicates to provide good statistical power, eg. a recent 
meta-analysis of global bacterial and fungal diversity using 189 sites and 7,560 
sub-samples (Bahram et al 2018). Here, changes in OTU abundances were visible 
over one season in the field (Chapters 4 and 5), while differences in phylum abun-
dances were visible after a 60+ year experiment (Chapter 3).  

Because there are many pathways leading to N2O in agricultural and natural 
systems it is a challenge to uncover mechanistic details regarding the microbes in 
control of these emissions. However, the combination of improved sequencing 
technologies, sequencing effort, informed experimental design and improved rep-
resentation of soil microbes in public databases is closing this knowledge gap. 
Further, more detailed measurements of soil and environmental factors combined 
with gases emissions will enable us to get fuller pictures of the complex processes 
studied. While here I focused on nitrification and denitrification as the main 
sources of nitrogen fertilizer-derived N2O emissions, it is important in the context 
of research into N2O-emission reduction that all sources be considered when de-
signing future projects. As pointed out in a recent review, microbes mediating N 
transformations are both metabolically and taxonomically diverse; thus, research 
taking microbes into account when detailing the nitrogen cycle should incorporate 
this diversity (Kuypers et al 2018). For investigating the role of microbes in N 
transformations in agricultural soils, this means zooming into the details, asking 
questions such as, “which functional pathway is dominant?” and further, “what 
are the drivers of the microbes involved in these pathways?” 
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Summary 
The use of N fertilizers has increased worldwide in the past century. While 

this increased input of N has increased food productivity, it has also contributed to 
decreases in biodiversity, soil quality and environmental health, including increas-
es in greenhouse gas emissions. These emissions in agricultural soils are largely 
carried out by the soil microbiome, or the microorganisms living in the soil and 
transforming N fertilizers to different forms. Here, the overall research aim was to 
gain detailed insight into the effects of nitrogen fertilizer schemes, including long 
term fertilization, on soil microbial communities. To do this, I applied next-gener-
ation sequencing technology and associated bioinformatics analyses to field ex-
periments in the Netherlands and in Brazil. 

In Chapter 2 I found that long-term fertilization with lime, ammonium ni-
trate (N), super phosphate (P) and NPK resulted in “habitats” with different soil 
conditions in Dutch hay meadows. In these different fertilizer habitats, the taxo-
nomic makeup of the soil bacterial community, or the community composition 
and diversity differed from the control plots by the varying abundance of the dif-
ferent taxa; however, potential functions did not differ between treatments. This 
suggests that each treatment affected the soil bacterial community as a whole by 
being associated with altered abundances of taxa, but not at a broad functional 
level, with the gene potential remaining the same across treatments. Nitrogen fer-
tilization alone resulted in the most significant changes in the soil bacterial com-
munity, in which the abundances of the Actinobacteria phyla were higher com-
pared to the other treatments. This is in line with the results from other studies, 
which identifies the Actinobacteria as a copiotrophic phyla, or a taxa well able to 
succeed under high-nutrient conditions. This suggests differences in decomposi-
tion rates in each habitat, with decomposition and associations by the bacterial 
community affected especially under N fertilization. 

In Chapter 3, I extended the investigation from Chapter 2 to include the 
plant and soil fungal communities in the long-term fertilized fields. I found that 
the plant and soil fungal but not the plant and soil bacterial and soil fungal and 
bacterial communities varied similarly across the plots. The plant community was 
less diverse in the NPK compared to the other treatments, which was thought to 
be due to the success of high-nutrient-adapted grasses in the plant communities in 
this habitat. In addition, the liming treatment was associated with higher diversity 
in all three communities, which was likely due to the increased availability of nu-
trients from the higher pH. Regarding the plant and fungal community composi-
tions, these were different in the NPK plots compared to the control plots, and our 
co-variation analysis supported their interdependence, with different potential co-
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varying taxonomic groups identified. This suggested that the plant and soil fungal 
communities are closely interconnected in these fields, suggesting more ecologi-
cal connections between these communities compared to either with the soil bac-
terial community. Further, the bacterial community appeared not to co-vary with 
either the plant nor the fungal communities, even though the macroorganisms are 
known to have specific associated bacterial communities. These results point to 
interesting questions in the differences in the ecological communities in each 
habitat due to interconnected effects of the fertilizers and nutrient availability on 
the plant and soil microbial communities.  

In Chapter 4 and 5 I investigated the short-term effects of nitrogen fertiliz-
ers on the soil microbial community and N2O emissions. Urea and urea with nitri-
fication inhibitor treatments were evaluated over 256 days for the effect on the 
bacterial communities based on 16S rDNA sequencing (Chapter 4), and on the 
ammonia-oxidizing subset of the bacterial community based on amoA sequencing 
(Chapter 5). Overall bacterial community compositions were unaffected by treat-
ment, at least at phylum-level taxonomic resolution based on DNA. Furthermore, 
the bacterial community diversity was not affected by treatment. Moreover, we 
concluded that the nitrification inhibitors successfully inhibited the N2O emis-
sions. When looking specifically at the amoA-containing bacterial (AOB) OTUs, 
however, the abundances of different ammonia-oxidizing bacterial species indeed 
differed between treatments. Further, we identified a Nitrosospira-like AOB as the 
likely N2O-emitter in the plots under urea fertilization, and also showed that the 
abundances of this bacteria decreased in the treatments with the nitrification in-
hibitors DMPP and DCD. These chapters indicated that short-term nitrogen fertil-
ization with urea did not affect the soil bacterial community composition at a high 
taxonomic resolution, but did lead to differences at the OTU-level. Further, the 
ammonia-oxidizing bacterial community had low diversity in these soils, which 
might be due to the low levels of ammonia that are normally present. Most inter-
estingly, we identified cohorts of ammonia- and nitrite-oxidizing OTUs that were 
associated with different soil factors, suggesting a picture of the nitrifying bacteri-
al community in these soils. 

In Chapter 6 I detailed for the first time the bacterial assemblage of sugar-
cane vinasse, which is widely used as a potassium fertilizer in conjunction with 
nitrogen fertilizers during sugarcane management. Targeting concerns over green-
house gas emissions during the fertirrigation practice, I evaluated the potential 
presence of genes from the main N2O-producing microbial pathways from 21 
metagenome-assembled vinasse bacterial genomes (MAGs). The main genera I 
uncovered from the vinasse MAGs were Lactobacillus, Megasphaera and Mit-
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suokella, and these had mainly denitrification gene potential. Interestingly, these 
had varying presence of denitrification genes, suggesting that the different vinass-
es used as fertilizer can be a source of bacteria with different N2O-producing gene 
potential, potentially influencing the actual emissions of N2O. Further, the poten-
tial presence of antibiotic-resistance genes was found across almost all the MAGs; 
this reinforced the idea that the bacterial component of vinasse is mainly the cont-
aminants of the bioethanol production cycle, which often includes an antibacterial 
sterilizing step. Further, this result raises the visibility of the potential for horizon-
tal gene transfer potential in sugarcane soil and subsequent risks for public health 
and crop productivity. This work also highlighted the necessity to include mea-
sures of the varying biotic component of vinasse in research of greenhouse gases 
from this system. 

In conclusion, metagenomic and bioinformatic analyses were applied to 
data from field experiments investigating the effects of nitrogen deposition on the 
soil microbiota and related soil physicochemical factors. This thesis sheds light on 
the complex and interconnected changes within the soil microbial community 
upon nitrogen fertilization. Two separate studies in the Netherlands and Brazil 
demonstrated the effect of long-term nitrogen deposition on the soil bacterial 
community at coarse taxonomic levels, as well as the effect of short-term fertiliza-
tion on soil microbes at the OTU level. This research underscores the idea that 
nitrogen fertilization in fields affects not only crop production, but the soil micro-
bial community composition and the ecology of the communities in these fields, 
which can have long-term effects on crop productivity. Last, genome binning from 
bacterial DNA sequences extracted from sugarcane vinasse revealed 21 potential 
bacterial contaminants of the bioethanol production process. Since vinasse is 
widely used as a fertilizer, especially in conjunction with nitrogen fertilizers, for 
sugarcane in Brazil, this research paved the way for future studies linking the ge-
netic potential of vinasse bacteria, vinasse and nitrogen fertilization, and field 
emissions of N2O.  
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Samenvatting  
Het gebruik van N-meststoffen is de afgelopen eeuw wereldwijd toegenomen. 

Hoewel deze verhoogde input van N de voedselproductiviteit heeft verhoogd, heeft deze 
ook bijgedragen aan een afname van de biodiversiteit, de bodemkwaliteit en de 
milieukwaliteit, waaronder een toename van de uitstoot van broeikasgassen. In 
landbouwgronden is het microbioom in de bodem grotendeels verantwoordelijk voor deze 
emissies, met name de micro-organismen die in de bodem leven en N-meststoffen 
omzetten. Het algemene onderzoeksdoel van mijn studie was om gedetailleerd inzicht te 
krijgen in de effecten van stikstofkunstmest, waaronder langdurige bemesting, op 
microbiële gemeenschappen in de bodem. Om dit te doen, paste ik next generation 
sequencing technieken en bijbehorende bioinformatica-analyses toe op veldexperimenten 
in Nederland en Brazilië. 

In hoofdstuk 2 ontdekte ik dat langdurige bemesting met kalk, ammoniumnitraat 
(N), superfosfaat (P) en NPK resulteerde in "habitats" met verschillende 
bodemgesteldheden in Nederlandse hooilanden. In deze verschillende meststofhabitats 
verschilden de taxonomische samenstelling van de bodembacteriegemeenschap, of de 
gemeenschapssamenstelling en diversiteit van de controle behandelingdoor de variërende 
abundantie van de verschillende taxa; de potentiële functies verschilden echter niet. Dit 
suggereert dat in elke behandeling de bodembacteriegemeenschap als geheel      
beïnvloed word door de associatie met veranderde taxa abundanties, maar dat de 
behandeling niet op een breed functioneel niveau invloed had, waarbij het genpotentieel 
hetzelfde bleef in alle behandelingen. De stikstofbemesting alleen resulteerde in de meest 
significante veranderingen in de bacteriële bodemgemeenschap, waarin de abundanties 
van de Actinobacteria phyla hoger waren in vergelijking met de andere behandelingen. 
Dit is overeenstemmend met de resultaten van andere studies, die de Actinobacteriën 
identificeren als een copiotroof phylum, of taxa die goed kunnen slagen onder 
nutrientenrijke omstandigheden. Dit suggereert dat er verschillen zijn tussen de 
afbraaksnelheden in elke habitat en dat deze afbraaksnelheid en de samenstelling van de 
bacteriële gemeenschap beïnvloed worden door de N-bemesting. 

In hoofdstuk 3 heb ik het onderzoek van hoofdstuk 2 uitgebreid naar de plant- en 
bodemschimmelgemeenschappen in lange termijn bemestingsexperimenten. Ik ontdekte 
dat de planten- en bodem schimmelgemeenschap, maar niet de plant en bodem 
bacteriegemeenschap en de bodemschimmel- en bodembacteriegemeenschap op 
vergelijkbare wijze over de percelen varieerden. De plantengemeenschap was minder 
divers in de NPK in vergelijking met de andere behandelingen, wat mogelijk het gevolg 
was van het succes van grassen met een hoge voedingsstof-aanpassing in de 
plantengemeenschappen in dit leefgebied. Bovendien ging de kalkbehandeling gepaard 
met een hogere diversiteit in alle drie de gemeenschappen, waarschijnlijk als gevolg van 
de verhoogde beschikbaarheid van voedingsstoffen door de hogere pH. Met betrekking 
tot de plant- en schimmelgemeenschapsamenstellingen waren deze verschillend in de 
NPK-plots in vergelijking met de controleplots en onze co-variatieanalyse onderschreef 
onderlinge afhankelijkheid, waarbij verschillende potentiële co-variabele taxonomische 
g roepen werden ge ïden t i f i cee rd . D i t sugge ree rde da t de p l an t - en 
bodemschimmelgemeenschappen nauw met elkaar verbonden zijn in deze velden, wat 
duidt op meer ecologische verbanden tussen deze gemeenschappen in vergelijking met de 
bacteriële bodemgemeenschap en beide gemeenschappen. Verder bleek de 
bacteriegemeenschap niet te co-variëren met ofwel de plant noch de 
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schimmelgemeenschappen, hoewel het bekend is dat de macro-organismen specifieke 
geassocieerde bacteriële gemeenschappen hebben. Deze resultaten wijzen op interessante 
vragen in de verschillen in de ecologische gemeenschappen in elk leefgebied als gevolg 
van onderling verbonden effecten van de meststoffen en beschikbaarheid van 
voedingsstoffen op de microbiële gemeenschappen van planten en de bodem. 

In hoofdstuk 4 en 5 heb ik de korte termijn effecten van stikstofkunstmeststoffen 
op de microbiële bodemgemeenschap en N2O-emissies onderzocht. Ureum en ureum met 
nitrificatie-inhibitorbehandelingen werden gedurende 256 dagen beoordeeld op het effect 
op de bacteriële gemeenschappen op basis van 16S rDNA-sequencing (Hoofdstuk 4) en 
op de ammoniak-oxiderende subset van de bacteriële gemeenschap op basis van amoA-
sequencing (Hoofdstuk 5). De algemene bacteriële samenstelling van de gemeenschap 
werd niet beïnvloed door de behandeling, tenminste niet op taxonomische resolutie op 
basis van DNA op phylum-niveau. Bovendien werd de diversiteit van de bacteriële 
gemeenschap niet beïnvloed door de behandeling. Bovendien concludeerden we dat de 
nitrificatie-inhibitoren met succes de N2O-emissies remden. Specifiek kijkend naar de 
amoA-bevattende bacteriële (AOB) OTU's, verschilden de abundanties van verschillende 
ammoniak-oxiderende bacteriesoorten inderdaad tussen de behandelingen. Verder 
identificeerden we een Nitrosospira-achtige AOB als de waarschijnlijke N2O-emitter in 
de plots met ureumbemesting, en toonden ook aan dat de abundanties van deze bacterie 
afnamen in de behandelingen met de nitrificatie-inhibitoren DMPP en DCD. Deze 
hoofdstukken gaven aan dat korte termijn stikstofbemesting met ureum de samenstelling 
van de bodembacterie met een hoge taxonomische resolutie niet beïnvloedde, maar wel 
leidde tot verschillen op OTU-niveau. Verder had de ammoniak-oxiderende bacteriële 
bodemgemeenschap een lage diversiteit in deze bodems, wat mogelijk te wijten is aan de 
lage niveaus van ammoniak die normaal aanwezig zijn. Interessant genoeg 
identificeerden we cohorten van ammoniak- en nitriet-oxiderende OTU's die geassocieerd 
waren met verschillende bodemfactoren, wat een beeld geeft van de nitrificerende 
bacteriële gemeenschap in deze bodems. 

In hoofdstuk 6 heb ik voor het eerst de bacteriële assemblage van suikerriet vinasse 
beschreven, die veel wordt gebruikt als kaliummeststof in combinatie met 
stikstofmeststoffen tijdens het beheer van suikerriet. Ik richtte mijn aandacht op zorgen 
over de uitstoot van broeikasgassen tijdens de fertirrigatiepraktijk en evalueerde de 
mogelijke aanwezigheid van genen van de belangrijkste N2O-producerende microbiële 
routes van 21 metagenoom-geassembleerde vinasse-bacteriegenen (MAG's). De 
belangrijkste geslachten die ik heb geidentificeerd uit de vinasse MAGs waren 
Lactobacillus, Megasphaera en Mitsuokella en deze hadden voornamelijk denitrificatie-
genpotentiaal. Interessant is dat de aanwezigheid van denitrificerings-genen varieerde, 
wat suggereert dat de verschillende vinasses die als kunstmest worden gebruikt een bron 
van bacteriën met verschillende N2O-producerende genpotentiëlen kunnen zijn, die 
mogelijk de feitelijke emissies van N2O beïnvloeden. Verder werd de potentiële 
aanwezigheid van antibioticaresistentiegenen gevonden in bijna alle MAG's; dit 
versterkte het idee dat de bacteriële component van vinasse hoofdzakelijk de bacteriele 
verontreinigingen van de productiecyclus van bio-ethanol is, die vaak een antibacteriële 
sterilisatiestap omvat. Verder verhoogt dit resultaat de zichtbaarheid van het potentieel 
voor horizontale genoverdracht in de suikerriet bodem en de daaruit voortvloeiende 
risico's voor de volksgezondheid en de gewasproductiviteit. Dit werk benadrukte ook de 
noodzaak om maatregelen van de variërende biotische component van vinasse op te 
nemen in het onderzoek naar broeikasgassen uit dit systeem. 
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Concluderend werden metagenomische en bioinformatische analyses toegepast op 
gegevens uit veldexperimenten die de effecten van stikstofdepositie op de 
bodemmicrobiota en gerelateerde bodemfysisch-chemische factoren onderzoeken. Dit 
proefschrift belicht de complexe en onderling verbonden veranderingen in de microbiële 
bodemgemeenschap na stikstofbemesting. Twee afzonderlijke studies in Nederland en 
Brazilië toonden het effect aan van langdurige stikstofdepositie op de bacteriële 
bodemgemeenschap op hogere taxonomische niveaus, evenals het effect van kortdurende 
bemesting op bodemmicroben op OTU-niveau. Dit onderzoek onderstreept het idee dat 
stikstofbemesting op het veld niet alleen de productie van gewassen beïnvloedt, maar ook 
de samenstelling van de microbiële gemeenschap in de bodem en de ecologie van de 
gemeenschappen in deze gebieden, wat op lange termijn gevolgen kan hebben voor de 
gewasproductiviteit. Tenslotte onthulde genome-binning van bacteriële DNA-sequenties 
geëxtraheerd uit suikerrietvinasse 21 potentiële bacteriële verontreinigingen van het 
productieproces van bioethanol. Aangezien vinasse veel wordt gebruikt als meststof, 
vooral in combinatie met stikstofhoudende meststoffen, voor suikerrietteeltin Brazilië 
heeft dit onderzoek de weg geëffend voor toekomstige studies die het genetische 
potentieel van vinasse-bacteriën, vinasse en stikstofbemesting en veldemissies van N2O 
met elkaar verbinden. 
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