
Strategies for mechanical metamaterial design
Singh, N.

Citation
Singh, N. (2019, April 10). Strategies for mechanical metamaterial design. Casimir PhD
Series. Retrieved from https://hdl.handle.net/1887/71234
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/71234
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/71234


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/71234 holds various files of this Leiden University 
dissertation. 
 
Author: Singh, N. 
Title: Strategies for mechanical metamaterial design 
Issue Date: 2019-04-10 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/71234
https://openaccess.leidenuniv.nl/handle/1887/1�


4

4

C
ha

pt
er

Rational Design
of Multi-stable 2D

Mechanical Metamaterials
—–

Abstract –Moving beyond the constant targetDt(θ) curves, in this chapter,
we investigate the design of precursor eight-polygon mechanisms [Fig. 3.4]
optimizing for non-constant Dt(θ) curves with the ultimate aim of designing
2D multi-stable mechanical metamaterials. We begin with systematically
categorizing the new Dt(θ) curves into four families of increasing complexity
which include both linear and trigonometric functions (of θ). We then
statistically measure the performance of PSO on each one of them and
establish that within the non-linear Dt(θ) curve families, the solution quality
drops with an increase in the magnitude of variation of D with θ, whereas
it remains unaffected for the linear curves; and among these families, the
solution quality suffers substantially with an increase in the number of
extrema in the D(θ) curve. We fabricate these computer-designed bi-stable
and tri-stable unit cells using 3D printing and confirm the shape-shifting
behavior experimentally. Finally, we tile copies of these unit cells and
observe multi-stable behavior as well.
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CHAPTER 4. MULTI-STABLE 2D MECHANICAL METAMATERIALS

4.1 Introduction

Shape-transforming ability of a structural material catches the natural
attention of the onlooker. Importantly, such materials offer many promising
applications as practical deployable structures, which can be externally
activated when required to morph from one shape to another. Shape-
transformable materials is an active area of research. A faction of mechanical
metamaterials researchers have observed and reported several different
instances of shape-transformable reconfigurable devices [16, 34, 36, 104,105].
In this chapter, we further expand the horizons of this subject area into a
fresh direction.

We mentioned in the previous chapter (§3.1) that the trajectory of the
characteristic curve D(θ) of the eight-polygon mechanism [Fig. 3.4] can be
manipulated such that the resulting 3x3 unit cells (consisting of rigid units
connected together with soft-deformable hinges) are multi-stable. In the
current chapter, we explore this very case, where chiefly we utilize PSO
to optimize the mechanism design for non-constant target Dt(θ) curves
of our interest. We set out with the following two primary aims. (i)
Correlate the search capability of PSO to find good-quality approximate
solutions (mechanism designs) for the non-constant Dt(θ) functions versus
their complexity, and (ii) utilize these computer-designed mechanisms to
fabricate 2D shape-shifting structures. While doing so, we simultaneously
put to test a key feature which reflects the robustness of an automated
inverse strategy for material design. This is the ability to output optimal
structural design for multiple target criteria with minimum alternations in
basic construction of the model.

The outline of this chapter is as follows. In the immediate discussion
below, we define our new target curves of varying levels of general complexity.
Depending upon the number of extrema in the curves, we broadly categorize
them into four families. We then briefly mention about the details involving
the implementation of PSO and the method for generating large solution
ensemble for a particular target curve. In §4.2, we quantify the performance
of PSO across these curves and compare the average solution quality. One
would presume an increase in the difficulty for PSO to find good quality
solutions as the complexity of the target curves increases. We statistically
confirm that this is indeed the case. Mechanisms with complex nonlinear
D(θ) response require large internal deformations, which is typically hard to
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accomplish without violating the imposed constraints on the system. In §4.3,
we show the actual computer-designed mechanisms. Finally, in §4.4, we
build bi-stable and tri-stable unit cells and some tilings comprising of them
on top of the designed mechanisms, and fabricate them via 3D printing, thus
practically establishing novel examples of shape-transformable mechanical
metamaterials.

Target curves, Dt(θ) – We begin our analysis by first systematically
categorizing the new target Dt(θ) functions. Broadly, we divide the curves
into four families: F1, F2, F3, and F4. The F1 curves are linear with
varying slopes, while F2, F3 and F4 curves are trigonometric, with an
increased complexity from F2 to F4. For all the families, we fix Dt(0◦) = 1
and consider twenty different values of an adjustable parameter α, thereby
having twenty curves for each family.

The general mathematical form for the F1 curves is: D = 1 + αθ, where
the parameter α controls the slope. θ is measured in radians and we cover
a total range from -π/3 to π/3. α takes on the values ± 0.05, 0.10. . . .
.0.50. In the similar fashion, we constructed the Dt(θ) curves for the rest
of the three families, whose general trigonometric forms in terms of α and
θ are given as: F2: D = 1 + α sin(2θ + π/2); F3: D = 1 + α sin(3θ + π/2)
and F4: D = 1 + α sin(4θ). The F1 - F4 curves are shown in Fig. 4.1,
where the curves with positive values of α are shown in solid and the curves
with negative values of α are shown in dashed. The colorbar on the right
indicates the magnitude of α. By optimizing for these set of target curves,
we aim to learn about the performance of PSO at least within a certain
domain of complex Dt(θ) curves. With the correct dimension of the missing
polygon which closes down the 3x3 network, F1, {F2,F3} and F4 curves
can lead to the creation of deformable mechanical metamaterials consisting
of soft connectors that are monostable, bi-stable and tri-stable respectively.
As we will discuss, when we show the actual 3D printed samples, achieving
multi-stability for these systems is dependent on the hinge elasticity, which
we tune by controlling their geometry.

PSO simulations – We prescribed the above-mentioned target Dt(θ)
curves to our design framework and ran the PSO algorithm. The complete
implementation details of PSO, which includes the definition of design
variables and objective function f , size of the swarm and its initialization,
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Figure 4.1: Families of the new target curvesDt(θ) denoted by the symbols:
(a) F1, (b) F2, (c) F3 and (d) F4. The general mathematical formula of
the curves are as follows. F1: D = 1 + αθ; F2: D = 1 + α sin(2θ + π/2);
F3: D = 1 + α sin(3θ + π/2) and F4: D = 1 + α sin(4θ). α takes on twenty
different values i.e. ± 0.05, 0.10. . . . .0.50. D(θ) curves for the positive
values of α are shown in the solid curves and for negative values of α are
shown in the dashed curves, and are color-coded according to the magnitude
of α (see colorbar).

and the termination criteria are the same as described in the previous chapter
in §3.5. It should be noted that: (i) we rule out the effects of the distribution
of the initial population by using the exact same initial population as the
one used in the previous chapter for constant Dt(θ) curve, and (ii) we ran
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PSO with ω = 0.25 and the best-performing (c1, c2) parameter settings,
which were given by Eq. (3.29) in the previous chapter. We do this to
ensure that we generate a large number of good quality solutions. One
might wonder whether these parameter settings are still optimal for the new
Dt(θ) curves. By performing hyperparameter optimization in the similar
manner as described previously in §3.6.1, we verified that this generally
is true, although depending upon the type of the Dt(θ) curve, the scales
of f may vary. In order to avoid repetition, we refrain from showing the
heatmaps. For each of the 36 different (c1, c2) parameter pairs, data was
gathered for 500 independent PSO simulations. Accordingly, for any given
Dt(θ) curve, we have 1.8× 104 potential solutions to statistically quantify
the performance of PSO.

4.2 Characterizing the Performance of PSO

We would now quantify the performance of PSO for the above-defined Dt(θ)
curves [Fig. 4.1]. For each family F1-F4 and separately for positive and
negative α values, we characterize the performance via (i) a scatter plot of
the best solution objective function value f versus the order parameter s
for two extreme magnitudes of α i.e. |α| = 0.05 and |α| = 0.50, and (ii)
probability density functions (PDFs) of f for all the α values. Of course,
the definition for s is also the same as defined in the previous chapter [Eq.
(3.38)]. In this manner, by comparing the typical scales of f , we can
correlate the performance of PSO with the complexity of the target curves.
We summarize our results in Fig. 4.2-4.5 for the four respective families
F1-F4. There, within each figure, we show the f vs s scatter plots for α =
0.05 and α = 0.50 in figure (a),(b) respectively, the PDFs for all the positive
α values in figure (c), the f vs s scatter plots for α = -0.05 and α = -0.50
in figure (d),(e) respectively, and the PDFs for all the negative α values in
figure (f). The colors of the PDFs represent α values and are based on the
colorbar shown in Fig. 4.1.

f vs s scatter plots – We first summarize the following three visually
noticeable trends comparing the scatter plots intra-family wise. (i) For F1
curves, taking only the scales of f into consideration, we do not see any
appreciable differences in the scatter plots for |α| = 0.50 compared with |α|
= 0.05. (ii) For rest of the three families, we observe a significant collective
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Figure 4.2: Statistics summarizing how the PSO performed over F1 target
curves [Fig. 4.1(a)]. For each of the member Dt(θ) curve, we performed
1.8×104 independent PSO runs. (a) objective function f vs order-parameter
s scatter plot for α = 0.05, (b) f vs s scatter plot for α = 0.50, and (c)
probability density functions (PDFs) of f for α = 0.05, 0.10, ........ 0.50.
The PDFs for different α values are colored differently and are based on
the colorbar shown in Fig. 4.1. (d, e) Corresponding f vs s scatter plots
for α = -0.05 and α = -0.50, and (f) PDFs of f for negative α values. We
preserve same definitions for both f and s as in the previous chapter.

upwards vertical shift in the ‘cloud’ of points . This is not surprising: we
expect that it becomes harder for PSO to discover good quality solutions as
the magnitude of variation in D (with θ) increases. As mentioned before, one
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Figure 4.3: Statistics summarizing how the PSO performed over F2 target
curves [Fig. 4.1(b)]. (a) objective function f vs order-parameter s scatter
plot for α = 0.05, (b) f vs s scatter plot for α = 0.50, and (c) probability
density functions (PDFs) of f for α = 0.05, 0.10, ........ 0.50. The PDFs
for different α values are colored differently and are based on the colorbar
shown in Fig. 4.1. (d, e) Corresponding f vs s scatter plots for α = -0.05
and α = -0.50, and (f) PDFs of f for negative α values.

likely reason could be that the mechanisms corresponding to these solutions
require to have complex internal deformations, which is typically hard to
accomplish without violating the imposed constraints on the system (§3.4.2).
(iii) Within the families, for |α| =0.50, we observe a rather scant number
of solutions having low s values when compared with|α| =0.05. Clearly,
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Figure 4.4: Statistics summarizing how the PSO performed over F3 target
curves [Fig. 4.1(c)]. (a) objective function f vs order-parameter s scatter
plot for α = 0.05, (b) f vs s scatter plot for α = 0.50, and (c) probability
density functions (PDFs) of f for α = 0.05, 0.10, ........ 0.50. The PDFs
for different α values are colored differently and are based on the colorbar
shown in Fig. 4.1. (d, e) Corresponding f vs s scatter plots for α = -0.05
and α = -0.50, and (f) PDFs of f for negative α values.

discovering mechanisms that are capable of accomplishing complex internal
deformation forces PSO to find solutions where linkages deviate significantly
from the parallelogram linkages. Comparing the scatter plots among the
families for extreme curves i.e. |α| =0.50 reveals that the points shift
upwards, suggesting an increase in the general scales of f . The performance
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Figure 4.5: Statistics summarizing how the PSO performed over F4 target
curves [Fig. 4.1(d)]. (a) objective function f vs order-parameter s scatter
plot for α = 0.05, (b) f vs s scatter plot for α = 0.50, and (c) probability
density functions (PDFs) of f for α = 0.05, 0.10, ........ 0.50. The PDFs
for different α values are colored differently and are based on the colorbar
shown in Fig. 4.1. (d, e) Corresponding f vs s scatter plots for α = -0.05
and α = -0.50, and (f) PDFs of f for negative α values.

of PSO suffers remarkably. We expected this as the general complexity
increases from F1-F4.

Probability density functions of f – We now take a look at the
distributions of f . Fig. 4.2(c) shows the PDFs of f for positive α values F1
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curves. We chose 50 bins of equal width to group the data. The functions
for different α values are colored differently and are based on the colorbar
shown in Fig. 4.1. Barring a slight shift towards the right as α is increased,
the PDFs appear to be suitably similar. The shape of these PDFs appears
to be bell-shaped suggesting that f is log-normally distributed. Fig. 4.2(f)
shows the PDFs of f for negative values of α. Compared to the positive α
values, the PDFs are only slightly right-shifted. Still, overall we obtain very
similar results for both positive and negative α values. Mainly, our results
show that PSO performs extremely well over all the linear Dt(θ) curves,
irrespective of their slopes. We hypothesize that this could be due to the
uniform dispersion of potential solutions in the search space - generally the
3x3 systems are rigid (§3.1), thereby leading to quite a high possibility that
these linear target curves are well approximated.

Fig. 4.3(c,f) shows the PDFs of f for F2 curves. We obtain a variety of
shapes of the PDFs. For low and positive values of α, we observe a right-
skewness in the distribution with an off-centered peak towards the left and
a tail stretching away from it. The skewness in the distributions decreases
and peakedness increases as the magnitude of α increases. For negative
values of α, however, we obtain a slight left-skewed distribution for lower
magnitudes of α and a mixed bimodal distribution for higher magnitudes.
The heterogeneity in the shapes of the PDFs can also be observed for the
families F3 and F4 curves. These PDFs remarkably differ from one another
and clearly lack any general trend, apart from: (i) the expected shift towards
higher scales of f for increasing magnitudes of α, and (ii) the appearance of
bimodal mixed distribution for several successive values of α. For example,
in F3 curves, we observe mixed distribution for low and positive, and high
and negative values of α. In the case of F4 curves, although minute, we
obtained mixed distribution for all the values of α. A possible explanation
for the existence of mixed distributions is as follows: a highly constrained
optimization problem has well-separated regions of feasible search space i.e.
where no constraint is violated and unfeasible search space. The degree of
their separation is problem dependent, which in our case is the type of the
target curve to be met. We conjecture that for some of these target curves,
it may so be the case that the objective function landscape is patchy in
the sense that some regions of feasible search space are favored over others.
The inherent capability of PSO and a possible uneven dispersal of solutions
might further accentuate the preference for search regions. The collective
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result can be the final mixed distributions that we see.

4.3 Optimized Mechanisms

We will now show examples of optimized mechanisms for the four families.
We show these examples only for the extreme values of α i.e. |α| = 0.50. This
we do so keeping sight of the final purpose, which is to be able to fabricate
bi-stable and tri-stable samples. When multi-stable samples like these are
deformed, the hinges stretch and twist. The stretching energy releases itself
when the samples reach the stable states, where only the torsional energy
is present. In total, the stretching energy serves as an energy barrier that
stops the sample from ‘flipping back’ to the initial state. By aiming for the
extreme examples, where D(θ) curves have a large variation, we hope to be
able to set large enough energy barrier that compensates for the torsional
energy present in the hinges.

For families F1-F4, α = 0.50, we sort out six example mechanisms on
the basis of least value of the objective function f and show them in Fig.
4.6. In terms of geometry of the mechanisms, we obtain highly diverse
designs. We notice that except for the F1 curve, the mechanisms for the
rest of the curves display a common feature, which is the presence of one
(or even two) narrow convex linkages. These linkages appear in the shape
of kites with two pairs of almost-equilength adjacent bars. The presence of
these linkages provides an easy path to achieve large internal deformations
for the mechanism: the linkage further ‘closes down’ and completely folds
within itself for one extreme value of θ while ‘opens up’ like a normal
linkage towards the other extreme. We demonstrate it on the example
shown in Fig. 4.6(g) by showing its extreme deformed states in Fig. 4.8,
where the figures (a), (b) and (c) show the mechanism in the deformed
states of θ = −60◦, 0◦ and 60◦ respectively. The value of f is 4.75× 10−7.
From the search point of view, we propose one possible explanation for the
frequent findings of mechanisms consisting of such linkages by PSO: static
penalization method introduced in the previous chapter to penalize systems
displaying self-intersection among neighboring polygons (§3.4.2) may lead
to the formation of steep boundaries between feasible and unfeasible search
regions, that are hard to overcome, thereby forcing PSO to find solutions
that are ‘near’ the constraint boundary. For F2 and F3, we find several
mechanisms on difference scales of workable values of f , that do not have
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Figure 4.8: An example mechanism consisting of a narrow convex linkage
(top-right linkage in (b)) shown in the deformed states of (a) θ = -60◦, (b) θ
= 0◦, and (c) θ = 60◦. This particular mechanism is a solution for F2, α =
0.50 and is the same as shown in Fig. 4.6(g). The corresponding objective
function value, f is 4.75× 10−7. These types of mechanisms consisting of
narrow linkages are frequently discovered for non-linear target curves i.e.
F2-F4, α = 0.50.

these narrow linkages. For F4 target curve however, we found out that the
presence of these linkages is far more prevalent.

Similarly, we show the mechanisms corresponding to the top six solutions
for the target curves F1-F4, α = -0.50 in Fig. 4.7. We again obtain a variety
of solutions different greatly from one another in terms of their geometry. Of
particular interest are the examples corresponding to the F2 and F3 target
curves. We notice the absence of previously observed narrow convex linkages
for α = 0.50. In this case, PSO discovers several good solutions remaining
far from the constraint boundary. This could be a direct outcome of the
different objective function landscape. For F4 target curve, however, we still
encounter the narrow convex linkages. Such systems will inevitably pose
problems during fabrication via 3D printing because of the limited resolution
of the printer. Moreover, for the sake of generating simpler mechanisms for
the F4 target curves, we decide to circumvent this problem. We impose an
additional constraint on the geometry of the mechanisms, which we discuss
below.

Constraint Adjustment for Extreme Curves – We address the issue
of mechanisms consisting of extremely slender linkages found consistently
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for the F4 target curves, α = |0.50| by imposing an additional constraint Γ4,
which aims to keep the distance between the opposite pair of inner vertices
of each of the internal four-bar linkages within a reasonable range of [0.50,
2.50]. We use the same method to quantify its violation, as we used for
quantifying the constraint Γ3 in the previous chapter (§3.4.2). We combine
the total violation of both Γ3 and Γ4 into a single penalty term and denote
it with r′. For simplicity, we retain the old symbol f to denote the modified
objective function and extend Eq. (3.23) as:

f = g + p+ q + r′, (4.1)

where the definitions for g,p and q are the same as in the previous chapter.
With this new definition of f , we carried out a series of additional PSO

simulations. We first check how the addition of this constraint affects the
performance of PSO. Fig. 4.9 shows in: (a) the f vs s scatter plot for α =
0.05, (b) the f vs s scatter plot for α = 0.50, and (c) the PDFs of f for α
= {0.05, 0.10 . . . 0.50}. The corresponding plots for negative α values are
shown in Fig. 4.9(d-f). Despite the modification in f , we do not observe
any significant differences in the scales of f when compared with Fig. 4.5.
In fact, the results are quite similar. We conclude that the performance of
PSO remains essentially unaffected.

We show the top-performing mechanisms for the F4 curve, α = ±0.50 in
Fig. 4.10. We notice the absence of slender linkages in the mechanisms - the
application of the new constraint serves the purpose. Instead, we now notice
new common trends within the geometry of the mechanisms: (i) polygon
P2 [Fig. 4.10(a)] of the mechanisms almost approaches to the shape of a
bar, (ii) the ‘free’ vertex of the polygon P8 lies extremely close to the edge
of the polygon P6 for α = 0.50 and vice versa for α = −0.50. We will show
in the next section when we fabricate real samples that the proximity of
the bars does not hinders the hinging motion of the mechanisms. Overall,
we conclude that the best-performing mechanisms share some similarities
in terms of the geometry and thus represent a lack of diversity.

Mechanisms in their deformed states – We now show the mechanisms
in their deformed configurations. Instead of solely selecting the mechanisms
on the basis of lowest values of f , for easy demonstration, we also prefer
simpler geometry, which we decided by visual inspection of the solution
ensemble. The deformed states of these examples are shown in Fig. 4.11
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Figure 4.9: Statistics summarizing how the PSO performed over F4 target
curves [Fig. 4.1(d)], with the modified definition of f [Eq. (4.1)]. (a)
objective function f vs order-parameter s scatter plot for α = 0.05, (b) f
vs s scatter plot for α = 0.50, and (c) probability density functions (PDFs)
of f for α = 0.05, 0.10, ........ 0.50. The PDFs for different α values are
colored differently and are based on the colorbar shown in Fig. 4.1. (d, e)
Corresponding f vs s scatter plots, and (f) PDFs of f for negative α values.

and Fig. 4.12 for α = 0.50 and α = −0.50 respectively. There, within each
figure, the central panel shows the mechanism in the neutral state θ = 0◦,
and the left and the right panels show the mechanism in the deformed states
of θ = −30◦,−60◦ and θ = 30◦, 60◦ respectively.

142



4

4.4. A PROOF OF CONCEPT WITH 3D PRINTING

Figure 4.10: The best-performing mechanisms for the F4 target curves,
α = ±0.50 with the modified definition of f given by Eq. 4.1 that includes
the constraint to avoid narrow linkages observed in Fig. 4.6, 4.7. The
mechanisms for α = 0.50 are shown in (a)-(d) and in (g)-(j) for α = -0.50.
The scales of f are 10−4 for α = 0.50 and 10−3 or for α = -0.50. We can
notice that the inclusion of constraint Γ4 avoids the presence of narrow
linkages previously observed.

4.4 A Proof of Concept with 3D Printing

In this section, we explore experimental realizations of the computer-designed
bi-stable and tri-stable unit cells, as well as some metatilings based on these
unit cells. We bring these designs to life by 3D printing. We begin by
preparing 3D CAD models in a CAD software followed by 3D printing them.

For our 3D printed samples, both bending and stretching of the elastic
hinges costs a finite amount of energy. It is the competition between these
two energies that determines whether or not a sample is able to remain in
the expected stable state(s). Thus, an issue that requires attention is the
role of the hinges. For example, thicker hinges might be able to provide
enough restoring torque to compensate for the stretching energy leading
the samples to ‘flip-back’ to their original stable state, i.e. the one we print
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the samples in. On the other hand, thinner hinges might not store enough
stretching energy in the first place, however, if they do, the switch-feel might
be too weak leading to accidentally switching between the states. Moreover,
deformations of the quads are no longer absent. Hence, only experimenting
with the hinge thickness can tell whether designed properties emerge in the
realistic samples.

4.4.1 Unit Cells

How to first design a bi-stable unit cell? We start with a solution generated
by PSO for the target Dt(θ) curve: F2, α = -0.50. We then want to choose
the two stable states, the system should switch to and fro. To ensure the
switchability, we choose these states to be as far away from one another as
possible, i.e. at θ = −60◦ and θ = 60◦ or D = 1.25 [see Fig. 4.1 (b)]. Out of
these two stables states, we 3D print the sample at θ = −60◦ configuration.
For this purpose, with the mechanism in θ = −60◦ configuration, we fit-in
the absent night polygon such that the polygonal edge length that connects
the polygons P6 and P8 is equal to D(60◦) i.e. 1.25. See Fig. 4.10(a) for
the polygonal numbering. We also take advantage of the inconsequential
boundary of the unit cell and augment every rigid boundary unit to a
quadrilateral. This is done in such a manner that the quadrilaterals on the
boundary do not barge in before the expected stable state is reached.

An example of a such a 3D printed sample is shown in Fig. 4.13(a). We
used a flexible elastic filament for 3D printing, known by its commercial
name Filaflex. The scale of the sample is labeled. The height of the sample
(out-of-plane) is 10 mm. The thickness of the connecting hinges is ≈ 0.55
mm. Fig. 4.13(c) shows the base mechanism. The objective function value
f for this solution is 3.2×10−5. When deformed internally, the other stable
state that the sample switches to is shown in Fig. 4.13(b). We observe
reasonably good agreement with the expected deformed state, θ = −60◦
shown in Fig. 4.13(d). We should point out that hinge thickness plays a key
role here. We found out that a samples with higher hinge thickness either
did not produce pronounced switch-ability or did not no exhibit bi-stability
at all.

Similar to the approach stated above, we fabricate a tri-stable unit cell.
We begin with a sample solution for F4 curve, α = 0.50 [Fig. 4.14(e)] and
accordingly design the unit cell such that the three stable states are at: θ
= -45◦, θ = 0◦ and θ = 45◦ i.e. where D = 1.0. We 3D print the sample
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Figure 4.13: A 3D printed 3x3 bi-stable unit cell in the two stable states
(a), (b) corresponding to (c) θ = −60◦ and (d) θ = 60◦ configurations of
the constituent mechanism. We 3D print the sample in (a), which exhibits
reversible switch-ability to and from (b). Inset in (c),(d) show the D(θ)
curve. The mechanism is a solution for F2, α = -0.50. The objective function
value f is 3.2×10−5. Comparing (b) and (d), we observe reasonably good
agreements between experiments and simulations.

in θ = 0◦ configuration and expect switch-ability to the other two stable
states existing on the opposite sides of θ. In our first attempt, we designed
the connecting hinges with a minimum thickness of ≈ 0.50 mm, and as
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Figure 4.14: A 3D printed 3x3 tri-stable unit cell in the three stable
states (a)-(c) corresponding to (d) θ = −45◦, (e) θ = 0◦ and (f) θ = 45◦
configurations of the constituent mechanism. We 3D print the sample in
(b), which exhibits reversible switch-ability to and from (a) and (c). Inset
in (d)-(f) show the D(θ) curve. The mechanism is a solution for F4, α =
0.50. The objective function value f is 6.7×10−3. Comparing (a),(c) with
(d)(f), we observe good agreements between experiments and simulations.

such did not designed its length. We found out that by doing this, the unit
cell did not switch to the neighboring stable states. The justification is
straightforward: hinges with minimal length do not provide with enough
stretching elastic energy barrier such that the unit cell can hold itself.

One possible way to overcome this would be via trying thinner hinges,
the choice of which, however, is limited by the printer resolution, which is ≈
0.40 mm in our case. In order to mitigate this issue and achieve tristability,
we attempted another method. This time, we designed the connector hinges
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Figure 4.15: For the 3D printed
sample shown in Fig. 4.14(b), we ob-
served an extra stable stable which
was not predicted

with small finite length of ≈ 2 mm. Fig. 4.14(b) shows the sample. The
height of the sample (out-of-plane) is 10 mm. Designing the hinges in such
a manner leads to tristability! The two stable states corresponding to θ =
-45◦, and θ = 45◦ states of the base mechanism are shown in Fig. 4.14(a,c)
respectively. We can match from figure Fig. 4.14(d,f) that we indeed retrieve
the expected stable states. Note that the value of f for this solutions is
6.7×10−3. For this sample, we noticed an extra unpredicted stable state
shown in Fig. 4.15.

4.4.2 Metatilings

We will now discuss some tilings consisting of these unit cells. Ideally, we
would desire a system where the unit cells can individually alter their stable
states. However, assembling the units cells into tilings and 3D printing
them with flexible material does not immediately guarantees the expected
shape-transformable behavior. This is because of the new elastic frustration
introduced by the neighboring unit cell. Frustration alters the energy
landscape, affecting the existing minima and adding the new ones, thus
hindering the desired functionality [39].

Before printing a mono-material tiling, we first attempted a simpler
method to obtain shape-transformable systems coupling pin-jointed rigid
linkages with linear springs. Fig. 4.16 shows schematically, a tiling compris-
ing of two copies of the bi-stable unit cell shown in Fig. 4.13(c), where the
rigid units are connected together through pin-joints. The free corners are
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Figure 4.16: A schematic dia-
gram showing a system of two
bi-stable unit cells [Fig. 4.13(c)]
connected together (at joints
marked in red). The linkages are
rigid and are connected together
through pin-joints. The open-
corners are connected through
linear springs.

connected with linear springs of rest length such that the unit cells switch to
the other stable state [Fig. 4.13(d)]. Our method of repeating copies in the
plane is same as discussed in the previous chapter [§3.9.2, Fig. 3.37]. The
two unit cells share the pin-joint connections marked in red. We 3D printed
this design [Fig. 4.17(a)], and observed that the unit cells switch states
but not independent of each other - one actuates another [Fig. 4.17(b)].

(a) (b)

Figure 4.17: A bi-stable system. (a) Real sample of the design shown in
Fig. 4.16. The rigid linkages are connected through pin-joints (diameter ≈
3 mm). The open vertices of the unit cells are connected with linear springs
of rest length ≈ 2.5 cm. In this case, we observed that the unit cells switch
states but not independently.
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Figure 4.18: A quad-stable system. (a) We altered the geometry of the
rigid linkages in Fig. 4.17(a) that connect the two unit cells together in such
a way that the displacement of the connecting nodes (in red) is minimal as
the cells deform, thus hoping to avoid actuating the cells simultaneously.
We found out that this works. The systems in its other combinations of
stable states is shown in (b-d).

The geometry of the boundary linkages that connect the unit cells together
plays a critical role. We altered their geometry such that the displacement
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Figure 4.19: A quad-stable system. (a) 3D printed version of the system
shown in Fig. 4.18(a). We printed this sample with flexible elastic material
called filaflex. The scale of the sample is labeled. The thickness of the
sample if ≈ 10mm. The sample in its other combinations of stable states is
shown in (b-d).

of the connecting node is minimal - thus trying to avoid the actuation of
the neighboring cell. Fig. 4.18(a) shows the sample. This allows the cells to
change states individually; thus rendering us a system that is quad-stable
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Figure 4.20: A penta-stable system. (a) Two repeated copies of the unit
cell shown in Fig. 4.14(b). The scale of the sample is labeled and the
thickness of the samples is ≈ 10 mm. In (b-e), we show the four other
stable states the system exhibits. Notice that unit cells correspond to (b)
the stable state shown in Fig. 4.14(c), (c) stable state shown in Fig. 4.15,
and (d,e) combination of stable states shown in Fig. 4.14(a,c).

in a manner [Fig. 4.18(b-d)]. We 3D printed the design in Fig. 4.18(a)
by flexible elastic material [Fig. 4.19(a)], and observed similar switchable
behavior [Fig. 4.19(b-d)], although the additional elastic frustration limits
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retrieving the exact expected states.
As a final example, we also tiled two copies of the unit-cell shown in Fig.

4.14(b) and observed penta-stable behavior. Fig. 4.20(a) shows the sample.
The stable states that the sample switches to are shown in Fig. 4.20(b-d).

4.5 Discussion and Conclusion

In this chapter, we extended our methodology to design new classes of multi-
stable 2D mechanical metamaterials consisting of hinging polygons, with
up to penta-stability reported in the current work. We show that although
elastic frustrations are generally known to limit functionalities, they can
be carefully channeled to make a system switch states, thus opening new
avenues for shape-transformable mechanical materials. In §4.2, we began
with optimizing the mechanism design for four different families of varying
complexity of linear and non-linear Dt(θ) curves (F1-F4). Characterizing
PSO, we established that within the non-linear Dt(θ) curve families, the
solution quality drops with an increase in the magnitude of variation of D
with θ, whereas it remains unaffected for the linear curves; and among these
families, the solution quality suffers substantially with an increase in the
number of extrema in the D(θ) curves. We showed the actual optimized
mechanisms in §4.3, and also showed that for extreme curves within the
family F4, we encounter designs that limit their fabricability. There, we also
discuss the additional imposed constraint to avoid such designs. Finally,
in §4.4, we bring the computer-designed structures to life by 3D printing
and demonstrate practical realizations of bi-, tri-, quad- and penta-stable
systems.
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