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The Soft Mechanism
—–

Abstract – In this chapter, we show that the experimentally observed
different mechanical regimes in a laterally (x-) confined holey elastic me-
chanical metamaterial [20] can qualitative be captured by a spring-coupled
mechanism consisting of rotating rigid rectangles - soft mechanism - and
discuss the physical method to do so in details. The soft mechanism allows
us to understand these regimes from a geometrical perspective, extending
which, we suggest a general design strategy for confinement-programmable
response of mechanical metamaterials. Mainly, we propose that based
on the trajectory of the mechanism, it is theoretically possible to encode
plenty of other sequence of equilibria that unfold as the control parameter
(x-confinement in our case) is varied. We model the inter-hole ligament in
the real samples by coupling the hinges of soft mechanism with torsional
springs and observe some qualitative agreements with [70] in terms of the
critical values of x-confinement that separate the four successive regimes.
We finally, consider the limiting case where the neighboring holes in the
sample approach to be of equal size and mathematically show that these
regimes result from the unfolding of an imperfect pitchfork bifurcation.
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CHAPTER 2. THE SOFT MECHANISM

2.1 Introduction

We begin with presenting a brief review of the work reported in [20]. The
reader is encouraged to refer to the main source for a more detailed under-
standing.

Programmable mechanical metamaterials – It has been observed
both experimentally and numerically that the mechanical response of a
quasi-2D elastic slab perforated with an alternating pattern of large and
small equi-sized circular holes in such a manner that the center of the holes
lie on a square array, called a biholar sheet, can be controlled by the amount
of a prior external horizontal confinement (strain, also called x-confinement),
εx by means of fixed size plastic clamps. Fig. 2.1(a) shows a biholar sheet,
whose geometry is set by the parameters D1, D2 and p, where D1, D2 are
the respective hole diameters of the smaller and larger holes and p is the
hole-separating pitch. We use here also the dimensionless quantities defined
in the original work - biholarity, χ,

χ = (D2 −D1)/p, (2.1)

and minimum thickness of the interhole ligaments, tl,

tl = 1− (D1 +D2)/2p. (2.2)

Fig. 2.1(b) shows a biholar sheet that is horizontally confined by using the
plastic clamps. The force response (P) to vertical compression (εy) can be
changed from monotonic to non-monotonic to hysteretic and lastly back to
monotonic again all for the same biholar sheet, when the x-confinement is
increased. Fig. 2.2(a-d) shows, experimentally realized, the four different
force-deformation responses of a biholar sheet (χ = 0.30, tl = 0.15) for
different values of εx [69]. Inside each figure, the insets show the biholar
sample in its initial x-confined state i.e. εy = 0.0.

Brief explanation – Upon compression, an unconfined biholar sheet
undergoes a smooth pattern transformation to attain a state containing
alternate mutually orthogonal ellipses. Depending upon the direction of
compression, such a pattern of mutually orthogonal ellipses can exist in the
following two arrangements: (i) the major axes of the larger ellipses are
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(a) (b) (c)

Figure 2.1: (a) Biholar sheet: an elastic slab perforated with an alternating
pattern of large and small circular holes on a square array, characterized by
the respective hole diameters D1, D2 of smaller and larger holes, the hole-
separating pitch - p , and the minimum ligament thickness, tl. Compressing
the biholar sheet results in the formation of mutually orthogonal ellipses,
which however, depending upon the direction of compression, can exist in
two different arrangements. A biholar sheet in two differently polarized
states: (b) x-polarized state - the sample is compressed along x-direction
as a result of which the larger ellipses have their major axis oriented along
the y-axis, and (c) y-polarized state - the sample is compressed along the
y-direction, which leads to the larger ellipses orient their major axis parallel
to the x-direction. These images are adopted from [69].

oriented parallel to the y-direction. This happens when the biholar sheet is
compressed along the x-direction, and likewise (ii) the major axes of the
larger ellipses are oriented along to the x-direction. This happens when the
biholar sheet is compressed along the y-direction. The difference in the hole
sizes breaks the 90◦ rotational symmetry that is present when the holes are
of equal size. This causes a difference in the polarization of the hole pattern,
depending along which direction the sample is compressed. In the original
work, these two differently polarized states are referred to as x-polarized and
y-polarized states respectively and are shown in Fig. 2.1(b,c).

It can be imagined that the application of an initial x-confinement fol-
lowed by a subsequent vertical compression can lead to a pattern switch
from a x-polarized state to a y-polarized state. Depending upon the mag-
nitude of the x-confinement, such a pattern switch can be both smooth or
discontinuous. As a result of the symmetry breaking, the deformations along
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Figure 2.2: Experimentally observed mechanical response of a x-confined
5x5 biholar sheet with geometrical parameters D1 = 7 mm, D2 = 10 mm,
tl = 0.15. εx denotes the x-confinement. (a) εx = 0.0, P (εy) is monotonic.
(b) εx = 0.12, P (εy) is non-monotonic. (c) εx = 0.15, P (εy) is hysteretic.
(d) εx = 0.18, P (εy) is monotonic. The insets within the figures show the
initial state of the confined biholar sheet i.e. at εy = 0.0. The figures are
adopted from [69].

the two primary axes interact nonlinearly. Indeed, this nonlinear coupling
between the x- and the y-polarized states set up by the interacting forces of
horizontal confinement and vertical compression results in the nontrivial
mechanics of a confined biholar sheet [Fig. 2.2].

In this chapter, we first show that the experimentally realized mechanics
of a confined biholar sheet can qualitatively be captured by a spring coupled
one-degree-of-freedom mechanism consisting of pin-jointed rectangles. We
call this the soft mechanism. We discuss in details the physical method to
model the experiments in §2.2. We employ the mechanism to understand
the different mechanical regimes from a geometrical perspective and based
on which, we layout a general design strategy in §2.3, following which,
plenty of other sequences of equilibria can be constructed leading to diverse
confinement controlled responses. We take into account the thickness of
the hole-connector ligaments by coupling the hinges of the mechanism with
torsional springs in §2.4. Finally in §2.5, we explore the mechanism for
the limiting case where the neighboring holes become ‘almost’ equi-sized,
χ → 0, and mathematically show that the different regimes emerge from
the unfolding of a pitchfork bifurcation.
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Figure 2.3: Soft mechanism - a mechanical model that is aimed to qualita-
tively captures the mechanical response of an x-confined biholar sheet [Fig.
2.2]. (a) In a biholar sheet with thin interhole ligaments, the deformations
primarily occur via the bending of the ligaments and can be approximated
by a mechanism consisting of pin-jointed, rigid rectangles. (b) The mapping
between the rectangular rigid unit of the mechanism and the elastic unit
of a biholar sheet. (c) Soft mechanism - spring coupled representative unit
of the full mechanism shown in (a). The enclosing walls model the lateral
confinement (εx) and vertical strain (εy).

2.2 Soft Mechanism Model

In this section, we derive a simple geometry-based model that captures
important aspects of the mechanics of a confined biholar sheet, based on [20].

Soft mechanism – The deformations in a biholar sheet with vanishingly
small thickness of the interhole ligaments (denoted by tl in Fig. 2.1(a))
occur primarily via the bending of these ligaments. In such a case, the
deformation of the elastic units is minimal, and thus the process can be
modeled via an equivalent one-degree-of-freedom mechanism consisting of
pin-jointed rigid rectangles [Fig. 2.3(a)]. The mapping of these rectangular
units of length a and width b onto the elastic units is shown in Fig. 2.3(b).
One unit cell of such a mechanism is sufficient for our purpose [Fig. 2.3(c)],
which we use to capture the mechanical response. To incorporate the storage
of the elastic energy into the system, the free corners of the rectangular
units are coupled to the enclosing walls both horizontally and vertically
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by a set of four linear springs. The enclosing horizontal and vertical walls
model the lateral confinement (εx) and the vertical strain (εy), respectively.

Biholarity – With the mapping shown in Fig. 2.3(b), we express the
dimensionless biholarity [Eq. (2.1)] in terms of a and b. We note that D1 =
b
√

2, D2 = a
√

2 and p = (a+ b)/
√

2. Substituting these values in Eq. (2.1)
gives:

χ = 2(a− b)
(a+ b) . (2.3)

In the remainder of the work, we choose our lengths so that a + b =
√

2.
Therefore,

χ =
√

2(a− b). (2.4)

For simplicity, considering a ≥ b (a and b are interchangeable), the allowed
range of biholarity is χ ∈ [0, 2].

2.2.1 Load-Deformation Response

We mathematically model the displacement controlled loading of a biho-
lar sheet by following a quasi-static deformation approach for the soft
mechanism. We begin with the total internal energy stored inside the soft
mechanism, U, under the influences of the external x-confinement, εx, and
the vertical load, P . The total internal energy U is given by

U = Ex + Ey, (2.5)

where Ex and Ey are the total elastic energies stored in the horizontal and
vertical springs respectively. A quasi-static approach implies that at any
given instant, the system is in equilibrium. Hence, Ey in the above equation
can be replaced by the work done on the system by the acting load P . We
denote it with W . Therefore, Eq. (2.5) becomes

U = Ex +W. (2.6)

We know that since the soft mechanism contains only one internal
degree-of-freedom, its state can completely be parameterized in terms of
one variable. We use θ for this purpose [Fig. 2.3(c)]. In effect, θ = π/4
represents the neutral state of the biholar sheet, whereas, θ > π/4 and θ
< π/4 represent the x-polarized and y-polarized states respectively [Fig.
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2.1(b,c)]. In terms of θ, we define two more quantities: xi(θ) and yi(θ),
which denote the maximum x and y dimensions of the rectangular unit of
the mechanism. With the length a and the width b of the rectangular unit,
xi(θ) and yi(θ) can be expressed as:

xi(θ) = a cos θ + b sin θ, (2.7)

and,
yi(θ) = a sin θ + b cos θ. (2.8)

Let us suppose that upon the application of some initial x-confinement,
εx, the soft mechanism changes from its neutral state at θ = π/4 to some
other state given by θ. Ex at this perturbed state can be expressed as

Ex = 4× 1
2kx

(
εx + xi(θ)− xi

(
π

4

))2
,

= 2kx
(
εx + xi(θ)− xi

(
π

4

))2
,

= 2kx (εx + xi(θ)− 1)2 , (because xi(π/4) = 1), (2.9)

where kx is the spring constant of the horizontal springs. The term inside the
parentheses of the above equation denotes the net compression or extension
of the horizontal springs 1. εx is positive for compression and negative for
extension.

The total work done on the system, W can be written as

W = 2P
(
yi(θ)− yi

(
π

4

))
,

= 2P (yi(θ)− 1), (because yi(π/4) = 1). (2.10)

Substituting the values of Ex and W respectively from the Eq. (2.9) and
Eq. (2.10) into Eq. (2.6) (along with utilizing the expressions for xi(θ) and
yi(θ) from Eq. (2.7) and Eq. (2.8)), an expression of U in terms of θ can
be obtained. Since the equilibrium state of the mechanism is changed to

1Let us assume that L denotes the rest length of the horizontal springs [Fig. 2.3(c)].
Then, L + xi(π/4) = xo. If the application of the horizontal strain εx changes the
length of the spring to L′, one can then write εx + L′ + xi(θ) = xo. εx is positive for
compression and negative for extension. Therefore, change in the length of the springs
|L− L′| = εx + xi(θ)− xi(π/4) = εx + xi(θ)− 1.
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another adjacent equilibrium state in response to the change in the vertical
load P , then in order to maintain that, the condition of ∂U/∂θ = 0 must
be met. Setting up this condition leads to an equation relating P with the
other variables:

P = −2kx (εx + xi(θ)− 1)
(−a sin θ + b cos θ
a cos θ − b sin θ

)
. (2.11)

The vertical strain εy can be expressed as

εy = (1− yi(θ)) + P

2ky
, (2.12)

where ky is the spring constant of the vertical springs. In Eq. (2.12),
(1 − yi(θ)) is the vertical deformation in the mechanism apart from the
compression in the springs and P/2ky is the compression in the springs
(because the load is always quasi-statically balanced by the spring force).

For fixed a, b and εx, Eq. (2.11) and Eq. (2.12) together with Eq.
(2.7) and Eq. (2.8) establish explicit functions of θ to P and εy, and hence
provide an implicit relationship between the load, P and the vertical strain,
εy. Given the values of a, b (i.e. the biholarity χ, Eq. 2.4) and εx, and
the values of the spring constants, kx and ky, one can implicitly obtain the
load-deformation curve, P (εy). Numerically, this is done by varying the
value of θ from 0 to π/2 and separately calculating the values of P and εy
from Eq. (2.11) and Eq. (2.12) respectively, thereby obtaining a discretized
version of the P (εy) curve.

Load-deformation curves – We now utilize the derived Eq. (2.11) and
Eq. (2.12) and show P (εy) for a system with χ = 0.30 (a ≈ 0.81 and b ≈
0.60) 2. We use the same value for the two spring constants : kx, ky = 0.50.
For four different values of εx, P (εy) is shown in the Fig. 2.4(a-d). Each
figure displays a different qualitative trend, which we refer to as regimes
(i-iv) 3. Below we discuss them separately :

2Unless otherwise mentioned, we keep the value of χ fixed to 0.30 in the rest of the
chapter as well.

3For now only the primary branches (shown in black) in Fig. 2.4 are relevant. In
§2.3.1, we describe the emergence of the secondary red branches in detail. By the primary
branch we mean the solution branch which connects to the unique solution branch that
exists for εy << 0.
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Figure 2.4: P (εy) for a system with χ = 0.30 (a ≈ 0.81 and b ≈ 0.60).
Within each figure, the primary branch (of current relevance) is shown
in black and the secondary branch is shown in red (discussed in §2.3.1),
and on these branches, the stable and the unstable equilibria are shown
in the solid and the dashed curves respectively. (a) εx = -0.015, P (εy)
increases monotonically. (b) εx = 0.010, P (εy) is non-monotonic. (c) εx =
0.028, P (εy) exhibits hysteresis. Hysteretic jumps are shown in the dashed
blue lines in the inset with A− B and C −D jumps corresponding to
the loading and the unloading deformation paths respectively. We discuss
this more clearly in the text. (d) εx = 0.040, P (εy) becomes monotonic
again. With these four regimes, the soft-mechanism successfully models
the experimentally observed mechanical response [Fig. 2.2]. Unlabeled axis
ticks and tick labels are shared.

Regime (i): For εx= -0.015 [Fig. 2.4(a)], the P (εy) curve increases mono-
tonically with εy. However, the slope of the curve varies. The initial value
of slope = 0.50, which is equal to ky. This is true for all the four regimes
(i)-(iv). The slope of the curve then decreases, and finally increases again.
The mechanism behaves as a nonlinear elastic material in this regime.

Regime (ii): For εx = 0.010 [Fig. 2.4(b)], the P (εy) curve becomes
non-monotonic; displaying a dip. As we will show in §2.3.1, the dip in the
P (εy) curve results from a polarization change 4. Positive value of εx makes
the mechanism x-polarized [Fig. 2.2(b) inset]. The polarization changes to
y-polarized state under the influence of P .

4Here, and while discussing the regimes (iii), (iv) in the following discussion, we very
briefly mention the related polarization states and switches. We discuss them in details
in §2.3.1.
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Regime (iii): For εx = 0.028 [Fig. 2.4(c)], the P (εy) curve is clearly
non-monotonic but different from the one in Fig. 2.4(b). The formation of
a cusp and multi-valuedness of P (εy) signals hysteresis with characteristic
hysteretic jumps (see inset). During loading the mechanism follows the path
that includes a jump from A−B , while during unloading the mechanism
follows another path that includes a jump from C −D. This also makes
the path A− C unstable and thus is shown as a dashed curve. From a
polarization point of view, these jumps result from a sudden polarization
switch: x to y polarization switch during A−B jump and y to x polariza-
tion switch during C −D jump. Quick jumps from one polarization state
to another at a fixed εx, εy demonstrates bistability. In the experiments
these jumps are associated with snap-through buckling [71].

Regime (iv): For εx = 0.040 [Fig. 2.4(d)], the P (εy) curve becomes
monotonic again. This is however not the same as in regime (i), but is
indeed exactly opposite from a polarization perspective - the previously
secondary branch is now primary and vice-versa. High values of εx makes
the sample strongly x-polarized (see biholar sample in Fig. 2.2(d), inset)
which gets further accentuated with the application of the load.

A qualitative match with the experimental and finite element simulation
results shown in the original work confirms the robustness of the soft
mechanism to model the mechanical response of a laterally confined biholar
sheet. We point out that the above discussed regimes (i)-(iv) exist for a
range of εx. The switch from one regime to another (which may or may
not involve a bifurcation 5), however, occurs at fixed critical values of εx. If
given that kx and ky have the same values, both the range and the critical
values of εx demarcating the four regimes depends on the value of χ. We
derive the general analytical expressions for these critical strain values in
the next section.

2.2.2 Internal Energy of the System

We will now have a closer look at the energy curves. Using Eq. (2.5), the
total elastic energy, U is equal to Ex + Ey. The expression for Ex is given

5This depends on whether there are some equilibrium points whose stability has been
altered or not.
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by Eq. (2.9), and below the expression for Ey is provided:

Ey = 2× 2× 1
2 × ky

(
P

2ky

)2

,

= P 2

2ky
. (2.13)

Therefore,

U = 2kx (εx + xi(θ)− 1)2 + P 2

2ky
. (2.14)

Energy curves – Utilizing Eq. (2.14) and Eq. (2.12), one can numeri-
cally obtain the U(εy) curves for a system with given χ and εx. We now
discuss U(εy) for the same system and the same four values of εx as in Fig.
2.4(a-d). The results are shown in Fig. 2.5(a-d). Within each figure, we
show the primary branch (black) in the main panel and both the primary
and secondary (red) branches in the inset panel. We focus on the primary
branches to characterize the regimes:

Regime (i): For εx= -0.015 [Fig. 2.5(a)], the U(εy) curve has one global
minimum (U = 0.0), which occurs for the value of εy when P = 0 because
P = ∆U/∆εy. As we can clearly notice from the inset that the primary
and the secondary branches are well-separated, making the later ‘infeasible’.

Regime (ii): For εx= 0.010 [Fig. 2.5(b)], the U(εy) curve consists of two
global minima separated by a shallow maximum - P (εy) is non-monotonic

Regime (iii): For εx= 0.028 [Fig. 2.5(c)], the U(εy) provides another
perspective to the hysteresis and the associated bistability. The labeled
points A,B,C and D in the inset correspond to the same points previously
shown in Fig. 2.4(c). The pathsDAB and BCD correspond to the loading
and unloading respectively. Hysteretic jumps occur from A−B during
loading and from C −D during unloading. The path A−C is unstable
and is therefore shown in a dashed curve.

Regime (iv): For εx= 0.040 [Fig. 2.5(d)], the U(εy) once again has
only one global minimum - P (εy) is monotonic. In the inset, we notice that
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Figure 2.5: U(εy) for a system with χ = 0.30 (a ≈ 0.81 and b ≈ 0.60),
and for the same four values of εx as shown in Fig. 2.4(a-d). Within each
figure, the primary branch (of current relevance) is shown in black (main
panel) and the secondary branch is shown in red (inset panel), and the
stable and the unstable equilibria are shown in the solid and dashed curves
respectively. (a) εx = -0.015, U(εy) consists of only one global minimum.
(b) εx = 0.010, U(εy) consists of two local minima separated by a local
maximum. (c) εx = 0.028, U(εy) exhibits hysteresis. The labeled points
A,B,C,D are the same as in Fig. 2.4(c). (d) εx = 0.040, U(εy) consists
of a global minimum. Because, P = ∆U/∆εy, P (εy), we can verify that the
figures (a)-(d) correspond to the regimes (i)-(iv).

the primary and the secondary branches intersect. The system however
does not switch from one state branch to another. As we will show in the
next section: two values of θ can exist for a single value of εy for this case.
So, although, when extracted numerically, the primary and the secondary
branches intersect on a U(εy) graph, they are separated in the θ(εy) graph;
and the system only follows the primary branch of θ.
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2.3 Geometrical Interpretation

For fixed biholarity χ, we have essentially two control parameters: the
horizontal confinement, εx and the vertical strain, εy. The values of these
control parameters dictate the number of possible equilibria and their
stability. In this section, we introduce a geometrical interpretation of the
model, through which we gain new insights about equilibria and their
stability. Based on such an interpretation, we ultimately demonstrate a
novel geometrical interpretation of the previously described regimes (i)-
(iv). Simultaneously, we also explain the existence of the primary and the
secondary solution branches and the stable and unstable equilibria that
constitute them. We conclude this section by suggesting an inverse strategy
to programme other new confinement controlled responses in mechanical
metamaterials whose deformations can be modeled by one-degree-of-freedom
mechanisms. We propose that based on the trajectory of the mechanism,
we can encode plenty of other equilibria sequence that unfold as the control
parameter εx is varied.

We begin with deriving a convenient expression for the total elastic
energy stored in the system U . We reuse the expression for the elastic
energy stored in the horizontal springs, Ex from Eq. (2.9). Setting kx =
0.50, we get

Ex = (xi(θ)− (1− εx))2 . (2.15)

We define a new quantity: Xo = 1− εx. The above equation now becomes:

Ex = (xi(θ)−Xo)2 . (2.16)

In a corresponding manner, we can write down the elastic energy stored in
the vertical springs, Ey as:

Ey = (yi(θ)− Yo)2 , (2.17)

where Yo = 1 − εy. Adding together the Eq. (2.16) and Eq. (2.17), we
obtain a new expression for U :

U = (xi(θ)−Xo)2 + (yi(θ)− Yo)2 . (2.18)

M curve – The dependence of the internal coordinates xi and yi on θ
are given by Eq. (2.7) and Eq. (2.8) respectively. In the (x, y) plane, the
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locations of xi and yi as function of θ trace out an elliptical curve oriented
at an angle π/4 with respect to the positive x-axis, but, for the relevant
range 0 ≤ θ ≤ π/2, only a part of it. We refer to the curve relating xi and
yi as M curve (M for mechanism). The eccentricity of this ellipse depends
on the values of a and b and hence χ. The ellipse approaches a straight line
(xi(θ) = yi(θ)) for χ → 0 and a circle

(
xi(θ)2 + yi(θ)2 =

√
2
)
for χ → 2.

For χ = 0.30 (a ≈ 0.81 and b ≈ 0.60), M is shown in pink in Fig. 2.6(b).

Equi-energy circles – Eq. (2.18) implies that the equilibrium state(s)
for fixed (Xo, Yo) are given by the extrema of U(θ). These equilibrium
state(s) determine the state of the soft mechanism. It is possible to extract
these equilibria geometrically as follows: curves of equal energy in the (x, y)
plane are circles with their center at (Xo, Yo) and radius

√
U . With the

center at (Xo, Yo), the intersections of these circles with M form an energy
landscape: U(θ), the extrema of which correspond to the equilibrium states
of the mechanism. Through four different constructions, we will now cover
some unique scenarios for fixed (Xo, Yo). Mainly, these constructions will
be helpful for the forthcoming discussion.

Fig. 2.6(a) shows examples of two concentric equi-energy circles origi-
nating from the center (Xo, Yo). The circle C1, shown in blue, is a tangent
to M, touching it at M1, whereas the circle C2 (in red) with slightly larger
radius, intersects M at two distinct points M2 and M3, which lie on the
opposite sides ofM1. Circles intersecting M at the immediate vicinity ofM1
have larger radii than C1 and thus higher U . The local U(θ) landscape for
the given (Xo, Yo) has therefore a minimum at the value of θM1 , resulting
in a stable equilibrium state.

Such constructions also find unstable equilibria. In Fig. 2.6(b), the
positioning of the point (Xo, Yo) allows to draw three tangential circles
C1,C2,C3 to M, shown in the color blue, green and red respectively.
These circles intersect M at M1,M2 and M3. θM1 , θM2 corresponds to
stable equilibrium states. The explanation is the same as earlier: the energy
along the M increases away from the points of tangency. The case for M3 is
however opposite. Circles with slightly smaller radii than C3 can intersect
M (at two distinct points) in the vicinity of M3. The local U(θ) landscape
has a maximum and hence θM3 corresponds to an unstable equilibrium
configuration. Consistent with Fig. 2.6(b), we will, in the future, show
the tangential circles for unstable states in dashed and solid for the stable
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Figure 2.6: Given a fixed (Xo, Yo), the equilibrium states (and their
stability) of the soft mechanism can be geometrically determined by drawing
tangential circles [Eq. (2.18)]. Positioning of the point (Xo, Yo) can lead to
different scenarios. (a) Circle C1, shown in blue, centered at (Xo, Yo) touches
M (in pink) at M1. The internal energy U increases for a slightly larger
circle C2 (in red) that intersectsM atM2 andM3. The local U(θ) landscape
has a local minimum at θ corresponding to M1; θM1 corresponds to a stable
equilibrium point. (b) From (Xo, Yo), three tangential circles C1,C2,C3 to
M (shown in blue, green and red respectively) can be constructed. These
circles intersect M at M1,M2,M3 respectively. With the same argument as
in (a), it can be shown that θM1 and θM2 correspond to stable equilibrium
points. θM3 however corresponds to an unstable solution; it is possible to
construct circles with slightly smaller radii than C3 that intersect M at two
distinct points in the immediate vicinity of M3. The local U(θ) landscape
thus has a maximum at θM3 .

states.

We now demonstrate two cases where the point (Xo, Yo) is inside M.
(Xo, Yo) in Fig. 2.7(a) is ’contained within’ the cusp of the evolute

∑
(in

black). The evolute of a curve is the locus of all its centers of curvature.
The x and y coordinates of

∑
, xe, ye can be expressed in terms of θ by the
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Figure 2.7: Given a fixed (Xo, Yo), the equilibrium states (and their
stability) of the soft mechanism can be geometrically determined in terms
of θ by drawing tangential circles [Eq. (2.18)]. We demonstrate it for two
different constructions where the point (Xo, Yo) is ‘inside’ M (in pink).
(a) (Xo, Yo) is contained within the cusp of evolute of M,

∑
(in black).

Three concentric circles - C1,C2,C3 (colored blue, green and red) can be
constructed from (Xo, Yo) that are tangential M. C1,C2,C3 touch M at
M1,M2 and M3 respectively. M1 and M2 correspond to stable equilibrium
solutions. M3 however corresponds to an unstable equilibrium solution.
This is true for any point on the dashed vertical line that is contained
within

∑
. (b) The three tangential circles C1,C2,C3 (colored blue, green

and red) touch M at M1,M2 and M3 respectively. Solutions are stable at
M1,M2 and unstable at M3.

following parametric equations:

xe = xi(θ)−
(a cos θ − b sin θ)(a2 + b2 − 2ab sin 2θ)

a2 − b2 , (2.19)

ye = yi(θ)−
(a sin θ − b cos θ)(a2 + b2 − 2ab sin 2θ)

a2 − b2 . (2.20)

Centered at (Xo, Yo), it is possible to draw three tangential circles
C1,C2,C3 (colored blue, green and red respectively) to M that form
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tangencies at the pointsM1,M2,M3. θM1 , θM2 correspond to stable solutions
whereas θM3 corresponds to an unstable solution. Similarly, the existence of
two stable and one unstable equilibrium solution can be proved for any point
on the dashed line in Fig. 2.7(a) that is contained within

∑
. We will later

encounter this case again when we discuss the geometrical interpretation of
the regime (iii).

Fig. 2.7(b) shows the fourth and last example. We construct the three
tangential circles C1,C2,C3 (colored blue, green and red respectively) toM.
These circles touch M at the points M1,M2,M3. θM1 , θM2 correspond to
stable equilibrium solutions whereas θM3 is an unstable equilibrium solution.

2.3.1 Mechanical Regimes from Geometrical Viewpoint

Loading with a fixed horizontal confinement requires fixing Xo and varying
Yo. Following this protocol, we present the geometrical interpretation of the
regimes (i-iv).

Regime (i) – In Fig. 2.8(a), we show the result of following the procedure
of fixingXo and varying Yo forXo = 1.015 (εx = −0.015). A set of circles {C}
(shown in the color blue) with their center lying on the vertical line x = Xo

form a tangent toM. The points of tangency are labeled by the black markers.
As explained previously [Fig. 2.6(a)], these points correspond to (stable)
equilibrium solutions, θeq. For a number of such circular constructions
we find θeq and plot it against the vertical strain εy in Fig. 2.8(b) (color
black). εy is calculated as 1 - Yo. As explained previously through Fig.
2.6(b), for lower values of Yo, one finds two additional equilibrium states
- one stable and one unstable. The corresponding tangential circles are
not shown in Fig. 2.8(a) to avoid cluttering. We show these additional
θeq solutions in red in Fig. 2.8(b). The unstable states are shown in
dashed. We now understand the genesis of the secondary solution branch
for higher values of εy [Fig. 2.4(a)]. We note that the primary branch (in
black) corresponds to θ < tan−1 (a/b) and the secondary branch (in red)
corresponds to θ > tan−1 (a/b) 6.

Following the primary branch, the value of U initially decreases with εy,
reaches a minimum (at θ = tan−1 (b/a)), and increases again. U(εy) looks
similar to Fig. 2.5(a). P (εy) can be calculated as: P = ∆U/∆εy, which

6Note that at θ = tan−1 (a/b), Eq. (2.11) is undefined.
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Figure 2.8: (a) The geometrical interpretation of regime (i). The set
of tangential circles {C} (in blue) to M (in pink) centered on the line
Xo = 1.015 (εx = −0.015), touch M at the labeled black markers. The
points of tangency denote the equilibrium states of the soft mechanism, θeq.
The shaded region belongs to the regime (i). (b) θeq vs εy. The primary
branch is shown in black and the secondary branch is shown in red. Stable
and unstable equilibria are shown in solid and dashed curve styles.

leads to a monotonic curve. The example corresponds to the regime (i). In
fact the same arguments applies for any value of Xo within the gray-shaded
region in Fig. 2.8(a).

Regime (ii) – Fig. 2.9(a) shows the geometrical approach for a smaller
value of Xo = 0.99 (εx = 0.01). In this case U reaches zero at two values
of Yo, which is where the line x = Xo intersects M. In between, U reaches
a local maximum. Evidently, the graph of U vs εy would appear similar
to the one shown in Fig. 2.5(b). This example corresponds to the regime
(ii). Just as in the previous case, one still finds the secondary equilibria
branch for lower values of Yo. Both the primary and the secondary state
branches are shown in Fig. 2.9(b) on a θeq(εy) graph. In the previous
section, we remarked that the ‘dip’ in the P (εy) curve in Fig. 2.4(b) occurs
because of the polarization switch from x-polarized state to y-polarized
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Figure 2.9: (a) The geometrical interpretation of regime (ii). The set
of tangential circles {C} (in blue) to M (in pink) centered on the line
Xo = 0.99 (εx = 0.01), touch M at the labeled black markers. The points
of tangency denote the equilibrium states of the soft mechanism, θeq. The
shaded region includes the values of Xo for regime (ii). (b) θeq vs εy. The
primary branch is shown in black and the secondary branch is shown in
red. Stable and unstable equilibria are shown as solid and dashed curves
respectively.

state. θeq(εy) graph substantiates the argument. θeq(εy = 0.0) > π/4
making the mechanism initially x-polarized. The polarization state changes
to y-polarized state (θeq(εy >> 0.0) < π/4) under the application of the
load P .

The transition between the regime (i) and the regime (ii) occurs where
the line x = Xo is tangent to the M, at which point x = (xi(θ))max i.e. the
maximum value of xi(θ). We know that εx = 1−Xo. An analytic expression
for the critical value of horizontal strain (εxc)(i)−(ii) marking the transition
between regime (i) and regime (ii) can be given as:

(εxc)(i)−(ii) = 1−Xox=(xi(θ))max
. (2.21)

We know that xi(θ) = a cos(θ) + b sin(θ). xi(θ) attains a maximum value at
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θ = tan−1(b/a). Therefore,

(xi(θ))max = a cos
(

tan−1
(
b

a

))
+ b sin

(
tan−1

(
b

a

))
. (2.22)

Using the trigonometric identities: cos(tan−1 x) = 1√
1 + x2

and sin(tan−1 x) =
x√

1 + x2
and simplifying, we get:

(xi(θ))max =
√
a2 + b2. (2.23)

Therefore,
(εxc)(i)−(ii) = 1−

√
a2 + b2. (2.24)

We will shortly show that the lower range of values of Xo which belong to
regime (ii) are restricted unto where the vertical line x = Xo intersects the
‘nose’ of the evolute

∑
. Hence, the shaded region in Fig. 2.9(a) corresponds

to regime (ii).

Regime (iii) – With a further decrease in the value of Xo, the vertical
line x = Xo crosses the evolute

∑
at three different points. Fig. 2.10(a)

shows geometrical construction of tangential circles for one such case with
Xo = 0.972 (εx = 0.028). The present case is slightly non-trivial. We
gradually decrease the value of Yo, construct the tangent circles, and discuss
the stability of the equilibrium states. For a proper demonstration, we
make use of different colors. In Fig. 2.10(a), each (Xo, Yo) and their
point(s) of tangency are marked by a different color. We use the dashed
curves to draw circles that correspond to unstable equilibrium. The first
two equilibrium states are clearly stable (labeled by the black and blue
markers). Consider now the case when the point (Xo, Yo) lies on

∑
(D,C,

red marker). Emanating from this point, it is possible to construct two
tangential circles. These circles touch M at the two labeled points DM and
CM . The circles are shown in solid and dashed curve styles respectively
because DM corresponds to a stable equilibrium and CM corresponds to an
unstable equilibrium point. Similar is the argument for the other point (Xo,
Yo), lying on

∑
(A,B, green marker). Once again, two tangential circles

touch M at AM and BM which correspond to unstable and stable states
respectively. As a matter of course, every point on M which lies between AM
and CM corresponds to an unstable equilibrium solution. The trajectory
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Figure 2.10: (a) (a) The geometrical interpretation of regime (iii). The
set of tangential circles {C} (in blue) to M (in pink) centered on the line
Xo = 0.972 (εx = 0.028), touch M at the labeled black markers. The
points of tangency denote the equilibrium states of the soft mechanism,
θeq. Shaded region belongs to the regime (iii). (b) θeq vs εy. The primary
branch is shown in black and the secondary branch is shown in red. Stable
and unstable equilibria are shown in solid and dashed curve styles. The
primary branch encloses an unstable section, and multivaluedness is due to
hysteresis.

of the mechanism along M from the point AM to CM corresponds to the
movement from A to C of the point (Xo, Yo) on the line x = Xo . This
‘reverse course’ is shown in dashed in Fig. 2.10(b). The result is an ‘enclosed’
unstable section on the primary branch. The points A,B,C,D are indeed
the same points previously shown in Fig. 2.4(c), Fig. 2.5(c). We are in the
regime (iii). In terms of θ, the mechanism makes hysteretic jumps from
AM to BM during loading and from CM to DM during unloading. For lower
values of Yo, the equilibrium are stable (shown in the color purple, orange
and brown). And, similar to the regimes (i) and (ii), additional equilibria
are born for an even lower values of Yo (not shown in the figure).

The transition from regime (ii) to regime (iii) occurs where the line x
= Xo just touches the cusp of

∑
. This happens at θ = π/4. The critical
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value of the horizontal strain, (εxc)(ii)−(iii) marking the transition between
regime (ii) and regime (iii) is given by:

(εxc)(ii)−(iii) = 1−Xoxe=xe(θ=π/4) . (2.25)

From Eq. (2.19), we can calculate xe(θ = π/4). We know that xi(θ = π/4)
= 1.

xe(θ = π/4) = 1− (a/
√

2 − b/
√

2)
(
a2 + b2 − 2ab

)
a2 − b2 ,

= 1− (a− b)2
√

2 (a+ b)
,

= 1− a2 + b2 − 2ab√
2(a+ b)

. (2.26)

Because we have set a+b =
√

2, squaring both sides, we get a2 +b2 = 2−2ab,
we get:

xe(θ = π/4) = 2ab. (2.27)

Therefore,
(εxc)(ii)−(iii) = 1− 2ab. (2.28)

Regime (iv) – Fig. 2.11(a) shows the set of tangential circles {C} to M
whose center lies on the vertical line Xo = 0.96 (εx = 0.04). Black markers
show the corresponding equilibrium states. We only show the equilibrium
solutions that lie on the primary solution branch. Additional equilibrium
states also exist which form the secondary solution branch [Fig. 2.7(b)].
We plot the equilibrium solutions on the θeq(εy) graph [Fig. 2.11(b)]. U
exhibits a single global minima and attains a value of zero where the line
x = Xo intersects M. We are in the regime (iv). Unlike the previous three
cases, the primary equilibrium solutions admit θeq > tan−1 (a/b) while for
the secondary solutions θeq < tan−1 (a/b). In the vicinity of tan−1 (a/b),
the solutions that were previously stable are now unstable and vice-versa.
According to bifurcation theory, this corresponds to a transcritical bifurcation
where at the critical value of the control parameter (εx), the two solutions
meet and exchange stability. The transition between the regime (iii) and
the regime (iv) occurs where the line x = Xo is tangent to the evolute

∑
,

at which point y = (yi(θ))max i.e. the maximum value of yi(θ). Therefore,
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Figure 2.11: (a) (a) The geometrical interpretation of regime (iv). The
set of tangential circles {C} (in blue) to M (in pink) centered on the line
Xo = 0.96 (εx = 0.04), touch M at the labeled black markers. The points of
tangency denote the equilibrium states of the soft mechanism, θeq. Shaded
region belongs to the regime (iv). (b) θeq vs εy. The primary branch is
shown in black and the secondary branch is shown in red. Stable and
unstable equilibria are shown in solid and dashed curve styles.

the critical value of horizontal strain, (εxc)(iii)−(iv), marking the transition
between regime (iii) and regime (iv) is given by:

(εxc)(iii)−(iv) = 1−Xox=(yi(θ))max
. (2.29)

We know that yi(θ) = a sin(θ) + b cos(θ). yi(θ) attains a maximum value at
θ = tan−1(a/b). Therefore,

(yi(θ))max = a sin
(

tan−1
(
a

b

))
+ b cos

(
tan−1

(
a

b

))
,

= 2ab√
a2 + b2

. (2.30)
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Figure 2.12: (a) For χ = 0.30, M and
∑

shown in pink and black
respectively. The regimes (i)-(iv) are displayed in different colors and
labeled. The dashed vertical lines demarcate the neighboring regimes. The
critical value of εxc, which marks the transition from regime (i) to (i+1) can
be calculated as: (εxc)(i)−(i+1) = 1−Xo(i)−(i+1) . The generalized expressions
for which are given by Eq. (2.24, 2.28, 2.31). (b) A regime transition plot
for a range of χ based on the generalized expressions for transition among
the subsequent regimes (i)-(iv). The four regimes are labeled and shown
in the different colors.

The analytical expression for the critical value of horizontal strain (εxc)(iii)−(iv)
is given as:

(εxc)(iii)−(iv) = 1− 2ab√
a2 + b2

. (2.31)

For χ = 0.30, we assemble the regimes (i)-(iv) together in one plot and
show them in Fig. 2.12(a).

Regime transition plot – The generalized analytical expressions derived
in Eq. (2.24, 2.28, 2.31) provide clear-cut boundaries for εxc which mark
the transition between the successive regimes. We use these expressions to
construct a regime transition plot for a range of values of χ.
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In Fig. 2.12(b), we plot εxc for transitions between the regimes (i)-(iv)
versus the biholarity χ. We vary χ from [0, 0.50]. We draw a couple of
observations: (i) for low χ, the distinction among the four regimes diminishes
which results in their convergence at εxc = 0.0 for χ → 0 - weak symmetry
breaking leads to a weak nonlinear coupling between εx and εy, making the
two non-monotonic regimes (ii),(iii) vanish; monotonic regimes (i),(iv)
dominate. (ii) With an increase in χ, we observe an expansion of the strain
range over which regime (ii) prevails. This qualitatively matches with the
experimental findings reported in [70], where it was found that for fixed
ligament thickness tl, (εxc)(i)−(ii) decreases with χ.

2.3.2 A General Design Strategy

The above described geometrical interpretation of the soft mechanism pro-
vides with an inverse strategy to rationally design metamaterials with
confinement controlled response. The scheme is stated below.

Procedure – An inverse strategy to rationally design mechanical meta-
materials with confinement controlled response.
Steps :
1: First, formulate a continuous sequence of equilibria that emerges as the

control parameter εx is varied.
2: Second, construct the involute (evolute) curve that is consistent with

the sequence of these equilibria.
3: Third, design a physical mechanism that posses this particular involute

(evolute) trajectory, hypothetically which is possible as shown by Milton
[24] - an extension of Kempe’s universality theorem [72] for materials -
where the main results states that “periodic structures made up of rigid
bars and pivots can realize any given trajectory to an arbitrary high
degree of approximation".

4: Finally, based on the underlying mechanism, construct a soft deformable
metamaterial with slender hinge connectors.
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2.4 Modeling the Finite Thickness Interhole Lig-
aments with Torsional Springs

Previously, we did not take into account the thickness of the interhole
ligaments, tl [Fig. 2.1(a)] and assumed the hinges in the mechanism to
be ideal with zero energy costs for bending. In this section, we model the
finite thickness of the interhole ligaments by coupling the hinges of the
soft mechanism with torsional springs of π/2 rest angle. In this way, we
introduce an additional penalty to change θ away from the neutral state,
θ = π/4. The total internal energy U now contains an extra term accounting
for the bending energy stored in the torsional springs, Et.

U = Ex + Ey + Et, (2.32)

where Ex and Ey are the elastic energies stored in the horizontal and vertical
springs and are the same as given by Eq. (2.9) and Eq. (2.13) respectively.
We will use the notation El to denote the total elastic energy stored in the
linear springs, El = Ex + Ey. Et at a general angle θ is given by:

Et = 2×
(1

2

)
× kt

(
2θ − π

2

)2
+ 2×

(1
2

)
× kt

(
π

2 − 2θ
)2
,

= 8kt
(
θ − π

4

)2
. (2.33)

Et is quadratic in θ with the minimum located at θ = π/4. The expression
for U is given as:

U = 2kx (εx + xi(θ)− 1)2 + P 2

2ky
+ 8kt

(
θ − π

4

)2
, (2.34)

where kx, ky and kt are the horizontal, vertical and torsional spring con-
stants respectively, εx is the external x-confinement, P is the load, and the
expressions for xi(θ) and yi(θ) are given by Eq. (2.7), Eq. (2.8) respectively.
We aim to derive an expression for P , the approach for which is same as
described in §2.2.1, following which, we obtain:

P = −2kx (εx + xi(θ)− 1) (−a sin θ + b cos θ)− 4kt (2θ − π/2)
(a cos θ − b sin θ) . (2.35)
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The expression for εy is the same as earlier and is given by the Eq. (2.12).
With the help of an example, we now demonstrate the effect of kt on

the energy curves - El, Et and U . In Fig. 2.13, energy curves are shown as
a function of εy, and as a function of θ in Fig. 2.14 for a system with χ =
0.30. Within each figure, El, Et and U are shown in the color red, green
and blue respectively. Note that only the primary equilibrium solution
branches are shown. Fig. 2.13(a) displays the energy curves for εx = 0.028
and kt = 0.0. In this case, U = El and the system is in regime (iii). U
exhibits two global minima where U = 0. These minima exist on both the
sides of θ = π/4 in U(θ) plot [Fig. 2.14(a)]. Recall from the geometrical
interpretation that this happens precisely where the vertical line x = 0.028
intersects the trajectory curve M [Fig 2.10(a)]. We now increase kt, keeping
εx fixed at 0.028. Fig. 2.13(b) shows the energy curves for kt = 5× 10−4.
An emerging trend in the U(θ) curves should be noticed: an increase in
the value of kt gradually ‘elevates’ the energy landscape. In Fig. 2.14(b),
we notice the gradual elimination of the minimum in U for θ < π/4. The
system is still in regime (iii), however. This, we confirm by plotting the
force curves, P (εy). Utilizing the Eq. (2.34), Fig. 2.15 shows P (εy) for the
same system as in Fig. 2.13 and Fig. 2.14. P (εy) in Fig. 2.15(a-b) is typical
of regime (iii) - a non-monotonic multi-valued curve.

With a further increase in the value of kt, its effect on the energy
landscape grows. Fig. 2.13(c) and Fig. 2.14(c) shows the energy curves for
kt = 3× 10−3. At this value of kt, the nature of P (εy) is non-monotonic but
single-valued [Fig. 2.15(c)] - characteristic of regime (ii). Ultimately for a
high enough value of kt = 8× 10−3 [Fig. 2.13(d) and Fig. 2.14(d)], U(εy)
ceases to display any sharp curvature change. The derivative of it, P (εy) is
monotonic [Fig. 2.15(d)]. The system now is in regime (i). We conclude
that high values of kt push the mechanical response towards the regime(i).

Regime transition plots with torsional springs – Torsional springs
alter the values of εxc, the critical horizontal strain values marking the
transition among the successive regimes. We have already demonstrated
that an increase in the value of kt pushes the mechanical response of the
system towards the regime (i); the values of εxc are expected to shift-up
with kt. Fig. 2.16 shows the regime transition plots for kt = 3× 10−3 in (a)
and for kt = 8×10−3 in (b). The values of εxc are now captured numerically
unlike in Fig. 2.12(b), where we utilized direct analytical expressions. We
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Figure 2.13: Energy curves shown as a function of εy for a system with
χ = 0.30, εx = 0.028 and increasing values of kt. El, Et and U denote
the elastic energy stored in the linear springs, torsional springs and total
internal energy of the system and are shown in the color red, green and
blue respectively. Note that we only show the primary solution branches.
(a) kt = 0.0, U = El. The plot is familiar [Fig. 2.5(c)]. The system is in
the regime (iii). (b) kt = 5 ×10−4, U(εy) displays multivaluedness and
hysteresis. The system is in regime (iii) still. (c) kt = 3 ×10−3, U(εy)
displays curvature change. The system is in regime (ii). (d) kt = 8 ×10−3,
U(εy) consists of a single global minimum with no curvature change. The
system now is in regime (i).
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Figure 2.14: Energy curves shown as a function of θ for a system with
χ = 0.30, εx = 0.028 and for the same four values of kt as in Fig. 2.13.
Symbols have the same meaning. We notice an emerging trend from (a)-(d)
as the value of Et dominates over El: gradual elevation of the minimum in
U that exist on the either side of θ = 45◦. As Et has a minimum at θ = 45◦,
the minimum for θ < 45◦ gets strongly affected.
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Figure 2.15: P (εy) for a system with χ = 0.30, εx = 0.028 and for
increasing values of kt. (a) kt = 0.0, and (b) kt = 5×10−4. P (εy) displays
multi-valued owing to the hysteretic behavior in both the figures. The
system is in the regime (iii). (c) kt = 3×10−3, P (εy) is non-monotonic.
The system is in the regime (ii). (c) kt = 8×10−3, P (εy) is monotonic. The
system is in the regime (i). We conclude that with an increase in the values
of kt, the mechanical response shifts towards regime (i).

fix the value of χ, the εxc values for transition between the consecutive
regimes are then captured based on the change in the trajectory of the
P (εy) curves. We notice the expected upward shift in the regime domains.
It is worth noting that (i) an increase in the values of critical strain value,
(εxc)(i)−(ii) which marks onset of regime (ii) with ligament thickness tl and
fixed χ is also observed in [70], (ii) increase in kt makes the existence of all
the four regimes for non-negative εx values, making them consistent with
the experiments [Fig. 2.2].

We further characterize the results by plotting a variation in εxc with kt
for three different values of χ in Fig. 2.17 - (a) χ = 10−3, (b) χ = 0.30, (c) χ
= 0.50. There, within each figure, we show (εxc)(i)−(ii) in blue, (εxc)(ii)−(iii)
in green and (εxc)(iii)−(iv) in red. We draw several conclusions. (i) For
χ = 10−3 [Fig. 2.17(a)], we do not observe the prevalence of non-monotonic
regimes but effectively only the regimes (i) and (iv) exist. The scaling of
εxc with kt is linear with slope ≈ 4.0. We attempt to justify this in the next
section. (ii) For χ = 0.30, 0.50 [Fig. 2.17(b,c)], we observe that εxc for all
the regime transitions scales linearly, although their slope values vary in a
slightly complicated manner. Fig. 2.17(d) shows the variation in these slope
values versus the biholarity χ. We vary χ in the range [0, 1]. Immediately
we can notice that for χ → 0, the distinction among the four regimes
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Figure 2.16: The effect of torsional spring constant kt on εxc, the critical
horizontal strain values that separate the contiguous regimes (i-iv). (a)
kt = 3× 10−3, (b) kt = 8× 10−3. Regimes (i-iv) are labeled and shaded in
different colors. Overall, we observe that for all biholarity χ, an increase in
kt shifts εxc towards higher values. We duly characterize our findings in Fig.
2.17.

vanishes and the value of ∆εxc/∆kt → 4. Moving away towards higher χ
values, we interestingly notice that (∆εxc/∆kt)(ii)−(iii) is not dependent
on χ and maintains a constant value equal to 4. (∆εxc/∆kt)(i)−(ii) and
(∆εxc/∆kt)(iii)−(iv), however exhibit an exponential increase with χ, with
the effect being stronger in the former than later.

2.5 Weak Symmetry Breaking in Monoholar Sys-
tems

In this section, we probe the limiting case where the biholarity χ, of the
system approaches the value zero. We remember that χ serves as a measure
of the relative difference between the diameters of the two neighboring holes
(§2.2). We first briefly introduce the case where the holes are of exactly
the same size, and through the help of concepts from bifurcation theory,
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Figure 2.17: (a-c) The scaling of εxc with kt for different χ values. (a)
χ = 10−3, (b) χ = 0.30 and (c) χ = 0.50. Within each figure, (εxc)(i)−(ii) is
shown in blue, (εxc)(ii)−(iii) is shown in green and (εxc)(iii)−(iv) is shown in
red. The variation of slopes of these linear curves is shown in (d). We observe
that (∆εxc/∆kt)(ii)−(iii) is independent of χ and maintains a constant value
equal to 4. (∆εxc/∆kt)(i)−(i) and (∆εxc/∆kt)(iii)−(iv), however exhibit
an exponential increase with χ. The distinction among the four regimes
vanishes for χ→ 0 with ∆εxc/∆kt → 4.

show how the original pitchfork bifurcation structure gets disturbed upon
inducing small symmetry breaking by making the hole sizes slightly unequal.
This is called unfolding of the bifurcation. We derive the equation describing
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(a) (b)

Figure 2.18: (a) Monoholar sheet: an elastic slab perforated with an
alternating pattern of equi-sized circular holes on a square array. (b) When
compressed beyond a critical value of the vertical strain, the monoholar
sheet undergoes a pattern transformation triggered by elastic instability and
reaches a state of mutually orthogonal ellipses. Monoholar sheet exhibits a
negative value of the Poisson’s ratio (µ) [74] and forms a classical example
of the auxetic materials. The hole diameter of the sample is 8.5 mm, the
connector filament thickness (previously denoted by tl for the biholar sheet)
is 1.5 mm and the out-of-plane thickness of the sample is 35 mm. These
images are adopted from [73].

this unfolding in §2.5.1 and deploy it to understand the case where χ→ 0
in §2.5.2. We ultimately provide with a justification for the observed value
of (∆εxc/∆kt)→ 4.0 for χ→ 0 in the previous section [Fig. 2.17(d)].

Monoholar sheet, χ = 0 – Fig. 2.18(a) shows a quasi-2D elastic slab
patterned with equal sized circular holes [73]. We call this a monoholar
sheet. The hole diameter of the sample is 8.5 mm, the connector filament
thickness (previously denoted by tl for the biholar sheet) is 1.5 mm and the
out-of-plane thickness of the sample is 35 mm. A monoholar sheet with
finite interhole ligament thickness such as this undergoes an initial gradual
and homogeneous compression in the linear elastic range, where the circular
holes deform in a uniform fashion. Upon reaching a critical vertical strain,
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(a) (b)

Figure 2.19: (a) Compression of a monoholar sheet illustrated through a
perfect pitchfork bifurcation diagram. The vertical axis (u) represents the
angular displacement of the ‘center line’ connecting the interhole ligaments
and the horizontal axis (µ) denotes the vertical compression. Beyond the
critical value µc, there is equal probability that the system forms either of
the two (shown) elliptic arrangements. (b) Introduction of slight symmetry
breaking into the system, χ 6= 0 disturbs the original bifurcation diagram,
making it imperfect. The system displays a tendency to follow either of the
two non-trivial solutions. In the two diagrams, the stable and the unstable
equilibria are shown in solid and dashed curves respectively.

the interhole ligaments undergo a buckling instability, thereby triggering
a pattern transformation to a state with mutually orthogonal ellipses [Fig.
2.18(b)] [74]. After buckling, the stability gets transferred from the original
symmetric state to the symmetry broken state. If the memory effects are
discounted, the alternating polarization pattern of the elliptical holes is
completely arbitrary because of the equal likeliness of a particular ellipse
to orient its major axis along the x-direction or along the y-direction. In
bifurcation theory, this case of equal likeliness of a system to follow either
of the two solution branches once the critical value of a control parameter
(vertical strain in this case) is reached is referred to as the system being at
the bifurcation point of a perfect pitchfork bifurcation [75].

The situation can be illustrated through a pitchfork bifurcation diagram
[Fig 2.19(a)] 7. The vertical axis, u represents the state of the system such
as the angular displacement of the ‘center line’ connecting the neighboring

7We explain this case mathematically in §2.5.2.
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elastic units, while the horizontal axis, µ denotes the vertical compression. In
the diagram, the stable equilibrium solution branches are shown in solid while
the unstable branches are shown in dashed. One usually concentrates on the
stable solutions since these are the only ones one observes in experiments [76].
For µ < µc, the critical value of the control parameter, there is only one
equilibrium solution branch - corresponding to elastic compression without
any formation of the elliptic pattern. Beyond µc, this solution becomes
unstable and instead two new stable solutions are born. These new solutions
correspond to the two ‘oppositely’ buckled states, wherein the holes are
oppositely polarized and which are equally likely to occur.

Perturbed monoholar sheet, χ 6= 0. Imperfect bifurcation diagrams
occur when small symmetry breaking terms destroy the original bifurcation
structure [77]. Weak symmetry breaking leads to an imperfect pitchfork
bifurcation, causing the system to prefer one of the two solution branches
[Fig 2.19(b)]. A monoholar system with a weak symmetry breaking, χ 6=
0 forms one such example. Upon compression, the mutually orthogonal
ellipse pattern is no longer arbitrarily selected by the bifurcation but in
fact can be manipulated. Specifically from the point of view of confinement
controlled experiments, the polarization pattern depends on the values
of strains in the horizontal and vertical directions. Unlike for a perfect
monoholar system, where the horizontal strain εx and the vertical strain εy
play a similar role, in a system with broken symmetry, these strains each
favor a different polarization of the pattern (§2.1, [Fig. 2.1(b,c)]). Their
interactions typically results in the system to prefer one out of the two stable
solution branches. The interactions between these two branches result in
the complex mechanics of a confined biholar sheet [20].

Several bifurcation scenarios emerge as we perturb the perfect monoholar
system and vary the parameters εx and εy. These scenarios arise from
the unfolding of the pitchfork bifurcation [75]. To understand the local
bifurcation scenarios, in the following section, we probe the system for
the limiting case. Our aim is to obtain a general equation valid around
the singular point that provides us with the complete description of the
nature of the bifurcations and transitions. We will establish that the general
equation resembles the normal form 8 of an imperfect pitchfork bifurcation

8Normal form of a bifurcation are in a sense, the simplest possible polynomial equation
which contains the bifurcation [77].
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Figure 2.20: Soft mechanism for a monoholar system, χ → 0 (a ≈ b)
consisting of pin-jointed squares. We examine the system for small torsional
spring constant kt and small angular displacement δ.

and utilize this equation to describe the physics of the perfect monoholar
as well as a perturbed monoholar system. To this end, we exploit the soft
mechanism for a system with χ → 0 under external loading [Fig. 2.20]
and conduct the analysis for weak angular displacements by following an
approach based on the method of Lagrange multipliers.

2.5.1 Soft Mechanism for a Perturbed Monoholar System

In this section, we derive an equation describing the equilibrium states
of the mechanism shown in Fig. 2.20 under the application of horizontal
strain εx and vertical strain εy for small torsional spring constant kt and
small biholarity χ. To achieve this, we minimize the total internal energy
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of the system, U [Eq. (2.32)], subjected to geometrical constraints in the
horizontal and vertical directions. The Lagrangian L can be expressed as:

L = U + λ1C1 + λ2C2,

= Ex + Ey + Et + λ1C1 + λ2C2, (2.36)
where the familiar symbols: Ex, Ey and Et have the same meaning as
previous (§2.4). λ1 and λ2 are the Lagrange multipliers for the associated
geometrical constraints C1 and C2. Below, we explain these constraints.

Horizontal constraint C1 – Let li,h denote the rest length of the hori-
zontal springs. For the initial state of the mechanism, we can then write:

li,h + xi (π/4) = xo (2.37)
where xi(π/4) is the initial x-dimension of the rigid unit of the mechanism
[Eq. (2.7)]. Suppose that upon the application of a small horizontal strain,
εx, the diagonal of the rigid unit rotates about the point A by a small angle
δ. One can then write:

εx + lf,h + xi (π/4 + δ) = xo, (2.38)

where lf,h denotes the final length of the horizontal spring upon the appli-
cation of εx. We denote the net change in the length of the springs by ex,
given by:

ex = li,h − lf,h,

= εx + xi (π/4 + δ)− 1. (2.39)
Using Eq. (2.7), we can expand xi(π/4 + δ) and write ex as:

ex = εx + a cos (π/4 + δ) + b sin (π/4 + δ)− 1,

= εx + cos δ − sin δ(a− b)√
2

− 1. (2.40)

We term (a− b)/
√

2 as symmetry breaking parameter and denote it with m.
For a monoholar system, m takes on the value zero. Substituting (a−b)/

√
2

with m, the above equation can be written as:

ex = εx + cos δ −m sin δ − 1 (2.41)
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The constraint C1 is therefore given by:

C1 = ex − εx − cos δ +m sin δ + 1 = 0. (2.42)

Vertical constraint C2 – Similarly, we impose the geometrical constraint
for the vertical direction and find that:

C2 = ey − εy − cos δ −m sin δ + 1 = 0. (2.43)

Expressions for Ex, Ey and Et – The energy stored in the horizontal
springs, Ex can be expressed as:

Ex = 4× 1
2kxe

2
x = 2kx (εx + cosδ −msinδ − 1)2 . (2.44)

The energy stored in the vertical springs, Ey is given by:

Ey = 4× 1
2kye

2
y = 2ky (εy + cosδ +msinδ − 1)2 . (2.45)

The energy stored in the torsional springs, Et is given by:

Et = 4× 1
2kt × (2δ)2 = 8ktδ2. (2.46)

Using Eq. (2.42)-(2.46), the Lagrangian, L [Eq. (2.36)] can now be written
as:

L = 2kx (εx + cosδ −msinδ − 1)2 + 2ky (εy + cosδ +msinδ − 1)2 + 8ktδ2

+ λ1(ex − εx − cos δ +m sin δ + 1) + λ2(ey − εy − cos δ −m sin δ + 1).
(2.47)
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We impose the following equilibrium conditions in order to maintain quasi-
staticity:

∂L
∂ex

= 0 =⇒ λ1 = −4kx(εx + cosδ −msinδ − 1) (2.48)

,
∂L
∂ey

= 0 =⇒ λ2 = −4ky(εy + cosδ +msinδ − 1) (2.49)

,

∂L
∂(δ) = 0 =⇒ 4kx(εx + cosδ −msinδ − 1)(− sin δ −m cos δ)+

4ky(εy + cosδ +msinδ − 1)(− sin δ +m cos δ)+
16ktδ + λ1(sin δ +m cos δ)+

λ2(sin δ −m cos δ) = 0.
(2.50)

Substituting the values of λ1 and λ2 from Eq. (2.48) and Eq. (2.49)
respectively in the Eq. (2.50), we obtain:

kx(εx + cosδ −msinδ − 1)(sin δ +m cos δ)+
ky(εy + cosδ +msinδ − 1)(sin δ −m cos δ)− 2ktδ = 0. (2.51)

We set kx = ky = kl and obtain:

(εx + cosδ −msinδ − 1)(sin δ +m cos δ)+

(εy + cosδ +msinδ − 1)(sin δ −m cos δ)− 2ktδ
kl

= 0. (2.52)

Since we are interested in small angular displacements, we expand the
expressions for sin δ and cos δ around δ = 0 up to the third order, and thus
writing sin δ as δ − δ3/6 and cos δ as 1− δ2/2, we obtain:(

εx −
δ2

2 −mδ +m
δ3

6

)(
δ − δ3

6 +m−mδ2

2

)
+(

εy −
δ2

2 +mδ −mδ3

6

)(
δ − δ3

6 −m+m
δ2

2

)
− 2kt

kl
δ = 0. (2.53)
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Simplifying the above equations and neglecting the terms higher than δ3

and m, we end up with the final equation:

m(εx−εy)+(εx+εy−
2kt
kl

)δ−m2 (εx−εy)δ2−
(
εx
6 + εy

6 + 1
)
δ3 = 0. (2.54)

Reorganizing the above equation, we obtain:

m(εx − εy)( εx
6 + εy

6 + 1
) +

(εx + εy − 2kt
kl

)( εx
6 + εy

6 + 1
) δ − m

2
(εx − εy)( εx

6 + εy
6 + 1

)δ2 − δ3 = 0. (2.55)

We recognize this as an unfolding of a pitchfork bifurcation. The normal
form of a perfect (supercritical) pitchfork bifurcation is given by:

µu− u3 = 0, (2.56)

where u characterizes the state of the system and µ is the bifurcation
parameter. The normal form of a perturbed pitchfork bifurcation is given
by:

α+ µu− βu2 − u3 = 0, (2.57)

where, α and β are two real unfolding parameters [78]. Clearly, Eq. (2.55)
resembles the normal form of an imperfect pitchfork bifurcation. We further
confirm this by plotting a bifurcation diagram in the (εy, δ) space. We can
reshuffle Eq. (2.55) and express εy explicitly as a function of δ and other
parameters:

εy =
mεx +

(
εx −

2kt
kl

)
δ −mεx

δ2

2 +
(−εx

6 − 1
)
δ3(

m− δ −mδ2

2 + δ3

6

) . (2.58)

We use the above equation to plot the bifurcation diagram shown in Fig.
2.21 for a system with m = 10−2, kt = 0 and for a range of small values
of horizontal strain εx (see colorbar on the right) and confirm visually that
indeed Eq. (2.55) represents unfolding of a pitchfork bifurcation as we vary
εx. In principle, the trends in Fig. 2.17(d) are contained in Eq. (2.55).
Here, we focus on the χ → 0 (m → 0) limit, which allows us to establish
(∆εxc/∆kt) = 4.0 for χ→ 0.
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Figure 2.21: Based on Eq. (2.58), the unfolding of an imperfect pitchfork
bifurcation confirmed for a system with χ→ 0 (m = 10−2), kl = 0.50, kt =
0.0 in the (εy, δ) space and for a series of small values of εx.

2.5.2 Perfect Pitchfork Bifurcation

We consider the case for a monoholar system for which the value of the
symmetry breaking parameter m = 0. Substituting m = 0 in Eq. (2.55)
leads to:

(εx + εy − 2kt
kl

)( εx
6 + εy

6 + 1
) δ − δ3 = 0. (2.59)

Clearly, the above equation resembles the normal form of the pitchfork bifur-
cation given by Eq. (2.56). Let us assume

(
εx + εy −

2kt
kl

)
/

(
εx
6 + εy

6 + 1
)

=
µ. The critical points then become:

δ1 = 0, δ2 = √µ, δ3 = −√µ. (2.60)

These three solution branches intersect at the bifurcation point µ = 0
(i.e. εx + εy = 2kt/kl), δ = 0. We can rewrite Eq. 2.59 as:

f(δ, µ) = µδ − δ3 = 0. (2.61)
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Figure 2.22: Pitchfork bifurcations diagrams for a monoholar system with
symmetry breaking parameter m = 0 in (εy, δ) phase space (based on Eq.
2.59), kl = 0.50 and for specific values of εx and kt. (a) εx = 0.0, kt = 0.0.
εy = 0.0, δ = 0.0 is the bifurcation point. (b) εx = 0.0, kt = 10−4. The
bifurcation point shifts horizontally towards the right at εy = 4×10−4. (c) εx
= 4× 10−4, kt = 10−4 brings the bifurcation point back at εy = 0.0, δ = 0.0.

Thus,
fδ(δ1, µ) = µ, fδ(δ(2,3), µ) = −2µ. (2.62)

Therefore, the solution branch δ1 is stable if µ < 0, whereas the branches
δ2 and δ3 are stable if µ > 0. δ1 and δ2,3 have opposite stability and
exchange stability at µ = 0,δ = 0. We use Eq. 2.59 to construct bifurcation
diagrams for a monoholar system in the phase space (εy, δ) for specific values
of εx and kt. We keep kl fixed at 0.50. Fig. 2.22(a) shows the bifurcation
diagram for εx = 0, kt = 0. We have a perfect pitchfork bifurcation with
εy = 0, δ = 0 being the bifurcation point. From an experimental point of
view, the monoholar sheet with negligible bending stiffness of the interhole
ligaments buckles right at the application of the vertical strain. Fig. 2.22(b)
shows the diagram for εx = 0, kt = 10−4. We notice a horizontal shift
towards right in the bifurcation diagram. The new bifurcation point is now
at εy = 4× 10−4, δ = 0, which is where µ takes on the value zero. Hence, in
our model, a monoholar sheet with a finite stiffness of the interhole ligaments
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initially undergoes an elastic compression before undergoing bucking and
the subsequent pattern transformation. Finally, keeping kt = 10−4, we
change the value of εx to 4×10−4 - the bifurcation diagram shifts to the left,
thus retaining εy = 0, δ = 0 as the bifurcation point - a finite critical value
of εx tightly compresses the horizontal ligaments, whose buckling occurs
right at the onset of the vertical strain.

We draw a couple of important conclusions based on Eq. (2.59): (i)
εx and εy are interchangeable and play similar roles for a symmetrical
monoholar system, and (ii) from the point of view of confinement controlled
experiments, it can be seen that if εx = 2kt/kl, the system is at the
bifurcation point. We have also shown this diagrammatically through Fig.
2.22. We use this observation to justify the scaling of εxc with kt for systems
with χ → 0 [Fig. 2.17(a)]. We notice that for kl = 0.50, the critical value
of εx required to set the system at the bifurcation point scales linearly
with slope 4. Hence, we rationalize the numerical observation shown in Fig.
2.17(a).

2.6 Conclusions

We have shown that the physics of confined quasi-2D mechanical metamate-
rials can be captured by a seemingly simple mechanisms of rotating polygons.
As a particular example, we demonstrated that a spring-coupled mechanism
consisting of pin-jointed rectangles, called the soft mechanism (§2.2), is able
to fully model the experimentally observed complex mechanical behavior
(regimes (i)− (iv)) of a confined biholar sheet [20].

We then understood the transition from one regime to another and the
involved bifurcations from solely a geometrical perspective, and outlined a
generic strategy to rationally design the mechanical metamaterials with the
desired confinement controlled response. To model a more realistic scenario,
we coupled the hinges of the soft mechanism with torsional springs. We
found out that this leads to an increase in the values of εxc, the critical
strain values at which the regime transitions occur. Finally, we explored
the soft mechanism for the limiting case where χ → 0. We demonstrate
that, near this singularity, the different mechanical regimes emerge from the
unfolding of an imperfect pitchfork bifurcation.
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