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Suppose we have a small quantum computer with only M qubits. Can such a device genuinely speed up
certain algorithms, even when the problem size is much larger than M? Here we answer this question to the

affirmative. We present a hybrid quantum-classical algorithm to solve 3-satisfiability problems involving
n > M variables that significantly speeds up its fully classical counterpart. This question may be relevant
in view of the current quest to build small quantum computers.

DOI: 10.1103/PhysRevLett.121.250501

Quantum computers use the superposition principle to
speed up computations. However, it is not clear if they can
be useful when they are, as expected for the foreseeable
future, limited in size. The reason is that quantum (and
classical) algorithms typically exploit global structures of
problems, and restricting superpositions to certain block
sizes will break that structure. Thus, for problems where
arbitrarily sized quantum computers offer advantages,
small quantum computers may be of no significant help
given large inputs.

Here, we study this problem and show that this is not
generally true: There are relevant algorithms that utilize the
global structure, where quantum computers significantly
smaller than the problem size can offer significant speed-
ups. More precisely, we focus on the famous algorithm of
Schoning for boolean satisfiability and present a modified
hybrid quantum-classical algorithm that significantly out-
performs its purely classical version, even given small
quantum computers.

Satisfiability (SAT) problems are among the basic
computational problems, and they naturally appear in many
contexts involving combinatorial optimization, like sched-
uling or planning tasks, and in statistical physics. A
prominent SAT problem is 3SAT, which involves clauses
with up to three literals. 3SAT is the canonical example of
the so-called NP-complete problems, believed to be
exponentially difficult even for quantum computers.
Nevertheless, quantum computers can still accelerate their
solving [1,2], and given their ubiquity, they may become
one of the most important applications of quantum com-
puters. However, the best quantum algorithms, which
“quantum-enhance” classical SAT solvers [l], require
many qubits and are not directly applicable given small
quantum computers. There are several possibilities for how
to use a limited-size quantum device. For instance, one
could speed up smaller, structure-independent subroutines,
which occur, e.g., in the preparation phases of algorithms
(e.g., whenever a search over a few items is performed, one
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could utilize Grover’s algorithm [3]). However, for “genu-
ine” speedups, e.g., those that interpolate between the
runtimes of the fully classical and a fully quantum
algorithm, according to the size of the available quantum
device, one should attack the actual computational bottle-
necks. As we show, if this is done straightforwardly, one
may encounter a threshold effect: If the quantum device is
too small, i.e., can handle only a small fraction of the
instance, a naive hybrid algorithm turns out to be slower
than its classical version. Here, we demonstrate how this
effect can sometimes be circumvented, in the context of
satisfiability problems. Specifically, we provide a quantum-
assisted version of a well-understood classical algorithm,
which achieves genuine improvements given quantum
computers of basically any size, avoiding the thres-
hold effect [4]. Our results are applicable to broader
kSATproblems and, more generally, highlight the charac-
teristics of classical algorithms and methods, which can be
exploited to provide threshold-free enhancements.

The 3SAT problems.—In SAT problems, we are given a
boolean formula F:{0,1}" — {0, 1} over n binary varia-
bles x = (xq,...,x,) € {0,1}". The task is to find a
satisfying assignment x, i.e., fulfilling F(x) =1, if one
exists. In 3SAT, F is defined by a set of L clauses {Cj},
where each clause specifies three literals {/], 5. 1, }. Each
literal specifies one of the n binary variables (x) or a
negated variable (X); for instance, {l,,[,,/3} could be
{x3,X5,xg}. An assignment of variables x thus sets the
values of all literals. C; is satisfied by x if any of the literals
in C; attains the value 1. A formula F, written as F(x) =

L (I v Iy v ) using standard logic operator notation,
is satisfied by x if all its clauses are satisfied.

Classical algorithms.—Many classical 3SAT solvers
are significantly faster than the brute-force search. Their
performance can be characterized by a constant y € (0, 1),
meaning that they solve 3SAT in a runtime of O*(2"") [6].
One of the best and most famous ones is the algorithm of
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Schoning [8]. It initializes a random assignment of the
variables, then repeatedly finds an unsatisfied clause,
randomly selects one literal in that clause, and flips the
corresponding variable. This sampling algorithm termi-
nates once a satisfying assignment is reached or once this
process is iterated O(n) times. Schoning proved that the
probability of this algorithm finding a satisfying assign-
ment (if one exists) is at least (3/4)", which, by iteration,
leads to a Monte Carlo algorithm with expected runtime
O*(2r")  with 1y, :=1log,(4/3) ~0.415. A significant
speedup of the classical algorithm is a reduction of its
value of y. To study the potential of small quantum
computers, we investigate whether small devices suffice
to achieve such a reduction.

Straightforward hybrid algorithms for small quantum
computers—In [1] a quantum algorithm inspired by
Schoning’s method, which exploits amplitude amplifica-
tion [9], was introduced. It solves 3SAT instances with n
variables in runtime O*(270"/2) and requires ~fn qubits for
a f > 2. Given a quantum computer with only M = ffim
qubits (m < n), one has a few options to achieve speedups.
A “bottom up” approach would be to use the quantum
algorithm as an m-variable instance solver, which is then
used as a subroutine in an overarching classical algorithm.
For instance, to tackle the problem of n variables, one could
sequentially go through all possible partial assignments of
n —m variables. Each partial assignment induces a SAT
problem with m variables, which could then be solved on
the small quantum device. The runtime of such an
algorithm is O* (2("=")+70m/2) ‘which highlights the thresh-
old effect: The hybrid algorithm becomes slower than the
classical algorithm of Schoning if m/n < 0.74. Note that,
unlike thresholds for speedups induced by prefactors sup-
pressed in an asymptotic analysis and the O* notation,
which may prevent speedups for small instances, the
present threshold effect is far more fundamental: If M/n
is below a constant value, no speedup is possible even for
arbitrarily large problem sizes. Roughly speaking, the main
problem of hybrid algorithms using a small device as a
subinstance solver is that they break the global structure
exploited by the classical algorithm. This results in hybrid
algorithms whose runtimes interpolate between a fully
quantum runtime and something slower than the classical
algorithm—hence the threshold effect. Alternatively, we
explore a “top-down” approach, where the most computa-
tionally expensive subroutines of the classical algorithm are
identified and quantum enhanced.

Our results.—We present a hybrid algorithm that avoids
the threshold effect. Specifically, given a quantum com-
puter with M =cn qubits, where c€(0,1) is an arbitrary
constant, our algorithm solves 3SAT with n variables in a
runtime of O*(200~/()+)n) " where f(c)>0 is a constant
and ¢ can be made arbitrarily small. The function f(c) is
involved, but it is almost linear for small ¢ (see the
Supplemental Material [10] for details). Critically,

irrespective of its exact form, our result constitutes a
polynomial speedup over Schoning’s algorithm for arbi-
trarily small ¢. Our contribution is primarily conceptual,
and we assume an error-free setting.

Algorithm description—Our hybrid algorithm is a
quantum-assisted version of de-randomized variants of
Schoning’s algorithm [7,11], reviewed next. Given a bit-
string x € {0, 1}", let B,(x) denote the r-ball centered at x,
i.e., the set of all bitstrings y differing from x in at most r
positions (i.e., their Hamming distance is <r). Then,
relying on coding theory, the space of possible assignments
is covered by a number of r-balls. Given this covering set,
specified by the centers of the balls, the algorithm sequen-
tially checks whether there exists a satisfying assignment
within each of the r-balls. This “space-splitting” algorithm
reduces SAT to the problem of finding a satisfying assign-
ment within an r-ball, called Promise-Ball-SAT (PBS).
A deterministic algorithm PROMISEBALL(F,r,x) for
PBS was introduced in [11]. This is a simple, recursive
divide-and-conquer algorithm: On input it takes a formula,
specified by a set of clauses with at most three literals, a
radius, and a center x. The algorithm first checks some
conditions for (un)satisfiability [if » < 0 and F(x) = 0 or if
any clause is empty], or if x is a satisfying assignment.
Otherwise, in the recursive step, it finds the first unsatisfied
clause C and calls PROMISEBALL(F =1, T = 1,x) for
every literal / € C (the variables, literals, and clauses are
enumerated in some prespecified order). Here, Fj_;
denotes the formula obtained by setting the variable
corresponding to [/ to the value ensuring [/ = 1; i.e., all
clauses involving [/ (I) are removed (truncated). This
algorithm solves PBS in time O*(3"). For comparison,
Schoning sampling solves it in O*(2"). The overall runtime
of the space-splitting algorithm of [11] can be expressed as
a function of the runtime of the PBS-solving subroutine
(see Supplemental Material [10]). What is relevant is that,
whenever a PBS solver with runtime O*(2") (e.g., ran-
domized Schoning) is used in the space-splitting algorithm,
we recover Schoning’s runtime with y, =~ 0.415.

Note that every recursive call in PROMISEBALL reduces r
by 1. To make use of a small quantum device, one can, once
r becomes small enough, use a quantum algorithm for PBS
instead of a classical call. This leads to a general approach
to speed up algorithms, which recursively call themselves
(or other subroutines) with ever-decreasing instance sizes,
using small quantum devices. We call this the standard
hybrid approach. However, there are two obstacles to
consider. First, since PROMISEBALL is significantly slower
than the algorithm of Schoning, this still leads to a
threshold: M would have to be a large fraction of n to
gain an advantage. Second, straightforward quantum
implementations of PROMISEBALL require too many
qubits [Q(n)], even if r is small. While it is not difficult
to reduce this to O(rlogn), the resulting hybrid algorithm,
although avoiding a threshold, would have a very
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low, subpolynomial, advantage and not yield a true
improvement of y. We circumvent this by using more
involved memory structures combined with specialized
algorithms which algorithmically delete unneeded infor-
mation, leading to much better memory requirements of
O(rlog(n/r) + r +logn), and a true speed-up.

To summarize, we next provide the following algorithms:
(1) anonrecursive variant of PROMISEBALL, which on input
only takes r ternary choices of which literals to flip; (2) a
straightforward reversible implementation of (1) needed for
quantization, with two parts—QBALL; transforms the
choices to corresponding variable labels, and QBALL,
checks whether flipping the chosen variables in x (ball
center) satisfies the formula; (3) a method to significantly
reduce the memory requirements of storing a set of labels in
the second algorithm, from O(rlog n) to O(rlog(n/r) + r),
while preserving reversibility. Algorithms (1)—(3), com-
bined with amplitude amplification, then form the quantum
algorithm QBALL for PBS, which, combined with a faster
classical PBS-based solver [7], forms our final algorithm (4).

Space- and time-efficient quantum algorithm for PBS.—
First, we specify a nonrecursive (classical) variant of
PROMISEBALL, which does not manipulate the entire for-
mulas explicitly. This avoids an immediate need for Q(n)
qubits for “carrying” the formula as input. Afterwards, we
optimize the memory required for a reversible implementa-
tion and use amplitude amplification to achieve a faster
quantum algorithm.

The structure of PROMISEBALL yields a ternary tree of
depth r, induced by the up to three choices of literals in the
recursive step of the algorithm. Thus, a sequence of choices
Sty ....8, € {1,2,3} specifies a leaf in the tree and hence
the subset of literals whose values have been flipped. Thus,
the algorithm PROMISEBALL induces a mapping from
Si,...,S, to a set of at most r variables to be flipped,
denoted V = {vy, ..., v, }, where r' < r. The nonrecursive
algorithm computes the list of variables V indexed by the
sequence § = s,...,5,, generates the candidate assign-
ments Xy realized by flipping the values of the variables
specified by V, and checks if they satisfy the formula. This
subroutine can be executed in polynomial time. The non-
recursive PROMISEBALL simply goes through all 3" sequen-
ces s, yielding the runtime O*(3").

This can be turned into a quantum algorithm QBALL,,,
realizing the mapping:

QBALL,
QBALL ——
5120 5,)]0)]0) T —" |5y, s V) F(xw)), (1)

QBALL,

where the first part (QBALL;) generates the indices of
the variables in V, and the second part (QBALL,) verifies
whether F is satisfied by xy. The full quantum algorithm
for PBS, which we call QBALL, then uses amplitude
amplification to find one sequence § which yields a

satisfying assignment, using O(3'/2) calls to QBALL, ,,
each with polynomial runtime. We next give the basic ideas
for how to implement the algorithm space efficiently (for
details see the Supplemental Material [10]). For ease of
presentation, we first show how QBALL, can be realized
straightforwardly, using many ancillas, before reducing
their number. A straightforward implementation of
QBALL, would utilize n additional qubits and assign
them the value x. Then, the circuit would iterate through
the registers specifying V [naively requiring O(rlogn)
qubits] and introduce (controlled) negations to those
ancillary qubits selected by the values in V. This would
finalize the variable presetting stage and set the input to the
formula to xy. Next, we would sequentially evaluate each
clause, by associating a gate controlled by the variable
qubits corresponding to the variables occurring in the
clause. This controlled gate applies the appropriate neg-
ations to realize the literals, increasing a counter if a clause
is satisfied. After doing this for each clause, the output
qubit is flipped only if the counter equals L, meaning all
clauses are satisfied. Such a circuit uses O(log(L) + n)
ancillas. Since L = O(poly(n)), the key problem is the
contribution of n. This is simplified by noting that,
although the circuits our algorithms generate depend on
F, x and r, we can w.l.o.g. assume that x = (0, ..., 0) and
subsume the negations directly into F [12]. Next, since the
clauses are evaluated sequentially, we only require three
variable-specific ancillas, specifying the bit values appear-
ing in the current clause: For each clause, each of the three
ancillas corresponds to the three variables occurring in
that clause. The variable presetting stage is now done
individually for each clause C;: Before clause evaluation,
the circuit iterates through the V-specifying register and
flips the kth ancilla if the specification matches the kth
variable within the clause C;. The three ancillas are
uncomputed after evaluating C; and can be reused. This
requires only O(logn) additional qubits.

The algorithm QBALL,; is more involved. QBALL;
comprises a main loop which sequentially adds one
variable specification v; to the already specified set as
follows: The ith circuit block takes the specifications of the
first i — 1 variables v, ..., v;_; as inputs, iterates through
all clauses, and evaluates each clause C; (in a manner
similar to QBALL,), using the values wvy,...,v;_; to
correctly preset the clause-specific input. If the clause is
not satisfied, it uses the value of s; to select the specification
of one variable occurring in C;, taking into account that
variables which have already been flipped cannot be
selected again, and storing this specification as v;. For
reversibility, additional counters are used, but these can be
uncomputed and recycled. The final compression relies on
efficient encodings of V, which, as an ordered list, would
use O(rlogn) qubits. Since the ordering does not matter,
instead of storing the positions, we can store the relative
shifts v, v, — vy, ..., v, — v,,_; > 0 of a sorted version of
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the list, using no more digits than necessary and a separation
symbol to denote the next number. Since these values add up
to at most 7, one can see that O(rlog(n/r)+r) qubits suffice
for this encoding. This structure indeed encodes a set,
erasing the ordering. However, straightforward algorithms
that use encodings of sets instead of lists encounter revers-
ibility problems. To illustrate this, note that in the process of
adding a new variable to V, one must realize the two steps
Hvis .o vi D10) = [{vy, .., v P vy), iee., finding the
new element, and |{vy,...,v,_1 })|v;) = [{v, ..., v;})]0),
i.e., placing itinto the set, and, critically, freeing the ancillary
qubits for the next step. However, this is irreversible
since the information about which element was added
last is lost. The full ordering information requires
O(rlog r) additional qubits, nullifying all advantages. Of
course, one could instead realize the reversible operation
o1, v Do 10) = [{vr, v D v {vrs o),
followed by applying the inverse of the entire circuit up to
this point to uncompute |{vy, ..., v;_; })|v;), but this would
result in an exponential instead of polynomial runtime of
QBALL,. We circumvent this issue by splitting V into
O(logr) sets of sizes 1,2,4, ..., and the loading of each
larger block is followed by an algorithmic deletion of
all smaller blocks. This ensures the overall number of
qubits needed for this encoding is still O(rlog(n/r) + r),
at the cost of 200og(") additional steps, which is just
polynomial. These structures and primitives lead to
an overall space- and time-efficient implementation of
QBALL, (see Supplemental Material [10] for details).
Combining these subroutines with a quantum search over
¥, we obtain the algorithm QBALL, solving PBS in time
0*(3"7?) and using O(rlog(n/r) + r +logn) qubits. In
particular, QBALL outperforms the randomized algorithm of
Schoning for PBS (2 vs. 2102203)7/2 20797y

Hybrid algorithm for 3SAT—We could now use the
standard hybrid approach for PROMISEBALL, i.e., call
QBALL instead of PROMISEBALL when r is sufficiently
small. However, this still leads to a threshold. This is
resolved by using an improved deterministic algorithm for
PBS [7], where coding theory is applied to cover the space
of choice vectors 5. This yields an algorithm with runtime
O*((2+¢€)"), where € can be chosen arbitrarily small—
thus, the runtime of this algorithm for PBS essentially
matches the runtime of Schoning. While we do not need the
details of this algorithm, the critical point is that, like
PROMISEBALL, it recursively calls itself to solve PBS with
ever smaller values of r (sequentially reduced by a quantity
depending on €). Now, we can apply the standard hybrid
approach. Since QBALL beats the runtime of this improved
classical algorithm for PBS, the hybrid algorithm is faster
than Schoning’s, and, unlike using PROMISEBALL, there is
no threshold induced by slow classical algorithms.

To estimate the runtime of our algorithm, note that since
QBALL only requires O(rlog(n/r) + r + logn) qubits, a

device with M = cn qubits can solve PBS for r = f(c)n
for some f(c) > 0. Since the hybrid algorithm replaces a
classical subroutine of runtime O*(2") with a subroutine of
runtime O*(3'/?) in a recursion tree below depth
r = fB(c)n, the runtime of the hybrid algorithm beats
that of the classical one by a factor of O*((/3/2)F()").
Thus, the combined runtime of the hybrid algorithm is
O* (2o=fleteny for f(c) = log,(2/v/3)p(c) = 0.215(c).
The forms of f and f are involved, but in the
relevant regime of small ¢, f(c) achieves almost linear
scaling, specifically f(c) = ©(c/log(c™!)) (for details see
Supplemental Material [10]).

Conclusions.—We have shown that a small quantum
computer can speed up relevant classical algorithms even
for significantly larger inputs. While obvious for structure-
less scenarios (e.g., unstructured search), when considering
algorithms that use the problem’s structure, like Schéning’s
algorithm, speedups are nontrivial: The way the problem is
partitioned must maintain the algorithm’s structure to
avoid thresholds. Our algorithm achieves a significant
speedup, namely, a reduction of the relevant parameter v,
characterizing runtimes of the form O*(2""). The speedup
holds relative to a variant of Schoning’s algorithm. Our
results, however, generalize to other algorithms based on
Schoning’s approach (e.g., Refs. [13,14], since those rely
on better initial assignments) and to the variants handling
kSAT (k > 3). Historically, the best classical SAT solvers
with provable bounds are based either on the ideas of
Schoning or on the approach of [15], which includes the
current record holder [16]. It would be interesting to see
whether this second class of algorithms is also amenable to
the types of enhancements achieved here. The broader
question of this work is becoming increasingly more
relevant given the current progress in prototypes of small
quantum computers [17-19]. As our contribution is con-
ceptual, we assume an error-free scenario. Still, our
results may also have pragmatic relevance. Indeed,
while the number of physical qubits of implementations
is rapidly growing, the number of protected logical
qubits we may expect in the near term is likely to be very
limited. In practice, both the overheads and the noise may
be bottlenecks to exploit small devices in general [20].
Thus, it would be particularly interesting to optimize the
overheads of our algorithm. Specifically, any methods
to decrease the number of gates and ancillas would
increase the tolerance of our scheme. Finally, an in-depth
analysis of optimal device-specific implementations could
further help make our algorithms suitable for near-term
realizations.
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