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Abstract

The Fermi surface of a conventional two-dimensional electron gas is equivalent to a circle, up to
smooth deformations that preserve the orientation of the equi-energy contour. Here we show that a
Weyl semimetal confined to a thin film with an in-plane magnetization and broken spatial inversion
symmetry can have a topologically distinct Fermi surface that is twisted into a figure-8—opposite
orientations are coupled at a crossing which is protected up to an exponentially small gap. The twisted
spectral response to a perpendicular magnetic field Bis distinct from that of a deformed Fermi circle,
because the two lobes of a figure-8 cyclotron orbit give opposite contributions to the Aharonov—Bohm
phase. The magnetic edge channels come in two counterpropagating types, a wide channel of width
(12 o< 1/Band anarrow channel of width 1, oc 1/~/B (with I,, = +//z /eB the magnetic length and 3
the momentum separation of the Weyl points). Only one of the two is transmitted into a metallic
contact, providing unique magnetotransport signatures.

1. Introduction

The Fermi surface of degenerate electrons separates filled states inside from empty states outside, thereby
governing the electronic transport properties near equilibrium. In a two-dimensional electron gas (2DEG) the
Fermi surface is a closed equi-energy contour in the momentum plane. It is a circle for free electrons, with
deformations from the lattice potential such as the trigonal warping of graphene or the hexagonal warping on
the surface of a topological insulator [1]. These are all smooth deformations which do not change the orientation
of the Fermi surface: the turning number is 1, meaning that the tangent vector makes one full rotation as we pass
along the equi-energy contour.

The turning number

1
= — cdl, 1
Y Zﬂﬁ )

defined as the contour integral of the curvature C in units of 2, identifies topologically distinct deformations of
the circle in the plane, so-called ‘regular homotopy classes’ [2]". A theorem going back to Gauss [3] says that a
contour I" with turning number vhas s > ||v|—1]self-intersections and that the sum || + s must be an odd
integer. Figure 1 shows examples of contours with {v, s} = {0,1},{1,0},and {2, 1}.

The turning number is preserved by any smooth deformation of the contour. This includes so-called
‘uncrossing’ deformations [2]: as illustrated in figure 1, uncrossing breaks up a self-intersecting contour I" into a
collection of nearly touching oriented contours I';, with turning numbers v;. The total turning number
v = Y, v;isinvariant against uncrossing deformations, which is another result due to Gauss [3].

All familiar 2D electron gases belong to the || = 1 universality class. Here we show that a thin-film Weyl
semimetal with an in-plane magnetization M and broken spatial inversion symmetry can have v = 0:if the

For a tutorial on the topological classification of closed curves in the plane by means of turning numbers (also known as rotation numbers,
not to be confused with winding numbers).

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. Three oriented contours (black curves) with turning number v = 0, 1, 2. The red segments show the uncrossing deformation
that removes a self-intersection without changing the total turning number v = *, v;.

Fermi level lies in between the two Weyl points the circular Fermi surface is twisted into a figure-8 with zero total
curvature [4]°.

The self-intersection introduced when the Fermi level passes through a Weyl point, to ensure that || + s
remains odd, is a crossing of Fermi arcs on the top and bottom surfaces of the thin film (width W). These have a
penetration depth &, into the thin film that can be much less than the Fermi wavelength of the bulk states, so that
we can be in the 2D regime of a single occupied subband® without appreciable overlap of the surface states [5-7].
The effect of a nonzero surface state overlap is to open up an exponentially small gap 6k oc e="/% in the figure-8,
asin figure 1(a).

In a perpendicular magnetic field B the signed area enclosed by the Fermi surface is quantized in units of
2m /1, with I, = \//i /eB the magnetic length. A figure-8 Fermi surface of linear dimension kg has a signed area
much smaller than k7, because the upper and lower loops have opposite orientation. We find that this twisted
Fermi surface produces edge states of width ki2—much wider than the usual narrow quantum Hall edge states
of width /,,,. The wide and the narrow edge states are counterpropagating: if the wide channel moves parallel to
M, the narrow channel moves antiparallel. An applied voltage selectively populates one of the two types of edge
states, resulting in a conductance of ¢?/h instead of 2¢”/ h—even though there are two conducting edges.

The outline of the paper is as follows. In the next section we formulate the problem, on the basis of a two-
band model Hamiltonian [8, 9], and calculate the band structure in a slab geometry. The way in which the Fermi
arcs reconnect with the bulk Weyl cones is described exactly by a simple transcendental equation (Weiss
equation). The Fermi surface in the thin-film regime is calculated in section 3, to show the topological transition
from turning number 1 to turning number 0 when the Fermi level passes through a Weyl point. In section 4 we
calculate the edge states in a perpendicular magnetic field, by semiclassical analytics and comparison with a
numerical solution. The implications of the two types of counterpropagating edge channels for electrical
conduction are investigated in section 5. We conclude with an overview of possible experimental signatures of
the twisted Fermi surface.

2. Weyl semimetal confined to a slab

2.1. Two-band model
We consider the two-band model Hamiltonian of a Weyl semimetal [8, 9],

H(k) =ty o, sink, + t,0,sink, + myo, + Aogsink,,
my = t,(cos f — cosk;) + t'(2 — cosk, — cosk,). 2)

The Pauli matricesare o, @ € {x, y, z}, with ogthe 2 x 2 unit matrix, acting on a hybrid of spin and orbital
degrees of freedom. The momentum k varies over the Brillouin zone |k,| < 7 of a simple cubic lattice (lattice
constant ag = 1,and we also set 77 = 1). The two Weyl points are at the momenta k = (0, 0, +K), K &~ (3,and
atenergies E = £Ey, Ey &~ A sin (3, displaced along the k,-axis by the magnetization M = (3Z and displaced
along the energy axis by the strain A. Time-reversal symmetry and spatial inversion symmetry are broken by 3
and A, respectively.

We take a slab geometry, unbounded in the y—z plane and confined in the x-direction between x = 0 and
x = W. The magnetization along z is therefore in the plane of the slab. We impose the infinite-mass boundary

To avoid misunderstanding, we emphasize that the figure-8 Fermi surface appears for Weyl fermions with the usual conical dispersion
relation. We are not considering materials with a figure-8 dispersion relation, as studied in [4].

® We count occupied 2D subbands by counting the number of equi-energy contours at the Fermi energy in the (k,, k) plane, allowing for
(nearly avoided) self-intersections. All four equi-energy contours in figure 4 correspond to a single occupied subband.
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condition [10] on the wave function 1),

_J=v at x=0,
Uy¢{+¢ at x = W. ©)

This boundary condition corresponds to a mass term #1y(x) o, in H that vanishes inside the slab and tends to
~+ 00 outside.

2.2. Dispersion relation

The Schrodinger equation Hip = Et) can be solved analytically in the low-energy regime by linearizing in k, and
applying the effective mass approximation [11] k, — —i9/0x. Integration of the resulting first-order
differential equation in x gives

- _ 1
1[)(36) = elxul/](o)) = = t_Ux [E — H(0, ky: kz)] 4)
To ensure that an eigenstate of H satisfies the boundary condition (3), we require that
(=) =0, 12) = (L) i) = =) ©)

This reduces to the following dispersion relation for E(k,, k.):
(E — Asink,)? — ty2 sinfk, — mg = q?, (6)
with transverse wave number g given by

ﬂtan(Wq/tx) +1=0. 7)
q

In the mass term m;, we should set k, = 0, as required by the linearization in k,.
For imaginary q = ix t,/ W the transcendental equation (7) takes the form

ltanhfizl, WZ_ka’ ®
K tx

which is known as the Weiss equation in the theory of fefromagnetism [12]. A unique solution with k > 0 exists
for v > 1, given by a generalized Lambert function [13]’:

K= W2y —2% — D). ©)

A representative band structure is shown in figure 2.

2.3. Weyl cones and Fermi arcs
In the large- Wlimit of a thick slab, equation (7) can be solved separately for the bulk Weyl cones and the surface
Fermi arcs. We thus recover the familiar dispersion relations in the bulk and surface Brillouin zones of a Weyl
semimetal [14-17].

The bulk states have wave number q >> |my, quantized by g = (n + %)wtx/w, n=0,1,2,...,with
dispersion

2 .
El?l?lk = i\/(” + %) (mte /W) + t}% sin’k, + mi

+ Asink,. (10)
The + distinguishes the upper and lower halves of the Weyl cones.
The surface Fermi arcs have a purely imaginary ¢ = imy, = & = —y, which solves equation (8) in the large-
Wlimitif my, < 0. The corresponding surface dispersion (6) is
Eguface = Asink, £ t,sink,, |k < 8. (11)

The £ sign distinguishes the Fermi arcs on opposite surfaces (— atx = 0and + atx = W). The trajectory of an
electron in a Fermi arc state moves chirally along the surface (see top inset in figure 2), spiraling in the direction
of the magnetization M = (32 with velocity v, = A cosk,.

The surface Fermi arc reconnects with the bulk Weyl cone near k, = +. This ‘Fermi level plumbing’ [18] is
described quantitatively by the Weiss equation (7), as g switches from imaginary to real at a critical k<™ for which
= 1. The penetration length £ = 1/Im q of the surface state into the bulk is plotted in figure 3, as a function of
k. for k, = 0. Its minimal value near the center of the Brillouin zone is

7 The generalized Lambert function W(t; s; a) is defined as the solution of the equation eV (W — t) = a(W — s).

3
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magnetization M

momentum k.,

Figure 2. Dispersion relation E(k,, k,) for k, = 0.01 as a function of k., of a thick Weyl semimetal slab (width W = 40), calculated from
equations (6)and (7) for 8 = 1.5, A = 0.1, ¢, = t, = t, = ¢ = 1. The diagram at the top shows the geometry with the trajectory of an
electron in a Fermi arc state spiraling along the surface with velocity v, = A cos k; in the direction of the magnetization M. The two
branches of the Fermi arc visible in the dispersion relation correspond to states on the top and bottom surface of the slab (assumed to
be of infinite extent in this calculation). For this thick slab the range of Fermi energies in which only a single 2D subband is occupied is
very narrow (between the red dotted lines). For thinner slabs a larger energy range is available.

oo
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penetration length &

1 H |
0 -1 0 1

momentum k&,

Figure 3. Penetration length £ of the surface Fermi arc into the bulk Weyl semimetal, calculated via §¢ = 1/Im g from the solution of
the Weiss equation (8), for the same parameters as figure 2. The penetration length diverges at k, = 41.475, according to

equation (13). At this critical momentum the Fermi arc merges with the bulk Weyl cones. The minimal penetration length &, is given
by equation (12).

B (1 — cosP)t,

The critical wave vector k = (0, 0, k™) at which the Fermi arc terminates because its penetration length
diverges is slightly smaller than the position 3 of the Weyl point,

tx

& 12)

kSt =5 — =+ O(W). (13)
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Figure 4. Fermi surfaces of the thin-film Weyl semimetal with a single occupied subband (W = 15), calculated from equations (6) and
(7)for 3 = 1.5,t, = t, = t, = ' = 1atdifferent values of A and Eg. The turning number v = 0 in the top row, while = 1in the
bottom row. The figure-8 in the top row has a narrowly avoided crossing with a gap §k, = 3 x 10~ (not visible on the scale of the
figure). The color of the contour indicates whether the state is localized on the top surface (red), on the bottom surface (blue), or
extended through the bulk (black).

3. Thin-film Fermi surface

For Fermi energies
2
Efl < —= — Xsinf, (14)
IBdl < B

asingle 2D subband is occupied at the Fermi level, formed out of hybridized bulk and surface states. This 2DEG
regime exists for thin films of width

Tty

WS W=
2Asin 8

(15)
The Fermi surface of the 2DEG, defined by the equi-energy contour E(k,, k;) = Eg, is plotted in figure 4 for
several parameter values.

As discussed in the introduction, the turning number v is a topological invariant of the equi-energy contour
[2]. We see from figure 4 that the Fermi surface is twisted into a figure-8 with v = 0 when the Fermi level lies
between the Weyl points, |[Eg| < A sin 3, while for larger Fermi energies the Fermi surface has v = 1. Because
the turning number and the number of self-intersections must have opposite parity, the topological transition
when Ej passes through a Weyl point must introduce a crossing in the Fermi surface [19]°.

The crossing of the equi-energy contour for small Er is possible since the intersecting states are spatially
separated on the top and bottom surfaces of the slab. For a finite ratio W/ &, of slab width and penetration length
(12) the crossing is narrowly avoided because of the exponentially small overlap of the states at opposite surfaces.
From the Weiss equation (8) we calculate that the ¢ k, gap in the figure-8 is given by

bk, = e WS, (16)
A&
When W =~ W, the gap in the figure-8 is exponentially small if W, >> &, so for
(1 — cos B)t, > Asin S. (17)

To make contact with some of the older literature [20-22], we note that the figure-8 Fermi surface of a Weyl
semimetal is essentially different from the figure-8 equi-energy contour of a conventional metal with a saddle

The turning number v = 1 universality class may also have self-intersections in the Fermi surface, but there must be an even number of
them. An example with =1 and two crossings is figure 4 of [19].
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Figure 5. Classical cyclotron orbits corresponding to the figure-8 Fermi surface of figure 4(a). Each edge supports counterpropagating
skipping orbits. The corresponding quantum Hall edge channel is narrow if it propagates opposite to the magnetization, while it is
wide if it propagates in the direction of the magnetization. The area enclosed by the cyclotron orbits is shaded, the direction of the
shading distinguishes positive and negative contributions to the Aharonov—Bohm phase e y§ A - dl

pointin the Fermi surface. In that case the figure-8 requires fine tuning of the energy to the saddle point, while
here the figure-8 persists over a range of energies between two Weyl points. Moreover, the orientation of the two
lobes of the figure-8 is the same in the case of a saddle point, while here it is opposite.

4. Quantum Hall edge channels

4.1. Semiclassical analysis
A magnetic field Bin the x-direction, perpendicular to the thin film, introduces Landau levels in the energy
spectrum: for a gauge A = (0, 0, By) the momentum k. is still a good quantum number, we seek the dispersion
E,(k,) of the nth Landau level.

Semiclassically, the nth Landau level is determined by the quantization of the signed area S(E) = 525 k,dk,
enclosed by the oriented equi-energy contour [23],

12S(E,) = 2r(n + ), necZ, (18)

with I, = (/2 /eB)'/? the magnetic length and ~y € [0, 1) a B-independent offset. Depending on the clockwise or
anti-clockwise orientation of the contour, the enclosed area is negative or positive. Note that the signed area
enclosed by the figure-8 Fermi surface of figure 4(a) equals zero. The phase shift 7 = 0 in a bulk Weyl semimetal,
when the equi-energy contour encloses a gapless Weyl point [24-27]. For the thin film the numerical data
indicatesy = 1/2.

If the thin film is confined to the strip 0 < y < W, with W, > [,,, the spectrum within the strip remains
dispersionless, but at the boundaries y = 0 and y = W, propagating states appear. In the quantum Hall effect
these are chiral edge channels, moving in opposite directions on opposite edges [28, 29]. The electrical
conductance of the strip, for a current flowing in the z-direction, equals the number of edge channels N moving
in the same direction times the conductance quantum e*/h.

The classical skipping orbits that form the edge channels in a magnetic field can be directly extracted from
the zero-field Fermi surface: the cyclotron motion in momentum space follows the equi-energy contour E(k,,
k,) = Epwith period 27 m,/eB, where

_1d

= E
- dElS( )| 19)

me

is the cyclotron effective mass. (The figure-8 has m. ~ (3/t,.) Because k = ef x B, the cyclotron motion in real
space is obtained from the momentum space orbit by rotation over /2 and rescaling by a factor I. Specular
reflection at the edge (with conservation of k,) then gives for the figure-8 Fermi surface the skipping orbits of
figure 5. Note that these orbits are 2D projections of 3D trajectories in the thin film: the intersections that are
visible in the projected orbit correspond to overpassing trajectories on the top and bottom surfaces. (See figure
10(b) of [30] for a wave packet simulation of such a trajectory.)
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N

Figure 6. Same as figure 5, but now for the Fermi surface of figure 4(c), without a self-intersection. The equi-energy contour has a
single orientation, indicated by the single direction of the shading. The edge states are chiral, propagating in opposite directions on
opposite edges.

The real-space counterpart of the quantization rule (18) is that the Aharonov—Bohm phase e y§ A - dl picked
up in one period of the cyclotron motion equals 27(n + 7). For the skipping orbits this Bohr—-Sommerfeld
quantization rule still applies if the contour is closed by a segment along the edge, with an additional
contribution to y from reflection at the edge [31, 32].

For small n the skipping orbit should enclose a flux of the order of the flux quantum /e, which divides the
edge channels into two types, designated narrow and wide: the narrow edge channel propagates along the edge in
the direction opposite to the magnetization”. It is tightly bound to the edge over a distance of order ,,,, so that the
enclosed area of order I encloses a flux of order h/e. The wide edge channel propagates in the direction of the
magnetization and extends further from the edge over a distance of order (3I2. It still encloses a small flux of
order h/ebecause contributions to 95 A - dI from the two sides of the crossing point have opposite sign.

The gap Ok, at the crossing point has no effect on the quantization if 1,0k, < 1, which is satisfied for
I, S W when

(W/E)e Wit < Nt (20)

Because the exponent wins it is sufficient that W >> ¢ to ensure that the figure-8 is effectively unbroken: the
field-induced tunneling through the gap then occurs with near-unit probability, so to a good approximation the
wave packet propagates in an unbroken figure-8.

The presence of counterpropagating edge channels at each edge requires a Fermi energy in between the Weyl
points, |Eg| < A sin 3, for a twisted Fermi surface. When the Fermi surface is a simple contour without self-
intersections the edge channels are chiral, propagating in opposite directions on opposite edges as in figure 6.

4.2.Numerical simulation
To go beyond the semiclassical analysis we have diagonalized the model Hamiltonian (2) numerically, using the
Kwant tight-binding code [33]. Figure 7 shows the dispersion relation with four edge states at Ep = 0, two
counterpropagating at each edge. The corresponding density profile for each edge state is shown in figure 8. The
two types of edge channels, one wide and the other narrow, are clearly visible.

In figure 9 we show the Landau levels in an infinite system as a function of the flux ® through a unit cell. The
Landau fan is fitted to

7
—Sg=21(n+ ), 21
ed

corresponding to the semiclassical formula (18). The resulting offset yis consistent with v = 1/2. We checked
that the fitted value of Sg is close (within 2%) of the signed area enclosed by the figure-8 equi-energy contour. We
also checked that the same y = 1/2 is obtained when the equi-energy contour is a slightly deformed circle,
rather than a figure-8.

5. Magnetoconductance

To determine the magnetotransport through the Weyl semimetal strip we connect itatboth ends z = 0 and
z = Ltoametal reservoir. Following a similar approach used for graphene [34], it is convenient to take the same

? Throughout the paper we take 3 and A positive. The direction of motion of the edge channels indicated in figure 5 should be inverted if
either 5 or A change sign.
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Figure 7. Dispersion relation of a thin-film Weyl semimetal strip (W = 10, W, = 80) in a perpendicular magnetic field (/,,, = 4.5),
calculated numerically from the tight-binding Hamiltonian (2). The material parameters are 3 = 1.05, A = 0.2,

ty = t, = t, = ' = 1. At Eg = 0 this system has the figure-8 Fermi surface of figure 4(a). The letters indicate the counterpropagating
edge channels, L at one edge and R, at the opposite edge.

0 0.004 0.008 0.012 0.016

Figure 8. Probability density [t (x, y)|? for the four edge states labeled in the dispersion of figure 7. The density is translationally
invariant in the z-direction, the color plots show a cross section in the x—y plane (separated in two panels for clarity). Each edge has a
counterpropagating pair of edge states, one with v, < 0 tightly bound to the edge (width ~I,, = 4.5), the other with v, > 0
penetrating more deeply into the bulk (width ~31% = 21).

model Hamiltonian (2) throughout the system, with the addition of a z-dependent chemical potential term
—p(2)0y. (Physically, this potential could be controlled by a gate voltage.) We set 14(z) = 01in the semimetal
region0 < z < Landtake u(z) > Einthe metal reservoirs (x < Oandx > L). This corresponds to n-type
doping of the reservoir. (For p-type doping we would take p(z) < — Ej.)

We distinguish n-type and p-type edge channels in the Weyl semimetal depending on whether they
reconnect at large | E| with the upper Weyl cones (n-type) or with the lower Weyl cones (p-type). Referring to the
dispersion of figure 7, the channels L.. at the y = 0 edge are n-type, while the channels R atthe y = W), edgeare
p-type. The distinction is important, because only the n-type edge channels can be transmitted into the n-type
reservoirs. As indicated in figure 10, the p-type channels are confined to the semimetal region, without entering
into the reservoirs.

Upon application of a bias voltage V between the two n-type reservoirs a current I will flow along the n-type
edge, with a conductance
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Figure 9. Left panel: sequence of Landau level energies E,,(B) as a function of magnetic field; levels at two values of the energy are
marked by colored dots. Right panel: Landau level index n for these two energies as a function of inverse magnetic field. This ‘Landau
fan’ is fitted to equation (21) to obtain the offset . The data is calculated numerically from the Weyl semimetal tight-binding model in
an unbounded thin film (thickness W = 30), for parameters 3 = 1.05,A = 0.1,t, = t, = t, = = L.

Figure 10. Undoped Weyl semimetal (chemical potential ;i ~ 0) connected to heavily doped metal reservoirs (i > E, for n-type
doping). Edge channels in a perpendicular magnetic field are shown in red, with arrows indicating the direction of propagation. The
L. edge channels are n-type and can enter into the reservoirs, while the R, edge channels are p-type and remain confined to the
semimetal region (dotted lines). The current I flows along the n-type edge in the semimetal, irrespective of the sign of the applied
voltage V.

2
G=1/V= % o (22)

determined by the backscattering probability T, along the edge at y = 0,50 G = ¢*/h without impurity
scattering—see figure 12. This is not the usual edge conduction of the quantum Hall effect: as shown in figure 11,
the current flows along the same edge when we change the sign of the voltage bias (switching source and drain),
while in the quantum Hall effect the current switches between the edges when V changes sign. The only way to
switch the edge here is to change the sign of the magnetic field, so that the n-type edge isaty = W, rather than
aty = 0.

6. Discussion

We have discussed the unusual magnetic response of a 2DEG with a twisted Fermi surface. The topological
transition from turning number v = 1 (the usual deformed Fermi circle) to turning number v = 0 (the figure-8
Fermi surface) happens when the Fermi level passes through the Weyl point of a thin-film Weyl semimetal with
an in-plane magnetization and broken spatial inversion symmetry. We discuss several transport properties that
could serve as signatures for the topological transition from v = 1tov = 0.

In a magnetic field the figure-8 Fermi surface supports counterpropagating edge channels, see figure 10. At
Er = 0, with an equal number of left-movers and right-movers at each edge, the Hall resistance will vanish. This
is the first magnetotransport signature. If we vary the Fermi level and enter the regime of chiral edge channels, we
should see the appearance of a voltage difference between the edges in response to a current flowing along the
edges.

The second signature is the edge-selectivity: although both edges support counterpropagating states, the
current flows entirely along one of the two edges, determined by the direction of M x B. This edge-selective
current flow might be detected directly, or indirectly by introducing disorder on one edge only and measuring a
difference between the conductance G for positive and negative B. Note that G(B) == G(—B) does not violate
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Figure 11. Color-scale plot in the y—z plane of the occupation numbers of current-carrying states at the Fermi level, in response to a
voltage bias between source and drain. The data is calculated numerically from the tight-binding Hamiltonian (2) in the geometry of
figure 10 (parameters 5 = 1.05, A = 0.25,t, = t, = t, = t' = 1, W = 10, 1,, = 4). The chemical potential is y» = 01in the Weyl
semimetal region (between green lines, from z = 0toz = 60), while ;+ = 0.75 in the metal reservoirs (z < 0 and z > 60). The current
keeps flowing along the same edge when source and drain are switched, carried either by a narrow edge channel (top panel) or by a
wide edge channel (bottom panel). The opposite edge is fully decoupled from the reservoirs.

Onsager reciprocity, since for that we would need to change the sign of both magnetic field B and
magnetization M.

A third signature is in the cyclotron resonance condition for the optical conductivity 0. As explained by
Koshino [35] in the context of a type-1I Weyl semimetal (which has a figure-8 cyclotron orbit at a specific energy
where electron and hole pockets touch [36]), the resonance frequency is twice as small for an electric field
oriented along the long axis of the figure-8, than it is for an electric field oriented along the short axis. In the
geometry of figure 5, the resonance frequency equals eB/m, for o, and 2eB/m_for o,.

In our analysis we have not included disorder effects. The counterpropagating edge channels can be coupled
by disorder, and this would reduce the conductance below the quantized value of G = ¢*/h seen in figure 12.
There is no symmetry to protect this quantization, like there is for the helical edge channels in the quantum spin
Hall effect, but there is a spatial separation of wide and narrow edge channels (see figure 8), which may provide
some robustness against backscattering by disorder.

We have focused here on Fermi surfaces with turning number v = 0 and v = 1. It would be of interest to
compare with other values of v. A model Hamiltonian for v = 2, that could be a starting point for such a study, is
given in the appendix.
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Appendix. Effective 2D Hamiltonian

We derive an effective Hamiltonian for the thin-film Weyl semimetal. Starting from the full Hamiltonian (2), we
discretize the x-direction by the substitution
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Figure 12. Conductance in the geometry of figure 11 as a function of magnetic field. (The magnetic length /,, = 4 of figure 11
corresponds to a flux per unit cell of 0.01 //e). The regime of a single pair of counterpropagating edge channels is reached to the right
of the vertical dotted line. The conductance in this regime is ¢*/ rather than 2¢> /h, because only one edge is coupled to the electron
Treservoirs.

cos ky — %(51',]'71 + 6ijv1)s
sink, — —3i(8ij 1 — 8iji). (AD)

The Kronecker 0;;is set to zero if either layer index i or j is outside of the set { 1, 2, ..., W}, corresponding to hard-
wall boundary conditions at the top and bottom layer. Substitution in equation (2) leads to

Hj = 6l sink, + Mioz] — 36,5 1(0z + o)

_ L
2

My = 2 + cos 3 — cosk, — cosk,. (A3)

6,',j+1(0'2 — ioy) + 6,])\ oy sink;, (A2)

For simplicity we have sett, = t, = t = 1. Since the )\ term is a scalar, we can set it to zero for now and then add
it at the end of the calculation.
After the unitary transformation H — UHU with U = e/™%/41™%/4 we have

Hj = o, sink, + Myoy] — %(5,-,]-,1(0,5 + o)) — %51',;41(0,( — igy). (A4)
The square H* is block-diagonal in the o index,
: e
(H?);j = 6jj00sin°k, + 0 z) (A54a)
Zij= (Mg + 1 — &w)bij — Mi(8ij—1 + 8ij11), (A5D)
Zj= (M + 1 = 8i) & — My(6ij1 + 6. (A5¢)

The two W x W matrices Z and Z’ have the same eigenvalues ¢, given by
Det(Z — () = Det 2)[1 — ¢ TrZ7' + O] = 0. (A6)
The low-energy spectrum is therefore given
1
E?=sin’k, + (p (= —— < 1, A7
y+ S G T (A7)

which evaluates to

M2W MZW 1 — M2 2
- 2 4 : 6 W2 2\/1\; ( 2 2 : (A8)
14 2ME 4 3ME + AME + -+ WMPY2 1 — MZY[1 + (1 — M) W]
For M; < 1wehavesimply ¢, ~ Mg".
The corresponding effective low-energy Hamiltonian takes the form

Co

Hep = 034JC, + 0y sink, + Aoysink,, (A9)

where we have reinsterted the A term. A comparison of the energy spectrum of the effective Hamiltonian with
the result from an exact numerical diagonalization of the full Hamiltonian is shown in figure 13.

In closing, we note that a simple modification of this effective 2D Hamiltonian can be used to describe Fermi
surfaces with turning number greater than unity. As an example, the Hamiltonian
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Figure 13. Dispersion relation at k, = 0.01 given by the effective Hamiltonian (A9) (red curve), compared to numerical results from
the full Hamiltonian (2) (blue dots). The parameters are the same as in figure 2.

Figure 14. Fermi surface at E = 0 with turning number v = 2 given by the Hamiltonian (A10), for the parameters W = 40, 8 = 1.5,
A=1,1=0.6.

He = Her + p1(2 — cosk, — cos ky) oo (A10)

has the v = 2 Fermi surface shown in figure 14.
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