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Abstract
The Fermi surface of a conventional two-dimensional electron gas is equivalent to a circle, up to
smooth deformations that preserve the orientation of the equi-energy contour.Herewe show that a
Weyl semimetal confined to a thinfilmwith an in-planemagnetization and broken spatial inversion
symmetry can have a topologically distinct Fermi surface that is twisted into afigure-8—opposite
orientations are coupled at a crossingwhich is protected up to an exponentially small gap. The twisted
spectral response to a perpendicularmagneticfieldB is distinct from that of a deformed Fermi circle,
because the two lobes of afigure-8 cyclotron orbit give opposite contributions to theAharonov–Bohm
phase. Themagnetic edge channels come in two counterpropagating types, a wide channel of width

b µl B1m
2 and a narrow channel of width µl B1m (with =l eBm themagnetic length andβ

themomentum separation of theWeyl points). Only one of the two is transmitted into ametallic
contact, providing uniquemagnetotransport signatures.

1. Introduction

The Fermi surface of degenerate electrons separates filled states inside from empty states outside, thereby
governing the electronic transport properties near equilibrium. In a two-dimensional electron gas (2DEG) the
Fermi surface is a closed equi-energy contour in themomentumplane. It is a circle for free electrons, with
deformations from the lattice potential such as the trigonal warping of graphene or the hexagonal warping on
the surface of a topological insulator [1]. These are all smooth deformationswhich do not change the orientation
of the Fermi surface: the turning number is 1,meaning that the tangent vectormakes one full rotation aswe pass
along the equi-energy contour.

The turning number

n
p

=
G

∮ ( )l
1

2
d , 1

defined as the contour integral of the curvature  in units of 2π, identifies topologically distinct deformations of
the circle in the plane, so-called ‘regular homotopy classes’ [2]4. A theorem going back toGauss [3] says that a
contourΓwith turning number ν has  n -∣∣ ∣ ∣s 1 self-intersections and that the sum n +∣ ∣ s must be an odd
integer. Figure 1 shows examples of contours with {ν, s}={0, 1}, {1, 0}, and {2, 1}.

The turning number is preserved by any smooth deformation of the contour. This includes so-called
‘uncrossing’ deformations [2]: as illustrated infigure 1, uncrossing breaks up a self-intersecting contourΓ into a
collection of nearly touching oriented contoursΓi, with turning numbers νi. The total turning number
n n= åi i is invariant against uncrossing deformations, which is another result due toGauss [3].

All familiar 2D electron gases belong to the n =∣ ∣ 1universality class. Here we show that a thin-filmWeyl
semimetal with an in-planemagnetization M and broken spatial inversion symmetry can have ν=0: if the
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Fermi level lies in between the twoWeyl points the circular Fermi surface is twisted into afigure-8with zero total
curvature [4]5.

The self-intersection introducedwhen the Fermi level passes through aWeyl point, to ensure that n +∣ ∣ s
remains odd, is a crossing of Fermi arcs on the top and bottom surfaces of the thin film (widthW). These have a
penetration depth ξ0 into the thinfilm that can bemuch less than the Fermiwavelength of the bulk states, so that
we can be in the 2D regime of a single occupied subband6without appreciable overlap of the surface states [5–7].
The effect of a nonzero surface state overlap is to open up an exponentially small gap d µ x-k e W 0 in thefigure-8,
as infigure 1(a).

In a perpendicularmagnetic fieldB the signed area enclosed by the Fermi surface is quantized in units of
p l2 m

2 , with =l eBm themagnetic length. Afigure-8 Fermi surface of linear dimension kF has a signed area
much smaller than kF

2, because the upper and lower loops have opposite orientation.Wefind that this twisted
Fermi surface produces edge states of width k lmF

2—muchwider than the usual narrow quantumHall edge states
of width lm. Thewide and the narrow edge states are counterpropagating: if thewide channelmoves parallel to
M , the narrow channelmoves antiparallel. An applied voltage selectively populates one of the two types of edge
states, resulting in a conductance of e2/h instead of 2e2/h—even though there are two conducting edges.

The outline of the paper is as follows. In the next sectionwe formulate the problem, on the basis of a two-
bandmodelHamiltonian [8, 9], and calculate the band structure in a slab geometry. Theway inwhich the Fermi
arcs reconnect with the bulkWeyl cones is described exactly by a simple transcendental equation (Weiss
equation). The Fermi surface in the thin-film regime is calculated in section 3, to show the topological transition
from turning number 1 to turning number 0when the Fermi level passes through aWeyl point. In section 4we
calculate the edge states in a perpendicularmagneticfield, by semiclassical analytics and comparisonwith a
numerical solution. The implications of the two types of counterpropagating edge channels for electrical
conduction are investigated in section 5.We concludewith an overview of possible experimental signatures of
the twisted Fermi surface.

2.Weyl semimetal confined to a slab

2.1. Two-bandmodel
Weconsider the two-bandmodelHamiltonian of aWeyl semimetal [8, 9],

s s s ls
b

= + + +

= - + ¢ - -

( )
( ) ( ) ( )

kH t k t k m k

m t k t k k

sin sin sin ,

cos cos 2 cos cos . 2

k

k

x x x y y y z z

z z x y

0

The Paulimatrices areσα, a Î { }x y z, , , withσ0 the 2×2 unitmatrix, acting on a hybrid of spin and orbital
degrees of freedom. Themomentum k varies over the Brillouin zone p<a∣ ∣k of a simple cubic lattice (lattice
constant ºa 10 , andwe also set  º 1). The twoWeyl points are at themomenta = ( )k K0, 0, , b»K , and
at energies = E E0, l b»E sin0 , displaced along the kz-axis by themagnetization b= ˆM z and displaced
along the energy axis by the strainλ. Time-reversal symmetry and spatial inversion symmetry are broken byβ
andλ, respectively.

We take a slab geometry, unbounded in the y–z plane and confined in the x-direction between x=0 and
x=W. Themagnetization along z is therefore in the plane of the slab.We impose the infinite-mass boundary

Figure 1.Three oriented contours (black curves)with turning number ν=0, 1, 2. The red segments show the uncrossing deformation
that removes a self-intersectionwithout changing the total turning number n n= åi i.

5
To avoidmisunderstanding, we emphasize that thefigure-8 Fermi surface appears forWeyl fermionswith the usual conical dispersion

relation.We are not consideringmaterials with afigure-8 dispersion relation, as studied in [4].
6
We count occupied 2D subbands by counting the number of equi-energy contours at the Fermi energy in the (ky, kz)plane, allowing for

(nearly avoided) self-intersections. All four equi-energy contours infigure 4 correspond to a single occupied subband.
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condition [10] on thewave functionψ,

s y
y
y

=
- =
+ =

⎧⎨⎩ ( )x
x W

at 0,
at .

3y

This boundary condition corresponds to amass term s( )m x z0 inH that vanishes inside the slab and tends to
+¥ outside.

2.2.Dispersion relation
The Schrödinger equationHψ=Eψ can be solved analytically in the low-energy regime by linearizing in kx and
applying the effectivemass approximation [11] - ¶ ¶k xix . Integration of the resultingfirst-order
differential equation in x gives

y y s= X = -X( ) ( ) [ ( )] ( )x
t

E H k ke 0 ,
1

0, , . 4x

x
x y z

i

To ensure that an eigenstate ofH satisfies the boundary condition (3), we require that

sá- -ñ = ñ =


ñ =  ñX ( )∣ ∣ ∣ ∣ ∣ ( )
i

e 0, 1 , . 5W
y

i

This reduces to the following dispersion relation forE(ky, kz):

l- - - =( ) ( )E k t k m qsin sin , 6kz y y
2 2 2 2 2

with transverse wave number q given by

+ =( ) ( )m

q
Wq ttan 1 0. 7k

x

In themass term mk we should set kx= 0, as required by the linearization in kx.
For imaginary q=iκ tx/W the transcendental equation (7) takes the form

g
k

k g= = - ( )Wm

t
tanh 1, , 8k

x

which is known as theWeiss equation in the theory of ferromagnetism [12]. A unique solutionwith k 0 exists
for g 1, given by a generalized Lambert function [13]7:

k g g= - -( ) ( )2 ; 2 ; 1 . 91

2

A representative band structure is shown infigure 2.

2.3.Weyl cones and Fermi arcs
In the large-W limit of a thick slab, equation (7) can be solved separately for the bulkWeyl cones and the surface
Fermi arcs.We thus recover the familiar dispersion relations in the bulk and surface Brillouin zones of aWeyl
semimetal [14–17].

The bulk states havewave number  ∣ ∣q mk , quantized by p= +( )q n t Wx
1

2
, n=0, 1, 2,K, with

dispersion

p

l

=  + + +

+

( ) ( )
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( )E n t W t k m
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z

bulk
1

2

2 2 2 2 2

The± distinguishes the upper and lower halves of theWeyl cones.
The surface Fermi arcs have a purely imaginary k g=  = -q mi k , which solves equation (8) in the large-

W limit if <m 0k . The corresponding surface dispersion (6) is

l b=  <∣ ∣ ( )E k t k ksin sin , . 11z y y zsurface

The± sign distinguishes the Fermi arcs on opposite surfaces (− at x=0 and+ at x=W). The trajectory of an
electron in a Fermi arc statemoves chirally along the surface (see top inset infigure 2), spiraling in the direction
of themagnetization b= ˆM z with velocity l=v kcosz z .

The surface Fermi arc reconnects with the bulkWeyl cone near kz=±β. This ‘Fermi level plumbing’ [18] is
described quantitatively by theWeiss equation (7), as q switches from imaginary to real at a critical kz

crit for which
γ= 1. The penetration length x = q1 Im of the surface state into the bulk is plotted infigure 3, as a function of
kz for ky= 0. Itsminimal value near the center of the Brillouin zone is

7
The generalized Lambert function( )t s a; ; is defined as the solution of the equation   - = -( ) ( )e t a s .
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x
b

=
-( )

( )t

t1 cos
. 12x

z
0

The critical wave vector = ( )k k0, 0, z
crit at which the Fermi arc terminates because its penetration length

diverges is slightly smaller than the positionβ of theWeyl point,

b= - + -( ) ( )k
t

t W
W . 13z

x

z

crit 2

Figure 2.Dispersion relationE(ky, kz) for ky=0.01 as a function of kz, of a thickWeyl semimetal slab (widthW=40), calculated from
equations (6) and (7) forβ=1.5,λ=0.1, tx=ty=tz=t′=1. The diagram at the top shows the geometrywith the trajectory of an
electron in a Fermi arc state spiraling along the surfacewith velocity l=v kcosz z in the direction of themagnetization M . The two
branches of the Fermi arc visible in the dispersion relation correspond to states on the top and bottom surface of the slab (assumed to
be of infinite extent in this calculation). For this thick slab the range of Fermi energies inwhich only a single 2D subband is occupied is
very narrow (between the red dotted lines). For thinner slabs a larger energy range is available.

Figure 3.Penetration length ξ of the surface Fermi arc into the bulkWeyl semimetal, calculated via ξ=1/Im q from the solution of
theWeiss equation (8), for the same parameters as figure 2. The penetration length diverges at kz=±1.475, according to
equation (13). At this criticalmomentum the Fermi arcmerges with the bulkWeyl cones. Theminimal penetration length ξ0 is given
by equation (12).
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3. Thin-film Fermi surface

For Fermi energies

p
l b< -∣ ∣ ( )E

t

W2
sin , 14x

F

a single 2D subband is occupied at the Fermi level, formed out of hybridized bulk and surface states. This 2DEG
regime exists for thinfilms of width

 p
l b

= ( )W W
t

2 sin
. 15c

x

The Fermi surface of the 2DEG, defined by the equi-energy contourE(ky, kz)=EF, is plotted infigure 4 for
several parameter values.

As discussed in the introduction, the turning number ν is a topological invariant of the equi-energy contour
[2].We see fromfigure 4 that the Fermi surface is twisted into afigure-8with ν=0when the Fermi level lies
between theWeyl points, l b<∣ ∣E sinF , while for larger Fermi energies the Fermi surface has ν=1. Because
the turning number and the number of self-intersectionsmust have opposite parity, the topological transition
when EF passes through aWeyl pointmust introduce a crossing in the Fermi surface [19]8.

The crossing of the equi-energy contour for smallEF is possible since the intersecting states are spatially
separated on the top and bottom surfaces of the slab. For afinite ratioW/ξ0 of slabwidth and penetration length
(12) the crossing is narrowly avoided because of the exponentially small overlap of the states at opposite surfaces.
From theWeiss equation (8)we calculate that the δ kz gap in the figure-8 is given by

d
lx

= x- ( )k
t4

e . 16z
x W

0

0

When W Wc the gap in the figure-8 is exponentially small if xWc 0, so for

b l b- ( ) ( )t1 cos sin . 17z

Tomake contact with some of the older literature [20–22], we note that thefigure-8 Fermi surface of aWeyl
semimetal is essentially different from the figure-8 equi-energy contour of a conventionalmetal with a saddle

Figure 4. Fermi surfaces of the thin-filmWeyl semimetal with a single occupied subband (W = 15), calculated from equations (6) and
(7) forβ=1.5, tx=ty=tz=t′=1 at different values ofλ andEF. The turning number ν=0 in the top row, while ν=1 in the
bottom row. The figure-8 in the top rowhas a narrowly avoided crossingwith a gap δ kz=3 × 10−5 (not visible on the scale of the
figure). The color of the contour indicates whether the state is localized on the top surface (red), on the bottom surface (blue), or
extended through the bulk (black).

8
The turning number ν= 1 universality classmay also have self-intersections in the Fermi surface, but theremust be an even number of

them.An example with ν= 1 and two crossings isfigure 4 of [19].
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point in the Fermi surface. In that case the figure-8 requires fine tuning of the energy to the saddle point, while
here thefigure-8 persists over a range of energies between twoWeyl points.Moreover, the orientation of the two
lobes of thefigure-8 is the same in the case of a saddle point, while here it is opposite.

4.QuantumHall edge channels

4.1. Semiclassical analysis
AmagneticfieldB in the x-direction, perpendicular to the thinfilm, introduces Landau levels in the energy
spectrum: for a gauge = ( )A By0, 0, themomentum kz is still a good quantumnumber, we seek the dispersion
En(kz) of the nth Landau level.

Semiclassically, the nth Landau level is determined by the quantization of the signed area = ∮( )S E k kdy z

enclosed by the oriented equi-energy contour [23],

p g= + Î( ) ( ) ( )l S E n n2 , , 18m n
2

with = ( )l eBm
1 2 themagnetic length and g Î [ )0, 1 aB-independent offset. Depending on the clockwise or

anti-clockwise orientation of the contour, the enclosed area is negative or positive. Note that the signed area
enclosed by thefigure-8 Fermi surface of figure 4(a) equals zero. The phase shift γ= 0 in a bulkWeyl semimetal,
when the equi-energy contour encloses a gaplessWeyl point [24–27]. For the thinfilm the numerical data
indicates γ=1/2.

If the thin film is confined to the strip < <y W0 y, with W ly m, the spectrumwithin the strip remains
dispersionless, but at the boundaries y=0 and y=Wy propagating states appear. In the quantumHall effect
these are chiral edge channels,moving in opposite directions on opposite edges [28, 29]. The electrical
conductance of the strip, for a currentflowing in the z-direction, equals the number of edge channelsNmoving
in the same direction times the conductance quantum e2/h.

The classical skipping orbits that form the edge channels in amagnetic field can be directly extracted from
the zero-field Fermi surface: the cyclotronmotion inmomentum space follows the equi-energy contour E(ky,
kz)=EF with period 2πmc/eB, where

p
= ∣ ( )∣ ( )m

E
S E

1

2

d

d
19c

is the cyclotron effectivemass. (Thefigure-8 has b»m tc y.)Because = ´˙ ˙k r Be , the cyclotronmotion in real
space is obtained from themomentum space orbit by rotation overπ/2 and rescaling by a factor lm

2 . Specular
reflection at the edge (with conservation of kz) then gives for the figure-8 Fermi surface the skipping orbits of
figure 5.Note that these orbits are 2Dprojections of 3D trajectories in the thinfilm: the intersections that are
visible in the projected orbit correspond to overpassing trajectories on the top and bottom surfaces. (See figure
10(b) of [30] for awave packet simulation of such a trajectory.)

Figure 5.Classical cyclotron orbits corresponding to thefigure-8 Fermi surface of figure 4(a). Each edge supports counterpropagating
skipping orbits. The corresponding quantumHall edge channel is narrow if it propagates opposite to themagnetization, while it is
wide if it propagates in the direction of themagnetization. The area enclosed by the cyclotron orbits is shaded, the direction of the
shading distinguishes positive and negative contributions to the Aharonov–Bohmphase ∮ ·A le d .
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The real-space counterpart of the quantization rule (18) is that the Aharonov–Bohmphase ∮ ·A le d picked
up in one period of the cyclotronmotion equals 2π(n+γ). For the skipping orbits this Bohr–Sommerfeld
quantization rule still applies if the contour is closed by a segment along the edge, with an additional
contribution to γ from reflection at the edge [31, 32].

For small n the skipping orbit should enclose aflux of the order of theflux quantum h/e, which divides the
edge channels into two types, designated narrow andwide: the narrow edge channel propagates along the edge in
the direction opposite to themagnetization9. It is tightly bound to the edge over a distance of order lm, so that the
enclosed area of order lm

2 encloses aflux of order h/e. Thewide edge channel propagates in the direction of the
magnetization and extends further from the edge over a distance of order blm

2 . It still encloses a smallflux of

order h/e because contributions to ∮ ·A ld from the two sides of the crossing point have opposite sign.

The gap δkz at the crossing point has no effect on the quantization if d l k 1m z , which is satisfied for
l Wm when

x lx- ( ) ( )W te . 20W
x0

0

Because the exponent wins it is sufficient that xW 0 to ensure that thefigure-8 is effectively unbroken: the
field-induced tunneling through the gap then occurs with near-unit probability, so to a good approximation the
wave packet propagates in an unbrokenfigure-8.

The presence of counterpropagating edge channels at each edge requires a Fermi energy in between theWeyl
points, l b<∣ ∣E sinF , for a twisted Fermi surface.When the Fermi surface is a simple contour without self-
intersections the edge channels are chiral, propagating in opposite directions on opposite edges as infigure 6.

4.2. Numerical simulation
To go beyond the semiclassical analysis we have diagonalized themodelHamiltonian (2)numerically, using the
Kwant tight-binding code [33]. Figure 7 shows the dispersion relationwith four edge states at EF=0, two
counterpropagating at each edge. The corresponding density profile for each edge state is shown infigure 8. The
two types of edge channels, onewide and the other narrow, are clearly visible.

Infigure 9we show the Landau levels in an infinite system as a function of thefluxΦ through a unit cell. The
Landau fan isfitted to


p g

F
= +( ) ( )

e
S n2 , 21E

corresponding to the semiclassical formula (18). The resulting offset γ is consistent with γ=1/2.We checked
that the fitted value of SE is close (within 2%) of the signed area enclosed by the figure-8 equi-energy contour.We
also checked that the same γ=1/2 is obtainedwhen the equi-energy contour is a slightly deformed circle,
rather than a figure-8.

5.Magnetoconductance

Todetermine themagnetotransport through theWeyl semimetal strip we connect it at both ends z=0 and
z=L to ametal reservoir. Following a similar approach used for graphene [34], it is convenient to take the same

Figure 6. Same asfigure 5, but now for the Fermi surface offigure 4(c), without a self-intersection. The equi-energy contour has a
single orientation, indicated by the single direction of the shading. The edge states are chiral, propagating in opposite directions on
opposite edges.

9
Throughout the paper we takeβ andλ positive. The direction ofmotion of the edge channels indicated infigure 5 should be inverted if

eitherβ orλ change sign.
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modelHamiltonian (2) throughout the system, with the addition of a z-dependent chemical potential term
−μ(z)σ0. (Physically, this potential could be controlled by a gate voltage.)We setμ(z)=0 in the semimetal
region 0<z<L and take m ( )z E0 in themetal reservoirs (x<0 and x>L). This corresponds to n-type
doping of the reservoir. (For p-type dopingwewould takeμ(z)=−E0.)

Wedistinguish n-type and p-type edge channels in theWeyl semimetal depending onwhether they
reconnect at large ∣ ∣E with the upperWeyl cones (n-type) orwith the lowerWeyl cones (p-type). Referring to the
dispersion offigure 7, the channels L± at the y=0 edge are n-type, while the channels R± at the y=Wy edge are
p-type. The distinction is important, because only the n-type edge channels can be transmitted into the n-type
reservoirs. As indicated infigure 10, the p-type channels are confined to the semimetal region, without entering
into the reservoirs.

Upon application of a bias voltageV between the two n-type reservoirs a current Iwillflow along the n-type
edge, with a conductance

Figure 7.Dispersion relation of a thin-filmWeyl semimetal strip (W=10,Wy= 80) in a perpendicularmagnetic field (lm= 4.5),
calculated numerically from the tight-bindingHamiltonian (2). Thematerial parameters areβ=1.05,λ=0.2,
tx=ty=tz=t′=1. At EF=0 this systemhas thefigure-8 Fermi surface offigure 4(a). The letters indicate the counterpropagating
edge channels, L± at one edge andR± at the opposite edge.

Figure 8.Probability density y∣ ( )∣x y, 2 for the four edge states labeled in the dispersion of figure 7. The density is translationally
invariant in the z-direction, the color plots show a cross section in the x–y plane (separated in two panels for clarity). Each edge has a
counterpropagating pair of edge states, onewith vz<0 tightly bound to the edge (width» =l 4.5m ), the otherwith vz>0
penetratingmore deeply into the bulk (width b» =l 21m

2 ).
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= = = ( )G I V
e

h
T 22y

2

0

determined by the backscattering probabilityTy=0 along the edge at y=0, soG=e2/hwithout impurity
scattering—see figure 12. This is not the usual edge conduction of the quantumHall effect: as shown infigure 11,
the currentflows along the same edgewhenwe change the sign of the voltage bias (switching source and drain),
while in the quantumHall effect the current switches between the edges whenV changes sign. The onlyway to
switch the edge here is to change the sign of themagnetic field, so that the n-type edge is at y=Wy rather than
at y=0.

6.Discussion

Wehave discussed the unusualmagnetic response of a 2DEGwith a twisted Fermi surface. The topological
transition from turning number ν=1 (the usual deformed Fermi circle) to turning number ν=0 (thefigure-8
Fermi surface)happens when the Fermi level passes through theWeyl point of a thin-filmWeyl semimetal with
an in-planemagnetization and broken spatial inversion symmetry.We discuss several transport properties that
could serve as signatures for the topological transition from ν=1 to ν=0.

In amagnetic field thefigure-8 Fermi surface supports counterpropagating edge channels, seefigure 10. At
EF=0, with an equal number of left-movers and right-movers at each edge, theHall resistance will vanish. This
is thefirstmagnetotransport signature. If we vary the Fermi level and enter the regime of chiral edge channels, we
should see the appearance of a voltage difference between the edges in response to a currentflowing along the
edges.

The second signature is the edge-selectivity: although both edges support counterpropagating states, the
currentflows entirely along one of the two edges, determined by the direction of ´M B. This edge-selective
currentflowmight be detected directly, or indirectly by introducing disorder on one edge only andmeasuring a
difference between the conductanceG for positive and negativeB. Note that ¹ -( ) ( )G B G B does not violate

Figure 9. Left panel: sequence of Landau level energies En(B) as a function ofmagnetic field; levels at two values of the energy are
marked by colored dots. Right panel: Landau level index n for these two energies as a function of inversemagnetic field. This ‘Landau
fan’ isfitted to equation (21) to obtain the offset γ. The data is calculated numerically from theWeyl semimetal tight-bindingmodel in
an unbounded thinfilm (thicknessW=30), for parameters β=1.05,λ=0.1, tx=ty=tz=t′=1.

Figure 10.UndopedWeyl semimetal (chemical potential m » 0) connected to heavily dopedmetal reservoirs (m  E0 for n-type
doping). Edge channels in a perpendicularmagnetic field are shown in red, with arrows indicating the direction of propagation. The
L± edge channels are n-type and can enter into the reservoirs, while the R± edge channels are p-type and remain confined to the
semimetal region (dotted lines). The current Iflows along the n-type edge in the semimetal, irrespective of the sign of the applied
voltageV.
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Onsager reciprocity, since for that wewould need to change the sign of bothmagnetic field B and
magnetization M .

A third signature is in the cyclotron resonance condition for the optical conductivity s. As explained by
Koshino [35] in the context of a type-IIWeyl semimetal (which has afigure-8 cyclotron orbit at a specific energy
where electron and hole pockets touch [36]), the resonance frequency is twice as small for an electric field
oriented along the long axis of the figure-8, than it is for an electric field oriented along the short axis. In the
geometry offigure 5, the resonance frequency equals eB mc forσyy and 2eB/mc forσzz.

In our analysis we have not included disorder effects. The counterpropagating edge channels can be coupled
by disorder, and this would reduce the conductance below the quantized value ofG=e2/h seen infigure 12.
There is no symmetry to protect this quantization, like there is for the helical edge channels in the quantum spin
Hall effect, but there is a spatial separation of wide and narrow edge channels (see figure 8), whichmay provide
some robustness against backscattering by disorder.

We have focused here on Fermi surfaces with turning number ν=0 and ν=1. It would be of interest to
comparewith other values of ν. AmodelHamiltonian for ν=2, that could be a starting point for such a study, is
given in the appendix.
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Appendix. Effective 2DHamiltonian

Wederive an effectiveHamiltonian for the thin-filmWeyl semimetal. Starting from the full Hamiltonian (2), we
discretize the x-direction by the substitution

Figure 11.Color-scale plot in the y–z plane of the occupation numbers of current-carrying states at the Fermi level, in response to a
voltage bias between source and drain. The data is calculated numerically from the tight-bindingHamiltonian (2) in the geometry of
figure 10 (parameters β=1.05,λ=0.25, tx=ty=tz=t′=1,W=10, lm= 4). The chemical potential isμ=0 in theWeyl
semimetal region (between green lines, from z=0 to z=60), whileμ=0.75 in themetal reservoirs (z<0 and z>60). The current
keeps flowing along the same edgewhen source and drain are switched, carried either by a narrow edge channel (top panel) or by a
wide edge channel (bottompanel). The opposite edge is fully decoupled from the reservoirs.
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+
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TheKronecker δij is set to zero if either layer index i or j is outside of the set {1, 2,K,W}, corresponding to hard-
wall boundary conditions at the top and bottom layer. Substitution in equation (2) leads to

d s s d s s

d s s d l s

= + - +

- - +
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+

[ ] ( )

( ) ( )

H k M
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sin i

i sin , A2

kij ij y y z i j z x

i j z x ij z

1

2 , 1

1

2 , 1 0

b= + - - ( )M k k2 cos cos cos . A3k z y

For simplicity we have set tx=ty=t′≡1. Since theλ term is a scalar, we can set it to zero for now and then add
it at the end of the calculation.

After the unitary transformation  †H U HU with = ps psU e ei 4 i 4z y we have

d s s d s s d s s= + - + - -- +[ ] ( ) ( ) ( )H k Msin i i . A4kij ij z y x i j x y i j x y
1

2 , 1
1

2 , 1

The squareH2 is block-diagonal in theσ index,

d s= +
¢
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Z
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The twoW×WmatricesZ andZ′have the same eigenvalues ζ, given by

z z z- = - + =-( ) ( )[ ( )] ( )Z Z ZDet Det 1 Tr 0. A61 2

The low-energy spectrum is therefore given
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2 2
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which evaluates to
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=
-
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1 1 1
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k k

k k

W
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2

2 4 6 2 2

2 2 2

2 2

For M 1k wehave simply z » Mk
W

0
2 .

The corresponding effective low-energyHamiltonian takes the form

s z s ls= + + ( )H k ksin sin , A9x y y zeff 0 0

wherewe have reinsterted theλ term. A comparison of the energy spectrumof the effectiveHamiltonianwith
the result from an exact numerical diagonalization of the full Hamiltonian is shown infigure 13.

In closing, we note that a simplemodification of this effective 2DHamiltonian can be used to describe Fermi
surfaces with turning number greater than unity. As an example, theHamiltonian

Figure 12.Conductance in the geometry offigure 11 as a function ofmagnetic field. (Themagnetic length lm= 4 offigure 11
corresponds to a flux per unit cell of 0.01 h/e). The regime of a single pair of counterpropagating edge channels is reached to the right
of the vertical dotted line. The conductance in this regime is e2/h rather than 2e2/h, because only one edge is coupled to the electron
reservoirs.
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m s= + - -˜ ( ) ( )H H k k2 cos cos A10z yeff eff 0

has the ν=2 Fermi surface shown infigure 14.
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