
Machine-learning-assisted correction of correlated qubit errors in a
topological code
Baireuther, P.; O'Brien, T.E.; Tarasinski, B.M.; Beenakker, C.W.J.

Citation
Baireuther, P., O'Brien, T. E., Tarasinski, B. M., & Beenakker, C. W. J. (2018). Machine-
learning-assisted correction of correlated qubit errors in a topological code. Quantum, 2,
48. doi:10.22331/q-2018-01-29-48

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/71079

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/71079

Machine-learning-assisted correction of correlated
qubit errors in a topological code
P. Baireuther1, T. E. O’Brien1, B. Tarasinski2, and C. W. J. Beenakker1

1Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
2QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands

December 2017

A fault-tolerant quantum computation re-
quires an efficient means to detect and correct
errors that accumulate in encoded quantum in-
formation. In the context of machine learn-
ing, neural networks are a promising new ap-
proach to quantum error correction. Here we
show that a recurrent neural network can be
trained, using only experimentally accessible
data, to detect errors in a widely used topo-
logical code, the surface code, with a perfor-
mance above that of the established minimum-
weight perfect matching (or “blossom”) de-
coder. The performance gain is achieved be-
cause the neural network decoder can detect
correlations between bit-flip (X) and phase-flip
(Z) errors. The machine learning algorithm
adapts to the physical system, hence no noise
model is needed. The long short-term memory
layers of the recurrent neural network main-
tain their performance over a large number of
quantum error correction cycles, making it a
practical decoder for forthcoming experimen-
tal realizations of the surface code.

1 Introduction
A quantum computer needs the help of a powerful
classical computer to overcome the inherent fragility
of entangled qubits. By encoding the quantum in-
formation in a nonlocal way, local errors can be de-
tected and corrected without destroying the entangle-
ment [1, 2]. Since the efficiency of the quantum error
correction protocol can make the difference between
failure and success of a quantum computation, there
is a major push towards more and more efficient de-
coders [3]. Topological codes such as the surface code,
which store a logical qubit in the topology of an array
of physical qubits, are particularly attractive because
they combine a favorable performance on small cir-
cuits with scalability to larger circuits [4–9].

In a pioneering work [10], Torlai and Melko have
shown that the data processing power of machine
learning (artificial neural networks [11–13]) can be
harnessed to produce a flexible, adaptive decoding al-

gorithm. A test on a topological code (Kitaev’s toric
code [14]) revealed a performance for phase-flip er-
rors that was comparable to decoders based on the
minimum-weight perfect matching (MWPM or “blos-
som”) algorithm of Edmonds [15–17]. The machine
learning paradigm promises a flexibility that the clas-
sic algorithms lack, both with respect to different
types of topological codes and with respect to dif-
ferent types of errors.

Several groups are exploring the capabilities of a
neural network decoder [18–20], but existing designs
cannot yet be efficiently deployed as a decoder in a
surface code architecture [21–23]. Two key features
which are essential for this purpose are 1: The neural
network must have a “memory”, in order to be able
to process repeated cycles of stabilizer measurement
whilst detecting correlations between cycles; and 2:
The network must be able to learn from measured
data, it should not be dependent on the uncertainties
of theoretical modeling.

In this work we design a recurrent neural network
decoder that has both these features, and demon-
strate a performance improvement over a blossom de-
coder in a realistic simulation of a forthcoming error
correction experiment. Our decoder achieves this im-
provement through its ability to detect bit-flip (X)
and phase-flip (Z) errors separately as well as corre-
lations (Y). The blossom decoder treats a Y-error as
a pair of uncorrelated X and Z errors, which explains
the improved performance of the neural network. We
study the performance of the decoder in a simplified
model where the Y-error rate can be adjusted inde-
pendently of the X- and Z-error rates, and measure
the decoder efficiency in a realistic model (density ma-
trix simulation) of a state-of-the-art 17-qubit surface
code experiment (Surface-17).

The outline of this paper is as follows. In the next
section 2 we summarize the results from the literature
we need on quantum error correction with the surface
code. The design principles of the recurrent neural
network that we will use are presented in Sec. 3, with
particular attention for the need of an internal mem-
ory in an efficient decoder. This is one key aspect that
differentiates our recurrent network from the feedfor-
ward networks proposed independently [18–20] (see

Accepted in Quantum 2018-01-16, click title to verify 1

ar
X

iv
:1

70
5.

07
85

5v
3

 [
qu

an
t-

ph
]

 1
7

Ja
n

20
18

http://quantum-journal.org/?s=Machine-learning-assisted%20correction%20of%20correlated%20qubit%20errors%20in%20a%20topological%20code

Figure 1: Schematic of the surface code. Left: N physical data qubits are arranged on a d× d square lattice (where d =
√
N

is known as the distance of the code). For each square one makes the four-fold σx or σz correlated measurement of Eq. (2).
A further set of two-fold σx and σz measurements are performed on the boundary, bringing the total number of measurements
to N − 1. Right: Since direct four-fold parity measurements are impractical, the measurements are instead performed by
entanglement with an ancilla qubit, followed by a measurement of the ancilla in the computational basis. Both data qubits and
ancilla qubits accumulate errors during idle periods (labeled I) and during gate operations (Hadamard H and cnot), which
must be accounted for by a decoder. The data qubits are also entangled with the rest of the surface code by the grayed out
gates.

Sec. 4). A detailed description of the architecture
and training protocol is given in Sec. 5. In Sec. 6 we
compare the performance of the neural network de-
coder to the blossom decoder for a particular circuit
model with varying error rates. We conclude in Sec.
7 with a demonstration of the potential of machine
learning for real-world quantum error correction, by
decoding data from a realistic quantum simulation of
the Surface-17 experiment.

2 Overview of the surface code
To make this paper self-contained we first describe
the operation of the surface code and formulate the
decoding problem. The expert reader may skip di-
rectly to the next section.

In a quantum error correcting (QEC) code, single
logical qubits (containing the quantum information
to be protected) are spread across a larger array of
N noisy physical data qubits [24, 25]. The encoding
is achieved by N − 1 binary parity check measure-
ments on the data qubits [26]. Before these measure-
ments, the state of the physical system is described by
a complex vector |ψ〉 within a 2N -dimensional Hilbert
space H. Each parity check measurement Mi projects
|ψ〉 onto one of two 2N−1-dimensional subspaces, de-
pendent on the outcome si of the measurement. As
all parity check measurements commute, the result of
a single cycle of N − 1 measurements is to project
|ψ〉 into the intersection of all subspaces H~s decided
by the measurements ~s = s1, . . . , sN−1 (si ∈ {0, 1}).
This is a Hilbert space of dimension 2N/2N−1 = 2,
giving the required logical qubit |ψ〉L.

Repeated parity check measurements ~s(t) do not
affect the qubit within this space, nor entanglement
between the logical qubit states and other systems.
However, errors in the system will cause the qubit
to drift out of the logical subspace. This continuous
drift is discretized by the projective measurement, be-
coming a series of discrete jumps between subspaces
H~s(t) as time t progresses. Since ~s(t) is directly mea-
sured, the qubit may be corrected, i.e. brought back
to the initial logical subspaceH~s(0). When performing
this correction, a decision must be made on whether

to map the logical state |0〉~s(t)
L ∈ H~s(t) to |0〉~s(0)

L or

|1〉~s(0)
L ∈ H~s(0), as no a priori relationship exists be-

tween the labels in these two spaces. If this is done in-
correctly, the net action of the time evolution and cor-
rection is a logical bit-flip error. A similar choice must
be made for the {|+〉L, |−〉L} logical states, which if
incorrect results in a logical phase-flip error.

Information about the best choice of correction (to
most-likely prevent logical bit-flip or phase-flip errors)
is stored within the measurement vectors ~s, which
detail the path the system took in state-space from
H~s(0) to H~s(t). The non-trivial task of decoding, or
extracting this correction, is performed by a classi-
cal decoder. Optimal (maximum-likelihood) decod-
ing is an NP-hard problem [27], except in the pres-
ence of specific error models [28]. However, a fault-
tolerant decoder need not be optimal, and polyno-
mial time decoders exist with sufficient performance
to demonstrate error mitigation on current quantum
hardware [5]. This sub-optimality is quantified by the

Accepted in Quantum 2018-01-16, click title to verify 2

decoder efficiency [29]

ηd = ε
(opt)
L /εDL , (1)

where εDL is the probability of a logical error per cycle

using the decoder D, and ε
(opt)
L is the probability of a

logical error per cycle using the optimal decoder [31].
The QEC code currently holding the record for the

best performance under a scalable decoder is the sur-
face code [3–5, 16]. As illustrated in Fig. 1, the surface
code is defined on a d×d lattice of data qubits, where
d =

√
N is the distance of the code. The measure-

ment operators are defined by coloring lattice squares
as on a checkerboard. Each square corresponds to a
correlated measurement of the stabilizer operator

Sα = σa
α ⊗ σb

α ⊗ σc
α ⊗ σd

α, (2)

with α = z on the green squares and α = x on the
blue squares. The operator σD

α is the Pauli matrix
acting on the qubit in the D-corner of the square (la-
beled a,b,c,d in Fig 1). The checkerboard is extended
slightly beyond the boundary of the lattice [32], giving
an additional set of two-qubit σD

ασ
D′

α measurements,
and bringing the total number of measurements to
(d− 1)2 + 2(d− 1) = N − 1, as it should be.

All measurements commute because green and blue
squares either share two corners or none. A bit-flip or
phase-flip on any data qubit in the bulk of the code
causes two measurements to change sign, producing
unit syndrome increments

δsi(t) ≡ si(t)− si(t− 1) mod 2. (3)

This theme is continued even when the measurement
of si itself is allowed to be faulty; such measurement
errors cause two correlated error signals δsi(t) = 1
separated in time, rather than in space.

As all observable errors can be built from combi-
nations of bit-flip and phase-flip errors, these mea-
surements allow the mapping of surface-code decoding
to the minimum-weight perfect matching (MWPM)
problem [5, 16]. Every instance of non-zero δsi(t) is
mapped to a vertex in a graph, with an edge between
two vertices representing the probability of some com-
bination of errors causing these signals. A ‘boundary’
vertex is included to account for qubits on the edge
of the lattice, whose errors may only cause a single
error signal. Then, the most probable matching of
vertices, weighted by the product of probabilities on
individual edges, gives the required error correction.
This matching can be found in polynomial time with
Edmonds’ blossom algorithm [15].

Under current experimental parameters, with the
smallest non-trivial N (N = 9, or distance d =

√
N =

3), this blossom decoder already crosses the quantum
memory threshold — whereby quantum information
on a logical qubit can be stored for a longer time than
on any physical component. However, the decoder
itself performs only with efficiency ηd = 0.64, leaving
much room for improvement [29].

3 Neural network detection of corre-
lated errors
The sub-optimality of the blossom decoder comes pri-
marily from its inability to optimally detect Pauli-Y
(σy) errors [29, 31, 33]. These errors correspond to a
combination of a bit-flip (X) and a phase-flip (Z) on
the same qubit, and are thus treated by a MWPM
decoder as two independent errors. Since these cor-
relations exist as patterns on the graph, one may ex-
pect that the pattern matching capabilities of a neu-
ral network could be exploited to identify the corre-
lations, producing an improvement over existing de-
coders. This is the primary motivation of the research
we report in what follows.

A key issue in the design of any practical decoder
is to ensure that the decoder is able to operate for an
unspecified number of cycles T . A feedforward neural
network is trained on a dataset with a specific fixed
T . The central advance of this work is to use a recur-
rent neural network to efficiently decode an arbitrary,
unspecified number of cycles. In order to learn time
correlations the network possesses an internal memory
that it utilizes to store information about previous cy-
cles. This is important because errors on the ancilla
qubits or during ancilla qubit readout lead to error
signals that are correlated over several cycles.

We adopt the recurrent neural network architec-
ture known as a “long short-term memory” (LSTM)
layer [34, 35]. (See App. A for details of our net-
work.) These layers have two internal states: a short-

term memory ~ht, and a long-term memory ~ct that
is updated each cycle and retains information over
several cycles. During training, the parameters that
characterize the LSTM layers are updated using back
propagation, in order to efficiently update and utilize
the long-term memory to detect logical errors, even
if the corresponding syndrome patterns are non-local
in time. The parameters of the LSTM layers them-
selves are the same for each cycle; only their memory
changes. This allows for a very efficient algorithm,
whose computational cost per cycle is independent of
how many cycles the network has to decode.

We now formulate the QEC problem that a decoder
needs to solve. To be useful for upcoming QEC exper-
iments and future fault-tolerant quantum algorithms,
it is critical that any decoder uses data that could be
generated by such experiments. This implies that the
data available to the neural network, both for input
and labels, must be data generated by qubit mea-
surements (as opposed to a listing of occurred errors,
which is not available in an actual experiment).

The data available to the decoder after T cycles
are the T syndromes ~s(t), and a final syndrome ~f
calculated from readout of the final data qubits. From
this, a decoder must output a single bit of data, the
so-called “final parity correction” that decides on the
correction of the final logical state. The decoder may

Accepted in Quantum 2018-01-16, click title to verify 3

be trained and tested using the scheme described in
Ref. [29]. The system is prepared in a known logical
state, chosen from |0〉L and |1〉L or from |+〉L and
|−〉L, which is held for T cycles and then readout.
The final logical state can be determined by the parity
of all data qubit measurements, to which the final
parity correction may be directly added. This gives a
standard binary classification problem for the neural
network. Since it is a priori unknown in which basis
the logical qubit will be measured, we need to train
two separate decoders — one for the x-basis and one
for the z-basis.

4 Related Work
4.1 Approaches going beyond blossom decod-
ing
The neural network decoder improves on the blos-
som decoder by including correlations between Pauli-
X and Pauli-Z errors. It is possible to account for
these correlations without using machine learning, by
adapting the minimum-weight perfect matching (blos-
som) algorithm.

Fowler [33] and Delfosse and Tillich [36] achieved
this by performing repeated rounds of X-error and
Z-error decoding in series. After each round of X-
error decoding, the weights on the Z-graph are up-
dated based on the likelihood of underlying Z-errors
assuming the X-matching is correct. The overhead
from repeated serial repetitions of the blossom algo-
rithm is limited by restriction to a small window of
decoding for each repetition, resulting in a constant-
time algorithm.

We can compare the results obtained in Ref. [33]
to our results by extracting the improvement of
correlated over basic fault-tolerant corrections for a
distance-3 code. For a depolarization probability
comparable to the one we use in Fig. 3 the improve-
ment is approximately 24%. This is similar to the
improvement we obtained with the neural network de-
coder.

Both the neural network decoder and the im-
proved blossom decoder perform below the optimal
maximum-likelihood decoder. Several approaches ex-
ist to reach the optimal limit, we mention the in-
corporation of X–Z correlations via a belief propaga-
tion algorithm [37], and approaches based on renor-
malization group methods or Monte Carlo methods
[28, 38, 39].

Bravyi, Suchara, and Vargo [28] reported a density-
matrix renormalization group (DMRG) method for
exact single-round maximum-likelihood decoding in
polynomial time, assuming bit-flip and dephasing
noise. Their performance continues to be better than
the blossom decoder for multi-round decoding. The
method is somewhat limited in the choice of error
model; in particular it cannot account for Y-errors.

The Markov-chain Monte Carlo method of Hut-
ter, Wootton, and Loss [39] samples over the set of
corrections to approximate the maximum-likelihood
decoding via the Metropolis algorithm. This again
outperforms the blossom decoder, but it suffers from
an increased run-time cost, with an additional O(N2)
computational cost.

4.2 Approaches based on machine learning
The existence of algorithms [28, 33, 36–39] that im-
prove on the blossom decoder does not diminish the
appeal of machine learning decoders, since these offer
a flexibility to different types of topological codes that
a dedicated decoder lacks.

Torlai and Melko [10] implemented a machine learn-
ing decoder based on a restricted Boltzmann machine,
while Varsamopoulos, Criger, and Bertels [18] and
Krastanov and Jiang [19] used feedforward neural net-
works. The key distinction with our work is that we
use a recurrent neural network, and thereby allow the
decoder to detect correlations between arbitrary cy-
cles of stabilizer measurements.

Refs. [10] and [19] were limited to the study of mod-
els without circuit-level noise (i.e. without measure-
ment error between repeated cycles), and so no direct
quantitative comparison with the performance of our
decoder is possible.

One feedforward neural network in Ref. [18] was
constructed to take the syndrome from 3 cycles as
input. While it cannot decode an arbitrary number
of cycles, it can account for circuit noise at the 3-
cycle level. Over that time frame their performance
lies within error bars from that of our recurrent neural
network. (The equivalence of the Pauli-frame-update
error rate of Ref. [18] and our parity-bit error rate is
discussed in App. B.)

5 Design of the neural network de-
coder
The neural network consists of two LSTM layers with

internal state sizes N
(1)
L and N

(2)
L , and a fully con-

nected evaluation layer with N
(E)
L neurons. We imple-

ment the decoder using the TensorFlow library [40],

taking N
(1)
L = N

(2)
L = N

(E)
L = 64. The LSTM lay-

ers receive as input sets of syndrome increments δ~s(t)
from both the x-stabilizer and the z-stabilizer mea-
surements.

When a final parity prediction is required from the
network at time T , information from the recurrent
network is passed to an evaluation layer, along with
the syndrome increment

δ ~f(T) = ~f − ~s(T) mod 2 (4)

between final syndrome ~f calculated from the data
qubit measurements and the last syndrome readout

Accepted in Quantum 2018-01-16, click title to verify 4

Figure 2: Architecture of the recurrent neural network decoder, consisting of two neural networks. The upper half is network
1 and the lower half is network 2. Ovals denote the long short-term memory (LSTM) layers and fully connected evaluation
layers, while boxes denote input and output data. Solid arrows denote data flow in the system, and dashed arrows denote the
internal memory flow of the LSTM layers.

~s(T) from the ancilla qubits. Note that, while ~s(t) is
passed to each decoder in both the x-basis and the
z-basis, the final syndrome ~f is only available to a
decoder in its own basis.

The memory of the recurrent network solves the
issue of how to concatenate multiple decoding cy-
cles, but one remaining issue occurs at the end of
the computation: the final syndrome breaks time-
translational invariance. Within any cycle, the de-
coder must account for the possibility that an error
signal (δsi(t) = 1) should be propagated forward in
time to future cycles. This is not the case for the fi-
nal syndrome, as this is calculated directly from the
data qubit measurements, and any errors in the data
qubits do not propagate forward in time.

To achieve time-translational invariance of the de-
coder we split the problem into two separate tasks, as
shown in Fig. 2. Task 1 is to estimate the probability
p1 that the parity of bit-flip errors during T cycles is
odd, based solely on the syndrome increments δ~s(t)
up to that point (i.e. those extracted from ancilla
measurements). Task 2 is to estimate the probability
p2 that the final data qubit measurements make any
adjustment to the final parity measurement, based
solely on new information from the final syndrome in-
crement δ ~f(T). The final parity probability is then
given by the probabilistic sum

p = p1(1− p2) + p2(1− p1). (5)

We use two separate networks for the two tasks.
The first network gets T rounds of syndrome incre-
ments δ~s(t) but not the final syndrome increment (up-
per half of Fig. 2). The second network gets only
the last T0 syndrome increments δ~s(t), but its evalu-
ation layer gets the last output of the second LSTM
layer concatenated with the final syndrome increment

(lower half of Fig. 2). For Surface-17, we observe
optimal performance when we allow the task-2 net-
work a window of T0 = 3 cycles, giving a decoder
that works for experiments of three or more cycles.
In general, the number of cycles fed to the second
network should be on the order of the length of the
longest time-correlations between syndromes. As task
2 only requires decoding of a fixed number of cycles, it
could potentially be performed by a simpler feedfor-
ward network, but we found it convenient to keep the
same architecture as task 1 because of the similarity
between the two tasks.

We discuss the details of the network architecture
and training procedure in App. A. The source code is
available [41].

6 Neural network performance
We determine the neural network performance on
the 17-qubit distance-3 surface code, referred to as
“Surface-17”, which is under experimental develop-
ment [23].

We take at first a simplified Pauli error channel
model [42], similar to Refs. [6, 7] but without corre-
lated two-qubit errors. In this model the performance
of the blossom decoder is understood and individual
error types can be focused upon. Stabilizer measure-
ments are made by entangling two or four data qubits
with an ancilla qubit, which is readout in the compu-
tational basis (right panel in Fig. 1).

The process is broken into seven steps: four coher-
ent steps over which cnot gates are performed, two
steps in which Hadamard gates are performed, and
one measurement step. During idle, Hadamard, and
cnot steps, both data and ancilla qubits have inde-
pendent chances of a σx error (with probability px),

Accepted in Quantum 2018-01-16, click title to verify 5

Figure 3: Comparison of logical qubit decay between blossom
and neural network decoders for a Pauli error channel model,
with px = py = pz = 0.048% and pm = 0.14%. We plot the
probability that the decoder corrects the logical qubit after
t cycles of stabilizer measurement and error accumulation.
All data is averaged over 5 · 104 datasets, with error bars
obtained by boot-strapping (using 3σ for the error). Lines
are two-parameter fits of the data to Eq. (8).

a σy error (with probability py), and a σz error (with
probability pz). This implies that the total probabil-
ity during any step for a qubit to accumulate a y-error
(as opposed to an x-error, a z-error, or no error) is

y-error prob. = py(1−px)(1−pz)+pxpz(1−py). (6)

With this definition py = 0 implies that x-errors and
z-errors are uncorrelated (it does not imply that there
are no y-errors).

Data qubits behave similarly during measurement
steps, but ancilla qubits are projected into the com-
putational basis and so cannot incur phase errors. In-
stead, a measurement has a pm chance of returning
the wrong result, without the qubit state being af-
fected. Qubits are reused after measurement with-
out reset, and so the syndromes si(t) are obtained
by changes in the readout mi(t) of an ancilla qubit
between rounds,

si(t) = mi(t)−mi(t− 1) mod 2. (7)

The performance of the logical qubit is measured
using the protocol outlined in Ref. [29] (Methods sec-
tion). The logical qubit is prepared in the |0〉 state,
held for T cycles, and finally measured and decoded.
The decoder seeks to determine whether or not the
qubit underwent a logical bit-flip during this time.
The probability that the decoder obtains the cor-
rect answer gives the logical qubit fidelity, which can
be plotted as a function of the number of cycles.
Fig. 3 shows the decay in fidelity over 300 cycles for
px = py = pz = 0.048% and pm = 0.14%, which cor-
responds to a physical error rate of approximately 1%
per cycle.

A logical error rate per cycle ε can be obtained from
these figures by a two-parameter fit to the logical fi-

Figure 4: Comparison of the error rates ε of a logical qubit
decoded by a neural network and a blossom decoder, for dif-
ferent values of the correlated error rate py. As py increases,
at fixed px = pz = 0.048% and pm = 0.14%, the blossom
decoder (blue) produces a larger error rate than the neural
network decoder (red). Data points are obtained by fitting
decay curves, as in Fig. 3.

delity
F(t) = 1

2 + 1
2 (1− 2ε)t−t0 , (8)

where t0 is a constant offset to account for the ‘major-
ity vote’ behavior of the error correcting circuit at low
cycle number [29], and any additional sample prepa-
ration and measurement error. We find ε = 0.209%
for the neural network decoder, a substantial improve-
ment over the value ε = 0.274% for the blossom de-
coder [30].

To demonstrate that the performance improvement
is due to the capability of the neural network to detect
error correlations, we show in Fig. 4 how the perfor-
mance varies with varying py (at fixed px = pz =
0.048% and pm = 0.14%). When py = 0, the σx and
σz errors are independent and the blossom decoder
performs near-optimally [29, 31]. The neural network
decoder then gives no improvement, but once py ∼ px
the performance gain is evident.

7 Conclusion and outlook
In conclusion, we have designed and tested a recurrent
neural network decoder that outperforms the stan-
dard minimum-weight perfect matching (MWPM, or
“blossom”) decoder in the presence of correlated bit-
flip and phase-flip errors. The building block of the
network, a long short-term memory layer, allows the
decoder to operate over the full duration of a quan-
tum algorithm with multiple cycles. A key feature
of our design, which sets it apart from independent
proposals [18–20], is that the network can be trained
solely on experimental data, without requiring a pri-
ori assumptions from theoretical modeling.

We believe that our neural network decoder pro-
vides a realistic option for utilization in forthcoming
experimental QEC implementations [23]. In support

Accepted in Quantum 2018-01-16, click title to verify 6

Figure 5: Same as Fig. 3, but now for a density matrix
simulation of an implementation of Surface-17 using super-
conducting transmon qubits [29].

of this, we have tested the performance in a real-world
setting by using a density matrix simulator to model
Surface-17 with state-of-the-art experimental param-
eters for superconducting transmon qubits [29]. In
Fig. 5 we show the decay of the fidelity over 100 cy-
cles for the neural network and blossom decoders, as
well as an upper bound on the optimal fidelity. (The
latter is extracted directly from the simulation data.)
The decoder efficiency (1) of the neural network is
ηd = 0.81, a 26% improvement over the blossom de-
coder. This improvement was achieved after train-
ing on 4 · 106 datasets, which require roughly 60 s to
generate on experimental hardware [23], making this
approach immediately experimentally viable.

We mention three directions for future research.
The first is the extension to other topological codes
than the surface code, such as the color code. The
neural network itself is agnostic to the type of topo-
logical code used, so this extension should be feasible
without modifications of the design. Secondly, for low
error rates it will be challenging to train a neural net-
work decoder, because then the training dataset is
unlikely to contain a sufficient representation of two-
qubit errors. This can potentially be overcome by
training on data with a higher error rate, but it re-
mains to be seen whether a decoder trained this way
will outperform MWPM decoding. Finally, the de-
coder needs to be scaled-up to surface codes that are
deformed by lattice surgery [43] or braiding [4] for the
execution of logical gates. For this extension the de-
sign of the decoder should be modified so that it is
not tied to a single code distance.

Acknowledgments
We have benefited from discussions with B. Criger,
L. DiCarlo, A. G. Fowler, V. Ostroukh, and B. Ter-
hal. This research is supported by the Netherlands
Organization for Scientific Research (NWO/OCW),
an ERC Synergy Grant, and by the Office of the Di-

rector of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via
the U.S. Army Research Office grant W911NF-16-1-
0071. The views and conclusions contained herein
are those of the authors and should not be inter-
preted as necessarily representing the official policies
or endorsements, either expressed or implied, of the
ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding
any copyright annotation thereon.

References
[1] D. A. Lidar, T. A. Brun, editors, Quantum error

correction (Cambridge University Press, 2013).

[2] B. M. Terhal, Quantum error correction for
quantum memories, Rev. Mod. Phys. 87, 307
(2015).

[3] A. G. Fowler, A. C. Whiteside, and L. C. L. Hol-
lenberg, Towards practical classical processing for
the surface code, Phys. Rev. Lett. 108, 180501
(2012).

[4] S. B. Bravyi and A. Yu. Kitaev, Quantum
codes on a lattice with boundary, arXiv:quant-
ph/9811052.

[5] D. S. Wang, A. G. Fowler, and L. C. L. Hollen-
berg, Surface code quantum computing with error
rates over 1%, Phys. Rev. A 83, 020302 (2011).

[6] A. G. Fowler, M. Mariantoni, J. M. Martinis, and
A. N. Cleland, Surface codes: Towards practical
large-scale quantum computation, Phys. Rev. A
86, 032324 (2012).

[7] Yu Tomita and K. M. Svore. Low-distance sur-
face codes under realistic quantum noise, Phys.
Rev. A 90, 062320 (2014).

[8] J. R. Wootton, A. Peter, J. R. Winkler, and D.
Loss, Proposal for a minimal surface code exper-
iment, Phys. Rev. A 96, 032338 (2017).

[9] N. H. Nickerson, Error correcting power of small
topological codes, arXiv:1609.01753.

[10] G. Torlai and R. G. Melko, Neural decoder for
topological codes, Phys. Rev. Lett. 119, 030501
(2017).

[11] R. Rojas, Neural Networks, (Springer, Berlin,
Heidelberg, 1996).

[12] Y. Bengio, Learning deep architectures for AI,
Foundations and Trends in Machine Learning 2,
1 (2009).

[13] S. Shalev-Shwartz and S. Ben-David, Under-
standing machine learning: From theory to al-
gorithms (Cambridge University Press, 2014).

[14] A. Yu. Kitaev, Fault-tolerant quantum computa-
tion by anyons, Ann. Physics 303, 2 (2003).

[15] J. Edmonds, Paths, trees, and flowers, Canad. J.
Math. 17, 449 (1965).

Accepted in Quantum 2018-01-16, click title to verify 7

https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/PhysRevLett.108.180501
https://doi.org/10.1103/PhysRevLett.108.180501
https://arxiv.org/abs/quant-ph/9811052
https://arxiv.org/abs/quant-ph/9811052
https://doi.org/10.1103/PhysRevA.83.020302
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.96.032338
https://arxiv.org/abs/1609.01753
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1007/978-3-642-61068-4
https://doi.org/10.1007/978-3-642-61068-4
http://doi.org/10.1561/2200000006
http://doi.org/10.1561/2200000006
https://doi.org/10.1016/S0003-4916(02)00018-0
http://doi.org/10.4153/CJM-1965-045-4
http://doi.org/10.4153/CJM-1965-045-4

[16] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Topological quantum memory, J. Math. Phys. 43,
4452 (2002).

[17] A. G. Fowler, Minimum weight perfect matching
of fault-tolerant topological quantum error correc-
tion in average O(1) parallel time, Quantum Inf.
Comput. 15, 0145 (2015).

[18] S. Varsamopoulos, B. Criger, and K. Bertels, De-
coding small surface codes with feedforward neu-
ral networks, Quantum Sci. Technol. 3, 015004
(2018).

[19] S. Krastanov and L. Jiang, Deep neural network
probabilistic decoder for stabilizer codes, Sci. Rep.
7, 11003 (2017).

[20] Both Refs. [18] and [19] represent independent
research that was reported on arXiv at about the
same time as the work reported here.

[21] J. Kelly, R. Barends, A. G. Fowler, A. Megrant,
E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus,
B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A.
Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley,
C. Quintana, P. Roushan, A. Vainsencher, J.
Wenner, A. N. Cleland, and J. M. Martinis, State
preservation by repetitive error detection in a su-
perconducting quantum circuit, Nature 519, 66
(2015).

[22] M. Takita, A. D. Córcoles, E. Magesan, B. Abdo,
M. Brink, A. Cross, J. M. Chow, and J. M. Gam-
betta, Demonstration of weight-four parity mea-
surements in the surface code architecture, Phys.
Rev. Lett. 117, 210505 (2016).

[23] R. Versluis, S. Poletto, N. Khammassi, B.
Tarasinski, N. Haider, D. J. Michalak, A. Bruno,
K. Bertels, and L. DiCarlo, Scalable quantum
circuit and control for a superconducting surface
code, Phys. Rev. Applied 8, 034021 (2017).

[24] P. W. Shor, Scheme for reducing decoherence in
quantum computer memory, Phys. Rev. A 52,
R2493 (1995).

[25] A. Steane, Multiple-particle interference and
quantum error correction, Proc. Royal Soc. A
452, 2551 (1996).

[26] D. Gottesman, Stabilizer codes and quantum er-
ror correction (Doctoral dissertation, California
Institute of Technology, 1997).

[27] M.-H. Hsieh and F. Le Gall, NP-hardness of
decoding quantum error-correction codes, Phys.
Rev. A 83, 052331 (2011).

[28] S. Bravyi, M. Suchara, and A. Vargo, Efficient al-
gorithms for maximum likelihood decoding in the
surface code, Phys. Rev. A 90, 032326 (2014).

[29] T. E. O’Brien, B. Tarasinski, and L. Di-
Carlo, Density-matrix simulation of small
surface codes under current and projected
experimental noise, npj Quantum Infor-
mation 3, 39 (2017). The source code of
the quantum simulator can be found at
https://github.com/brianzi/quantumsim.

The source code of the Surface-
17 simulation can be found at
https://github.com/obriente/surf17 circuit.

[30] The source code of the blossom decoder can be
found at https://github.com/obriente/qgarden.

[31] B. Heim, K. M. Svore, and M. B. Hastings,
Optimal circuit-level decoding for surface codes,
arXiv:1609.06373.

[32] H. Bombin, and M. A. Martin-Delgado, Optimal
resources for topological two-dimensional stabi-
lizer codes: Comparative study, Phys. Rev. A 76,
012305 (2007).

[33] A. G. Fowler, Optimal complexity correc-
tion of correlated errors in the surface code,
arXiv:1310.0863.

[34] S. Hochreiter and J. Schmidhuber, Long short-
term memory, Neural Computation 9, 1735
(1997).

[35] W. Zaremba, I. Sutskever, and O. Vinyals,
Recurrent neural network regularization,
arXiv:1409.2329.

[36] N. Delfosse and J.-P. Tillich, A decoding algo-
rithm for CSS codes using the X/Z correlations,
2014 IEEE International Symposium on Informa-
tion Theory, 1071 (2014).

[37] B. Criger and I. Ashraf, Multi-path sum-
mation for decoding 2D topological codes,
arXiv:1709.02154.

[38] G. Duclos-Cianci and D. Poulin, Fast decoders
for topological quantum codes, Phys. Rev. Lett.
104, 050504 (2010).

[39] A. Hutter, J. R. Wootton, and D. Loss, Efficient
Markov chain Monte Carlo algorithm for the sur-
face code, Phys. Rev. A 89, 022326 (2014).

[40] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J.
Dean, M. Devin, S. Ghemawat, I. Goodfellow, A.
Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R.
Monga, S. Moore, D. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F.
Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, TensorFlow:
Large-scale machine learning on heterogeneous
distributed systems, arXiv:1603.04467.

[41] The source code of the neural network decoder
can be found at https://github.com/baireuther/
neural network decoder.

[42] The source code of the error model can be found
at https://github.com/baireuther/circuit model.

[43] C. Horsman, A. G. Fowler, S. Devitt, and R. van
Meter, Surface code quantum computing by lat-
tice surgery, New J. Phys. 14, 123011 (2012).

[44] D. P. Kingma and J. Ba, Adam: A method for
stochastic optimization, arXiv:1412.6980.

[45] G. E. Hinton, N. Srivastava, A. Krizhevsky, I.
Sutskever, and R. R. Salakhutdinov, Improving

Accepted in Quantum 2018-01-16, click title to verify 8

https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1088/2058-9565/aa955a
https://doi.org/10.1088/2058-9565/aa955a
https://doi.org/10.1038/s41598-017-11266-1
https://doi.org/10.1038/s41598-017-11266-1
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevApplied.8.034021
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1103/PhysRevA.83.052331
https://doi.org/10.1103/PhysRevA.83.052331
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1038/s41534-017-0039-x
https://doi.org/10.1038/s41534-017-0039-x
https://github.com/brianzi/quantumsim
https://github.com/obriente/surf17_circuit
https://github.com/obriente/qgarden
https://arxiv.org/abs/1609.06373
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.1103/PhysRevA.76.012305
https://arxiv.org/abs/1310.0863
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1409.2329
https://doi.org/10.1109/ISIT.2014.6874997
https://doi.org/10.1109/ISIT.2014.6874997
https://arxiv.org/abs/1709.02154
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevA.89.022326
https://arxiv.org/abs/1603.04467
https://github.com/baireuther/neural_network_decoder
https://github.com/baireuther/neural_network_decoder
https://github.com/baireuther/circuit_model
https://doi.org/10.1088/1367-2630/14/12/123011
https://arxiv.org/abs/1412.6980

neural networks by preventing co-adaptation of
feature detectors, arXiv:1207.0580.

A Details of the neural network de-
coder
A.1 Architecture
The decoder is composed of two networks. The first
network maps a list of syndrome increments δ~s(t) with
t = 1, 2, ..., T to a probability p1 ∈ [0, 1]. The sec-
ond network maps a list with the last few syndrome
increments t = T − T0 + 1, T − T0 + 2, ..., T , to-
gether with a single final syndrome increment δ ~f(T)
to a probability p2 ∈ [0, 1]. The probabilistic sum
p = p1(1 − p2) + p2(1 − p1) of these two outputs is
the probability that the logical qubit has incurred a
bit-flip error. The cost function we try to minimize
is the cross-entropy between this probability and the
true final parity of bit-flip errors (labels) plus a small
weight regularization term.

We note that p is invariant under the transforma-
tion p1 → 1− p1 and p2 → 1− p2. This ambiguity in
the individual error probabilities is irrelevant for the
joint operation of the networks. Moreover, it may be
easily removed by testing the trained networks sepa-
rately on a trivial example where all syndromes are
zero and both probabilities should be < 1/2.

Both networks consist of two LSTM layers with in-
ternal states ~cit,

~hit ∈ R64 and a fully connected evalu-
ation layer with 64 rectified linear units. The inputs
of the first layer are the syndrome increments. The
inputs of the second layer are the outputs of the first
layer ~h1

t . For the first network, the input of the eval-
uation layer is the final output of the second LSTM
layer, subject to a rectified linear activation function
ReL(~h2

T). For the second network, the input of the

evaluation layer is ReL(~h2
T) concatenated with the fi-

nal syndrome increment δ ~f(T).
The source code including all the network parame-

ters is available [41].

A.2 Training and evaluation
The two networks are trained simultaneously on mini-
batches of size 64 from a training dataset contain-
ing 4 · 106 sequences of lengths between T = 11 and
T = 20 cycles. At the end of each sequence, the train-
ing set contains the final syndrome increment and the
final parity of bit-flip errors. One epoch consists of
104 mini-batches. The optimization is done using the
Adam optimizer [44] with a learning rate of 10−3. For
regularization we apply dropout [45] with a keep prob-
ability of 0.8 after each LSTM layer and after the
evaluation layer. In addition, we apply weight decay
with a prefactor of 10−5 to the evaluation layer. After
each epoch, the decoder is evaluated on a validation

dataset, which consists of 104 sequences of lengths be-
tween T = 81 and T = 100 cycles. If the logical error
rate on the validation dataset reaches a new mini-
mum, the network is stored. The training continues
until the logical error rate on the validation dataset
has not improved for 100 epochs. We train three de-
coders and choose the instance that has the lowest
logical error rate on the validation dataset.

To evaluate the chosen decoder, we use yet another
dataset. This test dataset consists of 5 ·104 sequences
of length T = 300 for the Pauli error channel model
and T = 100 for the density matrix simulation. In
contrast to the training and validation datasets, the
test dataset contains a final syndrome increment and
a final parity of bit-flip errors after each cycle. This
cannot be achieved in a real experiment, but is ex-
tracted from the simulation to keep the calculation
time manageable. We evaluate the decoder on the
test dataset for tn = 2 +

∑n
n′=1 n

′ ≤ T cycles, chosen
such that the resolution is high at small cycle num-
bers and lower at large cycle numbers. If the decoders
output is p < 0.5, the final parity of bit-flip errors is
predicted to be even and otherwise odd. We then
compare this to the true final parity and average over
the test dataset to obtain the logical fidelity. Using
a two-parameter fit to Eq. (8) we obtain the logical
error rate per cycle.

B Parity-bit error versus Pauli-frame-
update error
Ref. [18] described the error rate of the decoder in
terms of its ability to apply the correct Pauli frame
update. The error rate ε from Eq. (8) describes the
correctness of the parity bit produced by the decoder,
without explicitly referring to a Pauli frame update.
Here we show that the two error rates are in fact the
same.

We recall that a Pauli frame is a list of Pauli X, Y,
or Z errors that have occurred to data qubits [2]. Two
Pauli frames are equivalent if they are separated by
stabilizer measurements, since these act as the iden-
tity on the error-free subspace.

We begin by choosing logical operators XL and ZL
in terms of Pauli operators on the physical qubits.
The choice is not unique because of a gauge freedom:
SXL = XL on the logical subspace for any stabilizer
operator S.

Consider a syndrome ~s(t) that contains only a single
non-zero stabilizer measurement si(t), corresponding
to a stabilizer operator Si. There exist multiple Pauli
frames Pi that correct Si and which commute with our
chosen logical operators. Ref. [18] considers a ‘simple’
decoder, which arbitrarily chooses one Pi for each Si.
Then, given a syndrome ~s(t) at time t with many
non-zero si, it generates a Pauli frame as Psimple =∏
i,si(t)=1 Pi.

Accepted in Quantum 2018-01-16, click title to verify 9

https://arxiv.org/abs/1207.0580

The simple decoder is coupled to a neural network
decoder, which outputs a parity bit p that determines
whether or not to multiply Psimple byXL (if the neural
network is calculating Z-parity) or ZL (if the neural
network is calculating X-parity). We denote the re-
sulting Pauli frame update by Pcalc. If it differs from
the true Pauli frame update Ptrue the decoder has
made an error, and the rate at which this happens is
the Pauli frame update error rate εP .

To see that this εP is equivalent to the parity-bit
error rate ε, we consider for the sake of definiteness
a neural network that calculates the Z-parity. The
two Pauli frames Pcalc and Ptrue differ by XL when
[Ptrue, ZL] 6= [Pcalc, ZL]. But [Ptrue, ZL] is the par-
ity readout of the data qubits, and [Pcalc, ZL] is pre-
cisely our prediction. Alternatively, note that the sim-
ple decoder is constructed to fix [Psimple, ZL] = 0,
and the choice to multiply this by XL precisely fixes
[Pcalc, ZL] = p.

We finally note that in a physical experiment the
Pauli frame Ptrue is undetermined unless the data
qubits themselves are measured in the Z or X ba-
sis, and the gauge freedom is fixed at random by this
measurement. The parity bit p is therefore not only
more convenient for a neural network to output than
a Pauli frame update, but also more appropriate, as
this way the neural network does not spend time try-
ing to predict the outcome of quantum randomness.

Accepted in Quantum 2018-01-16, click title to verify 10

	1 Introduction
	2 Overview of the surface code
	3 Neural network detection of correlated errors
	4 Related Work
	4.1 Approaches going beyond blossom decoding
	4.2 Approaches based on machine learning

	5 Design of the neural network decoder
	6 Neural network performance
	7 Conclusion and outlook
	 Acknowledgments
	 References
	A Details of the neural network decoder
	A.1 Architecture
	A.2 Training and evaluation

	B Parity-bit error versus Pauli-frame-update error

