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Topological states can be used to control the mechanical proper-
ties of a material along an edge or around a localized defect. The
rigidity of elastic networks is characterized by a topological invari-
ant called the polarization; materials with a well-defined uniform
polarization display a dramatic range of edge softness depending
on the orientation of the polarization relative to the terminating
surface. However, in all 3D mechanical metamaterials proposed
to date, the topological modes are mixed with bulk soft modes,
which organize themselves in Weyl loops. Here, we report the
design of a 3D topological metamaterial without Weyl lines and
with a uniform polarization that leads to an asymmetry between
the number of soft modes on opposing surfaces. We then use this
construction to localize topological soft modes in interior regions
of the material by including defect lines—dislocation loops—that
are unique to three dimensions. We derive a general formula that
relates the difference in the number of soft modes and states of
self-stress localized along the dislocation loop to the handedness
of the vector triad formed by the lattice polarization, Burgers vec-
tor, and dislocation-line direction. Our findings suggest a strategy
for preprogramming failure and softness localized along lines in
3D, while avoiding extended soft Weyl modes.
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Mechanical metamaterials can control softness via a balance
between the number of degrees of freedom (dfs) of their

components or nodes and the number of constraints caused by
connections or links (1–9). This balance, first noted by Maxwell
(10) and later explored by Calladine (11), is termed isostatic-
ity. In isostatic materials, softness can manifest itself via large-
scale deformations [for example, as uniform Guest–Hutchinson
modes (12, 13)] or via periodic soft deformations correspond-
ing to so-called Weyl modes (14, 15). Uniform softness can be
exploited to create extraordinary mechanical response (16), such
as materials with a negative Poisson’s ratio (1, 2, 17). Alter-
natively, localized softness has been programmed into isostatic
materials in one and two dimensions via a topological invariant
called the polarization (3, 5) that controls mechanical response
and stress localization (18) at an edge [including the edge of a
disordered sample (19)], at an interface, or bound to a moving
soliton (4). These mechanical (20–28) examples of topological
metamaterials (29–31) exhibit a general feature of topological
matter (32, 33): a correspondence between integer invariants
in the bulk and response at a boundary. Large-scale and local-
ized deformations are deeply intertwined, as can be seen in
demonstrations in which topological soft modes are created or
destroyed by applying large uniform strains (34). For many appli-
cations, such as cushioning (35), programmed assembly (36),
or controlled failure (37), materials need to be designed with
nonuniform yield behavior. Deformation or failure at a speci-
fied region can be programmed via a combination of topological
polarization and localized defects (37, 38). Soft regions can selec-
tively achieve large displacements [for example, in self-folding
origami (36, 39, 40)] and isolate the rest of the material from
strain (35).

Although there are a number of examples of isostatic peri-
odic structures in one, two, and three dimensions, the 3D case
is unique, because all prior realizations of 3D isostatic lattices
include large-scale periodic deformations along continuous lines
in momentum space (15, 35, 37). These Weyl lines define fam-
ilies of periodic soft modes in the material bulk and contain a
number of modes that scales with the linear size of the structure.
As ref. 35 explores, Weyl lines can be useful to create a metama-
terial surface with anisotropic elasticity, but to create a material
with a top surface that is much softer than the bottom, it proves
necessary to collapse two Weyl lines on top of each other. An
alternative would be to find a metamaterial without Weyl lines.
However, these Weyl lines are generic and have a topologi-
cal character, which ensures that they cannot be annihilated
locally—a single Weyl loop can only be destroyed by shrinking
it to a point. This presents a challenge in 3D isostatic metama-
terial design: to achieve a “gapped” (i.e., allowing Goldstone
modes but having no Weyl modes) topological material analo-
gous to those in two dimensions (3, 5, 34), in which softness can
be controlled and localized without modulating materials param-
eters. In contrast to traditionally used composite materials, such
mechanical response can be designed to be topologically robust
and independent from auxiliary properties, such as thermal or
electrical conductivity.

In this work, we design gapped topological materials by explor-
ing the parameter space of the generalized stacked kagome lat-
tice and study the effect of defect lines in such 3D materials.
Localizing topological states along these lines (i.e., codimension-
2 manifolds) parallels recent interest in multipole topological
insulators, which go beyond the usual case of bulk-boundary cor-
respondence with a (codimension-1) hypersurface boundary (41,
42). Our strategy relies on the presence of a nonzero topological
polarization oriented along the z axis. This topological polariza-
tion P can be exploited to localize soft modes in the material
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bulk by introducing topological defects within the lattice struc-
ture called dislocation loops. These dislocations are character-
ized by a topological invariant called the Burgers vector b. Along
the dislocation, we show that the topological charge character-
izing the softness or rigidity of the lattice (with unit cell volume
Vcell ) depends on the orientation ˆ̀of the dislocation line and is
given by P · (b× ˆ̀)/Vcell per unit length.

Gapping the Stacked Kagome Lattice
We examine the mechanics of metamaterial structures by using
a lattice model for the displacements of nodes and strains of
the links. We place a point mass at each vertex and connect
the neighboring ones by linear springs. Such models capture
the small-strain response of realistic structures that are either
3D-printed from soft polymers (35, 37) or assembled from con-
struction sets (4) or laser-cut components (38). The mechan-
ics of these ball–spring networks are captured via the linearized
equation of motion Ẍ =−DX , where X ≡ (x1, . . . , xN ) is a d×
N-dimensional vector containing the displacements of all N par-
ticles in d dimensions relative to their equilibrium positions. For
a given lattice geometry, we calculate the dynamical matrix D ,
which relates the forces exerted by springs to displacements of
the particles. For simplicity, we work in units, in which all particle
masses and spring constants are one. In the linear regime, we can
find the dynamical matrix by first relating the NB -dimensional
vector of spring extensions S≡ (s1, . . . , sNB ) to the displace-
ments via S=RX . The rigidity matrix R contains dN ×NB

entries determined by the equilibrium positions of the particles
and the connectivity of the lattice. In combination with Hooke’s
law, the matrix R lets us calculate the dynamical matrix D via
the relation D =RTR (2, 11). From the relation S=RX , we note
that kerR contains soft modes [i.e., collective displacements that
(to lowest order) do not stretch or compress any of the springs].
However, the matrix RT relates forces on particles Ẍ to spring
strains via Ẍ =−RTS. From this relation, one notes that kerRT

contains combinations of spring tensions that do not give rise to
particle forces. These configurations are dubbed states of self-
stress, because they define load-bearing states, which put the lat-
tice under a static tension (11).

To calculate soft modes (states of self-stress), we need to
numerically solve the configuration-dependent equation RX = 0
(RTS= 0). However, a mathematical result called the rank-
nullity theorem lets us compute the difference between the num-
ber of zero modes N0≡nullR and the number of states of self-
stress NB ≡ nullRT (2, 5, 11). This difference, the softness charge
ν≡N0 − NB , is given by the dimensionality of the R matrix
ν= dN − NB and can only change if balls or springs are either
added or removed. We focus on the special case of isostatic,
or Maxwell, lattices defined by ν=0 when the system is con-
sidered under periodic boundary conditions. These lattices are
marginally rigid and exhibit a symmetry between zero modes and
states of self-stress.

To design metamaterials based on simple, repeated patterns,
we focus on periodic structures. Periodicity allows us to explic-
itly calculate zero modes and states of self-stress in a large sam-
ple. We begin with a highly symmetric, “undeformed” lattice and
explore its configuration space by changing the positions (but not
the connectivity) of the nodes. The specific geometry that we
consider is illustrated in Fig. 1: this stacked kagome lattice has
a coordination number z ≡ 2NB/N =6 and ν=0; the lattice is
isostatic. This lattice is based on the two-triangle unit cell shown
in Fig. 1A, which corresponds to two unit cells of the kagome
lattice stacked on top of each other. We deform the lattice via
the orientations of the triangles, which are governed by the three
angles (φ, θ, ψ) of rotation around the (x , y , z ) axes, respectively.
Within this structure, we explore a range for each of the three
angles from−π/2 to π/2. In Fig. 1B, we show the deformed unit
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Fig. 1. Architecture of a 3D stacked kagome lattice. (A) We consider the
doubled unit cell of a vertically stacked kagome lattice and rotate the top
constituent triangle around three perpendicular axes by angles (φ, θ, ψ)
[the bottom triangle is rotated by (−φ,−θ,−ψ)]. (B) For the choice
(φ, θ, ψ) = (π/3, 0, π/3) of these parameters, we obtain a unit cell that cor-
responds to a (gapped) 3D lattice with a topological polarization P and with-
out Weyl lines. (C) Architecture of the (gapped) metamaterial, with one unit
cell emphasized in the lower left corner and a 2D kagome sublattice surface
highlighted in green along the top.

cell for a particular structure in this region, which corresponds to
the choice (φ, θ, ψ)= (π/3, 0, π/3). This unit cell builds the peri-
odic geometry in Fig. 1C. We proceed to quantitatively show that
this metamaterial has no Weyl lines.

We calculate the spectrum of normal modes by considering
plane-wave solutions of the form xα,`= e i`·kxα, where the index
α refers to a particle within one unit cell and the lattice index
` enumerates different unit cells within a lattice. The three-
component wave vector k is periodic in each component with
−π≤ kx , ky , kz ≤π. This collection of points forms the first Bril-
louin zone of the lattice. The Bloch representation of the rigid-
ity matrix in this plane-wave basis is Rαβ(k)=Rαβe

i(`α−`β)·k.
A zero mode at wave number k is a vector of unit cell displace-
ment xα that solves Rβα(k)xα=0. Thus, within this setting, zero
modes correspond to the zeros of the complex function detR(k).
By examining this function, we find the zero modes for different
configurations of the lattice.

We numerically evaluate zero modes for the stacked kagome
lattice (details are in Generalized Stacked Kagome Lattice and Soft
Directions) and for most values of the angles (φ, θ, ψ), we find col-
lections of zero modes along compact loops in k space (Fig. 2A).
These Weyl loops, shown in Fig. 2 B and C, are analogous to 1D
nodal lines (43–45) and experimentally observed 0D Weyl points
(46, 47) in 3D electronic semimetals and photonic crystals. In iso-
static lattices, the number of Weyl loops is always even, because
the materials’ time-reversal symmetry maintains k → −k reflec-
tion symmetry in the Brillouin zone—each Weyl loop comes in
a pair with its reflected partner (15). Furthermore, these loops
attach to the origin of the Brillouin zone along soft directions (i.e.,
the lines tangent to the Weyl loops at the origin). We count the
number of loops by looking at soft directions in the neighborhood
of the origin, and in Fig. 2A, we plot this count in a slice of param-
eter space. In this phase diagram, we note regions with up to six
different loops. Strikingly, the middle of the diagram displays a
region in which no Weyl loops exist (Fig. 2 A and D).

We conclude that, although Weyl loops are generic, the
stacked kagome lattice also exhibits gapped configurations in the
sense that they contain no Weyl loops (but do contain gapless
Goldstone modes). In lattices with Weyl loops, the number of
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Fig. 2. Phase diagram of stacked kagome lattices. (A) The number of soft directions in φ–ψ parameter space for θ= 0 (Fig. 1A). The region in dark
blue corresponds to a gapped topological lattice, whereas the rest corresponds to lattices containing two (cyan), four (green), or six (orange) Weyl loops.
(B) Weyl loops along the line (θ, ψ) = (0, π/3) corresponding to magnified points in A. As the gapped region is approached, we observe Weyl loops shrinking
toward the origin until they disappear. (C) An example of the soft mode structure in reciprocal space for a lattice with a single two-Weyl loop structure (in
blue), which corresponds to the cyan point (φ, θ, ψ) = (5π/12, 0, π/4) in A. The integration of a phase around any contour (e.g., solid red circles) enclosing
the Weyl loop gives an integer winding number that we use to check the topological nature of the Weyl loop. Note that this contour can be deformed
into a pair of contours (Cz; dashed red lines) traversed in opposite directions: this illustrates how the winding number across the Brillouin zone changes
as the Weyl loop is traversed. Near the origin (kx, ky , kz) = (0, 0, 0), the loop manifests itself via soft directions (teal). (D) The Brillouin zone of a lattice
corresponding to the blue point (φ, θ, ψ) = (π/3, 0, π/3) in A. At the origin, the softest regions (blue region) align themselves with the soft directions of
lattices with (θ, ψ) = (0, π/3) (red) or (φ, θ) = (π/3, 0) (green).

soft modes scales as the linear size of the system, whereas gapped
lattices have only the three uniform Guest–Hutchinson modes
(12, 13). We are not aware of any other realizations of a 3D iso-
static lattice that is gapped in this sense. In the next section, we
address the implications of the existence of a gap for the topo-
logical characterization of mechanical networks.

Topological Rigidity in Three Dimensions
For the gapped isostatic lattice, an integer topological invariant
called the polarization can be computed from the bulk phonon
spectrum (3). This winding number invariant is only well-defined
in the gapped case: in Weyl lattices, the closure of the gap
prevents a consistent definition. That is, when Weyl loops are
present, the polarization changes depending on the choice of
contour in the Brillouin zone. The mechanical consequences of
polarization are found in the spectrum of the material’s soft sur-
face waves. Polarization controls which surfaces have more soft
modes: this is the mechanical version of the bulk-boundary cor-
respondence principle.

For the polarized lattice, a polarization vector P can be com-
puted via P=

∑
i miai − d0, where ai are the three lattice vec-

tors and in our case, the unit cell dipole d0 =−3a3/2. This
dipole is computed via the expression d0≡−

∑
b rb , where rb

are the positions of the bond centers relative to the center of
mass of the unit cell (3). The three coefficients mi are winding
numbers computed by integrating the phase change of the com-
plex function detR(k) across a straight-line contour crossing the
Brillouin zone:

mi ≡ −
1

2πi

∮
Ci

dki
d

dki
ln detR(k), [1]

where Ci is a closed contour in the k̂i direction (3). This inte-
gral is well-defined for contours along which detR(k) 6=0. The
integers mi depend smoothly on the choice of contour and are
constant. In gapped lattices, the determinant is nonzero every-
where except for the origin k=0. As a consequence, the wind-
ing numbers are independent of the chosen contour, and the
polarization is a topological invariant. However, Weyl loops par-
tition the space of straight-line contours into lines going through
the inside (outside) of the loop. Because detR(k)= 0 along
the loops, contours on either side of the loop can have dif-
ferent winding numbers mi . Note that the combination of any
two such contours taken in opposite directions can be smoothly
deformed (without intersecting the Weyl line) into a small cir-
cle enclosing the Weyl line as shown in Fig. 2C. The winding
number mW around this small circle is an invariant and equal
to the difference between mi for Ci on two sides of the loop.
This topological protection guarantees that a single Weyl loop
cannot be destroyed, which explains why Weyl loops only van-
ish by shrinking to the origin within the phase diagram in Fig.
2A. In summary, Weyl lines are protected by a winding num-
ber, and gapped lattices can have a well-defined topological
polarization.

Bulk-boundary correspondence states that the topological
invariants computed in the bulk can have significant effects on
the mechanics of a sample with boundaries. We show this corre-
spondence by computing the topological invariants and the spec-
trum of soft edge states in the stacked kagome lattice. In the bulk
of the Weyl lattice corresponding to (φ, θ, ψ)= (5π/12, 0, π/4)
(compare Fig. 2 A and C), the winding number around the loop
is mW =−1. The m3 for contours inside and outside of the loop
differs by one. To see the boundary counterpart of the corre-
spondence, we compute the spectrum of soft edge states for
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this lattice with a stress-free surface parallel to the xy plane
(Fig. 1C). In Fig. 3 A and B, we show the (signed) inverse pen-
etration depth κ for soft surface modes in the 3D Brillouin
zone for wave vector (kx , ky). These plane-wave solutions of
detR=0 correspond to soft modes of the form e i`·(k+iκ)Xα.
The middle mode of Fig. 3A (zoomed in view shown in Fig. 3B)
changes sides: for κ> 0 (Fig. 3A, red region), the soft mode is
attached to the bottom surface and decays upward into the bulk,
whereas for κ< 0 (Fig. 3A, blue region), the mode is localized
on the top surface. For the line corresponding to the projec-
tion of the Weyl loop onto the 2D Brillouin zone, the pene-
tration depth is infinite, and κ=0, because the Weyl lines are
soft modes in the bulk. The difference in m3 between inside
and outside of the Weyl loops is the bulk invariant mW =−1,
which corresponds to the difference between the number of
soft surface modes across the projected Weyl loop. This con-
nection follows from Cauchy’s argument principle for Eq. 1,
which states that the third winding numbers m3 count, up to
a constant, the number of modes with zero energy (detR=0)
at a boundary. These observations confirm bulk-boundary cor-
respondence.

A similar correspondence exists in the polarized lattice. There,
the invariant polarization pointing along the z axis is given
by P= a3/2, which we computed for parameters (φ, θ, ψ)=
(π/3, 0, π/3). To understand the effect of P on the boundary,
note that, in analogy with electromagnetism, the softness charge
νS in region S is related to the flux of polarization P through the
region’s boundary ∂S . In a nearly uniform, polarized lattice (3),

A B

C D

Fig. 3. Surface modes for a polarized lattice (C and D) compared with a
lattice with Weyl lines (A and B). A surface mode in a plane perpendicu-
lar to the z axis (e.g., Fig. 1C) decays exponentially into the material bulk
with amplitude e−κz/|a3|, where κ is the inverse penetration depth. Lattice
with Weyl lines (φ, θ, ψ) = (5π/12, 0, π/4). (A) Inverse penetration depth for
three soft surface modes over the entire surface Brillouin zone (sBZ). For
small wave vectors (kx, ky ), these modes correspond to the three acoustic
phonons. (B) Zoomed in view of the middle mode in A: the part of wave
vector space for which the mode lives on the bottom side is colored in red,
whereas the part corresponding to the top side is in blue. The projection of
the Weyl line from the bulk onto the sBZ corresponds to a line with infinite
penetration depth (κ= 0) and separates the red and blue regions. Polarized
lattice (φ, θ, ψ) = (π/3, 0, π/3). (C) Inverse penetration depth for the same
three modes as in A but for a different choice of parameters, corresponding
to the blue region in Fig. 2A. (D) Zoomed in view of the middle mode in
C, which (in contrast to the mode in B) is localized on the top of the lat-
tice only: it is blue throughout. Significantly, the bulk (κ= 0) modes that
correspond to the Weyl loop are absent for this lattice.

νS =

∮
∂S

dA

Vcell
n̂ · P, [2]

where n̂ is the boundary’s inward normal and Vcell = det(a1,
a2, a3) is the volume of a unit cell. The difference between the
softness charges at the top vs. the bottom is determined by P:
for the stacked kagome, we expect one more band of soft modes
along the top surface relative to the bottom. The total number
of soft surface modes is three as a result of three bonds being
cut per unit cell (3). We plot the inverse penetration depth κ
for this extra band in Fig. 3 C and D within the 2D Brillouin
zone. Unlike the Weyl lattice, the whole middle band in Fig. 3C
is blue: the top surface has an extra band of soft modes. These
modes have amplitudes that decay exponentially away from
the top surface and can be alternatively interpreted as modes
attached to the bottom surface and exponentially amplified into
the bulk, similar to the modes studied in disordered systems in
ref. 48.

Eq. 2 shows that topological polarization acts analogously to
an electric polarization. Inside a homogeneous polarized mate-
rial, the charge is zero. However, if homogeneity is broken by
the presence of boundary or defects, charge can accumulate at
these spots.

Local Rigidity and Softness at Dislocations
In topological mechanics, regions with positive softness charge
contain mechanisms for soft elastic deformation, whereas
regions with negative charge are prone to buckling (37). Eq. 2
suggests that regions of nonzero polarization flux can occur in
a structurally inhomogeneous material without modulating the
composition (i.e., as an alternative to composites). We choose
dislocations to provide this inhomogeneity.

The natural defects in 3D crystals are line dislocations: dis-
placements of unit cells along straight lines. In many crystalline
solids, such defects control mechanical deformations and plastic-
ity. These defect lines are topologically protected and must either
terminate at the material boundaries or form a closed dislocation
loop (Fig. 4 A and B). When the dislocations terminate at bound-
aries, they provide inhomogeneities extended along a channel
(or curve) in 3D space. The topological invariant correspond-
ing to a dislocation is the Burgers vector given by b=

∮
C
du,

where u(x) is the displacement of a particle at point x in the peri-
odic lattice because of the presence of the dislocation and C is
any closed contour surrounding the dislocation line. The invari-
ant b is contour-independent and therefore, constant along the
dislocation. Together with dislocation line direction ˆ̀, the Burg-
ers vector expresses how the dislocation affects the surrounding
lattice.

Line dislocations come in two primary types called edge and
screw dislocations (Fig. 4A). For edge dislocations, b and ˆ̀ are
orthogonal: the displacement u pushes unit cells apart to insert
a half-plane of unit cells that extends from the dislocation line
in the direction ˆ̀× b. In this way, edge dislocations are 3D gen-
eralizations of 2D point dislocations. By contrast, for screw dis-
locations, the b and ˆ̀ vectors are parallel: the displacement u
pushes neighboring cells apart along the loop. In this way, screw
dislocations give rise to an inherently 3D spiral structure. Along
a dislocation loop, the Burgers vector b is constant, but the line
direction ˆ̀ changes. As Fig. 4A shows, a dislocation loop can con-
tain both edges and screws.

The interplay between line properties ( ˆ̀, b) and topological
polarization P of the lattice leads to a softness charge. On evalu-
ating Eq. 2 in a deformed region (Rigidity Charge Bound to Line
Dislocations), we obtain the total topological charge to be νS =
V−1

cell

∫
S
d3xPi [∂i , ∂j ]uj (x), where Vcell is the unit cell volume of

the uniform lattice. Significantly, the charge density is nonzero
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Fig. 4. Dislocation loops can act as dipoles of topological charge. (A) Architectures of a dislocation loop in a periodic lattice: in a screw dislocation,
the Burgers vector b is parallel to the dislocation line, whereas in an edge dislocation, the Burgers vector and the dislocation line are perpendicu-
lar. A dislocation loop can combine edge and screw dislocations along its contour. In a polarized lattice (with polarization P), a dislocation line sep-
arates in space an edge dislocation segment that carries zero modes (ZMs; blue) from an edge dislocation segment that carries states of self-stress
[SSS; red; for example, via screw dislocations (green), which carry no such charges]. The net topological charge, defined as the difference between ZM
and SSS, is zero when summed over a dislocation loop contour. Nevertheless, the dislocation loop carries a topological charge dipole, which is, in this
example, parallel to the Burgers vector b. (B) Geometry of the dislocation loop. Each prism represents a unit cell with triangles oriented according
to (φ, θ, ψ) = (π/3, 0, π/3) as shown in Inset. (C) Numerical results for the four lowest-frequency phonons (excluding the trivial translations) in a large
(36 × 36 × 18 unit cells) polarized lattice that has a dislocation loop: warmer color signifies a larger displacement within that unit cell. Plotted are
only those unit cells that have displacements above a cutoff of 20% of the maximum. Note the localization of the softest modes to the near side of
the loop in accordance with A and the polarization P. (D) The common logarithm of lowest mode frequencies logω2 for the Nth lowest mode plotted
vs. N, comparing two large samples (same size as C). The mode frequencies are significantly lower for the dislocated lattice (black) than in the nondis-
located case (gray). Without a dislocation, the lowest eigenmodes are the extended plane-wave acoustic phonons, whereas with the dislocation, these
modes include both the acoustic phonons and the modes localized along the dislocation loop (in blue, four lowest modes with eigenvectors that are
plotted in C).

when the partial derivatives fail to commute, which happens
only at the dislocation line itself and only when {P, b, ˆ̀} are lin-
early independent. Then, the volume integral for the topological
charge reduces to an integral along the dislocation line:

νS =
1

Vcell

T∫
0

P×
∫
Ct

du

̂
`

dt , [3]

where t =0, . . . ,T parameterizes the dislocation line and Ct is a
family of contours enclosing this line at each t . The integrand of
Eq. 3 gives the charge line density ρL at each t , which using the
definition of the Burgers vector, evaluates to

ρL =
1

Vcell
(P× b) · ˆ̀ [4]

(Rigidity Charge Bound to Line Dislocations has a detailed deriva-
tion). Equivalently, we could write ρL =V−1

cell det(P, b, ˆ̀). In par-
ticular, screw dislocations do not carry charge—their Burgers
vector points along the line direction. For edge dislocations, the
inserted rows terminate at the dislocation line, creating a bound-
ary within the material. If P points along (against) the half-plane

direction ˆ̀ × b, these rows carry extra polarization out (in).
Note that, for any dislocation loop, the net charge

∮
L
dtρL is

zero. However, dislocations loops do separate softness charges in
space, resulting in a topological charge dipole, as shown in Fig.
4A. This dipole is oriented within the b –P plane and can be quan-
tified by a dipole moment, which captures the amount of charge
separated and the distance of separation. The dipole’s b (P) com-
ponent is the area of the dislocation loop after it is projected onto
the plane formed by the two vectors b (P) and b× P (Dislocation
Loop Dipole Moment shows the derivation). For the loop in Fig.
4A composed of edge and screw dislocations, all of the charges
are localized along the edge dislocations, and the dipole moment
is along b.

A positive charge density corresponds to soft modes local-
ized along part of the dislocation loop. We investigate this local-
ized softness within a polarized lattice using the configuration
shown schematically in Fig. 4A and plotted for a small sam-
ple in Fig. 4B. In Fig. 4C, we show that, for the softest (i.e.,
lowest-frequency nontranslational) modes of this lattice, the unit
cells with the largest displacements are localized along the near
side of the loop, in agreement with Eq. 4. This can be con-
trasted with the lowest-energy modes of a sample without a
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dislocation: in Fig. 4D, we show that the dislocated lattice has
soft modes at lower frequencies. Whereas the lowest modes in
the nondislocated sample are the largest-wavelength acoustic
phonons that fit within the periodic box, the lowest modes of the
dislocated lattice are a combination of these acoustic phonons
and the many localized modes, such as the ones shown in
Fig. 4C.

Our work suggests a design principle for materials that will
localize either large strain or large stress along a boundary, line,

or parts of a closed loop, leading to preprogrammed yielding and
failure.
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