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Reo is an interaction-centric model of concurrency for compositional specification of communication
and coordination protocols. Formal verification tools exist to ensure correctness and compliance of
protocols specified in Reo, which can readily be (re)used in different applications, or composed into
more complex protocols. Recent benchmarks show that compiling such high-level Reo specifica-
tions produces executable code that can compete with or even beat the performance of hand-crafted
programs written in languages such as C or Java using conventional concurrency constructs.

The original declarative graphical syntax of Reo does not support intuitive constructs for parame-
ter passing, iteration, recursion, or conditional specification. This shortcoming hinders Reo’s uptake
in large-scale practical applications. Although a number of Reo-inspired syntax alternatives have
appeared in the past, none of them follows the primary design principles of Reo: a) declarative spec-
ification; b) all channel types and their sorts are user-defined; and c) channels compose via shared
nodes. In this paper, we offer a textual syntax for Reo that respects these principles and supports
flexible parameter passing, iteration, recursion, and conditional specification. In on-going work, we
use this textual syntax to compile Reo into target languages such as Java, Promela, and Maude.

1 Introduction

The advent of multicore processors has intensified the significance of coordination in concurrent ap-
plications. A programmer tackles the coordination concern of an application by specifying a (usually
implicit) protocol that defines all possible permissible interactions among different active components of
the application. Depending on the language used, programmers define their protocols at different levels
of abstraction. A threading library, for instance, generally offers only basic synchronization primitives,
such as locks and semaphores, that can be inserted into imperative code to ensure execution follows an
implicitly defined protocol. Exogenous coordination languages offer syntax to programmers to explicitly
define their interaction protocols at a high level of abstraction.

Reo [1, 2] is an example of such a coordination language that defines an interaction protocol as a
connector: a graph-like structure that enables (a)synchronous data flow along its edges (cf., Figure 1).
Each edge, called a channel, has a user-defined type and two channel ends. The type determines the
behavior of the channel, specified as a constraint on the flows of data at its two ends. This constraint is
expressed in a used-defined semantic sort, such as timed data streams, constraint automata, or coloring
semantics [13]. A channel end is either a source end through which the channel accepts data, or a sink
end through which the channel offers data. Multiple channel ends coincident at a vertex of the connector
together form a node. Nodes have predefined ‘merge-replicate’ behavior: a node repeatedly accepts a
datum from one of its coincident sink ends, chosen non-deterministically, and offers a copy of that datum
through every one of its coincident source ends.

Tools for Reo have been implemented as a collection of Eclipse plugins called the ECT [8]. The main
plugin in this tool set consists of a graphical editor that allows a user to draw a connector on a canvas.

http://dx.doi.org/10.4204/EPTCS.272.10
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


122 Treo: Textual Syntax for Reo Connectors

The graphical editor has an intuitive interface with a flat learning curve. However, it does not provide
constructs to express parameter passing, iteration, recursion, or conditional construction of connector
graphs. Such language constructs are more easily offered by familiar programming language constructs
in a textual representation of connectors.

In the context of Vereofy (a model checker for Reo), Baier, Blechmann, Klein, and Klüppelholz
developed the Reo Scripting Language (RSL) and its companion language, the Constraint Automata
Reactive Module Language (CARML) [3, 19]. RSL is the first textual language for Reo that includes a
construct for iteration, and a limited form of parameter passing. Primitive channels and nodes are defined
in CARML, a guarded command language for specification of constraint automata. Programmers then
combine CARML specified constraint automata as primitives in RSL to construct complex connectors
and/or complete systems. In contrast to the declarative nature of the graphical syntax of Reo, RSL is
imperative.

Jongmans developed the First-Order Constraint Automata with Memory Language (FOCAML) [12],
a textual declarative language that enables compositional construction of connectors from a (pre-defined
set of) primitive components. As a textual representation for Reo, however, FOCAML has poor sup-
port for its primary design principle: Reo channels are user-defined, not tied to any specific formalism
to express its semantics, and compose via shared nodes with predefined merge-replicate behavior. Al-
though FOCAML components are user-defined, FOCAML requires them to be of the same predefined
semantic sort (i.e., constraint automata with memory [4]). The primary concept of Reo nodes does not
exist in FOCAML, which forces explicit construction of their ‘merge-replicate’ behavior in FOCAML
specifications.

Jongmans et al. have shown by benchmarks that compiling Reo specifications can produce executable
code whose performance competes with or even beats that of hand-crafted programs written in languages
such as C or Java using conventional concurrency constructs [18, 14, 16, 15, 17]. A textual syntax for
Reo that preserves its declarative, compositional nature, allows user-defined primitives, and faithfully
complies with the semantics of its nodes can significantly facilitate the uptake of Reo for specification of
protocols in large-scale practical applications.

In this paper, we introduce Treo, a declarative textual language for component-based specification
of Reo connectors with user-defined semantic sorts and predefined node behavior. We recall the basics
of Reo (Section 2). We describe the structure of a Treo file by means of an abstract syntax (Section 3).
In Listing 1, we provide a concrete syntax of Treo as an ANTLR4 grammar [22]. In on-going work, we
currently use Treo to compile Reo into target languages such as Java, Promela, and Maude [23]. The
construction of the Treo compiler is based on the theory of stream constraints [7].

In order to preserve the agnosticism of Reo regarding the concrete semantics of its primitives, Treo
uses the notion of user-defined semantic sorts. A user-defined semantic sort consist of a set of component
instances together with a composition operator ∧, a substitution operator [/ ], and a trivial component >
(Section 4). The composition operator defines the behavior of composite components as a composition
of its operands. The substitution operator binds nodes in the interface or passes values to parameters.

For a given semantic sort, we define the meaning of abstract Treo programs (Section 5). Treo is very
liberal with respect to parameter values. A component definition not only accepts the usual (structured)
data as actual parameters, but also other component instances and other component definitions. Among
other benefits, this flexible parameter passing supports component sharing, which is useful to preserve
component encapsulation [5, Figure 2].

A given semantics sort may possibly distinguish between inputs and outputs. Thus, not all combi-
nations of components may result in a valid composite component. For example, the composition may
not be defined, if two components share an output. In Treo, however, it is safe to compose compo-
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nents on their outputs, because, complying with the semantics of Reo, the compiler inserts special node
components to ensure well-formed compositions (Section 6).

We conclude by discussing related work (Section 7), and pointing out future work (Section 8).

2 Reo

We briefly recall the basics of the Reo language and refer to [1] and [2] for further details. Reo is
a language for specification of interaction protocols, originally proposed with a graphical syntax. A
Reo program, called a connector, is a graph-like structure whose edges consist of channels that enable
synchronous and asynchronous data flow and whose vertices consist of nodes that synchronously route
data among multiple channels. Each channel has a type and two channel ends. Each channel end is either
a source end, through which the channel accepts data, or a sink end, through which the channel offers
data. The type of a channel completely defines the behavior of the channel in some user-defined semantic
sort. Reo is agnostic regarding the semantic sort that expresses the behavior of its channel types, so long
as the semantic sort preserves Reo’s compositional construction principle (cf., Definition 4.1). Table 1
shows some frequently used channels and an example node together with an informal description of their
behavior.

a b A Sync channel accepts datum from its source end a, when its
simultaneous offer of this datum at its sink end b succeeds.

a b A SyncDrain channel simultaneously accepts data from both its source
ends a and b and loses the data.

a b•
An empty FIFO1 accepts data from its source end a and becomes a full
FIFO1. A full FIFO1 offers its stored data at its sink end b and, when its

offer succeeds, it becomes an empty FIFO1 again.
ab

c d

A Reo node accepts a datum from one of its coincident sink ends (a or
c), when its simultaneous offer to dispense a copy of this datum

through every one of its coincident source ends (b and d) succeeds.

Table 1: Informal description of the behavior of nodes and of some channels in Reo.

The key concept in Reo is composition, which allows a programmer to build complex connectors out
of simpler ones. For example, using the channels in Table 1, we can construct the Alternatork connector,
for k≥ 2, as shown in Figure 1. For k = 2, the Alternator2 consists of four nodes (a1, a2, b1, and b2) and
four channels, namely a SyncDrain channel (between a1 and a2), two Sync channels (from a1 to b1, and
from a2 to b2), and a FIFO1 channel (from b2 to b1).

a1 a2 ak−1 ak
· · ·

· · ·
b1 b2 bk−1 bk• •

Figure 1: Construction of the Alternatork Reo connector, for k ≥ 2.
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The behavior of the Alternator2 connector is as follows. Suppose that the environment is ready to
offer a datum at each of the nodes a1 and a2, and ready to accept a datum from node b1. According
to Table 1, nodes a1 and a2 both offer a copy of their received datum to the SyncDrain channel. The
SyncDrain channel ensures that nodes a1 and a2 accept data from the environment only simultaneously.
The Sync channel from a1 to b1 ensures that node b1 simultaneously obtains a copy of the datum offered
at a1. By definition, node b1 either accepts a datum from the connected Sync channel or it accepts a
datum from the FIFO1 channel (but not from both simultaneously), and offers this datum immediately to
the environment. Because the FIFO1 is initially empty, b1 has no choice but to accept and dispense the
datum from a1. Simultaneously, the Sync channel from a2 to b2 ensures that the value offered at a2 is
stored in the FIFO1 buffer. In the next step, the environment at node b1 has no choice but to retrieve the
datum in the buffer, after which the behavior repeats.

3 Treo syntax

We now present a textual representation for the graphical Reo connectors in Section 2. Table 2 shows
the abstract syntax of Treo.

K ::= I | KND D ::= V | 〈U0〉(U1){C}
L ::= ε | L,T | L,T0..T1 C ::= V | A |C0C1 | {C ||| P} | D〈L〉(U)
U ::= ε |U,V T ::= V |C | D | [L] | T0 : T1 | T [L] | F(L)
V ::= N |V [L] P ::= V ∈ T | R(L) | ¬P | P0∧P1 | P0∨P1 | (P)

Table 2: Abstract syntax of Treo, with start symbol K (a source file), and terminal symbols for imports
(I), primitive components (A), functions (F), relations (R), names (N), and the empty list (ε). The bold
vertical bar in {C ||| P} is just text.

We introduce the symbols in the abstract syntax by identifying them in some concrete examples.
These concrete examples are Treo programs that can be parsed using the concrete Treo syntax shown in
Listing 1.

Listing 1: Concrete ANTLR4 syntax of Treo (Treo.g4).

1 grammar Treo;
2 file : sec? imp* assg* EOF;
3 sec : ’section’ name ’;’ ;
4 imp : ’import’ name ’;’ ;
5 assg : ID defn ;
6 defn : var | params? nodes comp ;
7 comp : defn vals? args | var | ’{’ atom+ ’}’ | ’{’ comp* (’|’ pred)? ’}’
8 | ’for’ ’(’ ID ’in’ list ’)’ comp
9 | ’if’ ’(’ pred ’)’ comp (’else’ ’(’ pred ’)’ comp)* (’else’ comp)? ;

10 atom : STRING ; /* Example syntax for primitive components */
11 pred : ’true’ | ’false’ | ’(’ pred ’)’ | var ’in’ list
12 | term op=(’<=’ | ’<’ | ’>=’ | ’>’ | ’=’ | ’!=’) term
13 | var | ’forall’ ID ’in’ list ’:’ pred | ’exists’ ID ’in’ list ’:’ pred
14 | ’not’ pred | pred (’and’|’,’) pred | pred ’or’ pred | pred ’implies’ pred ;
15 term : var | NAT | BOOL | STRING | DEC | comp | defn | list | ’len(’ term ’)’
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16 | ’(’ term ’)’ | <assoc=right> term list | <assoc=right> term ’ˆ’ term
17 | ’-’ term | term op=(’*’ | ’/’ | ’%’ | ’+’ | ’-’) term ;
18 vals : ’<’ ’>’ | ’<’ term (’,’ term)* ’>’ ;
19 list : ’[’ ’]’ | ’[’ item (’,’ item)* ’]’ ;
20 item : term | term ’..’ term | term ’:’ term ;
21 args : ’(’ ’)’ | ’(’ var (’,’ var)* ’)’ ;
22 params : ’<’ ’>’ | ’<’ var (’,’ var)* ’>’ ;
23 nodes : ’(’ ’)’ | ’(’ node (’,’ node)* ’)’ ;
24 node : var (io=(’?’ | ’!’ | ’:’) ID?)? ;
25 var : name list* ;
26 name : (ID ’.’)* ID ;
27 NAT : (’0’ | [1-9][0-9]*) ;
28 DEC : (’0’ | [1-9][0-9]*) ’.’ [0-9]+ ;
29 BOOL : ’true’ | ’false’ ;
30 ID : [a-zA-Z_][a-zA-Z0-9_]*;
31 STRING : ’\"’ .*? ’\"’ ;
32 SPACES : [ \t\r\n]+ -> skip ;
33 SL_COMM : ’//’ .*? (’\n’|EOF) -> skip ;
34 ML_COMM : ’/*’ .*? ’*/’ -> skip ;

Consider the following Treo file (K in Table 2) representing the Alternator2:
import syncdrain; import sync; import fifo1;
alternator2(a1,a2,b1) { sync(a1,b1) syncdrain(a1,a2) sync(a2,b2) fifo1(b2,b1) }
On the first line, we import (I) three different component definitions. On the second line, we define the
alternator2 component (ND). Its definition (D) has no parameters (〈U0〉), and three nodes, a1, a2, and
b1, in its interface ((U1)). The body ({C}) of this definition consists of a set of component instances that
interact via shared nodes. The first component instance sync(a1,b1) is an instantiation (D〈L〉(U)) of
the imported sync definition (D) with nodes a1 and b1 ((U)) and without any parameters (〈L〉).

All nodes that occur in the body, but not in the interface, are hidden. Hiding renames a node to
a fresh inaccessible name, which prevents it from being shared with other components. In the case of
alternator2, node b2 is not part of the interface, and hence hidden.

Constructed from existing components, alternator2 is a composite component (C0C1). However,
not every component is constructed from existing components, and we call such components primitive
(A). The following Treo code shows a possible (primitive) definition of the fifo1 component.
fifo1(a?,b!) { empty -{a},true-> full; full -{b},true-> empty; }
The definition of the fifo1 differs from the definition of the alternator2 in two ways.

The first difference is that the fifo1 component is (in this case) defined directly as a constraint
automaton [4]. Constraint automata constitute a popular semantic sort for specification of Reo compo-
nent types, and forms the basis of the Lykos compiler [12]. However, constraint automata are not the
de facto standard: the literature offers more than thirty different semantic sorts for specification of Reo
components [13], such as the coloring semantics and timed data stream semantics. To accommodate the
generality that disparate semantics allow, Treo features user-defined semantic sorts, which means that
the syntax for primitive components is user-defined. For example, this means that we may also define
the fifo1 component by referring to a Java file via fifo1(a?,b!){ "MyFIFO1.java" }.

The second difference is that the nodes a and b in the interface are directed. That is, each of its
interface nodes is either of type input or output, designated by the markers ? and !, respectively. In
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Reo, it is safe to join two channels on a shared sink node (e.g., node b1 in Figure 1). However, the
composition operators in most Reo semantics do not automatically produce the correct behavior for such
nodes (e.g., see [4, Section 4.3] for further details). Therefore, most Reo semantics require well-formed
compositions, wherein each node has at most one input channel end and at most one output channel end.

The restriction of well-formed compositions can be very inconvenient in practice. To ensure well-
formed compositions, a programmer must implement every Reo node with more than one input or output
channel end as a node component. The interface of this node component is determined by its degree,
which is a pair (i,o) giving the numbers of its coincident source and sink ends. Such explicit node
components make component constructions verbose and hard to maintain. For convenience, the Treo
compiler uses the above input/output annotations to compute the degree of each node in a composition,
and subsequently inserts the correct node components in the construction. We may view the input/output
annotations as syntactic sugar that ensures well-formed compositions. This feature allows programmers
to remain oblivious to these annotations and well-formed composition.

The ellipses in Figure 1 signify the parametrized construction of the Alternatork connector, for k > 2.
This notation is informal and not supported in the graphical Reo editor [8], which offers no support for
parametrized constructions. In Treo, however, we can define the Alternatork connector as:

alternator<k>(a[1:k],b[1]) { sync(a[1],b[1])
{ syncdrain(a[i-1],a[i]) sync(a[i],b[i]) fifo1(b[i],b[i-1]) | i in [2..k] } }

The definition of the alternator depends on a parameter k. Since Treo is a strongly typed language with
type-inferencing, there is no need to specify a type for the (integer) parameter k. The interface consists of
an array of nodes a[1:k] and the single node b[1]. Here, [1:k] is an abbreviation for the list [[1..k]]
that contains a single list of length k. The array a[1:2] stands for the slice [a[1],a[2]] of a, while
the expression a[1..2] stands for the element a[1][2] in a (cf., Equation (2)). For iteration, we write
{ ... | i in [2..k] } using set-comprehension ({C ||| P} in Table 2).

Instead of defining alternator iteratively, we may also provide a recursive definition as follows:

recursive_alternator(a[1:k],b[1],b[k]) { recursive_alternator(a[1:k-1],b[1],b[k-1])
{ syncdrain(a[k-1],a[k]) sync(a[k],b[k]) fifo1(b[k-1],b[k]) | k > 1 } }

Here, the value of k is defined by the size of a[1:k], and we use set-comprehension { ... | k > 1 }
for conditional construction, as well. Indeed, the resulting set of component instances is non-empty, only
if k > 1 holds. Although Treo syntax allows recursive definitions, the semantics presented in Section 5
does not yet support recursion, which we leave as future work.

We illustrate the practicality of Treo by providing code for a chess playing program [12, Figure 3.29].
In this program, two teams of chess engines compete in a game of chess. We define a chess team as the
following Treo component:

import parse; /* and the other imports */
team<engine[1:n]>(inp,out) {

for (i in [1..n]) {
engine[i](inp,best[i]) parse(best[i],p[i])
if (i > 1) concatenate(a[i-1],p[i],a[i]) }

sync(best[1],a[1]) majority(a[n],b) syncdrain(b,c)
fifo1(inp,c) move(b,d) concatenate(c,d,out) }

The for-loop for (i in [1..n]) ... and if-statement if (i > 1) ... are just syntactic sugar for set-
comprehensions { ... | i in [1..n] } and { ... | i > 1 }, respectively. The team component
depends on an array engine[1:n] of parameters. This array does not contain the usual data values,
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but consists of Treo component definitions. In the body of the team component, these definitions are
instantiated via engine[i](inp,best[i]). In RSL [3, 19] and FOCAML [12], it is impossible to pass a
component as a parameter, which makes these languages less expressive than Treo.

We may view the team component as an example of role-oriented programming [6]. Indeed, the team
component encapsulates a list of chess engines in a component, so that they can collectively be used as a
single participant in a chess match:
match() { fifo1full<"">(a,b) fifo1(c,d) team<[eng1, eng2]>(a,d) team<[eng3]>(b,c) }
Treo treats not only component definitions, but also component instances as values. By passing a single
component instance as a parameter to multiple components, this feature allows component (instance)
sharing (cf., [5, Figure 2]). Hence, it is straightforward to implement a chess match, wherein a single
instance of a chess engine plays against itself.

4 Semantic sorts

As noted in Section 3, Reo channels can be defined in many different semantic formalisms [13], such as
the constraint automaton semantics, the coloring semantics, or the timed data stream semantics. Although
each sort of Reo semantics has its unique properties, each of them can be used to define a collection of
composable components with parameters and nodes, which we call a semantic sort:
Definition 4.1 (Semantic sort). A semantic sort over a set of names N with values from V is a tu-
ple (C ,∧, [/ ],>) that consists of a set of components C , a composition operator ∧ : C ×C −→ C , a
substitution operator [/ ] : C × (N ∪V )×N −→ C , and a trivial component > ∈ C .

We assume that the set of names and the set of values are disjoint, i.e., N ∩V = /0. For convenience,
we write C∧C′ for ∧(C,C′), and C[y/x] for [/ ](C,y,x). For any semantic sort T , we write CT for its set
of components, ∧T for its composition operator, [/ ]T for its substitution operator, and >T for its trivial
component. The composition operator ∧T ensures that the behavior of finite non-empty compositions
is well-defined. To empty compositions we assign the trivial component >T . The substitution operator
[/ ]T allows us to change the interface of a component via renaming or instantiation. Let C ∈ CT be a
component and x ∈N a name. For a name y ∈N , the construct C[y/x]T renames every occurrence of
name x in C to y. For a value y ∈ V , the construct C[y/x]T instantiates (parameter) x in C to y. (See
Example 4.3 for an example of the distinction between renaming and instantiations.)

A semantic sort T implicitly defines an interface for each component C ∈ C via the map supp :
CT −→ 2N defined as supp(C) = {x ∈N |C[y/x]T 6=C, for some name y ∈N }. If name x does not
‘occur’ in C, substitution of x by any name y does not affect C, i.e., C[y/x]T =C.
Example 4.1 (Systems of differential equations). The set ODE of systems of ordinary differential equa-
tions with variables from N and values V = {v : R −→ R} constitute a semantic sort. Composition is
union, substitution is binding a name or value to a given name, and the trivial component is the empty
system of equations. Using the ODE semantic sort, we can define continuous systems in Treo. 4
Example 4.2 (Process calculi). Consider the process calculus CSP, proposed by Hoare [10]. The set
CSP of all such process algebraic terms comprises a semantic sort. Each process can participate in a
number of events, which we can interpret as names from a given set N . We model the composition
of CSP processes P and Q by means of the interface parallel operator P |[X ]| Q, where X ⊆N is the
set of event names shared by P and Q. We define substitution as simply (1) renaming the event, if a
name is substituted for an event; or (2) hiding the event, if a values is substituted for an event. Since
neither STOP nor SKIP shares any event with its environment, we may use either one to denote the
trivial component. 4
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Example 4.3 (I/O-components). Let T be a semantic sort over N and V . We define the I/O-component
sort IOT over T using the notion of a primitive I/O-component of sort T .

A primitive I/O-component P of sort T is a tuple (C, I,O), where C ∈ CT is a component, I ⊆N is
a set of input names, O⊆N is a set of output names. For P⊆N and x ∈N and y ∈N ∪V , define

P[y/x] =


(P−{x})∪{y} if x ∈ P and y ∈N

P−{x} if x ∈ P and y ∈ V

P otherwise

(1)

We define substitution on primitive I/O-components as (C, I,O)[y/x] = (C[y/x], I[y/x],O[y/x]), for all
x ∈N and y ∈N ∪V . We denote the set of primitive I/O-components over T as PT .

An I/O-component of sort T is a sequence P1 · · ·Pn ∈P∗
T , with n ≥ 0, of primitive I/O-components

of sort T . Composition of I/O-components is concatenation · of sequences. The trivial I/O-component
is the empty sequence ε . We define substitution of composite I/O-components as (P1 · · ·Pn)[y/x] =
P1[y/x] · · ·Pn[y/x], for all x ∈N and y ∈N ∪V . Hence, IOT = (P∗

T , ·, [/ ],ε) is a semantic sort. 4

5 Denotational semantics

We define the denotational semantics of the Treo language over a fixed, but arbitrary, semantic sort T .
The main purpose of this denotational semantics is to provide a clear abstract structure that guides the
implementation of Treo parsers. The syntax to which this denotational semantics applies is the abstract
syntax in Table 2. The general structure of our denotational semantics is quite standard, and adheres to
Schmidt’s notation [24].

Although Treo syntax allows recursive definitions, the semantics presented in this section does not
support this feature. Since not all recursive definitions define finite compositions of components, extend-
ing the current semantics with recursion is not straightforward, and we leave it as future work.

Variables and terms in Treo are structured as non-rectangular arrays. The set of all (ragged) arrays
over a set X is the smallest set X� such that both X ⊆ X� and [x0, . . . ,xn−1] ∈ X�, if n≥ 0 and xi ∈ X�

for all 0 ≤ i < n. For example, the set N� of ragged arrays over integers contains all natural numbers
from N as ‘atomic’ arrays, as well as the array [37, [], [[2, [55],3]]]∈N�. Every ragged array has a length,
which can be computed via the map len : X� −→ N defined inductively as len(x) = 0, if x ∈ X , and
len([x0, . . . ,xn−1]) = n, otherwise. If x = [x0, . . . ,xn−1] ∈ X� is a ragged array, we access its entries via
the function application x(i) = xi, for every 0≤ i < n. We extend the access map N� by defining

x([i0, . . . , in]) =

{
x(i0)([i1, . . . , in]) if i0 ∈ N
[x(i00)([i1, . . . , in]), . . . ,x(i0m)([i1, . . . , in])] if i0 = [i00, . . . , i0m]

, (2)

whenever the right-hand side is defined. Two ragged arrays x ∈ X� and y ∈ Y� have the same structure
(x ' y) iff x ∈ X and y ∈ Y , or len(x) = len(y) and x(i) ' y(i) for all 0 ≤ i < len(x). We can flatten a
ragged array from X� to a sequence over X via the map flatten : X� −→ X∗ defined as flatten(x) = x, if
x ∈ X , and flatten([x0, . . . ,xn−1]) = flatten(x0) · · ·flatten(xn−1), otherwise.

Suppose that semantic sort T is defined over a set of names N and a set of values V , with N ∩V =
/0. For simplicity, we assume that, for every component C ∈ CT , its support supp(C)⊆N is finite. Since
Treo views components as values, we assume the inclusion CT ⊆ V .

We assume that the set of names N is closed under taking subscripts from N. That is, if x ∈N is a
name and i ∈N is a natural number, then we can construct a fresh name xi ∈N . To construct sequences
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of data with variable lengths, we use a map lst : N2 −→ N� that constructs from a pair (i, j) ∈ N2 of
integers a finite ordered list [i, i+1, . . . , j] in N�.

Recall from Section 3 that a component accepts an arbitrary but finite number of parameters and
nodes. Therefore, we define a component definition as a map D : V �×N � −→ CT ∪{ } that takes
an array of parameter values from V � and an array of nodes from N � and returns a component or an
error  . Let D = (CT ∪{ })V

�×N �
be the set of all definitions. As mentioned earlier, Treo also allows

definitions as values, which amounts to the inclusion D ⊆ V .1

We evaluate every Treo construct in its scope σ : N −→ V �, with N ⊆N finite, which assigns a
value to a finite collection of locally defined names. We write Σ = {σ : N −→ V � | N ⊆N finite} for
the set of scopes. For a name x∈N and a value d ∈ V �, we have a scope {x 7→ d} : {x}−→ V � defined
as {x 7→ d}(x) = d. For any two scopes σ ,σ ′ ∈ Σ, we have a composition σσ ′ ∈ Σ such that for every
x∈ dom(σ)∪dom(σ ′) we have (σσ ′)(x) = σ ′(x), if x∈ dom(σ ′), and (σσ ′)(x) = σ(x), otherwise. The
composite scope σσ ′ can be viewed as an extension of σ that includes definitions and updates from σ ′.

Let Names be the set of parse trees with root N, and let NJ−K : Names −→ N be the semantics
of names. We define the semantics of variables as a map VJ−K : Variables −→ (N � ∪{ })Σ, where
Variables is the set of parse trees with root V . For a scope σ ∈ Σ, we define VJ−K(σ) as follows:

1. VJNK(σ) = NJNK;

2. VJV [L]K(σ) =

{
x(k) if VJV K(σ) = x ∈N � and LJLK(σ) = k ∈ N�

 otherwise
.

Since N is closed under taking subscripts, we can define n(i) = ni, for all n ∈ N and i ∈ N, which
ensures that x(k) ∈N � is always defined.

The semantics of arguments is a map UJ−K : Arguments−→ (N �∪{ })Σ, where Arguments is the
set of all parse trees with root U . For a scope σ ∈ Σ, we define UJ−K(σ) as follows:

1. UJεK(σ) = [];

2. UJU,V K(σ) =

{
[x1, . . . ,xn+1] if UJUK(σ) = [x1, . . . ,xn] and VJV K(σ) = xn+1

 otherwise
.

Let Functions be the set of parse trees with root F , and let FJ−K : Functions−→{V k −→ V | k ∈N}
be the semantics of functions. The semantics of terms is a map TJ−K : Terms −→ (V �∪{ })Σ, where
Terms is the set of parse trees with root T . For a scope σ ∈ Σ, we define TJ−K(σ) inductively as follows:

1. TJV K(σ) =

{
σ(VJV K(σ)) if defined
 otherwise

;

2. TJCK(σ) = CJCK(σ), which is well-defined since CT ⊆ V ;

3. TJDK(σ) = DJDK(σ), which is well-defined since D ⊆ V ;

4. TJ[L]K(σ) = LJLK(σ);

5. TJT0 : T1K(σ) =

{
lst(x0,x1−1) if TJTiK(σ) = xi ∈ N for i ∈ {0,1}
 otherwise

;

6. TJT [L]K(σ) =

{
x(k) if TJT K(σ) = x ∈ V � and LJLK(σ) = k ∈ N�

 otherwise
;

1 Such a set of values V exists only if V 7→ CT ∪ (CT ∪{ })V
�×N �

admits a pre-fixed point. In this work, we simply
assume that such V exists.
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7. TJF(L)K(σ) =

{
FJFK(LJLK(σ)) if FJFK : V k −→ V and len(LJLK(σ)) = k
 otherwise

.

The semantics of lists is a map LJ−K : Lists −→ (V �∪{ })Σ, where Lists is the set of parse trees
with root L. For a given scope σ ∈ Σ, we define SJ−K(σ) inductively as follows:

1. LJεK(σ) = [];

2. LJL,T K(σ) =

{
[x1, . . . ,xn+1] if LJLK(σ) = [x1, . . . ,xn] ∈ V � and TJT K(σ) = xn+1 ∈ V

 otherwise
;

3. LJL,T0..T1K(σ) =


[x1, . . . ,xn+k] if LJLK(σ) = [x1, . . . ,xn] ∈ V �,TJTiK(σ) = ai ∈ V ,

for i ∈ {0,1}, and lst(a0,a1) = [xn+1, . . . ,xn+k]

 otherwise

.

Since we use predicates in Treo for list comprehension, we define the semantics of predicates as a
map PJ−K : Predicates −→ (2Σ)Σ, where Predicates is the set of all parse trees with root P. For a scope
σ ∈ Σ, we define the semantics PJ−K(σ) of a predicate P as the set of all extensions of σ that satisfy P.
We define PJ−K(σ) inductively as follows:

1. PJV ∈ T K(σ) =


{σ{x 7→ ti} | 1≤ i≤ n} if VJV K(σ) = x /∈ dom(σ),TJT K(σ) = [t1, . . . , tn]
{σ} if TJV K(σ) ∈ TJT K(σ)

/0 otherwise

,

2. If P is R(L), we define PJR(L)K(σ) = {σ ′ ∈ Σ | σ ′σ = σ ′,LJLK(σ ′) ∈ RJRK};
3. If P is ¬P, we define PJ¬PK(σ) = {σ ′ ∈ Σ | σ ′σ = σ ′,¬PJPK(σ ′)};
4. If P is P0∧P1, we define PJP0∧P1K(σ) = PJP0K(σ)∩PJP1K(σ);

5. If P is P0∨P1, we define PJP0∨P1K(σ) = PJP0K(σ)∪PJP1K(σ);

6. If P is (P), we define PJ(P)K(σ) = PJPK(σ).

For set and list comprehensions, we can iterate over only a finite subset of scopes PJPK(σ) of P. We
ensure this by restricting the set of scopes to those solutions that are minimal with respect to inclusion
of domains. Formally, we write minPJPK(σ) for the set of all scopes that are minimal with respect to ≤
defined as σ1 ≤ σ2 iff dom(σ1)⊆ dom(σ2), for all σ1,σ2 ∈ PJPK(σ).

The semantics of component instances is a map CJ−K : Components−→ (CT ∪{ })Σ, where Com-
ponents is the set of parse trees with root C. Recall that Treo views components as values (CT ⊆ V ).
Given a scope σ ∈ Σ, we define CJ−K(σ) inductively as follows:

1. CJV K(σ) =

{
σ(x) if VJV K(σ) = x ∈ dom(σ) and σ(x) ∈ CT

 otherwise
;

2. CJAK(σ) = AJAK, where AJ−K : Atoms−→ CT is the semantics of primitive components;

3. CJC0C1K(σ) =

{
CJC0K(σ)∧T CJC1K(σ) if CJCiK(σ) ∈ CT , for i ∈ {0,1}
 otherwise

;

4. CJ{C : P}K(σ) =


>T if minPJPK(σ) is empty or infinite
C1∧T · · ·∧T Ck if minPJPK(σ) = {σ1, . . . ,σk} 6= /0,CJCK(σi) =Ci ∈ CT

 otherwise

;
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5. CJD〈L〉(U)K(σ) =

{
DJDK(σ)(LJLK(σ),UJUK(σ)) if defined
 otherwise

.

The semantics of component definitions is a map DJ−K : Definitions−→ (D ∪{ })Σ, where Defini-
tions is the set of all parse trees with root D. For a scope σ ∈ Σ, we define DJ−K(σ) as follows:

1. DJV K(σ) =

{
σ(VJV K(σ)) if VJV K(σ) = x ∈ dom(σ) and σ(x) ∈D

 otherwise
;

2. If D is a component 〈U0〉(U1){C}, then for an array of parameter values t ∈ V � and an array
of nodes q ∈N �, we define DJ〈U0〉(U1){C}K(σ)(t,q) as follows: Recall from Section 3 that the
number of parameters and nodes can implicitly define variables. Suppose that there exists a unique
‘index-defining’ scope σ ′ ∈ Σ such that for m = len(t) and n = len(q). Then we have

(a) UJU0K(σ ′) = [s1, . . . ,sm] 6=  satisfies si ' t(i), for all 1≤ i≤ m;
(b) UJU1K(σ ′) = [p1, · · · , pn] 6=  satisfies pi ' q(i), for all 1≤ i≤ n;
(c) flatten([s1, . . .sm, p1, . . . pn]) ∈N � has no duplicates;
(d) dom(σ ′)⊆N is minimal such that properties (a)-(c) are satisfied.

We evaluate the body C of the component definition to the component CJCK(σσ ′), where σσ ′ is
the composition of σ and σ ′. Define the map r : supp(CJCK(σσ ′))−→N as

r(x) =


ti(k1) · · ·(kl) if x = si(k1) · · ·(kl)

qi(k1) · · ·(kl) if x = pi(k1) · · ·(kl)

v fresh otherwise

Map r is well-defined, because flatten([s1, . . .sm, p1, . . . pn]) ∈N � has no duplicates. Note that r
is finite, since we assume that supp(CJCK(σσ ′)) is finite. We define DJ〈U0〉(U1){C}K(σ)(t,q) as
the simultaneous substitutions CJCK(σσ ′)[r(x)/x : x ∈ dom( f )]. If such ‘index-defining’ scope σ ′

does not exists or is not unique, then we simply define DJ〈U0〉(U1){C}K(σ)(t,q) =  .

We define the semantics of files as a map KJ−K : Files −→ Σ∪{ }, where Files is the set of parse
trees with root K. Let IJ−K : Imports −→ Σ be the semantics of imports. For a scope σ ∈ Σ, we define
KJ−K(σ) inductively as follows:

1. KJIK(σ) = IJIK;

2. KJKNDK(σ) =

{
σ0{x 7→ c} if σ0 = KJKK(σ) 6=  ,x = NJNK, and c = DJDK(σ0) 6=  
 otherwise

.

6 Input/output nodes

As mentioned in Section 3, nodes of primitive component definitions require input/output annotations.
Treo regards such port type annotations as attributes of the primitive component. For a semantic sort T ,
we model the input nodes and output nodes of its instances via two maps I,O : CT −→ 2N satisfying
supp(C) = I(C)∪O(C), for all C ∈ CT . If x ∈ I(C)∩O(C), then we call x a mixed node.

Example 6.1 (Mixed nodes). Recall the I/O component sort from Example 4.3. Let P1 = (C1,{x},{y}),
P2 = (C2,{y}, /0), and P3 = (C3,{z},{y}) be three primitive I/O components. Figure 2(a) shows a graphi-
cal representation of composition of P1, P2, and P3. In this figure, an arrow from a node a to a component
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P1 P2 P3

x y z

(a) P1 ·P2 ·P3

Nx

P ′
1 P ′

2

Ny

P ′
3

Nz

x x1 y1 y2 y3 z3 z

(b) surg(P1 ·P2 ·P3)

Figure 2: Surgery on an I/O-component to remove mixed nodes.

P indicates that a is an input node of P. An arrow from a component P to a node a indicates that a is an
output node of P. Node y is an output node of P1 and P3, and it is an input node of P2. Thus, y is a mixed
node in the composition P1 ·P2 ·P3, where · is sequential composition of I/O components. 4

Most semantic sorts that distinguish input and output nodes assume well-formed compositions: each
shared node in a composition is an output of one component and an input of the other.

Definition 6.1 (Well-formedness). A composition C1∧T · · ·∧T Cn, with n≥ 0, is well-formed if and only
if |{i ∈ {1, . . . ,n} | x ∈ I(Ci)}| ≤ 1 and |{i ∈ {1, . . . ,n} | x ∈ O(Ci)}| ≤ 1, for all x ∈N .

For well-formed compositions, the behavior of the composition naturally corresponds to the compo-
sition of Reo connectors. However, specification of complex components as well-formed compositions
is quite cumbersome, because it requires explicit verbose expression of the ‘merge-replicate’ behavior
of every Reo node in terms of a suitable number of binary mergers and replicators. Reo nodes abstract
from such detail and yield more concise specifications. Like Reo, Treo does not impose any restriction
on the nodes of constituent components in a composition. Indeed, the denotational semantics of compo-
nents CJ−K in Section 5 unconditionally computes the composition. To define the semantics of CJ−K for
a semantic sort T where ∧T requires well-formedness, parsing a (non-well-formed) Treo composition
needs the degree (i.e., the number of coincident input and output channel ends) of each node to correctly
express the ‘merge-replicate’ semantics of that node. The degree of every node used in a definition can
be known only at the end of that definition. The Treo compiler could discover the degree of every node
via two-pass parsing.

Alternatively, Treo can delay applying composition ∧T in T until parsing completes, Treo accom-
plishes this by interpreting a Treo program over the I/O-component sort IOT , as defined in Example 4.3,
wherein compositions consist of lists of primitive components. First, Treo wraps each primitive compo-
nent C ∈ CT within a primitive I/O-component (C, I(C),O(C)) ∈PT . Using Section 5, Treo parses the
Treo program over the semantic sort IOT as usual, and obtains a single I/O-component P1 · · ·Pn ∈ IOT .

However, the resulting composition P1 · · ·Pn may not be well-formed. Therefore, the Treo compiler
applies some surgery on P1 · · ·Pn to ensure a well-formed composition. This surgery consists of splitting
all shared nodes in X , and reconnecting them by inserting a node component. We model these node
components (over semantic sort T ) as a map node : (2N )2×N −→ CT . For sets of names I,O ⊆N
and a default name x ∈N , the component node(I,O,x) ∈ CT has input nodes I (or {x}, if I is empty)
and output nodes O (or {x}, if O is empty).

Definition 6.2 (Surgery). The surgery map surg : IOT −→ IOT is defined as surg(P1 · · ·Pn) = P′1 · · ·P′n ·
∏x∈supp(P1···Pn) Nx, where P′i = Pi[xi/x : x ∈ supp(Pi)], for all 1 ≤ i ≤ n, and Nx = (node(Ix,Ox,x), Ix,Ox),
with Ix = {xi | x ∈ O(Pi)} and Ox = {xi | x ∈ I(Pi)}. The composition ∏ is ordered arbitrarily.

Intuitively, the surgery map takes a possibly non-well-formed composition and produces a well-
formed composition by inserting node components. Although initially, multiple components may pro-
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duce output at the same node. After applying the surgery map, these components offer data for the same
node component via different ‘ports’.
Example 6.2 (Surgery). Figure 2(b) shows the result of applying the surgery map to the I/O-component
P1 ·P2 ·P3 from Example 6.1. The surgery map consists of two parts. First, the surgery map splits every
node a ∈ {x,y,z} by renaming a to ai in Pi, for every 1≤ i≤ n. Second, the surgery map inserts at every
node a ∈ {x,y,z} a node component Na. Clearly, surg(P1 ·P2 ·P3) is a well-formed composition. 4

7 Related work

The Treo syntax offers a textual representation for the graphical Reo language [1, 2]. We propose Treo
as a syntax for Reo that (1) provides support for parameterization, recursion, iteration, and conditional
construction; (2) implements basic design principles of Reo more closely than existing languages; and
(3) reflects its declarative nature. The graphical Reo editor implemented as an Eclipse plugin [8] does
not support parameterization, recursion, iteration, or conditional construction. RSL (with CARML for
primitives) [3, 19] is imperative, while Reo is declarative. FOCAML [12], supports only constraint
automata [4], while Treo allows arbitrary user-defined semantic sorts for expressing the behavior of Reo
primitives.

Since Treo leaves the syntax for primitive subsystems (i.e., semantic sorts) as user-defined, Treo is
a “meta-language” that specifies compositional construction of complex structures (using the common
core language defined in this paper) out of primitives defined in its arbitrary, user-defined sub-languages.
As such, Treo is not directly comparable to any existing language. We can, however, compare the
component-based system composition of Treo with the system composition of an existing language.

Treo components are similar to proctype declarations in Promela, the input language for the SPIN
model checker developed by Holzmann [11]. However, the focus of Promela is on imperative definitions
of processes, while Treo is designed for declarative composition of processes.

SysML is a graphical language for specification of systems [9]. SysML offers 9 types of diagrams,
including activity diagrams and block diagrams. Each diagram provides a different view on the same
system [20]. Diagram types in SysML are comparable to semantic sorts in Treo. The main difference
between the two, however, is that Treo requires a well-defined composition operator, using which it
allows construction of more complex components, while diagram composition is much less prominent
in SysML.

A component model is a programming paradigm based on components and their composition. Our
Treo language can be viewed as one such component model with a concrete syntax. Over the past
decades, many different component models have been proposed. For example, CORBA [21] is a compo-
nent model that is flat in the sense that every CORBA component is viewed as a black box, i.e., it does
not support composite components. Fractal [5] is an example of a component model that is hierarchi-
cal, which means a component can be a composition of subcomponents. Concrete instances of Fractal
consist of libraries (API’s) for a variety of programming languages, such as Java, C, and OMG IDL [5].
Treo components and Fractal component differ with respect to interaction: Treo components interact via
shared names, while Fractal component interact via explicit bindings.

8 Conclusion

We propose Treo as a textual syntax for Reo connectors that allows user-defined semantic sorts, and
incorporates Reo’s predefined node behavior. These features are not present in any of the existing alter-
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native languages for Reo. We provided an abstract syntax for Treo and its denotational semantics based
on this abstract syntax. We identify three possible directions for future work.

First, since our semantics disallows recursion, a component in Treo is currently restricted to consist
of a composition of finitely many subsystems. Consequently, we cannot, for instance, express the con-
struction of a primitive with an unbounded buffer, Bω , from a set of primitives with buffer capacity of
one, B1. It seems, however, possible to use simulation and recursion to define Bω in terms of B1: Bω

is the smallest (with respect to simulation) component that simulates B1 and is stable under sequential
composition with B1. These assumptions readily imply that Bω simulates a primitive with buffer of arbi-
trary large capacity. Semantically, the unbounded buffer would then be defined as a least fixed point of a
certain operator on components. An extension of Treo semantics that allows such fixed point definitions
would provide a powerful tool to define complex ‘dynamic’ components.

Second, the current semantics in Section 5 does not support components with an identity. If we
instantiate a component definition twice with the same parameters, we obtain two instances of the same
component. Ideally, component instantiation should return a component instance with a fresh identity.
Allowing components with identities in Treo enables programmers to design systems more realistically.

Finally, a semantic sort T from Definition 4.1 consists of a single composition operator ∧T . Gener-
ally, a semantic sort consists of multiple composition operators (each with it own arity). For example, we
may need both sequential composition as well as parallel composition. Extending Treo with (a variable
number of) composition operators would enable users to model virtually all semantic sorts.
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