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Abstract

The (yet-to-be confirmed) discovery of a Neptune-sized moon around the ∼3.2 Jupiter-mass planet in Kepler 1625
puts interesting constraints on the formation of the system. In particular, the relatively wide orbit of the moon
around the planet, at ∼40 planetary radii, is hard to reconcile with planet formation theories. We demonstrate that
the observed characteristics of the system can be explained from the tidal capture of a secondary planet in the
young system. After a quick phase of tidal circularization, the lunar orbit, initially much tighter than 40 planetary
radii, subsequently gradually widened due to tidal synchronization of the spin of the planet with the orbit, resulting
in a synchronous planet-moon system. Interestingly, in our scenario the captured object was originally a Neptune-
like planet, turned into a moon by its capture.
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1. Introduction

First-of-its-kind discoveries generally put interesting con-
straints on our understanding. The first planet (Wolszczan &
Frail 1992) as well as the first Solar system-passing interstellar
asteroidal-object (Bacci et al. 2017; Meech et al. 2017a, 2017b)
surprised many theorists and started a flurry of speculations on
their origin. A first moon discovered outside of the Solar
system would also pose a number of interesting constraints and
possibilities for its origin.

A candidate for such a moon (a natural satellite that orbits an
exoplanet) was recently found around the ∼1.079Me mass star
2MASSJ19414304+3953115 (Mathur et al. 2017). Since the
discovery of a ∼3.2MJ planet in a circular ∼0.84 au orbit, this
system has become known as Kepler1625.3

Compelling evidence for a Neptune-like moon orbiting the
∼3.2MJ planet Kepler 1625 b at a separation of ∼40 planetary
radii was recently found (Teachey et al. 2018; Teachey &
Kipping 2018; however, there exists the possibility that the
exomoon signal is a false positive; see Rodenbeck et al. 2018).
This hypothetical moon, Kepler 1625b I, is remarkably massive
(with a mass of about 1/100 of the planetary mass) and large
compared to Kepler 1625b, and poses an intriguing problem
regarding its formation. Teachey & Kipping (2018) speculate
that its origin challenges theorists (this is emphasized in
Heller 2018, who considered a tidal capture scenario, although
through planet-binary encounters).

In this Letter, we argue that, although the (hypothetical)
moon puts interesting constraints on the early dynamical
evolution of the planet-moon system, its existence is not
surprising. According to our understanding, the current moon
was born a planet in orbit around the star 2MASSJ19414304
+3953115. This planet turned into a moon upon its tidal
capture with the more massive planet. Further tidal interaction
circularized and widened the orbit due to angular momentum
transfer from the spin of the planet to the orbit until
synchronization. For convenience, we will use the term
“planet” for the giant planet Kepler 1625b, and “moon” for

its companion Kepler 1625b I, although both should be referred
to as planets according to this scenario.
We demonstrate that this process is feasible, and leads to

massive moons in relatively wide (10 Rplanet) orbits around
relatively old (1 Gyr) stars. In our scenario, we predict that
the planet and moon are currently synchronized with their orbit,
and we can put constraints on the primordial spin of the planet.
In Section 2, we consider simple analytic arguments for the

conditions of capture, and investigate the primordial spin of the
planet necessary to explain the current orbit. We give an
explicit numerical example of the secular tidal evolution after
capture in Section 3. We discuss the likelihood of our scenario
in Section 4, and conclude in Section 5.

2. Analytic Estimates

We recognize four distinct stages, which we illustrate in
Figure 1.

1. Migration and scattering: two planets embedded in a
protoplanetary disk migrate toward similar orbits, trigger-
ing a short-lived phase of dynamical instability.

2. Capture: during the dynamical instability phase, the lighter
planet (henceforth “moon,” with mass and radius Mm and
Rm, respectively) approaches the more massive planet (with
mass and radius Mp and Rp, respectively) to a distance rper,
leading to a strong tidal encounter that initiates its capture.

3. Circularization: the moon is initially captured onto a wide
and highly eccentric orbit (but still within the planet’s
Hill radius, rH). Tidal dissipation subsequently leads to
the circularization of the orbit.

4. Synchronization: residual spin angular momentum of the
planet (spin frequency Ωp) is gradually transferred to the
orbit of the moon around the planet, resulting in
expansion until synchronization is reached.4

We write the moment of inertia of the planet and the moon as
I r M Rp g,p p p

2= , and I r M Rm g,m m m
2= , respectively. Here, rg,p is

the gyration radius of the planet, and rg,m for the moon, and we
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3 See https://exoplanets.nasa.gov/newworldsatlas/2271/kepler-1625b/.

4 As the moment of inertia of the moon is much smaller than that of the planet
(see below), the moon cannot transfer a significant amount of angular
momentum, and is quickly synchronized with the orbit.
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assume that both have a value of 0.25. We adopt the “canonical”
values of Mp=103M⊕;3.15MJ, Rp=11.4R⊕ for the planet,
and Mm=10M⊕;0.0135MJ, Rm=4.0R⊕ for the moon
(Teachey & Kipping 2018). For these values, Ip/Im;812, and
we can safely neglect the spin angular momentum of the moon.
We furthermore define the reduced mass μ≡MpMm/M, where
M≡Mp+Mm.

2.1. Conditions for Tidal Capture

We assume that the moon approaches the planet on a
hyperbolic orbit with periapsis distance rper. When the
interaction results from the gradual migration of the planet or
moon, both orbits are similar upon the tidal encounter, and we
expect their relative velocity (i.e., the hyperbolic velocity at
infinity), v¥, to be small. We set v¥ to be a fraction α of the

circular orbital velocity at the separation of the planet+moon
system, i.e.,

v GM a , 1 a=¥ ( )

where Må=1.079Me is the stellar mass, and aå=0.84 au
(Mathur et al. 2017).
The initial orbital energy is v 22m ¥ . For tidal capture to be

successful, sufficient energy should be dissipated in the planet
and moon during the first passage to produce a bound orbit. In
addition, after first passage the apoapsis distance should remain
well within the Hill radius, rH; otherwise, the star will perturb
the newly captured moon’s orbit, preventing its return to the
planet. Approximately, this condition is described by

a r 2, 2cap H< ( )

were acap is the semimajor axis of the planet-moon orbit
directly after tidal capture. Here,

r a
M

M3
, 3H

1 3




=
⎛
⎝⎜

⎞
⎠⎟ ( )

is the planet’s Hill radius. The factor 2 in Equation (2) takes
into account that the captured orbit is initially highly eccentric;
therefore, rH should be compared to the apoapsis distance acap
(1+ecap)≈2 acap.
We calculate acap from the conservation of energy.

Specifically, we consider the initial energy and the energy
after first passage. The latter consists of the (negative) orbital
energy, and the amount of energy dissipated in the tides,
ΔEtides (ΔEtides> 0). Therefore,

v
G M

a
E

1

2 2
. 42

cap
tidesm

m
= - + D¥ ( )

We use the formalism of Press & Teukolsky (1977) to compute
EtidesD in both the planet and moon as a function of the masses,

radii, and the periapsis distance rper. Specifically, ΔEtides=
ΔEtides,p+ΔEtides,m, where

E
GM

R

R
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T , 5i
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⎠

⎛
⎝⎜

⎞
⎠⎟ ( )

Here, M i3- is the companion mass. The dimensionless functions
Tl(ηi) depend on the structure of the planet/moon. We assume
polytropic pressure-density relations, and adopt analytic fits to
Tl(ηi) for polytropic indices of n=1.5 or 2 as determined by
Portegies Zwart & Meinen (1993). In Equation (5), we take the
two lowest-order harmonic modes (l= 2 and l= 3), which give
a good description (Press & Teukolsky 1977).
The analytic fits for Tl(η) from Portegies Zwart & Meinen

(1993) do not account for the planetary and lunar spins. In the
case of significant spins, however, Tl(η) could be a few times
larger. For simplicity, we ignore this complexity, but note that
this adds some uncertainty to our calculation of acap.
In Figure 2, we plot acap as a function of rper according to

Equation (4). We assume the canonical radii, and consider
different combinations of v¥ (quantified by α), and the
polytropic index n (a larger n corresponds to a more centrally

Figure 1. Sketch of the scenario of tidal capture. In stage 1, the star is not
shown, and only one possibility of convergent migration is shown (the moon
outside, and migrating inward). The symbols used are described in the text.
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concentrated planet/moon). A polytropic index of n=1.5 is a
reasonable approximation for the structure of a gas giant planet
(Weppner et al. 2015). The red solid (green dashed) horizontal
line shows rH/2 (acur, the current semimajor axis, which we set
to acur= 40 Rp= 456 R⊕). With our parameters, tidal energy
dissipation during the capture is dominated by the moon, with
ΔEtides,m/ΔEtides;0.94 for rper/(Rp+ Rm)=1, and increas-
ing to ΔEtides,m/ΔEtides;0.98 for rper/(Rp+ Rm)=1.5.

For sufficiently small rper, the moon can be tidally captured
without its orbit being perturbed by the star. The range in rper is
typically small, but increases for smaller v¥ (i.e., smaller α) and
smaller n. The range of rper increases for a smaller planet. This
is shown explicitly in Figure 3, in which the largest periapsis
distance for which capture is possible, rper,max, is plotted as a
function of Rp, for different combinations of Rm, α, and n.

2.2. Orbital Expansion Due to Secular Tidal Evolution

After tidal capture, the orbit is highly eccentric. Subse-
quently, the orbit orbit shrinks and circularizes. The semimajor
axis after circularization can be estimated as

a r2 . 7circ per ( )

Tidal capture alone cannot explain the current orbit of the
planet-moon system in Kepler 1625. This is exemplified in
Figure 2, in which acirc is shown with the blue dotted curves.
For any reasonable values of rper, acirc is smaller then the
currently observed semimajor axis, acur, by about an order of
magnitude. Here, we set acur to 40 Rp=456 R⊕.

After capture, the expansion of the orbit to the currently
observed orbit is mediated by the transfer of angular
momentum from the spin of the planet to the orbit. This
process continues until the planet and orbit are in synchronous
rotation (analogous to the current tidal evolution of the Earth-
Moon system).

Using the fact that angular momentum is conserved during
the entire process (capture, circularization, and synchroniza-
tion), we can equate the initial angular momentum before

capture to the angular momentum after synchronization. After
synchronization, the planetary spin frequency is equal to the
orbital frequency, s GM asyn

3= , where asyn is the semimajor
axis of the synchronized orbit. Therefore, neglecting the
moon’s spin angular momentum,

v r I GMa I
GM

a
. 8per per p p,0 syn p

syn
3

m m+ W = + ( )

Here, Ωp,0 is the spin frequency of the planet before the tidal
encounter (i.e., the primordial spin frequency), and vper is the
orbital speed at periapsis at first approach. We compute vper by
assuming a purely hyperbolic orbit on first approach, i.e.,

v v
GM

r

2
. 9per

2

per
= +¥ ( )

Writing the initial planet’s spin as GM Rp,0 p p
3bW = , where

β is a dimensionless parameter that measures the initial
planetary spin in units of its breakup rotation rate, we obtain
from Equations (1), (8), and (9) the following expression for
the minimum required spin of the planet such that the
synchronized orbit has semimajor axis asyn,
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After circularization, the orbit asymptotically evolves to
synchronization, expanding the orbit in the process. The
associated timescale depends on the efficiency of tidal
dissipation (see Section 3 below). We expect the currently
observed orbit to be close to synchronization. Therefore, by
setting asyn=acur, we can use Equation (10) to determine, as a
function of rper, the minimal initial planetary spin (quantified
by β) required to explain the currently observed orbit.
In Figure 4, we present the resulting values for β for a

selection of values for α and n. The vertical lines (in red)

Figure 2. Capture semimajor axis acap as a function of the periapsis distance
rper according to Equation (4). The canonical radii are assumed, with different
combinations of v¥ (quantified by α) and the polytropic index n. The red solid
(green dashed) horizontal line shows rH/2 (acur, the current semimajor axis).
The blue dotted line shows acirc (see Equation (7)).

Figure 3. Largest periapsis distance for which capture is possible, rper,max,
plotted as a function of Rp, and for different combinations of Rm, α, and n.
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indicate the maximum value of rper below which capture can be
successful, i.e., acap<rH/2, assuming Rp=11.4 R⊕, and
Rm=4 R⊕. The dependence of β on rper is not strong;
generally, β∼0.2, i.e., 20% of breakup rotation is required.
For Rp=5.6 R⊕ and Rm=4 R⊕ (not shown here), the allowed
(normalized) range in rper/(Rp+ Rm) is larger, but the required
β to explain the current orbit is larger; typically, β∼0.3. The
minimum value for β is lower for non-zero α (in which case
some angular momentum can be transferred from the initial
orbit to the planetary spin), but the differences between α=0
and α=0.5 are small.

A rotation rate of a few tens of percent of breakup rotation is
not extreme nor unusual. For example, Jupiter, Saturn, and
Neptune are rotating at ;0.3, 0.4, and 0.2 of breakup rotation,
respectively. Massive Jupiter-like extrasolar planets are known
to have similar rotation rates (see, e.g., Figure2of Bryan et al.
2018).

3. Numerical Example of Secular Tidal Evolution

In Section 2, we derived analytic expressions for the tidal
evolution of the planet-moon system after capture. Here, we
illustrate the long-term tidal evolution that results from the
capture of the moon by the planet by integrating the secular
equations of motion numerically.

We adopt the equilibrium tide model by Eggleton et al. (1998),
with the apsidal motion constants kAM,p=kAM,m=0.19. For the
tidal time-lags, we adopt either τ=τp=τm=6.6 s or 66 s.
A value of τ=6.6 s corresponds to 10 times longer (i.e., stronger
tides) than 0.6 s, as inferred to be appropriate for high-eccentricity
migration by Socrates et al. (2012). These efficient tides turn out
to be necessary to explain the current orbit with our nominal
parameter values (see below). For simplicity, we use the
equilibrium tide model for the evolution immediately after
capture, when the eccentricity is still high (e> 0.9). A caveat of

this is that the equilibrium tide model does not accurately
describe the evolution for eccentricities 0.8 (Mardling 1995).
We start the integration with a semimajor axis of

a0;1060R⊕. This value corresponds to (borderline) capture at
rper=1.5(Rp+ Rm) with α=0 and n=1.5 (see Figure 2). The
corresponding initial eccentricity is e0=1−rper/a0;0.978.
According to our analytic estimates (see Figure 4), the critical
planetary spin for the final orbit to match the current orbit is
β;0.1756. We adopt this spin rate for the planet. The rotation
period of the moon is set to 10 hr; note, however, that the latter
does not affect the synchronized semimajor axis because
Ip?Im. In the numerical integrations, the spins are assumed
to be initially aligned with the orbit.
We present in Figure 5, the time evolution of the semimajor

axis, eccentricity, and the spin rates, where the integration lasts
for 10 Gyr, approximately the age of the star (Teachey &
Kipping 2018). The thick and thin lines correspond to a time
lag of 66 and 6.6 s, respectively. The initial evolution is rapid,
circularizing and shrinking the orbit to a value that is consistent
with acirc (red dashed line in the top-left panel; see
Equation (7)) within ∼10 yr. The moon, which has a small
moment of inertia, is synchronized within the same time span,
whereas the planet remains spinning more rapidly than the orbit
for up to ∼10 Gyr. The planet is synchronized within ∼10 Gyr
assuming extremely efficient tides (τ= 66 s), and the steady-
state semimajor axis is consistent with the currently observed
value (green dashed line; this is consistent with the analytic
expression for β presented in Equation (10)). Assuming less
efficient tides (τ= 6.6 s), equilibrium is not yet reached after
10 Gyr, although it is close (a reaching acur within ;13%).
Evidently, even weaker tides would make the agreement with
the current orbit within 10 Gyr more difficult.

Figure 4. Initial planetary spin (quantified by the fraction β of breakup
rotation) required to explain the current orbit of Kepler 1625 through tidal
capture, as a function of rper. Assumed radii are Rp=11.4 R⊕, and Rm=4 R⊕.
Different line styles and thicknesses correspond to different α and n. The
vertical red lines indicate the maximum rper for which capture can be
successful.

Figure 5. Long-term evolution of the semimajor axis (top-left panel),
eccentricity (top-right panel), the spin rates normalized to the orbital mean
motion s (bottom-left panel), and the rotation periods (bottom-right panel) in a
tidal capture scenario for Kepler 1625, obtained by numerically integrating the
secular tidal equations of motion. Thick and thin lines correspond to a time lag
of 66 and 6.6 s, respectively. In the top-left panel, the green dashed line
indicates the current semimajor axis of the planet-moon orbit; the red dashed
line shows the expected circularization semimajor axis, Equation (7). In the
bottom-left panel, the red lines show the expected curves for pseudosynchro-
nous rotation computed using Equation (42) of Hut (1981) and the eccentricity
as a function of time from the numerical simulations.
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We can estimate the timescales for circularization and
synchronization analytically as follows. Circularization is
dominated by the tides in the moon, and during the
circularization phase, the spins are quickly brought to
pseudosynchronous rotation (see Equation(42) of Hut 1981,
and the red lines showing ΩPS/s in the bottom-left panel of
Figure 5). Also taking the limit e 1 , the circularization
timescale can then be estimated as (Hut 1981)

t
e

de

dt

e
a

R
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k q q

1

1
1

1
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Here, T R GMi i i i
3 tº ( ) (Hut 1981, Equation(12)), and

q M Mi i i3= - . In the last line of Equation (11), we substituted
numerical values, assuming τi=66 s. The resulting timescale
is roughly consistent with the circularization timescale in the
numerical example.

To estimate the synchronization timescale, we take advan-
tage of the separation of timescales for circularization and
synchronization. After circularization, e=0 and a=acirc;
2 rper=46.2 R⊕, whereas the planetary spin (which dominates
the spin angular momentum budget) is still equal to its initial
value to good approximation (see the bottom-right panel of
Figure 5). In this case, one can show using Equations(9) and
(11) of Hut (1981) that a and Ωp are related according to

a a C , 121 2
circ
1 2

p p,0- = - W - W( ) ( )

where C q r R q GM1 p g,p p
2

pº +( ) ( ). By integrating the
equation for da/dt over time, we find a synchronization
timescale
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Here, A a GMp,0 circ
3º W ( ) , B a C GMcirc

2º ( ), and af is
the final semimajor axis. For the numerical estimate, we again
assumed τi=66 s, whereas we set af=0.99 acur. The
numerical value is roughly consistent with the synchronization
timescale in Figure 5.

4. Discussion

Multiple bodies form during the early evolution of a debris
disk to a fully populated planetary system. The migration of
planets in such an environment is to be expected, in particular
when the residual gas causes a drag force on the planets. The
efficiency of this drag force is proportional to the planet mass
(Dürmann & Kley 2015). For a tidal capture to become
possible, the two planets have to acquire similar orbits, which
can be realized via drag. It remains unclear if the more massive
planet was born further out and migrated inward to the lower-
mass planet, or that the more massive planet originally orbited
closer to the star. In the latter case, the disk must have had an

inner edge to prevent the inner more massive planet to migrate
further inward.
In both cases, the encounter is expected to occur with

comparable orbits; i.e., the encounter is parabolic, or hyper-
bolic with a relatively low speed at infinity. The outcome of
this encounter can be the ejection of one of the planets (most
likely the lower-mass planet), collisions with the star, tidal
capture, or a collision of the planets with each other. We can
estimate the branching ratios between these scenarios by
comparing the relevant cross-sections. Here, we do not
consider collisions with the star.
For ejections to occur, we require the velocity change

imparted on the lower-mass planet (mass Mm) during the
encounter at a distance of ∼aå to be comparable to the local
escape velocity from the star, i.e., v v GM a2m esc  D ~ = .
The (3D) velocity change for an encounter with impact
parameter b can be estimated as (e.g., Binney & Tremaine 2008,
S3.1(d))

v
M

M

v

b b

2

1
, 14m

p

90
2

D »
+

¥

( )
( )

where b GM v a M M R55.490
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the impact parameter for a 90° deflection. For α∼1,
b90>Rp+Rm, showing that gravitational focusing is impor-
tant. The impact parameter for escape can therefore be written
as

b b M M2 1 . 15ej 90
2

p
2a= -( ) ( )

Note that v¥ needs to be large enough for the lower-mass planet
to be ejected; specifically, M M1 2 0.71pa ( )( ) .
The impact parameter for tidal capture or direct collision,

taking into account gravitational focusing, is
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where we set r=γ (Rp+ Rm) for tidal capture, and
r=Rp+Rm for direct collision. From our analytical estimates
(Section 2), γ2.5 for a successful capture, depending on the
parameters (see Figure 3).
Therefore, the branching ratio between capture and ejection
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where in the second line we used that b90>Rp+Rm, and in
the fourth line we substituted our adopted values for the
masses, the radii, and aå. For α=1 and γ=2.5, the first line
of Equation (17) gives b b 1.9;cap

2
ej
2  for α=0.8 and

γ=2.5, we get b b 4.3cap
2

ej
2  .
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The branching ratio between capture and collision is

b
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where we again used that b90>Rp+Rm. For α=1 and
γ=2.5, the non-approximated Equation (18) gives
b b 3.0cap

2
col
2  (for α= 0.8 and γ= 2.5, b b 2.8cap

2
col
2  ). We

note that our distinction here between capture and collision is
simplistic; e.g., using hydrodynamic simulations, Hwang et al.
(2018) showed that interactions with rper/(Rp+ Rm)<1 can
lead to bound pairs of planets/moons, in addition to mergers.

We conclude that the likelihoods for ejection, capture, and
collision are comparable within a factor of a few. This is
consistent with the more detailed calculations of Podsiadlowski
et al. (2010) and Ochiai et al. (2014), who carried out numerical
scattering experiments and found roughly equal ejection and
capture fractions. The distribution of the relative inclination of
captured planets binary is flat (see Ochiai et al. 2014), making
the currently observed ∼45° angle of the planet-moon orbit
with respect to the ecliptic not unlikely.

We note that we assumed constant sizes and static interior
structure of the planet and moon. If these properties were
allowed to vary due to planetary evolution, the synchronization
process could occur differently. In particular, the semimajor
axis could stall (Alvarado-Montes et al. 2017), which would
reduce the likelihood that planet-spin-boosted tidal capture can
explain the current orbit of Kepler 1625b I.

Another caveat is that during the migration-induced
dynamical instability phase, there could be multiple encounters
before a successful capture. During each of these encounters,
the system could be disrupted, thereby lowering the capture
probability. More detailed N-body integrations to take this into
account are left for future work.

5. Conclusions

We argued that the planet-moon system in Kepler 1625 is the
result of the tidal capture of a secondary planet by the primary
planet around the star. As a result of scattering induced by
convergent migration in a disk, the two planets approached
each other on a low-energy hyperbolic or parabolic orbit, and
passed each other within 2.5(Rp+ Rm). The tidal dissipation
induced in this encounter subsequently led to the capture of the
minor planet by the primary planet, turning the former into a
moon. The first tidal encounter led to a highly eccentric and
wide orbit, and for capture to be successful, the apocenter
should have remained within the planet’s Hill sphere. The
orbit then circularized to a tight orbit, in ∼10 yr. Over a much
longer timescale of ∼10 Gyr, the primary planet subsequently
transferred its spin angular momentum to the orbit, widening
the latter until synchronization. We find that the primary planet
must have had a primordial spin of at least ∼20% of critical
rotation in order to deposit sufficient angular momentum into
the planet-moon orbit to be consistent with the current orbit.

We expect that the current orbit evolves very slowly, and that
both the planet and moon are in almost synchronous rotation
with the orbit.
These captures are probably not uncommon, being roughly

as common as planet collisions. However, the precise
frequency for this process to operate remains unclear. We
expect that moon formation from tidal capture is not
uncommon (see also Podsiadlowski et al. 2010; Ochiai et al.
2014), and probably comparable to the number of planet
collisions or ejections.
The capture must have occurred early in the planetary

system’s evolution (more than a Gyr ago) to allow tidal
dissipation to synchronize the system to its current orbit. Our
scenario can be tested by measuring the spins of both planet
and moon, which should be synchronous with the orbit, and
along the same axis as the orbital angular momentum of the
planet-moon system.
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