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An amplified dusty star-forming galaxy at z=6: unveiling an elusive

population of galaxies

Jorge A. Zavala1∗, Alfredo Montaña2, David H. Hughes1, Min S. Yun3, R. J. Ivison4,5, Elisabetta Valiante6,

David Wilner7, Justin Spilker8, Itziar Aretxaga1, Stephen Eales6, Vladimir Avila-Reese9, Miguel Chávez1,
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Since their discovery, submillimeter-selected

galaxies1, 2 (SMGs) have revolutionized the field

of galaxy formation and evolution. Hundreds of

square degrees have been mapped at submillime-

ter wavelengths3–5 and notwithstanding the neg-

ative K-correction in the submm bands6, where

there is no significant loss of sensitivity to the de-

tection of these sources up to z ∼ 10, only a hand-

ful of sources have been confirmed to lie at z > 5
(ref.7–11) and only two at z ≥ 6 (ref.12, 13). All of

these SMGs are rare examples of extreme star-

burst galaxies with star formation rates (SFRs)

of & 1000 M⊙ yr−1 and therefore are not repre-

sentative of the general population of dusty star-

forming galaxies. Consequently, our understand-

ing of the nature of these sources, at the earli-

est epochs, is still incomplete. Here we report

the spectroscopic identification of a gravitation-

ally amplified (µ = 9.3 ± 1.0) dusty star-forming

galaxy at z = 6.027. After correcting for grav-

itational lensing we derive an intrinsic SFR of

380±50 M⊙ yr−1 for this source, and find that its

gas and dust properties are similar to those mea-

sured for local Ultra Luminous Infrared Galaxies

(ULIRGs), extending the local trends up to an un-

explored territory at high redshift. This ULIRG-

like galaxy at z = 6 suggests a universal star-

formation efficiency during the last 12.8 Gyr for

dusty star-forming galaxies.

HATLAS J090045.4+004125 (α = 09h00m45.8,

δ = +00◦41′23′′; hereafter G09 83808, since it

was detected in the GAMA 09hrs field) is part of a

sub-sample of the Herschel ATLAS ‘500 µm-riser’

galaxies14 with ultra-red far-infrared (FIR) colours

of S500µm/S250µm > 2 and S500µm/S350µm > 1,
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with a flux density threshold of S500µm < 80 mJy.

The FIR colours of this source are consistent with

thermal dust emission redshifted to z > 4 and

represent a relatively simple selection criterium to

find high-redshift galaxies. A similar selection al-

lowed the identification of HFLS312, an extreme star-

burst galaxy (even after corrected for gravitational

amplification15) at z = 6.3, in the HerMES blank

field survey3.

G09 83808 was observed, among other ultrared-

Herschel dusty star-forming galaxies, as part of a

follow-up program with the Large Millimeter Tele-

scope Alfonso Serrano (LMT) using the AzTEC

camera, in order to obtain higher angular resolution

(∼ 8.5 arcsec) continuum observations at 1.1 mm.

A sub-sample of those galaxies detected as a single

source in the AzTEC images (i.e. with no evidence

of multiple components) and with photometric red-

shifts of > 4, was selected for spectroscopic obser-

vations in the 3 mm band using the Redshift Search

Receiver (RSR) on the LMT. In the LMT/RSR spec-

trum of G09 83808 we identify three emission lines

corresponding to 12CO(6 − 5), 12CO(5 − 4), and

H2O(211 − 202) (see Fig. 1). Based on these lines

we unambiguously determine the galaxy redshift to

be z = 6.0269 ± 0.0006 (i.e. when the Universe

was just 900 million years old). Follow-up observa-

tions with the SMA telescope confirm this solution

through the detection of the redshifted [CII] ionized

carbon line at 270.35 GHz (Fig. 1).

High-angular resolution observations (0.24 arcsec×
0.13 arcsec, corresponding to a physical scale of

∼ 1 kpc at this redshift) taken with the Atacama

Large Millimeter/submillimeter Array (ALMA) at

∼ 890 µm reveal a double arc structure (in a par-

tial Einstein ring configuration of radius ∼ 1.4 arc-

sec) around a foreground galaxy at z = 0.776 (see

Fig. 2), implying strong gravitational amplification

of the high-redshift background galaxy. Using these

ALMA continuum observations to constrain the ef-

fects of gravitational lensing, modelling directly the

visibilities in the uv plane (see Methods section for

additional details), we derive a gravitational amplifi-

cation factor of µ = 9.3 ± 1.0. This amplification

factor is used to derive the intrinsic physical proper-

ties of G09 83808.

Using the Herschel 250, 350, and 500 µm
photometry14, combined with the SCUBA-2 850

µm14 imaging and our AzTEC 1.1 mm observa-

tions (see Table 1), we model the continuum spec-

tral energy distribution (SED; see Figure 3). We

estimate an infrared (IR, 8 − 1000 µm) luminos-

ity, LIR, of 3.8 ± 0.5 × 1012 L⊙ (corrected for

gravitational magnification) which implies a SFRa of

380± 50 M⊙yr
−1 (see Methods section for more in-

formation). This implies that G09 83808 is a member

of the Ultra Luminous Infrared Galaxy (ULIRGs16)

population. This is the only SMG with an un-

ambiguous spectroscopic redshift in this luminos-

ity range at z & 5, lying between the extreme ob-

scured starbursts7–9, 12, 13 (& 1000 M⊙ yr−1) discov-

ered at submm wavelengths and the UV/optical se-

lected star-forming galaxies with follow-up detec-

tions at submm wavelengths17–19 (. 100 M⊙ yr−1).

Although these galaxies are unreachable with the

current generation of submm wide-area surveys3, 4

without the benefit of gravitational amplification,

they can be found in the deepest surveys recently

achieved with ground-based telescopes, such as the

James Clerk Maxwell Telescope (JCMT) SCUBA-2

Cosmology Legacy Survey (S2CLS). However, none

of them has yet been spectroscopically confirmed.

With the caveat of using the position of the dust

SED peak as an estimation of redshift, a study based

on S2CLS observations5 has derived a comoving

space density of 3.2× 10−6 Mpc−3 for sources with

300 < SFR < 1000 M⊙ yr−1 at 5 < z . 6 (i.e.

in the range probed by our galaxy). With a duty-

cycle correction of ≈ 40 Myr, as the gas depletion

time scale measured for G09 83808 (see below) and

other galaxies12, we estimate the corrected comov-

ing space density of this population of galaxies to be

≈ 2× 10−5 Mpc−3, which perfectly matches that of

massive quiescent galaxies at z ≈ 3 − 4 (refs.20).

This suggests, that these ULIRG-type galaxies at

5 . z . 6 are the progenitors of these quiescent

aHere we will use SFR to refer to the dust-obscured SFR
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galaxies, which cannot be explained only by the rare

extreme starburst (like HFLS3), since they are an or-

der of magnitude less abundant14 .

Based on the CO lines detected in the LMT/RSR

spectrum we derive a molecular gas mass of

M(H2) = 1.6±0.6×1010 M⊙ (see Methods section

for details). This implies a gas depletion timescale

of M(H2)/SFR ≈ 40 Myr, consistent with the

value found for other SMGs at lower redshifts with

ULIRG-luminosity22. G09 83808 shows a remark-

able large gas mass fraction of fgas = MH2
/Mdyn ∼

60% (see Methods secction), among the largest mea-

sured for star forming galaxies at z ≈ 2 − 3 (ref.
21). The CO(6-5)/CO(5-4) line luminosity ratio of

0.4 ± 0.1 is in agreement with local ULIRGs (al-

though lower than the average24), and implies a CO

ladder peaking at J≤ 5 (i.e. less excited than AGN-

dominated galaxies23). These two CO transitions,

as well as the H2O line, lie (within the error bars)

on their respective FIR/IR-line luminosity relations

(LFIR ∝ L0.93
CO(6−5), LFIR ∝ L0.97

CO(5−4), and LH2O ∝

L1.16
IR ) found for local ULIRGs and lower redshifts

SMGs24, 25. The star-formation efficiency (SFE) of

our galaxy, estimated through the L′

CO−LIR relation

(which describes the relationship between the lumi-

nosity due to star formation and the gas content), is

similar to local (U)LIRGs (see Fig. 4). This suggests

a universal SFE across several decades of molecular

gas masses from z = 6 to z ∼ 0 (i.e., during the last

12.8 Gyr of the Universe) for this kind of galaxies

(although some works26 have reported a slight evo-

lution of the SFE with redshift). In addition, the esti-

mated dust mass of Md = 1.9±0.4×108 M⊙ results

in a gas-to-dust ratio, δGDR, of 80 ± 30. This is in

agreement with the value estimated for HFLS312 and

also with local (U)LIRGs27 (δGDR = 120 ± 28).

The luminosity of the [CII] ionized carbon line de-

tected with the SMA is 1.3 ± 0.4 × 109 L⊙ which

corresponds to a [CII]/FIR ratio of 3.4± 1.1× 10−4,

a value that is among the lowest measured for lo-

cal (U)LIRGs and SMGs. As shown in Figure 4,

our source follows the same [CII] deficiency trend

measured for local LIRGS28 extending it to LFIR &

1012 L⊙ and up to z = 6. The [CII]/FIR ratio of G09

83808 is also consistent with the lowest values mea-

sured for lower-redshift SMGs and lies on a region

where SMGs and AGN-host galaxies converge (Fig.

4). It may be the case that other SMGs suffer from

gravitiational amplification, which could help to re-

duce the large scatter since many of these galaxies

should fall along the LIRG relation when corrected

for magnification. However, the intrinsic scatter in

the relation is high28, even for the local sample, and

therefore, larger samples of SMGs are required to

derive conclusions about the origin of the [CII] de-

ficiency.

We confirm the existence of ULIRG-like galaxies

within the first billion years of Universe’s history.

These sources may be more representative of the

dusty star-forming galaxy population at these epochs

than the extreme starbursts previously discovered.

Four emission-line-selected galaxies with similar lu-

minosities and redshifts have been recently found

around quasars29 (with the caveat of using just one

line for redshift determination), however, the prop-

erties of these sources may be affected by the com-

panion quasar and therefore not representative of the

whole population. Although G09 83808 shows sim-

ilar properties to those measured in lower-redshift

SMGs, its higher dust temperature (Td = 49 ± 3 K)

and compact morphology (R1/2 = 0.6 ± 0.1 kpc)

resemble that of local ULIRGs. For comparison,

typical UV/optically-selected star-forming galaxies

at z ∼ 6 have SFRs ∼ 10 times lower and radii

∼ 1.7 times larger than G09 8380830. This study is

hence crucial for understanding the evolutionary path

of SMGs and their link with local galaxies. Although

a larger sample is needed to statistically estimate the

properties of these sources and their contribution to

the cosmic star formation history, this galaxy sug-

gests that star formation in dusty star-forming galax-

ies has been driven by similar physical processes dur-

ing the last ∼ 12.8 Gyr .
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a)

b) c) d) e)

Figure 1: Identification of molecular emission lines and redshift derivation. a), Wide-band Redshift

Search Receiver (RSR) 3 mm spectrum of G09 83808 taken with the Large Millimeter Telescope

(LMT). The transitions detected above S/N = 5 are marked with vertical dashed lines, and corre-

spond to 12CO(5-4), 12CO(6-5), and H2O(211−202) at z = 6.0269±0.0006. The spectrum has been

rebinned into 2 pixels bins (∼ 200km/s) for better visualization. b), c), d), LMT/RSR raw spectra at

the position of the detected lines along with the best-fitting Gaussian profiles. e), SMA spectrum

centered at the position of the detected line. The x-axes is in velocity offset with respect to the

derived redshift of z = 6.0269. The derived properties of the lines are reported in Table 1.
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Figure 2: ALMA high-angular resolution continuum observations and lensing model. Left: Color

composite image of G09 83808. The green channel represents the i-band data from SDSS and the

red channel the ALMA 890 µm observations. An Einstein ring-like structure of radius ≈ 1.4 arcsec

in the ALMA image is clearly seen around a foreground galaxy at z = 0.776, which confirms that

our high-redshift galaxy is strongly amplified. Right: Best-fit lensing model based on the visibilities

of ALMA observations, from which we derived a gravitational amplification of µ = 9.3± 1.0.
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Figure 3: Photometry and spectral energy distribution (SED). De-magnified (with µ = 9.3 ± 1.0)

flux densities at 250, 350, 500, 850 and 1100 µm from Herschel/SPIRE, JCMT/SCUBA-2, and

AzTEC/LMT are represented by the blue circles. These flux densities were fitted with different

SED templates, including: Arp220, Cosmic Eyelash, two average SMG templates, an average 24

µm-selected star-forming galaxy template, and a modified black body (MBB, see Methods section

for details). We achieve the lowest χ2 with the Arp220 template, from which we derive an IR

luminosity of 3.8 ± 0.5 × 1012 (corrected for magnification). From the best-fit modified black body

distribution we derive a dust temperature of 49 ± 3 K. As discussed in the Methods section, the

CMB effects are not significant.
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Figure 4: Star formation efficiency and [CII] deficiency. Left: Lens-corrected CO(1-0) luminosity

versus IR luminosity (L′

CO(1−0) − LIR) as a proxy for the star-formation efficiency of G09 83808.

For comparison, local LIRGS31, ULIRGS32, and lower-redshift SMGs22,33 are plotted along with

the best-fit relation to the three samples22. As can be seen, G09 83808 falls on the same rela-

tion (as well as HFLS312 after correcting for magnification15), which suggests that the same star

formation efficiency holds from z ∼ 0 to z = 6 (i.e. during the last ∼ 12.8 Gyr). The empty cir-

cle represents the position of our source if no lensing amplification correction is applied. Right:

[CII]/FIR versus de-magnified (filled circle) and amplified (empty circle) FIR luminosity for G09

83808. For comparison, we also plot a sample of (U)LIRG galaxies from the Great Observatories

All-sky Survey (GOALS28), and a compilation of high-redshift sources45 that includes SMGs and

AGN-dominated sources. Our source follows the same trend as local (U)LIRGs and lies in a region

between lower-redshift SMGs and AGNs.

Table 1: Measured spectral line and continuum properties (not corrected for gravitational amplifica-

tion).

Transition Photometrya

CO(5-4) CO(6-5) H2O(211 − 202) [CII] [µm] [mJy]

νobs [GHz] 82.031± 0.007 98.41± 0.01 106.993± 0.007 270.35± 0.03 250 9.7± 5.4
FWHM [km s−1] 490± 60 320± 70 240± 40 400± 70 350 24.6± 7.9
Sint [Jy km s−1] 1.6± 0.3 0.9± 0.3 0.8± 0.2 13.8± 3.0 500 44.0± 8.2
L′ [1010 K km s−1 pc−2] 7.6± 1.2 2.9± 0.8 2.3± 0.5 6.1± 1.3 850 36.0± 3.1

1100 20.0± 1.0
aThe flux densities at 250, 350, 500, and 850 µm were taken from ref.14
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Methods

1 Observations and data reduction

1.1 LMT observations

Continuum and spectroscopic observations were

obtained using the Large Millimeter Telescope

(LMT34, PI: D. Hughes), located on the summit

of Volcán Sierra Negra (Tliltépetl), Mexico, at ∼
4600 m.a.s.l. Observations were carried out dur-

ing the Early Science Phase of the telescope us-

ing the 1.1 mm continuum camera, AzTEC35, and

the 3 mm spectrograph, Redshift Search Receiver

(RSR36). During these observations only the inner

32-m diameter region of the telescope active surface

was illuminated, which provided an effective beam

size of ≈ 8.5 arcsec at 1.1 mm and between 20− 28
arcsec in the RSR 3 mm window (75 GHz - 110

GHz).

AzTEC observations were performed on 2014

November 10 with an opacity of τ225 = 0.07 and

total on-source integration time of 11 min. Data re-

duction were done following the AzTEC Standard

Pipeline37. G09 83808 was detected with a S/N ≈ 20
with a flux density of S1.1mm = 20.0±1.0 mJy. RSR

observations were subsequently taken at the AzTEC

position in two different periods: February 2016 and

February 2017, along five different nights with an

opacity range of τ225 = 0.05 − 0.15 and a total inte-

gration time of 8 hrs. Pointing observations on bright

millimetre sources were done every hour. Data re-

duction was performed using the Data Reduction and

Analysis Methods in Python (DREAMPY). The final

spectra were obtained by averaging all scans using

1/σ2 weights after flagging bad data. Finally, to con-

vert from antenna temperature units to flux, a factor

of 7 Jy K−1 was used38. The final spectrum shows

three lines detected at S/N & 5 associated to CO(6-

5), CO(5-4) and H2O(211 − 202) at z = 6.0269. A

cross-correlation template analysis38 also identifies

this redshift as the best solution with a S/N = 9.1.

Figure 1 shows the final spectrum after a Savitzky-

Golay filter39 has been applied for better visualiza-

tion (the filter does not modified any of the properties

of the detected lines).

At the redshift of our source the [CII] 158 µm line

(see below) falls within the AzTEC band pass and

then contributes to the total flux density measured at

1.1 mm. However, the contamination from the line

is measured to be less than 2 per cent. Even if the

[CII] line luminosity was as high as 1 per cent of the

total IR luminosity, the contamination to the AzTEC

measurement would be only ∼ 6 per cent, which is

similar to the absolute flux calibration uncertainty.

Therefore, and at least for this source, the contami-

nation of the emission line to the 1.1 mm continuum

flux density is less important than anticipated40 .

1.2 SMA observations

G09 83808 was observed with the Submillimeter Ar-

ray (SMA, PI: J. Zavala) on Mauna Kea, Hawaii, on

2017 April 03. The weather conditions were good,

with an average atmospheric opacity of τ225 = 0.07
and stable phase. The seven available array antennas

were in a compact configuration that provided base-

line lengths from 8 to 77 meters. The ‘345’ receiver

set was tuned to provide spectral coverage ±(4 −
12) GHz from a LO frequency of 277.5 GHz, specifi-

cally to span a broad range around the estimated (red-

shifted) [CII] line frequency of ∼ 270.5 GHz in the

lower sideband. The SWARM correlator provided

uniform channel spacing of 140 kHz (∼0.16 km s−1)

over the full bandwidth. The usable field of view is

set by the FWHM primary beam size of ∼ 47 arcsec

at this frequency.

The basic observing sequence consisted of a loop of

2 minutes each on the gain calibrators J0909+013

(1.57 Jy) and J0831+044 (0.47 Jy) and 17.5 min-

utes on G09 83808. The track spanned an hour an-

gle range of −0.8 to 4.8 for the target source. Pass-

band calibration was obtained with observations of

the strong quasar 3C279. The absolute flux scale

was set using observations of Callisto, with an es-

timated accuracy of 20%. All of the basic calibration

steps were performed using standard procedures in

the MIR software package. The calibrated visibili-

ties were exported to the MIRIAD software package

for imaging and deconvolution. Within MIRIAD,

the task uvaver was used to combine the 4 corre-

lator windows of the lower sideband and to resam-
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ple the visibilities to 50 km s−1 spectral resolution.

The task uvlin was used for continuum subtrac-

tion, using a linear fit to line-free channel ranges in

the band. The task invert provided Fourier inver-

sion for both continuum and spectral line imaging,

followed by clean for deconvolution. The synthe-

sized beam size obtained with natural weighting was

2.5
′′

× 2.3
′′

, p.a. 82◦ for the spectral line data cube,

with rms noise 7.1 mJy per 50 km s−1 bin. The final

spectrum (see Fig. 1) was then extracted from a rect-

angular region that comprise all the continuum emis-

sion. We measured the continuum flux density of the

source to be 21.5 ± 3 mJy, in very good agreement

with the AzTEC photometry.

2 Lensing model

The lens model was created using the publicly-

available visilens code41; details of the code are

given in that work. Briefly, the lens mass profile

is parameterized as a Singular Isothermal Ellipsoid,

and the background source is modeled with a sin-

gle elliptical Sérsic profile. The parameter space is

explored using a Markov Chain Monte Carlo sam-

pling method, generating a model lensed image at

each proposed combination of lens and source pa-

rameters. The redshift of both sources is fixed at

z = 0.776 (based on X-Shooter/VLT observations42)

and z = 6.027, respectively. Because pixel val-

ues in interferometric images are correlated and sub-

ject to difficult-to-model residual calibration errors,

the proposed model image is inverted to the visibil-

ity domain and sampled at the uv coordinates of the

ALMA data (Project code: 2013.1.00001.S; PI: R.

Ivison; Oteo et al. in preparation). We also allow for

residual antenna-based phase calibration errors in the

model which could be due to, for example, uncom-

pensated atmospheric delays. The phase shifts of all

antennas are < 10 deg, indicating that no significant

antenna-based calibration problems remain.

The lensed emission is reasonably well-fit by a single

background Sérsic component, leaving peak residu-

als of ∼ 4σ (the source is detected at peak signifi-

cance ∼ 20σ). These residuals may indicate that ei-

ther the lens, source, or both are more complex than

the simple parametric forms we have assumed. We

have verified that an additional background source

component is not statistically motivated. The best-fit

magnification of the source is µ890µm = 9.3 ± 1.0,

with an intrinsic flux density S890 µm = 4.3 ± 0.5
mJy and half-light radius 0.10 ± 0.01” (= 0.6 ± 0.1
kpc). This compact morphology resembles the sizes

found for local ULIRGs43 (∼ 0.5 kpc), which are

smaller than the typical values in SMGs (∼ 1.8 kpc,

ref:44).

3 SED fitting and dust properties

We fit different galaxy SED templates to the pho-

tometry of G09 83808 through a χ2 minimization

method. We include the SED template of Arp22046,

Cosmic Eyelash47 (SMM J2135-0102), two aver-

age SMGs templates48, 49, and finally a composite

SED of 24 µm-selected star-forming galaxy50. All

the SED templates were fixed at z = 6.027. The

Arp220 SED template gives us the best fit with

χ2
red = 0.7. Using this template we derive an IR

(8 − 1000µm) luminosity of 3.8 ± 0.5 × 1012 L⊙

and a FIR (42.5 − 122.5µm) luminosity of 2.3 ±
0.3 × 1012 L⊙ (both corrected for gravitational am-

plification) . For comparison, if we adopt instead

a SMGs average template (χ2
red = 1.2) we obtain

LIR = 3.0 ± 0.4 × 1012 L⊙, which is in good

agreement with the value derived using the Arp220

template. Using Kennicutt standard relation51 for a

Chabrier initial mass function (IMF)53, this IR lumi-

nosity corresponds to a star formation rate (SFR) of

380 ± 50 M⊙ yr−1, or to 570 ± 70 M⊙ yr−1 if the

most recent relation52 is used. If we adopt instead

the Kennicutt calibration51 for a Salpeter IMF54, the

SFR increases to 640 ± 90 M⊙ yr−1, still below the

range probed by other SMGs at z & 5.

We also use a modified blackbody function to fit our

photometric measurements described by

Sν ∝ {1− exp[−(ν/ν0)
β]}B(ν, Td), (1)

where Sν is the flux density at frequency ν, ν0 is the

rest-frame frequency at which the emission becomes

optically thick, Td is the dust temperature, β is the

emissivity index, and B(ν, Td) is the Planck function

at temperature Td. To minimize the number of free

parameters, the emissivity index is fixed (previous
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observational works suggest β = 1.5−2; refs.55–57),

as well as ν0 = c/100 µm (refs.12, 58), where c is the

speed of light. From the best fit (χ2 ≈ 1.1) we de-

rive Td = 49± 3 K for β = 1.8 and Td = 52± 3 K
for β = 1.5. For these dust temperatures and at the

redshift of our source the CMB effects59 are not sig-

nificant (∆T . 1 K).

Assuming the dust is isothermal, the dust mass, Md,

is estimated from

Md =
Sν/(1+z)D

2
L

(1 + z)κνB(ν, Td)
, (2)

where Sν is the flux density at frequency ν, κν is the

dust mass absorption coefficient at ν, Td is the dust

temperature, and B(ν,Td) is the Planck function at

temperature Td. The dust mass absorption follows

the same power law as the optical depth, κ ∝ νβ .

Assuming normalization of κd(850µm) = 0.07 m2

kg−1 (ref.60) and a dust temperature of 49± 3 K, we

estimate a dust mass of Md = 1.9 ± 0.4 × 108 M⊙

after correcting for the CMB effects59 (although this

correction is less than 5 per cent). These calculations

do not include the uncertainties of the dust mass ab-

sorption coefficient, which could be at least a factor

of 3 (ref. 61). If we use instead a lower dust temper-

ature of 35 K, the dust mass increases by a factor of

∼ 2.

We also fit the observerd photometry with the

MAGPHYS62 SED modelling code finding consis-

tent results, within the error bars, with median val-

ues of SFR= 360+80
−70 M⊙ yr−1, LIR = 4.5 ± 0.7 ×

1012 L⊙, Td = 40+4
−2 K, and Md = 4.2 ± 0.7 ×

108 M⊙.

4 Spectral line properties

We calculate the line luminosity for each detected

line following the standard relation63 described by:

L′

CO = 3.25×107SCO∆V ν−2
obs D

2
L (1+z)−3, (3)

where L′

CO is the line luminosity in K km s−1 pc2,

SCO∆V is the velocity-integrated line flux in Jy

km s−1, νobs is the observed central frequency of

the line in GHz and DL is the luminosity distance

in Mpc. The integrated flux, SCO∆V , is calcu-

lated as the integral of the best-fit Gaussian distri-

bution, and its associated uncertainty through Monte

Carlo simulations taking into account the errors in

the Gaussian parameters (i.e. peak flux density and

line width). To estimate the line luminosity in L⊙,

we use L = 3× 10−11ν3rL
′, where νr is the rest fre-

quency of the line63. All properties are summarized

in Table 1.

5 CO(1-0) line luminosity and molecular gas

mass

The molecular gas mass, M(H2), can be derived us-

ing the CO luminosity to molecular gas mass conver-

sion factor, α, following the relation

M(H2) = α L′

CO(1−0). (4)

For the L′

CO(1−0) line luminosity we adopt the

average value of L′

CO(1−0) = 2.0 ± 0.8 ×

1010 K km s−1 pc−2 extrapolated from our CO(6-

5) and CO(5-4) transitions and correcting for grav-

itational amplification. The extrapolation was done

using average brightness ratios found for lower-

redshift SMGs22 (L′

CO(5−4)/L
′

CO(1−0) = 0.32 ±

0.05, L′

CO(6−5)/L
′

CO(1−0) = 0.21± 0.04), this sam-

ple includes galaxies with similar luminosities to

G09 83808 and are in agreement with those found

for local ULIRGs24 (within the large scatter). On

the other hand, if we use the relationship between

the Rayleigh-Jeans specific luminosity and CO(1-0)

luminosity64, L′

CO(1−0) [K km s−1pc2] = 3.02 ×

10−21Lν [erg s−1 Hz−1], we obtain a consistent

line luminosity of 1 ± 0.1 × 1010 K km s−1 pc−2

(assuming a mass-weighted dust temperature of

35 K, which is different from the luminosity-

weighted dust temperature determined from the

SED fitting64). Using the former value and α =
0.8 M⊙ (K km s−1 pc−2)−1, which is appropriate

for starburst galaxies23 (although some studies sug-

gest larger values65), we derive a molecular mass of

M(H2) = 1.6 ± 0.6× 1010 M⊙.

6 Dynamical mass and gas mass fraction

Dynamical mass has been derived using the

‘isotropic virial estimator’, which has been shown to
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be appropriate for lower-redshift SMGs66:

Mdyn[M⊙] = 2.8×105 ∆ν2FWHM[km s−1]R1/2[kpc],
(5)

where ∆νFWHM is the integrated line FWHM, which

has been assumed to be 400 km/s (as the average be-

tween the CO and [CII] lines), and R1/2 is the half-

light radius of ∼ 0.6 kpc (derived from the lesing

model of the continuum emission). This results in

a dynamical mass of Mdyn = 2.6 × 1010 M⊙. Us-

ing this estimation we calculate a gas mass fraction

of fgas = MH2
/Mdyn ≈ 60%. This constrain the

CO luminosity to molecular gas mass conversion fac-

tor to α . 1.4 M⊙ (K km s−1 pc−2)−1, otherwise

the molecuar gas mass would exceed the dynamical

mass.
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