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ABSTRACT
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds
of thousands of galaxy clusters. While such large numbers will help reduce statistical un-
certainties, the control of systematics in cluster masses becomes ever more crucial. Here we
examine the effects of an important source of systematic uncertainty in galaxy-based cluster
mass estimation techniques: the presence of significant dynamical substructure. Dynamical
substructure manifests as dynamically distinct subgroups in phase-space, indicating an un-
relaxed state. This issue affects around a quarter of clusters in a generally selected sample.
We employ a set of mock clusters whose masses have been measured homogeneously with
commonly-used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial
methods). We use these to study how the relation between observationally estimated and true
cluster mass depends on the presence of substructure, as identified by various popular diag-
nostics. We find that the scatter for an ensemble of clusters does not increase dramatically
for clusters with dynamical substructure. However, we find a systematic bias for all methods,
such that clusters with significant substructure have higher measured masses than their relaxed
counterparts. This bias depends on cluster mass: the most massive clusters are largely unaf-
fected by the presence of significant substructure, but masses are significantly overestimated
for lower mass clusters, by ∼ 10% at 1014 and & 20% for . 1013.5. The use of cluster samples
with different levels of substructure can therefore bias certain cosmological parameters up to
a level comparable to the typical uncertainties in current cosmological studies.

Key words: galaxies: clusters – cosmology: cosmological parameters – galaxies: haloes –
galaxies: kinematics and dynamics –galaxies: groups – cosmology: large-scale structure of
Universe

1 INTRODUCTION

Galaxy clusters are massive, rare objects which form from high
peaks in the underlying density field and whose population char-
acteristics are sensitive to the expansion history of the Universe
and the growth rate of structure. Statistical studies of the galaxy
cluster population are therefore powerful tools across various fields
including cosmology (see Voit 2005; Allen et al. 2011 for a review,
Tinker et al. 2012), galaxy evolution (e.g., Dressler 1980; Balogh
et al. 1999; Goto et al. 2003; Postman et al. 2005; Peng et al. 2012)
and large scale structure (e.g., Bahcall 1988; Einasto et al. 2001)

We are entering an exciting time for cluster cosmology with
ongoing surveys such as The Dark Energy Survey (The Dark
Energy Survey Collaboration 2005), the Kilo-Degree Survey (de

? E-mail: old@astro.utoronto.ca

Jong et al. 2015), WFIRST (Spergel et al. 2015), the South Pole
Telescope Sunyaev Zeldovich survey (de Haan et al. 2016), the
Atacama Cosmology Telescope (Sehgal et al. 2011), the Hyper
Suprime Cam survey (Aihara et al. 2017), and upcoming surveys
such as Euclid (Amendola et al. 2013), eROSITA (Pillepich et al.
2012) and LSST (LSST Science Collaboration et al. 2009).

With the production of these wide-field surveys across a va-
riety of wavelengths, we are moving into an era where samples of
106 galaxy clusters will be available. These large samples enable
the reduction of statistical uncertainties, however, it is clear that
systematic uncertainties often dominate the statistical uncertainties
in cluster mass estimation (as highlighted in Benson et al. 2013;
Hasselfield et al. 2013; Planck Collaboration et al. 2016b), and the
need to control for these systematic uncertainties is even more cru-
cial for cluster cosmology studies.

One such source of systematic uncertainty in cluster mass
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2 Old et al.

estimation techniques in particular, is the presence of dynami-
cally young clusters with significant dynamical substructure. Clus-
ter dynamical substructure is characterised as the presence of dy-
namically distinct subgroups within galaxy clusters. In the clus-
ter galaxy distribution substructure typically manifests itself in the
form of asymmetrical velocity distributions and distinct subgroups
in phase-space of clusters. The presence of significant substructure
is an indication that a cluster is not in virial equilibrium or in a
‘relaxed’ state, either because of a recent cluster-cluster merger, or
significant growth of the cluster via infalling groups.

There have been numerous studies since the 1980s probing
the frequency of dynamical substructure in cluster samples (e.g.,
(Geller & Beers 1982; Dressler & Shectman 1988; Rhee et al. 1991;
Bird 1994; Escalera et al. 1994; West et al. 1995; Solanes et al.
1999; Burgett et al. 2004; Owers et al. 2009; Aguerri & Sánchez-
Janssen 2010, Ziparo et al. 2012; Einasto et al. 2012; Hou et al.
2012; Cohn 2012, Owers et al. 2017). Many of these works also
explored whether measured global properties of clusters differ for
clusters in their samples with significant substructure compared to
more relaxed clusters. While some works have found that the mea-
sured global properties of clusters do differ in samples of clusters
that have significant dynamical substructure (e.g., Geller & Beers
1982; Escalera et al. 1994; West et al. 1995; Girardi et al. 1997;
Lopes et al. 2006; Biviano et al. 2006; Hou et al. 2012), other works
do not find any obvious difference in cluster measures for com-
plex clusters (e.g., Biviano et al. 1993; Fadda et al. 1997; Aguerri
& Sánchez-Janssen 2010). The discordance in the conclusions are
likely due to small galaxy cluster samples and the method em-
ployed to characterise dynamical substructure.

While these works focus on comparing measured global clus-
ter properties for highly substructured and non-substructured clus-
ters, in this study, we focus on deducing whether cluster mass esti-
mation techniques themselves are affected by the presence of sig-
nificant dynamical substructure, as opposed to differences in global
parameters of these two cluster populations.

One approach to examine whether cluster mass estimation
techniques themselves are affected by the presence of significant
dynamical substructure is to compare galaxy-based reconstructed
mass estimates with reconstructed mass estimates computed using
other mass proxies e.g, X-ray, lensing, SZ-based mass estimates.
An example of this multi-wavelength comparison is in Lopes et al.
(2006), where optical richness and X-ray luminosity relations for a
sample of several hundred clusters are examined. The authors find
that the exclusion of clusters with substructure does not improve
the correlation between X-ray luminosity and richness, but does
improve the relation between X-ray temperature and optical pa-
rameters. More recently, Sifón et al. (2013) hints that disturbed sys-
tems may bias the relation between SZE-velocity dispersion cluster
mass, however, they state the need for larger samples of clusters to
confirm this.

The second approach to deduce whether cluster mass estima-
tion techniques themselves are affected by the presence of signifi-
cant dynamical substructure, is to use mock data where the under-
lying halo mass is known, and global cluster properties including
mass and relaxation state are measured in an observational man-
ner. For example, Pinkney et al. (1996), use N-body simulations of
galaxy cluster mergers and find that virial masses are overestimated
by up to a factor of 2 for clusters undergoing mergers, a conclusion
similar to that of Perea et al. (1990).

The main assumption required in this approach are that the
simulated galaxy clusters deemed highly substructured by an obser-
vational substructure tests are indeed similar to clusters in the real

Universe that would be deemed highly substructured by dynamical
substructure tests. This assumption is reasonable in the case where
the properties of galaxies in the simulated clusters used are taken
directly from the underlying N-body dark matter simulation, where
phase-space properties have primarily evolved over time due to
the influence of gravity. To first order, these simulated phase-space
properties are indeed comparable to galaxy phase-space properties
in the Universe.

To understand the consequence of including dynamically dis-
turbed galaxy clusters in cluster cosmology samples, we look to
examine the following questions: does the presence of significant
dynamical substructure impact commonly used galaxy-based mass
estimation techniques? Would scaling relations between multi-
wavelength mass estimation techniques differ for highly substruc-
tured and non-substructured clusters? And finally, should dynam-
ically young clusters be excluded from future cluster cosmology
samples?

In this work, we explore these critical questions, presenting
the first extensive, homogenous study of the impact of dynamical
substructure on galaxy-based cluster mass estimation techniques.
We utilise part of the Galaxy Cluster Mass Reconstruction Project
(GCMRP) dataset, where 25 different galaxy-based mass estima-
tion techniques were tested using two mock galaxy catalogues to
deduce how well these methods characterised global cluster prop-
erties such as mass (Old et al. 2014, 2015), and how this mass de-
pends on the accuracy of the selected members (Wojtak et al. in
prep.)

The article is organised as follows: we describe the mock
galaxy catalogue in Section 2, and the mass reconstruction meth-
ods applied to this catalogue in Section 3. In Section 4, we provide
details of our analysis before presenting the results on the effects
of significant dynamical substructure on cluster mass estimation
in Section 5. We end with a discussion of our results and conclu-
sions in Section 6. Throughout the article we adopt a Lambda Cold
Dark Matter (ΛCDM) cosmology with Ω0 = 0.27, ΩΛ = 0.73,
σ8 = 0.82 and a Hubble constant of H0 = 100 h km s−1 Mpc−1

where h = 0.7, although none of the conclusions depend strongly
on these parameters.

2 DATA

For this study, we only use data from the GCMRP where the dy-
namical properties of the galaxies are taken directly from the under-
lying N-body dark matter subhaloes themselves, where the galaxies
have retained the ’dynamical memory’ of the merging history of the
clusters. This strategy ensures a more direct comparison with that
of the real Universe, where we assume the phase-space properties
of galaxies have primarily evolved over time due to the influence of
gravity. We take an observational approach in this study, measuring
the dynamical state of our mock clusters using observational dy-
namical substructure tests. We describe the underlying dark matter
simulation, light cone generation and model used to populate the
dark matter simulation outputs with galaxies in the following sub-
sections.

2.1 Dark matter simulation

The underlying dark matter simulation we use is the Bolshoi dissi-
pationless cosmological simulation which follows the evolution of
20483 dark matter particles of mass 1.35×108 h−1M� from z = 80
to z = 0 within a box of side length 250 h−1Mpc with a force
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Galaxy Cluster Mass Reconstruction 3

resolution of the 1 h−1 kpc (Klypin et al. 2011). The simulation
was run with the ART adaptive mesh refinement code following a
flat ΛCDM cosmology with the following parameters: Ω0 = 0.27,
ΩΛ = 0.73, σ8 = 0.82, n = 0.95 and h = 0.70. The halo catalogues
are complete for haloes with circular velocity Vcirc > 50 km s−1

(corresponding to M360ρ ≈ 1.5 × 1010 h−1M� , ∼110 particles).
ROCKSTAR, a 6D FOF group-finder based on adaptive hi-

erarchical refinement, is used to identify dark matter haloes, sub-
structure and tidal features (Behroozi et al. 2013). ROCKSTAR
identifies haloes and subhaloes using 6D (3D in spatial, and 3D
in velocity) information which are joined into hierarchical merg-
ing trees that describe in detail how structures grow as the universe
evolves. As ROCKSTAR uses spatial and velocity information to
identify dark matter structures, it does not suffer from (3D) pro-
jection effects that would potentially bias this study in incidences
where two group centres were spatially aligned in the same snap-
shot. ROCKSTAR calculates the underlying halo masses by calcu-
lating the spherical overdensities according to a density threshold
200 times that of the critical density. We highlight that these over-
densities are calculated using all the particles for all the substruc-
ture contained in a halo. This halo finder has been shown to recover
halo properties with high accuracy and produces results consistent
with those of other halo finders (Knebe et al. 2011).

2.2 Light cone construction

For this study, we use light cones produced by the Theoretical As-
trophysical Observatory (TAO1, Bernyk et al. 2016), an online eRe-
search tool that provides access to semi-analytic galaxy formation
models and N-body simulations. The light cone tool remaps the
spatial and temporal positions of each galaxy in the simulation box
onto a cone which subtends 60◦ by 60◦ on the sky, covering a red-
shift range of 0 < z < 0.15. We specify a minimum r-band lumi-
nosity for the galaxies of Mr = −19 + 5 log h for the catalogue.

2.3 Semi-analytic model

The model we use to form galaxies on the underlying dark matter
data is the Semi-Analytic Galaxy Evolution (SAGE) galaxy forma-
tion model (Croton et al. 2016). As described in more detail in Old
et al. (2015), this galaxy formation model is applied to the merger
trees described in Section 2.1. In each tree and at each redshift,
virialised dark matter haloes are assumed to attract pristine gas
from the surrounding environment, from which galaxies form and
evolve. The SAGE model is calibrated using various observations
at z = 0, namely the stellar mass function and SDSS-band lumi-
nosity functions, baryonic Tully-Fisher relation, metallicity-stellar
mass relation and the black hole-bulge relation.

The model includes various galaxy formation physics from
reionisation of the inter-galactic medium at early times, the infall
of this gas into haloes, radiative cooling of hot gas and the forma-
tion of cooling flows, star formation in the cold disk of galaxies
and the resulting supernova feedback, black hole growth and active
galactic nuclei (AGN) feedback through the ‘quasar’ and ‘radio’
epochs of AGN evolution, metal enrichment of the inter-galactic
and intra-cluster medium from star formation, and galaxy morphol-
ogy shaped through secular processes, mergers and merger induced
starbursts. Detailed comparisons of the model to observations at
higher redshift can be found in Lu et al. (2014) and Croton et al.

1 https://tao.asvo.org.au/tao/

(2016), though we note that our light cone spans only lower red-
shifts, as described in Section 2.2.

Importantly, each group identified by the halo finder ROCK-
STAR has a ‘central’ galaxy whose central position and velocity is
determined by averaging the positions and velocities of the subset
of halo particles. Each group also has a number of ‘satellite’ galax-
ies (cluster members) that maintain the positions and velocities of
the subhaloes that merged with the parent halo.

3 MASS RECONSTRUCTION METHODS

To determine the consequence of including dynamically disturbed
galaxy clusters in cluster cosmology samples, we use a subset of the
GCMRP dataset, where 23 commonly-used galaxy-based mass es-
timation techniques (kinematic, richness, caustic, radial methods),
were tested in a blind manner on clusters from two mock galaxy
catalogues. For this study, we use only results of galaxy-based tech-
niques which were tested on mock clusters from the Semi-Analytic
Model (SAM)-based dataset described in Section 2.3, where the
dynamical properties of the galaxies are taken directly from the
underlying N-body dark matter subhaloes themselves (unlike the
HOD2 model used in Old et al. 2015).

The three general steps that galaxy-based techniques typically
follow is first to locate the cluster overdensity, choose which galax-
ies are members of the cluster and finally use the properties of this
membership to reconstruct cluster mass. In this study, we focus
on the second and third steps of deducing membership and mass,
as opposed to cluster finding. We summarise the type of data the
methods require as input in Table 1 and the basic properties of all
methods in Table A1 and Table A2, however, we refer the reader to
studies Old et al. (2014, 2015) for more detail of the procedure of
each cluster mass reconstruction technique. We note that the colour
associated with each method in the figures and tables correspond to
the main galaxy population property used to perform mass estima-
tion richness (magenta), projected phase-space (black), radii (blue),
velocity dispersion (red), or abundance matching (green).

4 DYNAMICAL SUBSTRUCTURE ANALYSIS

The tools for detecting dynamical substructure, either solely using
the cluster member velocity distribution (1D), the member posi-
tions (2D) or combining the velocity and positional information of
the cluster (3D), have been extensively assessed for their robust-
ness and reliability for both group sized systems and cluster sized
systems (Pinkney et al. 1996; Hou et al. 2009). These comprehen-
sive works indicate that while applying a variety of 1D, 2D and 3D
dynamical substructure tests is useful, the more reliable substruc-
ture tests are 3D tests which quantify the difference between local
subgroups of galaxies within clusters to the global cluster proper-
ties such as the Dressler-Shectman (DS, 1988) test and the Kappa
test (Colless & Dunn 1996). In this study, we apply these tests to
our semi-analytic mock simulation data (where we again note that
the mock galaxy properties are taken from the underlying N-body
simulation dark matter subhaloes). A cluster is deemed as signifi-
cantly dynamically substructured if either the DS test or the Kappa
test detected substructure. We outline the procedure of these tests
below.

While these tests are found to be the more reliable techniques
applied in the literature (see extensive evaluations in Pinkney et al.

c© 2017 RAS, MNRAS 000, 1–13



4 Old et al.

Table 1. Summary of the 23 cluster mass estimation methods. Listed is an acronym identifying the method, an indication of the main property used to undertake
member galaxy selection and an indication of the method used to convert this membership list to a mass estimate. The type of observational data required as
input for each method is listed in the fourth column. Note that acronyms denoted with an asterisk indicate that the method did not use our initial object target
list but rather matched these locations at the end of their analysis. Please see Tables A1 and A2 in the appendix for more details on each method.

Method Initial Galaxy Selection Mass Estimation Type of data required Reference
PCN phase-space Richness Spectroscopy Pearson et al. (2015)
PFN* FOF Richness Spectroscopy Pearson et al. (2015)
NUM phase-space Richness Spectroscopy Mamon et al. (in prep.)
ESC phase-space phase-space Spectroscopy Gifford & Miller (2013)
MPO phase-space phase-space Multi-band photometry, spectroscopy Mamon et al. (2013)
MP1 phase-space phase-space Spectroscopy Mamon et al. (2013)
RW phase-space phase-space Spectroscopy Wojtak et al. (2009)
TAR* FOF phase-space Spectroscopy Tempel et al. (2014)
PCO phase-space Radius Spectroscopy Pearson et al. (2015)
PFO* FOF Radius Spectroscopy Pearson et al. (2015)
PCR phase-space Radius Spectroscopy Pearson et al. (2015)
PFR* FOF Radius Spectroscopy Pearson et al. (2015)
MVM* FOF Abundance matching Spectroscopy Muñoz-Cuartas & Müller (2012)
AS1 Red Sequence Velocity dispersion Spectroscopy Saro et al. (2013)
AS2 Red Sequence Velocity dispersion Spectroscopy Saro et al. (2013)
AvL phase-space Velocity dispersion Spectroscopy von der Linden et al. (2007)
CLE phase-space Velocity dispersion Spectroscopy Mamon et al. (2013)
CLN phase-space Velocity dispersion Spectroscopy Mamon et al. (2013)
SG1 phase-space Velocity dispersion Spectroscopy Sifón et al. (2013)
SG2 phase-space Velocity dispersion Spectroscopy Sifón et al. (2013)
SG3 phase-space Velocity dispersion Spectroscopy Lopes et al. (2009)
PCS phase-space Velocity dispersion Spectroscopy Pearson et al. (2015)
PFS* FOF Velocity dispersion Spectroscopy Pearson et al. (2015)

1996; Hou et al. 2009), there can be cases where clusters do in-
deed contain significant substructure undetected by these tests. For
example, White et al. (2010), use N-body simulations to test the
correlation between a given dynamical substructure detection tech-
nique and time since last major merger of a cluster. They find that
this correlation is dependent on viewing angle, especially in cases
where the substructure is not well separated along the line of sight.
Furthermore, Hou et al. (2012) find that the DS test in particular
can be reliably applied to groups only with Ngal > 20 and where a
high confidence level of 95% or higher is used. Indeed, Hou et al.
(2012) deduced that for groups with 10 6 Ngal < 20, the DS test
does not necessarily detect all substructures within a system, but the
test can be used to determine a reliable lower limit on the amount
of substructure.

4.1 The Dressler-Shectman test

The DS test aims to quantify the difference between local kinemat-
ics and global kinematics by selecting subgroups of cluster mem-
bers and calculating the local velocity dispersion σlocal and veloc-
ity mean νlocal. These local properties are compared with the global
cluster velocity dispersion σglobal and cluster velocity mean νglobal
by computing an i-th deviation δi for the i-th cluster member:

δ2
i =

(
Nnn + 1
σglobal

) [
(νlocal − νglobal)2 + (σlocal − σglobal)2

]
. (1)

We adopt a correction to the original DS test by replacing Nnn = 11
with Nnn =

√
Nmembers as suggested for applying to groups and

clusters with fewer members to enhance the sensitivity of the
test to small-scale structures (Silverman 1986 and Zabludoff &
Mulchaey 1998). The deviations are then summed to give ∆, the
DS statistic

∆ =
∑
i

δi . (2)

Often referred to as the critical value for the cluster, the ∆-statistic
is used to compute a PTE for the presence of substructure by com-
puting 10,000 Monte Carlo realisations, shuffling the member ve-
locities amongst the positions. The PTE is used to test the null hy-
pothesis that the cluster has no substructure, hence a small PTE
6 0.05 indicates that the cluster has significant substructure.

4.2 The Kappa test

In addition to the DS test, we employ another 3D dynamical
substructure test, the κ-test (Colless & Dunn 1996), which quanti-
fies the difference between local substructures and global cluster
phase-space properties using the Kolmogorov—Smirnov (KS)
test. Similar to the DS-test, for each galaxy within the cluster,
Nnn =

√
Nmembers nearest galaxies are selected and the velocity

distribution of that local subgroup is compared to the parent
distribution by measuring the maximum separation of the cumu-
lative distribution functions DObs. The negative log likelihood
of producing a D-statistic greater than DObs is computed and
summed for all N galaxies in the cluster:

κn =

n∑
i=1
−[log(PKS(Dsim > DObs)]. (3)

As for the DS test, the significance of the κn statistic is computed
by performing 10,000 Monte Carlo realisations, shuffling the
member velocities amongst the positions to produce a Probability
to Exceed (PTE). The PTE, 0 6 PTE 6 1, is used to test the null
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hypothesis that the cluster has no substructure, hence a small PTE
6 0.05 indicates that the cluster has significant substructure. For
clusters with Ngal > 30, it is noted that the DS test is one of the
most sensitive test for substructure detection (Pinkney et al., 1996)
and is reliable for clusters with Ngal > 20, provided that the PTE is
0.05 or 0.01 (Knebe & Müller 2000 and Hou et al. 2012). The test
is also reliable to use as a lower limit for group sized systems with
Ngal > 10.

4.3 Mock cluster sample and analysis

In this study, we apply the commonly used dynamical substruc-
ture DS and Kappa tests as described in the above sections on
semi-analytic clusters whose galaxy properties are taken from the
underlying N-body simulation dark matter subhaloes. A cluster is
deemed as highly dynamically substructured if either of these tests
detect substructure. As mentioned in Section 4, the dynamical sub-
structure tests may not detect significant substructure in certain
cases. This means that our sample of clusters that are deemed to
be non-substructured, may have some level of contamination from
substructured clusters. We first select all clusters with Ngal > 20
from the GCMRP cluster sample, leaving us with 943 clusters be-
tween 13.50 6 log (M200c,true/M�) 6 15.14 and with a median
mass of log (M200c,true/M�) = 14.05.

The 943 clusters are separated into two samples according to
whether either the DS or Kappa tests detected substructure or not.
Of the 943 clusters, dynamical substructure was detected in 255
clusters. PTE values of both the Kappa and DS test for individual
clusters can be found in Figure B1 and the mass–richness relation
of the substructured and non-substructured sample is shown as a
red and black solid line respectively in Figure D1 in the appendix.

The frequency of significant dynamical substructure in our
cluster sample is ∼ 27%. We note that the frequency of significant
dynamical substructure varies significantly for observational clus-
ter samples in the literature, with fractions of substructure detected
in samples being as low as ∼ 15% (e.g., Girardi et al. 1996), and
as high as ∼ 80% (e.g., Wing & Blanton 2013). This variation in
the fraction of highly substructured clusters is attributed to factors
such as differences in the algorithms used to detect substructure and
the characteristics of the cluster samples themselves (for example,
survey depth, number of galaxies for which there are spectroscopic
redshifts available; Kolokotronis et al. 2001; Burgett et al. 2004;
Ramella et al. 2007). In Figure C1 in the appendix, we show the
prevalence of highly substructured clusters as a function of log true
mass, which we find increases for higher mass clusters. This trend
is also identified in several observational studies which employ dif-
ferent dynamical substructure tests (e.g., Roberts & Parker 2017;
de Carvalho et al. 2017).

When assessing differences in cluster mass reconstruction of
two samples, it is important to control by cluster mass, especially
as cluster mass estimation technique performance is often mass de-
pendent. We ensure that the median mass of the two samples are
similar by binning the clusters in each sample into seven linearly
spaced log true mass bins. We then randomly select the minimum
number of distinct clusters in a given mass bin of the two sam-
ples. We do this iteratively (N = 200 iterations), resulting in N
sub-samples of substructured clusters and N sub-samples of non-
substructured clusters. These subsamples are controlled to have
median mass values close to the median mass of the substruc-
tured cluster sample (log (M200c,true/M�) = 14.13). As the sam-
ple of highly-substructured clusters is smaller, each N sub-samples

of substructured clusters typically consists of the same clusters,
whereas each N sub-samples of the non-substructured clusters of-
ten consists of different clusters within each mass bin.

For each set of N sub-samples of dynamically substructured
and non-substructured clusters, we quantify differences between
the two samples in terms of scaling relations between the true
and recovered cluster masses. The first statistic we assess is the
scatter in the recovered mass, σMRec , which delivers a measure
of the scatter about the fit between true and recovered mass. The
second parameter is the slope in the relation between recovered
and true underlying mass, s, and the third parameter is the ampli-
tude of the fit at the pivot mass, a. These statistics are computed
by performing a likelihood-fitting analysis on these 400 subsam-
ples, assuming a model where there is a linear relationship be-
tween the recovered and true log mass and residual offsets in the
recovered mass are drawn from a normal distribution: log MRec =
(a+ log MPivot)+ s(log MTrue− log MPivot)+ e, where a, s and e are
the amplitude (or normalization), slope and scatter, which includes
measurement and model errors in addition to intrinsic scatter (in-
duced by the different physical conditions of each cluster).

This analysis is similar to that in Old et al. (2015) and we re-
fer the reader there for more detail. To summarise this approach,
we compute a likelihood that is a sum of the probability of obtain-
ing the data point assuming it is drawn from a ‘good’ distribution
and the probability of obtaining the data point assuming it is drawn
from a ‘bad’ outlier distribution, to try to ensure that the scatter
value is not affected by a small number of extreme outliers (see
Hogg et al. 2010 for more details). The components of this likeli-
hood are weighted by the probability that any given point belongs
to either of these distributions:

L =
∏

i=1,N
pi

pi =
[
(1 − Pb)P(log MRec,i | log MTrue,i, σlog MRec, i , s, a)

+ PbP(log MRec,i | log MTrue,i, σoutlier, s, a)
]
. (4)

Pb represents the posterior fraction of objects belonging to the
‘bad’ outlier distribution, σMRec, i is the variance of the ‘good’ dis-
tribution and s and a are the slope and amplitude of the fit respec-
tively. We fix the variance of the ‘bad’ outlier distribution to a very
large number with a prior that the variance of the ‘good’ distribu-
tion must always be smaller than the variance of the ‘bad’ distribu-
tion. We adopt flat priors for the variance of the ‘good’ distribution,
the slope and the amplitude. The probability that N data points be-
long to a ‘bad’ outlier distribution must be between zero and one.
We note that we have performed the analysis with alternative pri-
ors (Jeffreys priors), and our results do not change significantly.
We utilise Markov Chain Monte Carlo (MCMC) techniques to ef-
ficiently sample our parameter space and produce posterior proba-
bility distributions for the parameters described above. We use the
parallel-tempered MCMC sampler EMCEE which employs several
ensembles of walkers at different temperatures to explore our pa-
rameter space (Foreman-Mackey et al., 2013).

Employing walkers at different ‘temperatures’ where the like-
lihood is modified, enables walkers to easily explore different local
maxima, preventing walkers becoming stuck at regions of local in-
stead of global maxima in the case of a multi-modal likelihood.
In this analysis, we employ 50 walkers at 5 temperatures and per-
form 2200 iterations, including a ‘burn-in’ of 1000 iterations that
are discarded. In total, 50×5×2200 = 5 500 000 points in parame-
ter space are sampled for each method and input catalogue. Figures
of the marginalised probability distributions of parameters for all
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methods are available upon request.
We perform the analysis described below for each N

sub-sample of highly-substructured and N sub-sample non-
substructured clusters and then compute the median of these output
parameters of all subsamples.

5 RESULTS

The goals of this study are assess the extent to which galaxy-
based cluster mass estimation techniques are sensitive to the pres-
ence of significant dynamical substructure, and ultimately, whether
cluster cosmology studies utilising galaxy-based mass estimation
should look to exclude dynamically substructured clusters from
their samples. We apply observational dynamical substructure tests
to our sample of 943 mock clusters to separate our sample into
highly-substructured and non-substructured clusters. We then as-
sess whether commonly-used galaxy-based cluster mass estimation
techniques perform differently on these two samples. In the fol-
lowing subsections, we discuss the impact of significant dynamical
substructure on cluster mass estimation using three key statistics
with which we assess how the cluster mass estimation techniques
perform. These statistics are the scatter in the relation between re-
covered and true mass, the amplitude in the relation between recov-
ered and true mass and finally, the mass-dependence i.e., slope in
the relation between recovered and true mass.

5.1 Impact of dynamical substructure on scatter

Figure 1 depicts the median scatter in recovered mass produced
by each cluster mass estimation technique for the highly substruc-
tured cluster sample versus the median scatter in recovered mass
produced by each cluster mass estimation technique for the non-
substructured cluster sample. The solid black line represents a 1:1
relation between these two parameters. The colour scheme reflects
the approach implemented by each method to deliver a cluster
mass from a chosen galaxy membership: magenta (richness), black
(phase-space), blue (radial), green (abundance-matching) and red
(velocity dispersion). We find methods that produce lower scatter
in recovered mass (situated in the left hand corner of Figure 1),
show little difference in scatter for both highly-substructured and
non-substructured cluster samples. The x-axis error bars show the
uncertainty in the scatter parameter for non-substructured clusters,
which is calculated by taking the standard deviation of the median
scatter parameter values from the set of 200 non-substructured clus-
ter samples. The y-axis error bars show the uncertainty in the scatter
parameter for substructured clusters. This uncertainty is calculated
by adding in quadrature the uncertainty from the standard deviation
of the median scatter parameter values from the set of 200 substruc-
tured cluster samples to the uncertainty of the MCMC sampling of
the scatter parameter (this former uncertainty is very small as the
subsamples typically include the same clusters).

While certain methods producing higher scatter in recovered
mass may produce higher scatter for highly-substructured clusters
(on the order of ∼ 15%), for example, SG1, PFS, we also see that
other methods that utilise similar galaxy-based properties, may pro-
duce lower scatter for highly-substructured clusters (on the order of
up to ∼ 10%) for example, AS1, AS2 and PCR. We do not see any
consistent behaviour in terms of an increase or decrease in scatter
for substructured clusters with mass estimation technique type (i.e,
richness, phase-space, radial, abundance matching, velocity disper-
sion).
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Figure 1. The median scatter in recovered mass produced by each cluster
mass estimation technique for the sample of clusters with significant dy-
namical substructure versus the median scatter in recovered mass for the
sample of clusters without significant dynamical substructure. The solid
black line represents a 1:1 relation.

5.2 Impact of dynamical substructure on the amplitude

In addition to scatter, it is important to examine how the pres-
ence of significant dynamical substructure affects the amplitude in
the relation between recovered and true underlying cluster mass.
In this study, we measure the amplitude at the pivot mass which
reflects the normalisation of the relation between recovered and
true log mass produced by each cluster mass estimation technique.
Figure 2 shows the median amplitude at the pivot mass of log
M200c,true = 14.13 for the highly substructured cluster sample
versus the median amplitude at the pivot mass produced by each
cluster mass estimation technique for the non-substructured cluster
sample. The x-axis error bars show the uncertainty in the ampli-
tude parameter for non-substructured clusters, which is calculated
by taking the standard deviation of the median amplitude parameter
values from the set of 200 non-substructured cluster samples. The
y-axis error bars show the uncertainty in the amplitude parameter
for substructured clusters. This uncertainty is calculated by adding
in quadrature the uncertainty from the standard deviation of the me-
dian amplitude parameter values from the set of 200 substructured
cluster samples to the uncertainty of the MCMC sampling of the
amplitude parameter (this former uncertainty is very small as the
subsamples typically include the same clusters).

If there were no difference in the biases produced by each
method at the pivot mass for the highly-substructured and non-
substructured samples, the methods’ median amplitude markers
would lie on the 1:1 relation. Instead, we see a systematic increase
in the amplitude for all techniques for the highly-substructured
sample compared to the non-substructured sample. For some meth-
ods that underestimate cluster mass in general, for example, ve-
locity dispersion methods PFS, CLN, PCS, CLE and phase-space
method MP1, this systematic shift brings the amplitude value
slightly closer to zero, and more comparable to the true underly-
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Figure 2. The median amplitude at the pivot mass for the sample of clus-
ters with significant dynamical substructure versus the median amplitude at
the pivot mass for the sample of clusters without significant dynamical sub-
structure for each cluster mass estimation technique. The solid black line
represents a 1:1 relation. If there were no difference in the amplitudes pro-
duced by each method at the pivot mass for the highly-substructured and
non-substructured samples, the methods’ median amplitude markers would
lie on the 1:1 relation.

ing cluster mass.
For the methods that significantly overestimate cluster mass at

the pivot mass, for example, radial based methods PCR, PFR, PFO
and richness methods PCN and PFN, the amplitude values increase
and are brought further away from the average true underlying clus-
ter mass. The median difference for all methods in the amplitude
at the pivot mass for the highly substructured cluster sample ver-
sus non-substructured cluster samples, ∆a = aSubs. − aNo subs., is
∆a = 0.040 dex (∼ 9.7%). We note that this value reflects the av-
erage difference in amplitude for all techniques for samples that
comprise of only highly-substructured clusters versus only non-
substructured clusters.

In the likely case that ‘relaxed’, non-substructured clusters are
used to calibrate scaling relations with mass, and these scaling rela-
tions are then applied to a larger sample of clusters that include both
substructured and non-substructured clusters, this bias will likely
be smaller. We repeat the MCMC likelihood analysis to compare
the amplitude for non-substructured clusters compared to all 943
clusters (substructured and non-substructured clusters) and find a
median difference in amplitude of ∆a = 0.029 dex (∼ 6.9%) at the
pivot mass of log M200c,true = 14.13. Note that the median mass
of these two samples is kept within ∼ 0.009 dex of each other by
subsampling as for the analysis described in Section 4.3.

We note that the difference in amplitude increases to ∆a =
0.067 dex (∼ 16.8%), when we re-run the analysis with a more
conservative DS and Kappa test PTE threshold to PTE 6 0.01.
This increase in bias likely arises from the increased ‘purity’ in the
substructured sample, due to the more pronounced substructure. In
addition, we also find that the magnitude of the measured bias in-
creases to 0.06 dex (∼ 14.6%) when we re-run the analysis for the
case the mock cluster sample is split into substructured and non-

substructured clusters if only both the DS and Kappa test classify
the cluster as highly substructured (with PTE 6 0.05), as opposed
to if either the DS and Kappa test classify the cluster as highly
substructured.

5.3 Impact of dynamical substructure on slope

We now examine the mass dependence in cluster mass reconstruc-
tion, to deduce whether methods under- or over-estimate cluster
mass differently for lower and higher mass clusters if they have
significant dynamical substructure. Figure 3 shows the difference
in the slope of the relation between recovered and true log mass
produced by each cluster mass estimation technique for the sample
of non-substructured clusters to the sample of highly-substructured
clusters versus the slope for the non-substructured clusters. The
solid black line represents no difference in slope produced by these
methods for these two different samples. The dotted purple line
represents the median difference in the slopes for the two samples
for all methods (0.054 dex,∼ 13%). The x-axis error bars show
the uncertainty in the slope parameter for non-substructured clus-
ters, which is calculated by taking the standard deviation of the me-
dian slope parameter values from the set of 200 non-substructured
cluster samples. The y-axis error bars show the uncertainty in the
difference in slopes, which is calculated by adding in quadrature
the uncertainty in the slope for non-substructured clusters and the
uncertainty in the slope for substructured clusters. The uncertainty
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Figure 3. The difference in the slope of the relation between recovered and
true log mass produced by each cluster mass estimation technique for the
sample of non-substructured clusters to the sample of highly-substructured
clusters versus the slope for the sample of non-substructured clusters. The
solid black line represents no difference in slope produced by these methods
for these two different samples. The dotted red line represents the median
difference in the slopes for the two samples for all methods (0.054 dex,
∼ 13%).

in the slope parameter for substructured clusters is calculated by
adding in quadrature the uncertainty from the standard deviation of
the median slope parameter values from the set of 200 substruc-
tured cluster samples to the uncertainty of the MCMC sampling of
the slope parameter (this former uncertainty is very small as the
subsamples typically include the same clusters).

We see that the majority of methods produce a slightly flat-
ter slope of the relation between recovered and true log mass
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for highly-substructured clusters. This behaviour indicates that the
masses of higher mass clusters are underestimated and the masses
of lower mass clusters are overestimated compared to that of clus-
ters around the pivot mass. Since we also find that cluster masses
are systematically biased high at the pivot mass (Section 5.2), these
two effects are likely to result in high mass clusters having rel-
atively unbiased masses, while the masses of low mass clusters
will likely be biased very high. This is indicated by the linear fit
to the substructured clusters in Figure E1 in the appendix, which
shows the median difference in recovered and true cluster mass for
all 23 mass estimation techniques. This flattening of the slope also
demonstrates that magnitude of the bias in recovered mass (∼ 10%
at the pivot mass) does depend on the underlying cluster mass. For
example, if a method systematically overestimated cluster mass by
∼ 10% for clusters with a true mass of ∼log M200c,true = 14.13,
that method would likely overestimate the masses of clusters log
M200c,true < 14.13 to a greater extent.

Whilst we see a general trend to flatter slopes between the re-
covered and true cluster mass, methods that utilise the same galaxy
population property to reconstruction, for example the velocity dis-
persion (red markers), are not all affected in the same manner. This
further highlights the diversity in performance of methods which
use the same galaxy property as a mass proxy.

6 DISCUSSION

The main objectives of this study are to deduce whether the in-
clusion of clusters with significant dynamical substructure will
produce biases in cluster mass estimation and explore how these
biases will impact both galaxy-based cluster cosmology studies
and galaxy evolution studies that characterise galaxy environment
by cluster mass. Reassuringly, for the majority of galaxy-based
techniques with lower intrinsic scatter, we see little difference
in the scatter in the recovered versus underlying mass for non-
substructured and substructured clusters. However, as shown in
Figure 2 and Figure 3, the presence of significant dynamical sub-
structure does indeed bias the amplitude and the slope in the rela-
tion between true underlying mass and estimated mass for all 23
cluster mass estimation techniques in this study.

The direction of this bias, i.e., the increase in estimated clus-
ter mass compared to the true underlying mass for highly dynami-
cally substructured clusters, is qualitatively in agreement with both
Perea et al. (1990); Pinkney et al. (1996) and Biviano et al. (2006),
who find that in the case of virial-based cluster mass specifically,
masses are overestimated for N-body simulations of merging clus-
ters. For a more direct comparison, we apply our analysis to the
simulated data-set of 62 cluster-sized haloes in 3 projections from
Biviano et al. (2006). For clusters that are highly substructured
in projected phase-space compared to unsubstructured, we mea-
sure a bias between the recovered virial-based mass to true mass
of (0.12 dex, ∼ 32%) at a pivot mass of log M200c,true = 14.13,
which is consistent with the bias we see for several methods. In ad-
dition, we perform a both a two-sample KS test and a two-sample
Anderson-Darling test on this data-set which rejects the null hy-
pothesis that the recovered virial-based masses of substructured
and non-substructured clusters are drawn from the same underlying
continuous distribution (with PTE’s of 0.0029 and 0.0038 respec-
tively).

The analyses described above indicate a bias in virial-based
cluster mass estimation. We highlight that the bias we find is preva-
lent in all 23 galaxy-based techniques which encompass richness,

projected phase-space, radial and abundance matching-based tech-
niques. For richness-based techniques, this bias could be partially
explained by differences in the stacked mass–richness relation for
the substructured and non-substructured samples. A linear fit to the
stacked samples, for example, delivers an increase in log mass of
0.07 dex at fixed Ngal of 40. However, we see substructures caus-
ing a consistent bias across all galaxy-based techniques that do not
reconstruct mass from galaxy number counts.

The exact impact of this substructure-induced mass bias will
be highly dependent on the underlying properties of individual
cluster samples; however, we wish to qualitatively deduce the rele-
vance of this bias. The most direct channel of propagating the bias
into the estimates of cosmological parameters occurs when a cluster
sample used for calibrating a mass scaling relation includes galaxy
clusters with a different degree of substructure than the entire clus-
ter sample used for cosmological inference. Considering the most
extreme case, the calibration sample may consist of fully relaxed,
non-substructured clusters. The primary effect of this observational
strategy would be a shift of the observed mass function along the
mass axis which in turn would cause a biased measurement of Ωm

and σ8. A simple way to estimate the potential relative bias in the
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Figure 4. The percentage difference in Ωm and σ8 found when fitting a
ΛCDM mass function with Planck parameters when shifting the mass func-
tion in log M200c by a range of values between −0.1 and 0.1 dex.

two cosmological parameters is to determine the two cosmological
parameters for which the corresponding mass function matches the
mass function computed for a fixed, fiducial cosmology, but shifted
along the mass axis by a range of mass biases. In our calculation
we adopt a Planck cosmology (Planck Collaboration et al. 2016a)
with Ωm = 0.31 and σ8 = 0.83 as a reference model and a univer-
sal fitting formula for the mass function from Tinker et al. (2008).
Figure 4 shows the results for a range of mass biases. Interestingly,
the error on Ωm and σ8 is on the same order as the error on the cur-
rent leading constraints from CMB-based cosmology studies such
as Planck Collaboration et al. (2016a) and is slightly lower than
the error produced by weak lensing cluster cosmology studies such
as Mantz et al. (2015) and SZ-based cluster cosmology studies (de
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Haan et al., 2016). We note that this is for the extreme case that
the calibration sample is non-substructured, and the majority of the
full sample of clusters are highly substructured. In the more realis-
tic case that the contamination of highly substructured clusters in a
given survey is typical to the fraction we observe in our simulated
sample, ∼ 27%, the systematic error on is likely on Ωm and σ8 is
on the order of ∼ 1%.

7 CONCLUSIONS

In this paper, we examine whether the masses of dynamically dis-
turbed clusters can be measured to the same accuracy and precision
as dynamically relaxed clusters with a variety of commonly-used
galaxy-based cluster mass estimation techniques. We aim to under-
stand whether scaling relations between multi-wavelength mass es-
timation techniques would differ for highly substructured and non-
substructured clusters, and to that end, whether dynamically young
clusters should be excluded from future galaxy-based cluster cos-
mology samples. The main results are as follows:

(i) For the majority of galaxy-based techniques with lower in-
trinsic scatter, we see little difference in the scatter in the recov-
ered versus underlying mass for non-substructured and substruc-
tured clusters.

(ii) We see a systematic increase in the measured amplitude at
the median mass of the sample for all techniques for the highly-
substructured sample compared to the non-substructured sample.
This means that for the same given underlying true cluster mass,
all cluster mass measurement techniques will, on average, over-
estimate the mass of a cluster if it has significant dynamical sub-
structure compared to a dynamically relaxed cluster. This system-
atic bias for all cluster mass estimation techniques is, on average,
∼ 10% for clusters around log M200c = 14.13. It should be noted
that for some methods which underestimate cluster mass in gen-
eral, this systematic increase in amplitude brings measured cluster
masses closer to the true underlying cluster mass, and vice versa.

(iii) We find that the bias in cluster mass for dynamically dis-
turbed clusters is indeed mass dependent. Typically, the slope of
the relation between recovered and true cluster mass is flatter for
the sample of highly substructured clusters. A flatter slope indi-
cates that the masses of higher mass clusters are underestimated
and the masses of lower mass clusters are overestimated in com-
parison to the reconstructed masses of clusters at the median mass
of the sample (∼log M200c = 14.13). The combination of a flatter
slope and a positive bias in amplitude at the pivot mass indicate that
the reconstructed masses of clusters at the high mass end are likely
to be only minimally biased, whereas the reconstructed masses of
clusters at the low mass end are biased even higher (for group-sized
systems, this bias is & 20% for . 1013.5).

(iv) For the purpose of improving accurate deductions of cos-
mological parameters from future galaxy-based cluster cosmology
samples, or accurate characterisation of environment for galaxy
evolution studies, we recommend the dynamical state of a cluster
sample is classified to identify whether masses of the dynamically
substructured clusters will be systematically overestimated. In the
case of using cluster mass scaling relations to estimate masses of
another cluster sample, we advise that the underlying dynamical
characteristics of the cluster sample used to calibrate the scaling
relation is similar to that of the cluster sample the scaling relation
is applied to.
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APPENDIX A: PROPERTIES OF THE MASS RECONSTRUCTION METHODS

Table A1. Illustration of the member galaxy selection process for all methods. The colour of the acronym for each method colour corresponds to the main
galaxy population property used to perform mass estimation richness (magenta), projected phase-space (black), radii (blue), velocity dispersion (red), or
abundance matching (green). The second column details how each method selects an initial member galaxy sample, while the third column outlines the
member galaxy sample refining process. Finally, the fourth column describes how methods treat interloping galaxies that are not associated with the clusters.

Methods Member galaxy selection methodology

Initial Galaxy Selection Refine Membership Treatment of Interlopers

PCN Within 5 Mpc, 1000 km s−1 Clipping of ±3σ, using galaxies within
1 Mpc

Use galaxies at 3 − 5 Mpc to find interloper
population to remove

PFN FOF No No
NUM Within 3 Mpc, 4000 km s−1 1) Estimate R200c from the relationship be-

tween R200c and richness deduced from
CLE; 2) Select galaxies within R200c and
with |v | < 2.7σNFW

los (R)

Same as CLE

RM1 Red Sequence Red Sequence Probabilistic
RM2 Red Sequence Red Sequence Probabilistic
ESC Within preliminary R200c estimate and

±3500 km s−1
Gapper technique Removed by Gapper technique

MPO Input from CLN 1) Calculate R200c, Rρ , Rred, Rblue by
MAMPOSSt method; 2) Select members
within radius according to colour

No

MP1 Input from CLN Same as MPO except colour blind No
RW Within 3 Mpc, 4000 km s−1 Within R200c , |2Φ(R) |1/2, where R200c ob-

tained iteratively
No

TAR FOF No No
PCO Input from PCN Input from PCN Include interloper contamination in density

fitting
PFO Input from PFN Input from PFN No
PCR Input from PCN Input from PCN Same as PCN
PFR Input from PFN Input from PFN No
MVM FOF (ellipsoidal search range, centre of most

luminous galaxy)
Increasing mass limits, then FOF, loops until
closure condition

No

AS1 Within 1 Mpc, 4000 km s−1, constrained by
colour-magnitude relation

Clipping of ±3σ Removed by clipping of ±3σ

AS2 Within 1 Mpc, 4000 km s−1, constrained by
colour-magnitude relation

Clipping of ±3σ Removed by clipping of ±3σ

AvL Within 2.5σv and 0.8 R200 Obtain R200c and σv by σ-clipping Implicit with σ-clipping
CLE Within 3 Mpc, 4000 km s−1 1) Estimate R200c from the aperture velocity

dispersion; 2) Select galaxies within R200c
and with |v | < 2.7σNFW

los (R); 3) Iterate
steps 1 and 2 until convergence

Obvious interlopers are removed by velocity
gap technique, then further treated in itera-
tion by σ clipping

CLN Input from NUM Same as CLE Same as CLE
SG1 Within 4000 km s−1 1) Measure σgal, estimate M200c and R200c

; 2) Select galaxies within R200c ; 3) Iterate
steps 1 and 2 until convergence

Shifting gapper with minimum bin size
of 250 kpc and 15 galaxies; velocity limit
1000 km s−1 from main body

SG2 Within 4000 km s−1 1) Measure σgal, estimate M200c and R200c
; 2) Select galaxies within R200c ; 3) Iterate
steps 1 and 2 until convergence

Shifting gapper with minimum bin size
of 150 kpc and 10 galaxies; velocity limit
500 km s−1 from main body

SG3 Within 2.5 h−1 Mpc and 4000 km s−1. Veloc-
ity distribution symmeterised

Measure σgal, correct for velocity errors,
then estimate M200c and R200c and apply the
surface pressure term correction

Shifting gapper with minimum bin size of
420 h−1kpc and 15 galaxies

PCS Input from PCN Input from PCN Same as PCN
PFS Input from PFN Input from PFN No

c© 2017 RAS, MNRAS 000, 1–13



12 Old et al.

Table A2. Characteristics of the mass reconstruction process for the methods used in this comparison. The second to sixth columns illustrate whether a method
calculates/utilises the velocities, velocity dispersion, radial distance of galaxies from cluster centre, the richness and the projected phase-space information of
galaxies respectively. If a method assumed a mass or number density profile it is indicated in columns seven and eight.

Methods
Galaxy properties used to obtain group/cluster membership and estimate mass

Velocities Velocity dispersion Radial distance Richness Projected phase-space Mass density profile Number density profile
PCN Yes No No Yes No No No
PFN Yes No No Yes No No No
NUM No No No Yes Yes No No
RM1 No No Yes Yes No No NFW
RM2 No No Yes Yes No No NFW
ESC Yes Yes Yes No No Caustics No
MPO Yes No Yes No Yes NFW NFW
MP1 Yes No Yes No Yes NFW NFW
RW Yes No Yes No Yes NFW NFW
TAR Yes Yes Yes No No NFW No
PCO Yes No No No No NFW NFW
PFO Yes No No No No NFW NFW
PCR Yes No Yes No No No No
PFR Yes No Yes No No No No

MVM Yes Yes Yes No No NFW No
AS1 Yes Yes No No No No No
AS2 Yes No Yes No Yes No No
AvL Yes Yes Yes No No No No
CLE Yes Yes No No No NFW NFW
CLN Yes Yes No No No NFW NFW
SG1 Yes Yes Yes No No No No
SG2 Yes Yes Yes No No No No
SG3 Yes Yes Yes No No No No
PCS Yes Yes No No No No No
PFS Yes Yes No No No No No
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APPENDIX B: DS AND KAPPA TEST PTE VALUES FOR
ALL CLUSTERS
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Figure B1. The DS and Kappa test PTE values for the cluster sample. Black
symbols indicate clusters that are not defined as highly substructured by
either the DS or Kappa test (688 clusters, 73% of the sample). Blue symbols
indicate clusters where either the DS and Kappa test have defined as highly
substructured (255 clusters, 27%). The red symbols indicate clusters that
have been defined as highly dynamically substructured by both the DS and
Kappa test (147 clusters, 15.5%). We note that the DS test detects significant
dynamical substructure in 215 clusters, 23% of the sample. This is a high
detection rate than the Kappa test, which finds 187, 20% of the sample, to
be dynamically substructured.

APPENDIX C: DYNAMICAL SUBSTRUCTURE TEST
DETECTION & CLUSTER MASS
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Figure C1. The fraction of highly substructured clusters as a function of
log true mass, where clusters are deemed substructured if either the DS
or Kappa test detects significant dynamical substructure. The clusters are
binned into seven linearly spaced log true mass bins. The error bars repre-
sent the standard deviation of a set of fractions calculated by randomly sam-
pling the data with replacement (n = 500 iterations). The DS and Kappa test
detects higher fractions of clusters with substructure as a function of clus-
ter mass (and hence richness). This trend of dynamically disturbed clus-
ters having higher masses is also identified in several observational studies
which use different dynamical substructure tests (e.g., Roberts & Parker
2017; de Carvalho et al. 2017).
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APPENDIX D: THE RICHNESS – MASS RELATION OF
THE SAM2 MOCK CLUSTER CATALOGUE
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Figure D1. The richness versus mass of the 943 groups/clusters of the input
SAM2 catalogues. Clusters that deemed as highly dynamically substruc-
tured by the DS or Kappa test are denoted as red circles, and the non-
substructured clusters denoted are by black circles. The red line reflects
a linear fit (described in Section 4.3) to the richness–mass relation for the
substructured clusters of log(Ngal) = 0.75 (log(M200c) − 14.126) + 1.67.
The black line reflects a linear fit to the richness–mass relation for the non-
substructured clusters of log(Ngal) = 0.70 (log(M200c)−14.126)+1.61. The
intrinsic scatter of the richness versus mass relation of all 943 SAM2 clus-
ters is 0.12 dex. We note that the linear fit parameters are also very similar
to those deduced by performing simple linear fit.

APPENDIX E: THE MEDIAN DIFFERENCE IN
RECOVERED MASS FOR ALL 23 TECHNIQUES
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Figure E1. The median difference between recovered and true log mass
versus true log mass, δM200c = log(M200c,rec) − log(M200c, true) for all 23
methods. Clusters that deemed as highly dynamically substructured by the
DS or Kappa test are denoted as red circles, and the non-substructured clus-
ters denoted are by black circles. The red line reflects a linear fit for the
substructured clusters of δM200c = −0.06 (log(M200c,rec)−14.126)+0.019.
The black line reflects a linear fit for the non-substructured clusters of
δM200c = −0.09 (log(M200c,rec) − 14.126) + 0.07.
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