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ABSTRACT

We study the statistics of peaks in a weak lensing reconstructed mass map of the first 450
square degrees of the Kilo Degree Survey. The map is computed with aperture masses di-
rectly applied to the shear field with an NFW-like compensated filter. We compare the peak
statistics in the observations with that of simulations for various cosmologies to constrain
the cosmological parameter S 8 = σ8

√
Ωm/0.3, which probes the (Ωm,σ8) plane perpendic-

ularly to its main degeneracy. We estimate S 8 = 0.750± 0.059, using peaks in the signal-
to-noise range 0 ≤ S/N ≤ 4, and accounting for various systematics, such as multiplicative
shear bias, mean redshift bias, baryon feedback, intrinsic alignment, and shear-position cou-
pling. These constraints are ∼ 25% tighter than the constraints from the high significance
peaks alone (3 ≤ S/N ≤ 4) which typically trace single-massive halos. This demonstrates the
gain of information from low-S/N peaks which correspond to the projection of several small-
mass halos along the line-of-sight. Our results are in good agreement with the tomographic
shear two-point correlation function measurement in KiDS-450. Combining shear peaks with
non-tomographic measurements of the shear two-point correlation functions yields an ∼ 20%
improvement in the uncertainty on S 8 compared to the shear two-point correlation functions
alone, highlighting the great potential of peaks as a cosmological probe.

Key words: Gravitational lensing: weak – Cosmology: observations – Cosmology: cosmo-
logical parameters – Surveys

1 INTRODUCTION

In a recent study, Hildebrandt et al. (2017) measured the coher-
ent lensing distortions of galaxy images by large-scale structures
(LSS) as a function of angular separation in the first 450 square
degrees of the Kilo Degree Survey (hereafter KiDS-450). This cos-
mic shear analysis yielded an S 8 (=σ8

√
Ωm/0.3) value that is 2.3σ

lower than that inferred from Planck Cosmic Microwave Back-
ground (CMB) measurements (Planck Collaboration et al. 2016).

? E-mail: nmartinet@astro.uni-bonn.de

This difference between low- and high-redshift probes, if it is not
due to systematic effects or a statistical fluctuation, may point to
new physics. To improve the constraints, we propose to use the
statistics of peaks in the weak lensing (WL) mass map of KiDS-450
in order to infer an additional lensing measurement of S 8, based on
a different statistic than shear two-point correlation functions (here-
after 2PCFs).

The distribution of peak heights in mass maps depends on cos-
mology. In particular, peaks are sensitive to the matter density Ωm
and the amplitude of the matter power spectrum described by σ8
on scales of 8 h−1Mpc, as these parameters impact the mass and
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2 Martinet et al.

the abundance of Dark Matter (DM) halos. Peak statistics has been
successfully used either to predict achievable cosmological con-
straints (e.g. Dietrich & Hartlap 2010; Yang et al. 2011; Maturi
et al. 2011; Hilbert et al. 2012; Marian et al. 2012, 2013; Martinet
et al. 2015) or to directly measure them from observations (e.g. Liu
et al. 2015a,b; Kacprzak et al. 2016).

In contrast to classical 2nd-order cosmic shear probes, shear
peaks are sensitive to the non-Gaussianities in the matter and shear
distributions. Commonly, while large peaks correspond to single
massive halos, the lower-amplitude peaks are often due to the pro-
jection of multiple smaller halos (Yang et al. 2011) and are also
sensitive to cosmology (Jain & Van Waerbeke 2000; Wang et al.
2009; Dietrich & Hartlap 2010; Kratochvil et al. 2010). Although
2nd-order cosmic shear and peak statistics do not probe the exact
same information, they are both sensitive to LSS, and their cosmo-
logical constraints are correlated (e.g Dietrich & Hartlap 2010; Liu
et al. 2015a). This correlation can be exploited to check for system-
atics in the two methods, by comparing their respective constraints.

Peak statistics have been analyzed with various methods. The
main differences between studies arise from both measurement and
modeling choices. From the measurement point of view one can
choose to reconstruct the WL map in convergence (e.g. Kratochvil
et al. 2010; Yang et al. 2011; Shan et al. 2014; Liu et al. 2015a; Petri
et al. 2016) or shear space through compensated filters (e.g. Kruse
& Schneider 1999, 2000; Dietrich & Hartlap 2010; Maturi et al.
2011; Hamana et al. 2012; Martinet et al. 2015; Kacprzak et al.
2016). The shear approach properly deals with the mass sheet de-
generacy, which is only approximately handled in the convergence
case. See Lin & Kilbinger (2017) for a recent comparison of the
cosmological parameter estimates from peaks computed in shear
and convergence spaces. Furthermore, working in shear space al-
lows one to include the observational masks, at the cost of compu-
tational time, as it requires to drop the Fourier Transform approach.

The modeling of the peak distribution can be done with either
simulations or analytical predictions. N-body simulations capture
the non-linear regime of structure formation allowing the use of the
full signal-to-noise (S/N) range of peaks. Although most studies
rely on simulations, analytical predictions based on the halo mass
function offer a promising way to speed up peak studies (Fan et al.
2010; Lin & Kilbinger 2015) and reach similar accuracy as that
from simulations when considering only the high S/N tail of the
peak distribution (Zorrilla Matilla et al. 2016). Both simulations
and analytical predictions need to be adapted to the studied survey
to capture the full complexity of the data.

In this paper we apply aperture masses (Schneider 1996;
Bartelmann & Schneider 2001) in shear space. We compare the
peak distribution from the KiDS-450 data to the Dietrich & Hartlap
(2010) simulations for various cosmologies and infer cosmological
constraints on S 8. We also use mock data from the Scinet Light
Cone Simulations (SLICS: Harnois-Déraps et al. 2015) to refine
our covariance matrix and estimate the impact of sample variance.
Measuring the mass maps for various filter scales, we assess the
gain of information from a multi-scale analysis. We compare our
constraints on S 8 to the KiDS tomographic cosmic shear results
(Hildebrandt et al. 2017) in the context of the tension with Planck.
Finally, we measure the non-tomographic shear 2PCFs and present
joint constraints for peaks and 2PCFs.

This paper is the second in a series of papers on peak statis-
tics in KiDS-450. Shan et al. (2017; hereafter Paper I) conducted
an analogous analysis in convergence space, predicting the abun-
dance of high-S/N peaks from an analytical model adapted from
Fan et al. (2010). The use of simulations allows us to addition-

ally probe the information contained in the low-S/N peaks, at the
cost of only sparsely sampling the (Ωm,σ8) cosmological plane.
These two different approaches allow us to derive robust cosmo-
logical constraints from the peak statistics of the KiDS-450 survey
and represent the largest observational WL peak statistic analyses
to date.

The paper is structured as follows. We describe our observa-
tions and simulations in Sect. 2 and Sect. 3 respectively. We then
explain our mass map reconstruction in Sect. 4 and present the
KiDS peak distribution in Sect. 5. We estimate cosmological con-
straints in Sect. 6 and discuss them in Sect. 7.

2 OBSERVATIONS

This analysis is based on the KiDS-450 data release, presented in
Hildebrandt et al. (2017) and de Jong et al. (2017), and therefore
uses the same input galaxy catalog. The KiDS survey is also doc-
umented in de Jong et al. (2015) and Kuijken et al. (2015) and we
refer the reader to these papers for a complete description of the
dataset and the reduction pipelines. Nevertheless, we summarize
the main aspects of the survey and the steps in the reduction that
are relevant for the present study.

KiDS is a ground-based survey optimized for WL measure-
ments. The KiDS-450 sample is an intermediate release of the
ongoing survey that covers 449.7 square degrees, split into five
patches: three on the equatorial (G9, G12, and G15), and two in the
southern sky (G23 and GS). Images are acquired with the Omega-
CAM camera on the 2.6m VLT Survey Telescope, in four optical
bands (u,g,r, and i). Weak lensing shape measurements are car-
ried out on the r-band images which reach a limiting magnitude of
24.9 (5σ in a 2 arcsec aperture) and have a median seeing of 0.66
arcsec. Galaxy shapes are determined with the updated version of
the model fitting algorithm lensfit (Miller et al. 2007), described in
Fenech Conti et al. (2017). Photometric redshifts zB are computed
with the Bayesian code BPZ (Benítez 2000) using the four opti-
cal bands and are described in Kuijken et al. (2015). The redshift
distribution is estimated from spectroscopically matched galaxies
(Hildebrandt et al. 2017). We apply the same redshift cut as for
the 2PCFs analysis: 0.1 < zB ≤ 0.9, but do not split the data into
different redshift bins. This choice is driven by limitations on the
simulation side, and is explained in Sect. 3.2.

For any shape measurement method one needs to calibrate the
biases in the shear estimates. This is usually decomposed in a mul-
tiplicative and additive term in a linear relation between measured
and true shear. The multiplicative bias of each galaxy is the same
as in Hildebrandt et al. (2017), and is estimated through extensive
simulations in Fenech Conti et al. (2017). As suggested in Miller
et al. (2013), it is better to correct for multiplicative bias in a global
approach to avoid possible correlation between ellipticities and cor-
rection factors. This correction is described in Sect. 4 and applied
to each aperture mass in Eq. (8). We compute the mean additive
shear bias as the average weighted ellipticity over all galaxies. The
calculation is done independently for each of the five patches, and
for each of the two ellipticity components. The values differ from
those of Hildebrandt et al. (2017) because they determined it inde-
pendently for several redshift slices while we use a single redshift
bin. This bias is always lower than 1.5× 10−3, and is subtracted
from the measured ellipticities.

MNRAS 000, 1–18 (2017)
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3 SIMULATIONS

We derive cosmological constraints by comparing the WL peak
distribution of KiDS-450 to that of simulations with varying cos-
mologies. To that purpose we use the simulations from Dietrich &
Hartlap (2010). In Appendix B we also use mock catalogs from the
SLICS simulations (Harnois-Déraps et al. 2015) to better estimate
the covariance matrix, and compare it with the covariance matrix
from the Dietrich & Hartlap (2010) simulations that is used for pa-
rameter inference.

3.1 Dietrich & Hartlap (2010) simulations

The Dietrich & Hartlap (2010) simulations consist of a set of 192
N-body simulations run with the GADGET-2 software (Springel
2005), with initial conditions generated with the Eisenstein & Hu
(1998) transfer function. 2563 dark matter particles are evolved
from z = 50 to z = 0 in a box of 200 h−1

70 Mpc side length, with
particle mass varying between 9.3× 109M� ≤ mp ≤ 8.2× 1010M�,
depending on the cosmology. Each simulation spans a 6× 6 deg2

field-of-view.
These simulations are run with cosmological parameters π =

(Ωm,σ8). Among them, 35 are run with fiducial cosmological pa-
rameters π0 = (0.27,0.78), and 158 have Ωm and σ8 spanning a
large range of values. One set of simulations was lost due to an
archiving issue, and we therefore only use 157 different cosmolo-
gies. As seen in Fig. 1, the steps in the (Ωm, σ8) plane are smaller
around the fiducial parameters, allowing a better precision on the
variation of the WL peak distribution around the cosmological pa-
rameter values expected from previous cosmological studies. We
also show the variation of S 8 = σ8

√
Ωm/0.3, which is the param-

eter to which we are most sensitive, given the degeneracy between
Ωm and σ8. The other parameters that are not probed in this study
are fixed to their fiducial values (Ωb = 0.04, ns = 1.0, and h70 = 1),
except ΩΛ which varies with Ωm to preserve flatness.

Ray-tracing is then performed through each simulation to pro-
duce convergence and shear maps, from which a catalog of galax-
ies is generated through random position sampling. Random shift-
ing within a simulation snapshot was used to extract 5 pseudo-
independent ray-tracings out of a single N-body run. These mock
catalogs mimic the Canada-France-Hawaii Telescope Legacy Sur-
vey (CFHTLS) in terms of redshift distribution, galaxy number
density and shape noise.

Further details on the Dietrich & Hartlap (2010) simulations
and the creation of the mock catalogs can be found in the corre-
sponding paper.

3.2 Adapting to the KiDS survey

Because the Dietrich & Hartlap (2010) simulations are not tailored
for KiDS-450 data we need to modify their output. In particular
we want to use the same positions, redshift distribution, and shape
noise as in the data.

The first step is to modify the redshift distribution of the sim-
ulations by subsampling the galaxies in order to match the KiDS
redshift distribution. This is possible because the mocks have a
much higher galaxy density than KiDS, i.e. 25 versus ∼ 8.5 galax-
ies per square arcminute. We use the DIR redshift distribution de-
tailed in Hildebrandt et al. (2017) which corresponds to the redshift
distribution of a magnitude-reweighed sample of spectroscopically-
matched galaxies in the photometric redshift range 0.1 < zB ≤ 0.9.

Figure 1. Sampling of the (Ωm,σ8) plane. Each dot represents an N-
body simulation out of which 5 galaxy catalogs are made. Colors show
S 8 = σ8

√
Ωm/0.3 values. The central black dot corresponds to our fiducial

cosmology π0 = (0.27,0.78), which has 35 N-body simulations and there-
fore 175 pseudo-independent catalogs.

It was shown that this approach is more precise than using photo-
metric redshifts, and this redshift distribution extends by construc-
tion above zspec = 0.9. The KiDS galaxy density after applying this
redshift cut is ∼ 7.5 galaxies per square arcminute. The process is
illustrated in Fig. 2. We first fit the KiDS DIR redshift distribu-
tion with a polynomial of 12th order chosen to smooth the distribu-
tion. We check that this fit does not change the mean redshift of the
distribution. However, the Dietrich & Hartlap (2010) mocks con-
tain very few galaxies at z > 2 due to the redshift distribution they
adopted. Thus, we reject most galaxies selected in 0.1 < zB ≤ 0.9
with zspec ≥ 2. This shifts the mean redshift by ∼ 0.05 towards a
lower value. We then look for the largest multiplicative factor that
can be applied to this smoothed distribution in order not to exceed
the distribution in the simulation at any z. Taking the ratio of this
last distribution (the green points in Fig. 2) to the n(z) of the sim-
ulations (red points of Fig. 2) gives a weight between 0 and 1 to
each redshift bin. We finally downsample the simulation drawing
for each galaxy a random number between 0 and 1 and discarding
the galaxy if this number is above the weight of the galaxy redshift
bin.

We then use a nearest-neighbor approach to assign a simulated
reduced shear value at each of the observed positions. One could
also use a linear interpolation of the four simulated galaxies clos-
est to the observed one that we try to match. This technique would
be more accurate if the simulated galaxies were placed on a grid.
However, these galaxies are at random positions, and could lead to
combination of shears from source galaxies that are not affected by
the same lenses. We therefore assign the shear of the closest neigh-
bor. For each simulation we then build a catalog of galaxies whose
positions, weights, and intrinsic ellipticities are taken from the ob-
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Figure 2. Illustration on patch G9 of the downsampling of the Dietrich &
Hartlap (2010) simulations to match KiDS redshift distribution. Red corre-
sponds to the initial Dietrich & Hartlap (2010) n(z), blue to the KiDS DIR
n(z), yellow to the smoothed KiDS DIR n(z), and green to the downsampled
Dietrich & Hartlap (2010) redshift distribution that matches that of KiDS.

served KiDS catalog, and shears from the simulation. The KiDS-
450 observational masks are also applied when assigning positions.
The observed ellipticities are rotated by a random angle before be-
ing assigned to our simulated catalog, allowing us to remove the
signal from the observation but retaining its exact shape noise. The
shear from the data slightly modifies the amplitude of the intrin-
sic ellipticity used in the simulations but this effect is small as the
shear amplitude is of the order of a few percents of the ellipticity.
We also bias simulated values of the shear by the multiplicative
bias measured for the corresponding observed galaxy, so that the
bias is consistent between observations and simulations. However,
ignoring this bias in the simulation affects the final cosmological
constraints by less than 0.01σ. Since the peak distribution is very
sensitive to shape noise, we make several noise realizations by ap-
plying different random rotations to the observed ellipticities. This
point is discussed in more detail in Sect. 5.1.

There are two caveats to this interpolation scheme. The first is
that the KiDS data cover 450 square degrees while each simulation
is only 6×6 square degrees. We therefore have to use the same sim-
ulation several times to cover the entire observational field, which
underestimates the sample variance. The effect of this procedure
is studied in Appendix B, making use of the larger SLICS simu-
lations (Harnois-Déraps et al. 2015). The second issue is that the
galaxy density of the simulated mock catalog is not large enough
compared to that of the observations to ensure that no simulated
shear value is used more than once in the interpolation process.
As a consequence, some close galaxies in the matched catalog will
have the same shear (but different intrinsic ellipticities). However,
this effect is mitigated by the fact that the separation between clos-
est neighbors is much smaller than the scale of the filter that we are
applying in the aperture mass calculation. Quantitatively, the mean
separation between closest neighbors is 0.145 arcmin with a stan-
dard deviation of ±0.076 arcmin and the filter’s outer and effective
radii are 12.5 and 1.875 arcminutes, respectively. Even if a galaxy
is attributed a shear from a slightly different position, this differ-
ence is not significant as seen by the filter function, leading to the
same result as if the shear was estimated at the true galaxy position.

This problem would become significant only if we were conducting
a tomographic analysis, because the distance to the closest neigh-
bor would become too large. A tomographic approach would thus
require to directly build the mock catalog at the desired positions
and redshifts through looking up the values in the shear planes cal-
culated at various redshifts in the simulations.

The final simulation products consist of 175 catalogs at the
fiducial cosmology and 785 catalogs at 157 different cosmologies.
These catalogs have their shear values estimated from the Dietrich
& Hartlap (2010) simulations, and their positions, weights, and in-
trinsic ellipticities from the observations. We note that the simu-
lations do not include the full complexity of the observations. In
particular baryon feedback is not captured by these DM only sim-
ulations and the lens-source coupling is lost when assigning ob-
served galaxy positions to the mocks. The impact of these effects
on cosmological constraints is discussed in terms of systematics in
Sect. 6.2.

3.3 KiDS SLICS mocks

In Appendix B, we use the SLICS simulations to refine the covari-
ance matrix and study the impact of sample variance on the cos-
mological constraints. In the rest of the paper, the mocks built from
the Dietrich & Hartlap (2010) simulations are used. The SLICS
simulations (Harnois-Déraps et al. 2015) consist of 930 N-body
simulations with 15363 particles evolved in a box of 505 h−1Mpc,
and cover 10× 10 square degrees in the redshift range 0 < z < 3.
Each particle has a mass of 2.88× 109M�h−1. Every simulation
has the same cosmology: Ωm = 0.2905,ΩΛ = 0.7095,Ωb = 0.0473,
h = 0.6898, σ8 = 0.826, and ns = 0.969, but different initial condi-
tions.

As described in Hildebrandt et al. (2017), mock galaxy cata-
logs are drawn from these simulations, estimating the shear at var-
ious positions over 18 redshift planes. In addition to several im-
provements of the simulation quality compared to the Dietrich &
Hartlap (2010) simulations, these mocks estimate the shear at the
observed galaxy position without resorting to interpolation. This is
also in contrast with the mocks used in Hildebrandt et al. (2017)
where galaxies are at random positions. We have verified from the
Dietrich & Hartlap (2010) simulations that using shear instead of
reduced shear does not significantly affect the cosmological con-
straints derived from our peak estimator. We therefore use shear
instead of reduced shear from the SLICS simulations, making the
calculation faster.

From this set of simulations we make 67 independent real-
izations of the KiDS-450 footprint, using different simulations to
tile the space. This means that in contrast to the mocks we build
from the Dietrich & Hartlap (2010) simulations which map the full
450 deg2 of data with 36 deg2 of simulations, these refined mocks
better account for sample variance, as 450 deg2 of simulations are
used to map the 450 deg2 of data. Details on the tiling will be avail-
able in a forthcoming paper (Harnois-Déraps et al. 2017, in prep.).

4 APERTURE MASS CALCULATION

Peaks are detected in a map of aperture masses (Schneider 1996;
Bartelmann & Schneider 2001). This technique presents several ad-
vantages over the classical mass reconstruction from shear. In par-
ticular, it avoids the integration over finite area which introduces
an unknown constant, due to the so-called mass sheet degeneracy.
It also allows one to analytically compute local noise and to deal

MNRAS 000, 1–18 (2017)
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with masks in a simple fashion. This led to its extensive use in WL
peak analyses (e.g. Dietrich & Hartlap 2010; Marian et al. 2012;
Martinet et al. 2015; Kacprzak et al. 2016). In Paper I, the mass map
is reconstructed through a shear-convergence inversion (Kaiser &
Squires 1993) because it is simpler to model the analytical predic-
tion of peaks in convergence space. However, it is preferable to use
the aperture mass statistics as we do in this second paper, to avoid
mass sheet degeneracy, and to better handle the masks.

The aperture mass is an integral of the local mass density
around position θ0, weighted by a filter function which is compen-
sated in the convergence space:

Map(θ0) =

∫
d2θ U(θ−θ0) κ(θ), (1)

where the compensation of the isotropic weight function U(θ) is
expressed as:

∫
dθ θ U(θ) = 0. (2)

This condition ensures the aperture mass is insensitive to the (lin-
ear version of the) mass sheet degeneracy. For any compensated
filter in convergence space U(θ), one can compute the equivalent
filter Q(θ) in shear space, which gives the aperture mass from the
tangential shear (Schneider 1996):

Q(θ) =
2
θ2

∫ θ

0
dθ′θ′U(θ′)−U(θ), (3)

Map(θ0) =

∫
d2θ Q(θ−θ0) γt(θ,θ0), (4)

where the tangential shear γt(θ,θ0) is expressed as a function of
both shear components and the angle between the position where
the shear is measured and the center of the aperture φ(θ,θ0):

γt(θ,θ0) = −
[
γ1(θ)cos(2φ(θ,θ0)) +γ2(θ) sin(2φ(θ,θ0))

]
. (5)

In order to apply aperture masses to observed data, the inte-
gration is transformed into a sum over discrete positions where the
shear is estimated, i.e. at galaxy positions θi. The tangential shear
is also replaced by the galaxy tangential ellipticity:

Map(θ0) =
1

ngal

∑
i

Q(θi −θ0)εt(θi,θ0), (6)

where ngal is the galaxy density inside the aperture. The masks are
easily handled as long as the computation is done in real space,
as the masked galaxies can simply be ignored in the computation.
However it significantly increases the computational time com-
pared to Fourier space. We prioritize the exact handling of masks
and therefore do the calculation in real space.

Galaxy ellipticity is equal to the reduced shear on average,
provided that source galaxies are randomly oriented. This property
is the fundamental hypothesis of WL and allows us to replace shear
by ellipticity in Eq. (6), also enabling the analytic computation of
the local noise as the standard deviation of the aperture mass in the
absence of shear:

σ(Map(θ0)) =
1

√
2ngal

∑
i

|ε(θi)|2Q2(θi −θ0)

1/2

. (7)

The sum over the squared ellipticity norm(
|ε(θi)| =

√
ε1(θi)2 + ε2(θi)2

)
is sometimes replaced by the

two dimensional dispersion of the ellipticity over the whole survey,
and denoted by σε . However, it is more accurate to compute
the shape noise at the level of each aperture as it varies from
field to field, either for instrumental or physical reasons, e.g.
varying depth, PSF variations or intrinsic alignments. We define
the signal-to-noise (S/N) of each aperture as the ratio of Map and
σ(Map). Taking lensfit shear weights w into account we can write
this S/N as:

S
N

(θ0) =

√
2
∑

i Q(θi −θ0)w(θi)εt(θi,θ0)√∑
i w(θi)2|ε(θi)|2Q2(θi −θ0)

∑
i w(θi)∑

i w(θi) [1 + m(θi)]
. (8)

As already stated in Sect. 2, the shear multiplicative bias cor-
rection is applied as the average weighted correction over every
galaxy multiplicative bias m(θi) in the aperture. The correction ap-
pears as a normalization to Map(θ0):

∑
i w(θi) [1 + m(θi)], but does

not apply to σ(Map(θ0)) which is only normalized by the sum over
the galaxy weights:

∑
i w(θi). This is because the multiplicative bias

is computed as a shear correction and the aperture mass noise is
only sensitive to the intrinsic ellipticities.

As seen in the equations the aperture mass depends on the
filter function Q(θ). As we want to capture the signal from dark
matter halos, we choose a shape that matches the expected tangen-
tial shear signal of a typical halo. While an NFW profile (Navarro
et al. 1997) would work well, we prefer to use an approximation of
this profile to speed up the computation, namely the Schirmer et al.
(2007) filter function:

Q(θ) =

[
1 + exp

(
6−150

θ

θap

)
+ exp

(
−47 + 50

θ

θap

)]−1

×

(
θ

xcθap

)−1
tanh

(
θ

xcθap

)
,

(9)

where θap is the radius of the aperture, and xc is analogous to the
halo concentration in the NFW profile, and is set to xc = 0.15, found
to be the optimal value for galaxy cluster detection (Hetterscheidt
et al. 2005). The first term corresponds to an exponential cutoff at
θ −→ 0 and θ −→ ∞. The cutoff at θ −→ 0 is particularly impor-
tant to avoid assigning too much weight to galaxies close to the
aperture center where reduced shear values may not be in the WL
regime. The size of the filter is also important as it can preferen-
tially select smaller or larger halos. In this study we set the fiducial
aperture radius to θap = 12.5 arcmin, which maximizes the number
of peaks at S/N≥ 3 in the KiDS data. With the chosen xc parameter,
this size corresponds to an effective radius xcθap of 1.875 arcmin.
This aperture size gives the maximal sensitivity to massive halos.
In Sect. 7.4, we compute the peak distribution for different filter
sizes and discuss correlations between scales and the potential gain
of information from a multi-scale analysis.

We compute the aperture mass on a grid which covers the
KiDS-450 area with a pixel size of 0.59 arcmin. This pixel size
is a good trade-off between computational time and accuracy, as
decreasing the pixel size further does not lead to the appearance
of smaller structures. We discard all pixels closer to the edges of
the reconstructed map than the aperture radius to avoid including
incomplete apertures. However we note that these cuts do not sig-
nificantly affect the cosmological parameter estimates as they are
also applied to the simulations which have the same galaxy posi-
tions and masks. Maps are made independently for each patch: G9,
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6 Martinet et al.

Figure 3. Top: Aperture mass map of a 2× 2 square degree field in the
KiDS-450 footprint. The S/N of each pixel is color-coded from blue to red,
red corresponding to high-Map pixels. Black circles represent peaks in this
map with S/N ≥ 3, and brown stars indicate galaxy clusters from Radovich
et al. (2017) with redshift z ≤ 0.5 and detection level σ ≥ 7. Bottom: Mass
map of the same field computed from the direct shear inversion in Paper I.
Green squares correspond to peaks with S/N ≥ 3 as detected in Paper I.

G12, G15, G23, and GS (see Hildebrandt et al. 2017). Due to the
incomplete current tiling of the survey we also subdivide G12, G15,
and GS in 4, 3, and 2 subpatches respectively, to avoid unnecessary
computation in empty areas.

As an example of our reconstruction method, we show an
aperture mass map for a 2×2 square degree field in the KiDS-450
footprint in Fig. 3 and the detected peaks with S/N ≥ 3, defined
as pixels with greater S/N than their 8 neighbors. For comparison,
we also display the mass map and peaks with S/N ≥ 3 from Pa-
per I for the same field. This second mass map is computed from
a shear inversion method, with a single noise value across the sur-
vey. We see that the two maps trace the same LSS but present slight
differences on small scales. There is in particular a higher amount
of substructures in the aperture mass map compared to the shear-
inverted convergence map. This is probably due to the choice of

the smoothing filter, which is an NFW-like 1.875′ filter for aper-
ture mass and a Gaussian 2′ filter in the shear-inversion method.
We also find that the peaks from each method do not all overlap
due to the differences in the map computation and in the definition
of the noise. Although the peak distributions from Paper I and the
present study are different, the cosmological constraints should be
comparable as the modeled peak distributions are computed in a
consistent way with the observed distribution for each study.

We also compare our aperture mass map with known galaxy
clusters overlapping with the KiDS-450 area (Radovich et al.
2017). These clusters have been detected through a matched fil-
tering technique taking into account the magnitude distribution and
density profile. We only retain clusters that are at redshift z ≤ 0.5
because higher-redshift clusters are unlikely to create a strong shear
signal given the mean redshift of the background source population.
We also cut out clusters that are detected with less than 7σ signifi-
cance to have a very pure sample. We see from Fig. 3 that there is
not a one-to-one correspondence between peaks and clusters. Only
a few clusters are associated with peaks, but most clusters coin-
cide with a high-S/N area of the WL mass map. This highlights
that even at S/N ≥ 3 many peaks are not associated with clusters
and contain a significant contribution from projection of low-mass
halos or shape noise contamination. We also note that adding less
significant clusters does not qualitatively change these conclusions.
Finally, we recall that even if the aperture mass is computed with an
NFW filter to match halos, our method is not optimized to cluster
detection. In particular, we are sensitive to the integrated contribu-
tion along the line of sight which dilutes the signal from galaxy
clusters.

5 PEAK DISTRIBUTION

5.1 Measurement

Peaks are identified as pixels with S/N higher than their 8 neigh-
bors in the aperture mass map, with the pixel scale of 0.59 arcmin.
The global strategy is to measure the peak S/N distribution from
the observations and the variation of the peak distribution with cos-
mology from the simulations.

Because we reproduce the same noise in the simulations as
that of the observations, we can safely use any part of the peak dis-
tribution, including the low-S/N tail. However, the width of the S/N
bins and the upper limit of the distribution must be chosen such to
ensure that the distribution can be modeled by a multivariate Gaus-
sian when computing the likelihood, i.e. that there is a sufficient
number of peaks per bin. We note that this problem can also be
dealt with by using the cumulative distribution (e.g. Dietrich &
Hartlap 2010) or a varying width to get the same number of peaks
per bin (e.g. Martinet et al. 2015). However we use bins with fixed
width because these other two methods would favor the more nu-
merous low-S/N peaks given the chosen range of S/N. The num-
ber of bins is also limited by the precision we want to achieve on
the covariance matrix. As shown in Taylor & Joachimi (2014), the
more degrees of freedom the larger the uncertainty in the covari-
ance. We use 12 bins of S/N equally spaced between 0 and 4, but
also try a few other configurations (8 and 16 bins) to ensure that our
constraints are insensitive to the bin width for reasonable choices.
We refrain from adding peaks with S/N ≥ 4 as for these peaks the
shear-position coupling becomes significant and can bias the re-
sults (Kacprzak et al. 2016). Shear-position coupling, also referred
to as boost factor, biases the heights of peaks corresponding to large
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Figure 4. Peak distribution (top) and differential peak distribution (bottom). The differential distribution corresponds to the peak distribution from which the
averaged distribution over 5 noise-only field is subtracted. Green dots represent KiDS-450 data with error bars from the diagonal elements of the covariance
matrix, the black line represents the mean of the fiducial cosmologies, black dashed line the noise only distribution and colored lines the various simulations
with S 8 increasing from blue to red. Error bars from bootstrap resampling of the data are displayed in magenta.

halos in the simulations compared to the observations because the
redshift distribution of the data is applied to the simulations without
prior knowledge of halo positions. This is described in more details
in Sect. 6.2 where we analyze the different systematic biases.

The error bars on the number of peaks displayed in the vari-
ous figures correspond to the diagonal elements of the covariance
matrix estimated from the fiducial cosmology mocks, based on the
Dietrich & Hartlap (2010) simulations. For the cosmological anal-
ysis the full covariance matrix is used. We also verify that these
error bars are comparable to those computed through bootstrap re-
sampling of the data. To estimate the bootstrap variances we divide
the survey into 50 subpatches with equal number of galaxies. Simi-
larly to Hildebrandt et al. (2017) the definition of the subpatches is
based on right ascension cuts as the width in declination is roughly
the same at any right ascension in the survey. This division leads to
50 patches which are roughly 3×3 square degrees. We then select
50 random patches, with the possibility of selecting the same patch
more than once, to create a new peak distribution. Doing so 10,000
times and calculating the dispersion of the peak distribution over
them allows us to derive error bars that takes into account sample

variance. These error bars are in very good agreement with those of
the covariance matrix, as can be seen from Fig. 4 where bootstrap
errors are represented in magenta and those from the simulations in
green, highlighting that the simulations are a good representation
of the data.

Because the peak distribution is dominated by noise, we need
to run several realizations of the observed shape noise so that the
simulations are not biased to one particular realization of shape
noise. For every simulation we run 5 random noise realizations.
We also build 5 random noise-only peak distributions from the ob-
servations by computing the aperture mass map with all galaxies
being randomly rotated. Each of these 5 realizations is computed
with a different random seed but the seed is the same for all dif-
ferent cosmologies and for the noise-only realization, limiting the
impact of random shot noise. The simulations at the fiducial cos-
mology all have different random seeds because they are used to
estimate the covariance matrix. This allows us to measure differen-
tial peak counts, i.e. the peak distribution in the aperture mass map
from which we subtract the distribution of noise peaks. We verified
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that increasing the number of realizations to 20 does not affect the
cosmological constraints (less than 0.3σ change).

Figure 4 shows the main results concerning the peak distribu-
tion. It displays the peak distribution, the noise distribution, and the
differential distribution for the observation and for all simulations.
Simulated peak distributions are the mean over the different noise
realizations. We see in particular that the peak distribution is domi-
nated by shape noise, but that we can control it by having the same
noise in the data and the simulations. Looking at the differential
peak distribution we see a good agreement between the data and the
simulations with S 8 slightly higher than the fiducial cosmology. We
note also that the simulated peak distributions vary smoothly with
cosmology with an increasing number of high S/N peaks when S 8
is higher. This is expected: an increase in Ωm increases the mass
content of the Universe and an increase in σ8 increases the clus-
tering of structures, which both lead to more massive halos and
therefore more high-S/N peaks. In the low-S/N regime we note that
the differential peak distribution gets negative. This is because the
peak distribution is a convolution between signal which presents a
high-S/N tail and random Gaussian noise. The noise acts as a Gaus-
sian smoothing and lowers the amplitude in the convex parts of the
distribution while it increases it in the concave parts. The peak dis-
tribution is thus of higher amplitude than the noise-only distribution
at high S/N, of lower amplitude at low S/N, and of equal amplitude
when the second derivative of the peak distribution is equal to zero,
here around S/N = 2. Finally, we note that the observed differential
number of peaks deviates by more than 2σ from the expectation at
S/N = 1.33 and S/N = 2.33. Dividing the data in several subareas,
we find that only some of the patches are affected by these offsets,
but could not find an obvious cause to them. This plot shows that
the peak distribution is sensitive to cosmology and that the com-
bination of the KiDS observations and of the simulations we are
using does enable us to constrain the cosmological parameter S 8.
Although it would be tempting to use the differential peak counts
for extracting cosmology we prefer to work with the non-subtracted
peak distribution to avoid biasing the data which contain only one
realization of the noise.

5.2 Interpolation

Due to the prohibitive computational cost of simulating a cosmo-
logical grid evenly sampling the (Ωm,σ8) plane, we interpolate the
peak distribution at the grid values. We cover a regular grid with
step size 0.01 in each direction. Each bin of the data vector is inter-
polated separately. Peak distributions are averaged over the differ-
ent ray-tracing and noise realizations before performing the inter-
polation so that we are not biased by a particular noise realization.
We also recall that shot noise is reduced by applying the same ran-
dom shape noise to all cosmologies (but the fiducial) for each noise
realization. We note that it is also possible to directly interpolate the
likelihood instead of the peak distribution, but the former method
is preferable as it interpolates the expected values of the peak dis-
tribution while the latter also affects the data vector which enters
the likelihood.

We use radial basis functions with a multiquadric model
which renders well the evolution of the number of peaks
with Ωm and σ8 (Liu et al. 2015a). The computation is
performed through the scipy.interpolate.Rbf Python func-
tion (https://docs.scipy.org/doc/scipy/reference/
generated/scipy.interpolate.Rbf.html).

Because the variation of the peak distribution with cosmologi-
cal parameters is noisy we also add some smoothing when interpo-

Figure 5. Interpolation of the number of peaks in the bin 3.33≤ S/N≤ 3.66.
Dots correspond to measured values and the background area to interpolated
ones. The black polygon represents the convex hull within which we trust
the interpolation. See text for details.

lating the peak distribution through the “smooth” argument of the
scipy.interpolate.Rbf function which reduces the number of nodal
points in the interpolation process. This improves the rendering of
the significance contours in the (Ωm,σ8) plane and we verify that
it does not affect the estimated value of S 8. We also check that
the error on the interpolated number of peaks is lower than the
Poisson error by comparing the results of the interpolation with
the measurements for every available simulation (see Appendix A
for details). In principle we could avoid the smoothing by running
simulations for more points in the (Ωm,σ8) plane, but this would
be computationally demanding, and unnecessary as we found that
the constraints on S 8 do not change for various values of smooth-
ing. This would however improve the cosmological contours in 2D-
space.

An example of the interpolated number of peaks in the
(Ωm,σ8) space is given in Fig. 5. We see that the interpolation per-
forms reasonably well comparing interpolated values to the nearby
measured data points (see Appendix A for the quantitative compar-
ison). However, the extrapolation is very inaccurate. We therefore
apply a prior on the likelihood to discard the extrapolation region.
This region is defined through a convex hull on the ensemble of
points where simulations were run, and is displayed in Fig. 5.

6 COSMOLOGICAL CONSTRAINTS

6.1 Inferring cosmological parameters

Cosmological parameters are estimated by comparing the observed
peak distribution to that of simulations with various cosmologies,
in a Bayesian framework.

Our data vector is represented by x ∈NNb
+ , the number of peaks
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in each of the Nb bins of S/N shown in Fig. 4. Similarly we define
the peak distribution of a simulation with cosmology π = (Ωm,σ8)
as xs(π) ∈ RNb

+ .
From Bayes theorem we can link the probability p(π|x) of one

cosmological model given the data vector (i.e. what we want to
know) to the probability p(x|π) of the data vector given a cosmol-
ogy;

p(π|x) =
p(x|π)p(π)

p(x)
. (10)

The probability of the data p(x) is a normalization constant and
p(π) is a flat prior, with value 1 on the probed range of cosmologies
π within the convex hull shown in Fig. 5, and 0 elsewhere.

The peak distribution is assumed to be a multivariate Gaussian
distribution. This approximation is valid provided that we have a
sufficient number of peaks in each bin, typically a few tens. The
main analysis is done with 12 bins evenly spaced between S/N of 0
and 4 but we also check the robustness of our results over two al-
ternative bin widths (0.25 and 0.5). We do not use a Gaussian like-
lihood but the adapted version of a multivariate t-distribution pre-
sented in Sellentin & Heavens (2016), which still assumes Gaussian
distributed data. This likelihood, derived from marginalizing over
the true covariance matrix, provides better inference than the tradi-
tional Gaussian likelihood with the Hartlap et al. (2007) correction,
which only gives an unbiased estimate for the inverse covariance
matrix. The likelihood can be written as

p(x|π) = c(Ns,Nb)
√

detΣ(π)
[
1 +

χ2 (x,π)
Ns −1

]−Ns/2

, (11)

where Ns is the number of simulations used to estimate the co-
variance matrix Σ, c(Ns,Nb) is a constant which depends on the
number of simulations and the size of the data vector, and χ2 (x,π)
is the χ2 function defined in Eq. (14). We note that this likelihood
approaches a Gaussian likelihood when the number of simulations
Ns is large.

With the assumption that the covariance matrix does not de-
pend on π, the numerator of Eq. (11) is constant and we can write

p(x|π) ∝
[
1 +

χ2

Ns −1

]−Ns/2

, (12)

where the covariance matrix is computed from the Ns = 175 simu-
lations of the fiducial cosmology π0,

Σ(π0) =
1

Ns −1

Ns∑
i

(xs,i(π0)− x̄s(π0)) (xs,i(π0)− x̄s(π0))T. (13)

The vector xs,i(π0) represents the peak distribution of the i-th fidu-
cial simulation and x̄s(π0) is the mean peak distribution over all
fiducial simulations.

Because we do not have the computational resources to com-
pute the covariance matrix at each cosmology, we make the as-
sumption that it does not depend on cosmology. Although this ap-
proximation does not hold for large variations in the cosmological
parameters, Eifler et al. (2008) showed that it overestimates the er-
rors on cosmological parameters in the case of 2nd-order cosmic
shear (which contains overlapping information with peaks) such
that our constraints are conservative.

The covariance matrix estimates the error correlations in the
data. The main sources of errors are galaxy shape noise and sample

variance. The first one is probed by applying different random ori-
entations to the intrinsic ellipticities of galaxies, and the second one
by using several simulations and several ray-tracings through the
simulations. Kacprzak et al. (2016) focus on the shape noise con-
tribution by applying many realizations of shape noise to the same
simulations. This approach allows them to have a higher number
of data vectors in the covariance matrix computation but neglects
the contribution from sample variance over that of shape noise. In
contrast, we estimate our covariance matrix with Ns = 175 inde-
pendent data vectors from 35 different simulations with 5 different
ray-tracing each, and different shape noise realizations. We com-
pute 5 covariance matrices with different seeds for shape noise and
average the covariances. We use this approach because we find that
shape noise and cosmic variance affect the peak distribution at the
same level. The peak distribution of 10 fiducial different simula-
tions with the same shape noise and that of one fiducial simulation
with 10 different realizations of the shape noise represents a disper-
sion of the same order, typically a few to ten percent of the mean
value. With this strategy we estimate an accurate covariance matrix
without biasing with non-independent data vectors. The cosmolog-
ical constraints are almost identical for any individual matrix, but
using the average covariance avoids choosing one set of noise real-
izations over another.

The χ2 is defined in Eq. (14) from comparing the observed
data vector x to the model xs(π) estimated from a simulation with
cosmological parameters π, using the covariance matrix evaluated
at the fiducial cosmology π0:

χ2(x,π) = (x− xs(π))T Σ−1(π0) (x− xs(π)) (14)

In contrast to the case of 2PCFs, there is no simple analytical
prescription for the variation of the peak distribution with cosmol-
ogy xs(π). In fact analytical models exist for the high-S/N peaks, as
used in Paper I, but cannot be applied to lower-S/N peaks. For each
cosmology we therefore average the peak distribution over the dif-
ferent realizations of cosmic variance and shape noise, before using
them in the χ2 computation. We note that the goal here is to have
the best knowledge of the expectation value which is different than
in the covariance matrix where we want to estimate the variation of
the peak distribution with noise. This is also the reason why for the
different cosmologies we use the same noise seeds but not for the
fiducial ones. Using different seeds for shape noise would increase
shot noise between the different cosmologies, requiring to average
over a larger number of realizations to extract the cosmological de-
pendence of the peak distribution.

The likelihood p(x|π) is computed at each point of the inter-
polated grid of parameters, and normalized by the integrated like-
lihood over the prior support. We then determine the 1σ (resp. 2σ)
iso-likelihood contours as the contours enclosing 68% (resp. 95%)
of the total integrated likelihood. For each parameter we also es-
timate the most favored value as the maximum of the likelihood
marginalized over the other parameter, and the 1σ uncertainty such
that it encloses 68% of the marginalized likelihood integrated over
the probed parameter range. As the likelihood is computed in the
(Ωm,σ8) plane we apply a change of variables to measure con-
straints on S 8 = σ8

√
Ωm/0.3:

p(Ωm,S 8|x) dΩm dS 8 = p(Ωm,σ8|x) dΩm
∂S 8

∂σ8

∣∣∣∣∣
Ωm

dσ8. (15)
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6.2 Systematics

Cosmological constraints from shear peak statistics are affected
with several systematics, namely: multiplicative shear bias, mean
redshift bias, baryon feedback, intrinsic alignment, and boost fac-
tor. Although the impact of these biases on convergence peaks has
been discussed in detail in Paper I, they might affect the present
analysis differently due to the different methodology and using low-
S/N peaks.

Hildebrandt et al. (2017) found that the multiplicative shear
bias and mean redshift bias only have a small impact on S 8, in the
case of 2PCFs applied to KiDS-450. In addition, Kacprzak et al.
(2016) also found almost no impact on S 8 central values in the case
of peak statistics in the DES-SV data, and that neglecting these bi-
ases leads to 15% tighter constraints with the same definition of S 8
as in our paper. However, in KiDS-450 we have redshift bias bet-
ter than ∆z ∼ 0.02 (Kuijken et al. 2015) against ∼ 0.05 in DES-SV,
and a shear multiplicative bias m . 0.01 (Fenech Conti et al. 2017)
against ∼ 0.05 in DES-SV, such that these two biases should be
smaller in the present study than in Kacprzak et al. (2016). In the
case of KiDS-450 2PCFs the multiplicative shear and photometric
redshift biases have negligible effects on the S 8 value and present
uncertainties of about 1.7% and 0.8%, respectively. Assuming that
these biases impact peak statistics at the same level as they impact
the 2PCFs, we can derive conservative constraints by adding a null
bias to our S 8 estimate and adding the uncertainty on these biases
in quadrature to the statistical error. In principle it is possible to ac-
count for m/∆z biases by modifying their values in the simulations,
computing the dependency of the peak distribution on these biases,
and then marginalize over it. However this would require lots of
computational time for such a small bias as noted in Hildebrandt
et al. (2017).

The Dietrich & Hartlap (2010) simulations are DM only, such
that they neglect the impact of baryons, which can modify how LSS
evolves. Using a set of hydrodynamical simulations, Osato et al.
(2015) measured the impact of baryons on both power spectrum
and peak statistics. Their simulations also account for feedback
from supernovae and active galactic nuclei. They find a similar bias
due to baryonic effects for different ranges of peak S/N, and esti-
mate an ∼ 1.5% effect on both Ωm and σ8. This propagates to a
-2.3% effect on S 8 = σ8

√
Ωm/0.3. Our filter function also down-

weights the central part, i.e., the peak height is not primarily deter-
mined by the central portion of the halo if the matched filter and
the halo are aligned. This further decreases the impact of baryonic
effects. We apply a -2.3% bias to our S 8 estimate in order to correct
for baryons. We also add this value in quadrature to the error bud-
get, therefore assuming an uncertainty on the bias as large as the
bias itself. This is a conservative approach to account for the fact
that we do not accurately know the uncertainty on this bias.

On small scales IA refers to the radial alignment of satellite
galaxies within DM halos which breaks the fundamental assump-
tion of WL that galaxies are randomly oriented. These alignments
are generated by the gravitational potential of high-mass halos on
neighboring galaxies. This effect is divided into two components:
the intrinsic-intrinsic correlations (II), i.e. the alignment of galaxies
physically linked together, and gravitational-intrinsic correlations
(GI), i.e. the alignment of halo galaxies with the induced shear on
background galaxies (Hirata & Seljak 2004). In the case of peaks,
the effects of IA can be captured by modeling the alignment of
satellite galaxies towards DM halo centers, e.g., the Schneider &
Bridle (2010) model. Using this model with the fiducial value for
the alignment strength prescribed in Schneider & Bridle (2010),

Kacprzak et al. (2016) found a change in the amplitude of shear
peaks lower than 5%, applying the same methodology as ours to the
DES-SV data. We also note that Sifón et al. (2015) measured the
radial alignment of satellite galaxies in a sample of 90 galaxy clus-
ters, securing cluster membership through spectroscopic redshifts,
and found negligible alignments. Based on their measurement they
show that the Schneider & Bridle (2010) recommended alignment
strength overestimates the IA at small scales (see their Fig. 13),
such that the effect of IA on the peak distribution is probably much
lower than what Kacprzak et al. (2016) found.

The dilution of the background shear signal due to the inclu-
sion of cluster galaxies is generally compensated for by a radially-
dependent boost factor to the shear in cluster lensing studies (e.g.,
Applegate et al. 2014; Hoekstra et al. 2015; Martinet et al. 2016). In
the case of peak statistics the contamination from cluster galaxies
leads to higher peaks in the simulations than in the observations.
Around an observed galaxy cluster, the background shear signal is
diluted. But in the simulated mocks where galaxies have the same
positions as in the data, at a DM halo position there is no dilution
of the shear signal because the distribution of galaxies is imposed
by the data. Comparing the radial profile of galaxy density at peak
locations in the observation with that of simulations allows one to
compute the boost factor in bins of peak S/N. With the same peak
calculation and simulations as ours, Kacprzak et al. (2016) esti-
mated the variation of the number of peaks per S/N bin due to the
boost factor in the DES-SV. They found a variation which is pro-
portional to the S/N of peaks and lower than about 5% for S/N
lower than 4, and therefore recommend using bins with S/N lower
than this value to avoid large shear dilution effects. In a similar
approach but on convergence peaks in KiDS-450, Paper I found a
change of about 6% and 10% in the number of peaks in the bin
with 3 < S/N < 3.5 and 3.5 < S/N < 4 respectively which corre-
spond to the highest S/N used in this study, and is comparable with
the results from DES-SV although the redshift distributions of both
surveys are different.

Applying both IA and boost factor corrections, Kacprzak et al.
(2016) found a variation of S 8 of 0.01 using shear peaks defined
with the same filter as ours, corresponding to a systematics relative
bias of ∼ 1.3%. We note that IA and the boost factor tend to increase
S 8 together. Based on the discussion of the two last paragraphs we
can assume this value to be an upper limit for this systematic bias
in the case of KiDS-450. We add the above estimate to our S 8 value
and add it in quadrature to the error budget. As noted in Kacprzak
et al. (2016), current models correcting for IA and boost factors
have a high uncertainty in the case of peak statistics. This highlights
a lack of extensive study on the impact of these systematics on
peak statistics, and dedicated studies are required to improve these
models, which is beyond the scope of this paper.

The biases estimated above are linearly added to our S 8 best
estimate and the uncertainties on these biases are added in quadra-
ture to the statistical 68% errors on S 8. We note that except for the
multiplicative shear and mean redshift biases for which we have
estimates of the uncertainties, we assumed that the uncertainty on
each bias is as large as the bias itself. This allows us to correct
for biases in a conservative maner although we lack precise infor-
mation on the bias uncertainties in the case of baryons, IA, and
boost factor. In doing so we also neglect any correlation between
the different systematics, except that between the boost factor and
IA which are treated together. The joint contribution of every bias
leads to a shift of the S 8 value of -0.95%, which is lower than
the percent because some biases compensate each other. The to-
tal systematic uncertainty is ∼ 3.2% and is dominated by baryon
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Figure 6. Correlation of the covariance matrix for peaks in the range 0 ≤
S/N ≤ 4.

feedback. It is added in quadrature to the statistical precision. This
value is also similar to the ∼ 3.6% systematic uncertainty that was
assigned to the 2PCFs analysis (Hildebrandt et al. 2017).

6.3 Results

We first show the correlation matrix in Fig. 6. As mentioned ear-
lier, we work with the mean covariance matrix over 5 realiza-
tions of shape noise, decreasing shot noise in the covariance es-
timate, although it is still representative of the noise in the data.
We note that low-S/N peaks are slightly correlated with one an-
other (S/N < 1.66), and high-S/N peaks (S/N > 2.66) show even
stronger correlations. This is expected as a massive halo tends to
correspond to several peaks both due to its large size and its large
amount of substructures. However, we see only small correlations
between the two regimes of peaks, with close to zero negative off-
diagonal terms. This means that the low- and high-S/N peaks probe
different information, projections of small structures and high-mass
halos, respectively. The slight anti-correlation in between the two
regimes is due to the fact that when a large halo is detected, pro-
jection effects around this halo fade. This is also seen in the peak
distribution (Fig. 4) which shows negative differential peak counts
in the low-S/N regime and positive ones in the high regime. These
ranges of S/N also roughly correspond to the S/N where the peak
distribution is the most sensitive to cosmology, as seen in Fig. 4.

Cosmological constraints from shear peak statistics are dis-
played in Fig. 7, where we show the 1 and 2σ contours for the
2D likelihood, and the S 8 best estimate from the marginalized
1D likelihood. We do not present any estimate of Ωm or σ8 be-
cause they are highly correlated as shown by the large degeneracy
in Fig. 7. We present constraints using the full range of available
peak S/N (0 ≤ S/N ≤ 4), and also using only the high S/N peaks
(3≤ S/N≤ 4). This second plot serves to assess the gain of informa-
tion from the low-S/N peaks, and also to allow a comparison with
peak constraints from analytical predictions as in Paper I. We also
note the presence of wiggles in the contours, which are an artifact
of the interpolation of the peak distribution with large separation
between points in the (Ωm,σ8) plane. These wiggles would disap-
pear if we could use simulations paving more points in the cosmo-

logical parameter space. Our best estimates are S 8 = 0.757+0.054
−0.053

(68% errors) for the full range of S/N, and S 8 = 0.778+0.073
−0.073 when

focusing on high S/N only. Including the systematics estimated in
Sect. 6.2 yields S 8 = 0.750+0.059

−0.058 and S 8 = 0.771+0.077
−0.077 for all and

high-only S/N, respectively. The statistical error on S 8 is ∼ 7.1%
(resp. 9.4% for high-only peaks) and the systematic uncertainty is
∼ 3.2%. Statistical errors therefore dominate systematic ones in the
case of KiDS-450. This will no longer be the case for larger surveys
and detailed studies are required to better understand, and correct
for the systematics affecting shear-peak statistics.

In Appendix B, we make use of the refined SLICS simulations
to verify that the assumptions made in the case of the Dietrich &
Hartlap (2010) simulations do not significantly affect the main re-
sults of the paper. We find that the refined covariance matrix com-
puted from the SLICS simulations present similar correlations as
that of the fiducial mocks, but a higher scatter due to a better inclu-
sion of sample variance. With the refined covariance matrix we find
S 8 = 0.760+0.061

−0.058 and S 8 = 0.771+0.074
−0.075 respectively for 0 ≤ S/N ≤ 4

and 3 ≤ S/N ≤ 4, and with accounting for systematics. The con-
straints on S 8 are left almost unchanged by switching between the
original and the refined covariance matrix, validating the various
approximations made in the Dietrich & Hartlap (2010) mocks (e.g.,
interpolation, redshift range). We also note that the degeneracy in
the (Ωm, σ8) plane does not change. Although the sample variance
bias of our simulations has negligible effect on the present study,
it will become more important for larger area surveys and it might
become necessary to use simulations which cover an area which is
close to that of the data to account for sample variance.

7 DISCUSSION

Figure 8 summarizes S 8 constraints from this survey and compares
them with various other studies. We calculated p-values as an es-
timate for the goodness-of-fit for all the cases considered. The p-
values are calculated for the minimum χ2 taking into account the
degrees-of-freedom given by the number of data points minus two
free parameters (Ωm and σ8). All the values are larger than 0.2,
indicating that the models fit the data well.

7.1 Information from low- and high-S/N peaks

We first focus on the gain of information from adding the low-S/N
peaks. We recall that the large-S/N peaks correspond to single mas-
sive halos while the low-S/N correspond to alignment of smaller ha-
los along the line-of-sight. We find very good agreement between
the two regimes, showing that chance alignments and larger halos
are both good tracers of LSS. The constraints shrink by 24% when
adding the low-S/N peaks, representing a large gain of information.
This highlights the great interest of studying the low-amplitude
peaks, which efficiently probe the cosmological information con-
tained in the chance alignments of LSS.

7.2 Comparison with KiDS 2PCFs and Planck

One of the goals of this study is to check whether peak statistics
agree with KiDS 2PCFs, in light of the reported mild tension be-
tween the latter and Planck results.

Peak statistics yield similar constraints on S 8 as 2PCFs. In
particular the degeneracy in the (Ωm,σ8) plane is parallel to that of
2PCFs (Fig. 7), highlighting the strong correlation between the two
probes. We note that our estimate of S 8 is in good agreement with
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Figure 7. Cosmological constraints on (Ωm,σ8). 1σ and 2σ confidence re-
gions are displayed in dark and light areas, respectively. Green contours
correspond to KiDS-450 tomographic 2PCFs constraints marginalized over
systematics (Hildebrandt et al. 2017), blue to the KiDS-450 shear peak con-
straints using bins in ranges 0 ≤ S/N ≤ 4 (top), and 3 ≤ S/N ≤ 4 (bottom),
and red to Planck “TT+lowP” (Planck Collaboration et al. 2016). The top
right legend shows the S 8 best value and 68% errors for each study.

the tomographic 2PCFs value reported in Hildebrandt et al. (2017):
S 8 = 0.745±0.039. We stress, however, that in the case of peaks we
included the different systematics (multiplicative shear bias, mean
redshift bias, baryon feedback, intrinsic alignment, boost factor)
as a correction to the best estimate and uncertainties of S 8 while
Hildebrandt et al. (2017) marginalized over the relevant systemat-
ics. Hildebrandt et al. (2017) also varied all cosmological parame-
ters while we can only vary Ωm and σ8 in the case of peaks with
the given set of simulations, and therefore underestimate the con-
fidence regions. Finally, we note that we did not carry out a to-
mographic analysis of the peak statistics, while the 2PCFs study
captures the information from four different source redshift bins.
This choice is due to limitations in the available simulation mocks,
and explains why constraints are tighter in the case of 2PCFs. Mar-
tinet et al. (2015) showed that a tomographic approach can improve
constraints from peak statistics by almost a factor of two in the case

of Euclid-like simulations. The improvement from a tomographic
peak analysis has also been noted earlier by Dietrich & Hartlap
(2010) using CFHT-like simulations.

We find only a slight difference when comparing peak statis-
tics with Planck CMB. Our constraints on S 8 present a 1.6σ differ-
ence with that of Planck (S 8 = 0.851±0.024, Planck Collaboration
et al. 2016), when including systematics. Hildebrandt et al. (2017)
reported a tension of 2.3σ, however our constraints are 33% weaker
in comparison, mainly due to the fact we are not using tomography:
we show in Sect. 7.5 that peak statistics and 2PCFs achieve similar
constraints when tomography is not used in both cases. Our best es-
timate of S 8 is however closer to that of Hildebrandt et al. (2017).
Finally, we note that our simulations are run with a Hubble pa-
rameter H0 = 70 km s−1 Mpc−1 which is different from the Planck
estimated value: H0 = 67.3 km s−1 Mpc−1. While this could par-
tially explain the difference between the two probes, it is difficult
to assess in this paper, as it would require to run extra simulations
fixing H0 to the Planck value. We note that our constraints do not
change significantly when using the refined covariance matrix (see
Sect. B) which is computed with a slightly different Hubble pa-
rameter: H0 = 69.0 km s−1 Mpc−1. In addition, we found in Paper
I that the constraints on S 8 are stable when varying H0 between
68 km s−1 Mpc−1 and 72 km s−1 Mpc−1 with the modeled peak
function, showing that the observed difference to Planck is proba-
bly not due to different values of the Hubble constant.

7.3 Comparison with other WL peak analyses

We first compare our constraints to that of Paper I, which uses
the same KiDS-450 dataset but apply a different approach to peak
statistics. Paper I uses convergence peaks instead of shears, and also
compares their peak distribution to that from analytical predictions,
although calibrating those on the same simulations as the ones we
use in the present study. Paper I uses a Gaussian filter with a scale
of 2 arcmin on the convergence field, which is close to the effective
radius of our own filter (θ = 1.875′). As the analytical predictions
are accurate only in the high-S/N regime where one can assume that
peaks are associated with high-mass halos, Paper I makes use of the
high-S/N peaks only (3 ≤ S/N ≤ 5). We therefore only compare our
high-S/N (3 ≤ S/N ≤ 4) constraints with the results from Paper I. In
this range of S/N Paper I finds S 8 = 0.746+0.046

−0.107. We note that these
constraints are in good agreement with ours, with the same con-
straining power as our high-S/N regime (see Fig. 8). The fact that
both studies, while based on completely different approaches, give
consistent S 8 estimates is a good assessment of their robustness.

There is, however, a major difference in the orientation of the
(Ωm,σ8) degeneracy. In the present study we find a degeneracy
similar to that of the 2PCFs even for the high peaks, while in Paper
I a flatter degeneracy is seen, closer to that of some cluster studies.
The only way for us to reproduce this degeneracy is to use only the
highest S/N peaks: 4 ≤ S/N ≤ 5. This would mean that even in the
3 ≤ S/N ≤ 4 range there is a large contribution from peaks corre-
sponding to projection effects of LSS and to noise while peaks at
S/N ≥ 4 mainly correspond to high-mass halos. The fact that Paper
I find a flatter degeneracy even when including peaks at 3≤ S/N≤ 4
could highlight a difference in the definition of S/N which is global
in Paper I and local here (the noise is different for each aperture), or
show some limits of the model used in Paper I which only accounts
for high-mass halos and not for projection effects. This reasoning
holds only under the assumption that the degeneracy is not domi-
nated by other systematic effects. In the literature, we note that dif-
ferent peak studies find different degeneracy orientations. Liu et al.
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Figure 8. Comparison between various constraints on S 8. The black star represents our best estimate, and the shaded area its error bars. Dark and light blue
points correspond to different constraints with peak statistics and 2PCFs, from this paper and from other KiDS-450 papers respectively. The green point
corresponds to a shear peak study for another dataset, and red points show constraints from CMB measurements.

(2015b) find a degeneracy very close to that of Paper I, applying
the same predictive model to the Stripe82 data acquired with the
CFHT. Using simulations instead of analytical prediction, Liu et al.
(2015a) find a degeneracy similar to the convergence power spec-
trum degeneracy, but also using the full range of S/N convergence
peaks. Kacprzak et al. (2016) also find a degeneracy in agreement
with that of 2PCFs in DES-SV, using simulations and shear peaks
in the full range 0≤ S/N≤ 4. Simulation-based peak analyses there-
fore tend to show degeneracy closer to 2nd-order cosmic shear than
to clusters but also often make use of a larger range of S/N com-
pared to model-based analyses which are in better agreement with
the degeneracy from cluster analyses.

We can also compare our results with those of the DES-SV
analysis (Kacprzak et al. 2016). This study is very similar to ours
in its methodology. In particular they use aperture masses with the
same filter function in shear space. They also use the same Diet-
rich & Hartlap (2010) simulations to compute their cosmological
constraints. Although they define their fiducial results based on a
20 arcmin filter scale, they also provide S 8 estimates for a 12 ar-
cmin scale, very close to the 12.5 arcmin used in the present study.
We display their value for θ = 20′ in Fig. 8 as it corresponds to their

fiducial estimate. They find S 8 = 0.76±0.074 and S 8 = 0.73±0.081
with a 20′ and 12′ filter scale respectively. These two results are in
very good agreement with ours. The error bars are 21% narrower
(resp. 28% for θ = 12′) in the case of KiDS due to its larger area
(450 deg2 against 139 deg2) and higher galaxy density (8.53 galax-
ies per square arcmin against 5.7). We also note that Kacprzak et al.
(2016) marginalized over the estimated mean redshift and multi-
plicative biases. While we do not marginalize over systematics, we
include them as an a posteriori correction to our best estimate and
uncertainties, also accounting for baryon feedback, boost factor and
IA. Finally, we note that they found similar S 8 when using different
aperture sizes. In Sect. 7.4 we measure the peak statistics for differ-
ent filter scales and derive constraints from a multi-scale analysis.

7.4 Multi-scale analysis

We investigate the gain of information from combining the peak
statistics of different filter scales. As different filter scales probe
different structures, i.e. different halo sizes, combining several
scales should yield more precise constraints. However, the infor-
mation from different scales is correlated: for example a galaxy
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Figure 9. Correlation of the multi-scale covariance matrix for peaks in the range 0≤ S/N≤ 4. Each square represents the correlation of the peak S/N distribution
between two filter scales θ in (6′,9′,12.5′,15′,18′).

cluster detected at a smaller scale will be detected at larger scale
providing that the scale is not so large that the cluster signal is
buried in the noise. See also Marian et al. (2012) for an approach
with a single scale of adaptive size. In addition to our fiducial
scale of θ = 12.5′, we measure the peak distribution for four ex-
tra scales leading to the following ensemble of probed scales:
θ = (6′,9′,12.5′,15′,18′), which respectively correspond to the ef-
fective scales θeff = (0.9′,1.35′,1.875′,2.25′,2.7′), for the filter pa-
rameter xc = 0.15 (see Eq. (9)). We recall that the fiducial scale is
chosen such as to maximize the number of peaks at S/N ≥ 3. We
measure the peak distribution of each scale in the observations and
in the simulations, again with 5 random realizations of shape noise.
The multi-scale cosmological inference is done in the same way
as for the single scale but with a data vector which is the concate-
nation of the data vectors of the individual scales. The data vector
contains 60 elements for the combination of the five scales, which is
small enough compared to the number of simulations (Ns = 175) to
compute accurate constraints with the Sellentin & Heavens (2016)
likelihood.

The joint correlation matrix is shown in Fig. 9. This is the
mean correlation over five realizations of shape noise, each of
which contains the 175 fiducial mocks. We see that the different

scales are highly correlated to one another, and also that the closer
scales show more correlations. The correlations are larger at large
scales, since we increase the scale linearly while the number of
galaxies included in the aperture scales with the area, the difference
between θ = 6′ and θ = 9′ is therefore larger than the difference be-
tween θ = 15′ and θ = 18′.

We compute the constraints on S 8 from each individual scale
and for different combinations of scales. While all estimates are
consistent with the fiducial single scale analysis, the improvement
in precision is at best of ∼ 10%. This value is reached when using
the two scales θ = 12.5′ and θ = 15′ together. Adding extra scales
does not improve the constraints further, such that it is not nec-
essary to combine more than two scales. This is supported by the
large amount of correlation between scales found in the correla-
tion matrix (see Fig. 9). The constraints might even get less precise
when adding extra scales, probably because of anti-correlations be-
tween scales. For example, the combination of the five scales yields
marginally better constraints than the fiducial scale alone. In addi-
tion, we note that the single-scale analyses yield the most precise
constraints for θ = 12.5′ as expected by definition of our fiducial
scale. Because multi-scale constraints are only mildly better than
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Figure 10. Shear two point correlation functions: ξ+ (top) and ξ− (bottom).
Green dots represent KiDS data with error bars from the dispersion in the
fiducial cosmologies, black line the mean of the fiducial cosmologies, and
colored lines the various simulations with S 8 increasing from blue to red.

the single-scale case, we recommend using only one scale to save
computation time.

7.5 Peak statistics and 2PCFs joint analysis

While peaks represent a different statistic than the 2PCFs, they are
both sensitive to LSS and therefore probe correlated information.
In this section, we use the 2PCFs as the statistics for cosmic shear
and find its joint cosmological constraints with peak statistic. The
2PCFs are defined as

ξ± (θ = |θa −θb|) =

∑
a,b wawb [εt(θa)εt(θb)± ε×(θa)ε×(θb)]∑

a,b wawb
, (16)

where the sum is over pairs of galaxies a and b with separation
|θa − θb| and lensfit weights wa and wb. εt (resp. ε×) represents the
ellipticity component tangential (resp. perpendicular) to the line be-
tween the two galaxies. Shear two-point correlation functions relate
to cosmological parameters through the matter power spectrum (see
e.g., Bartelmann & Schneider 2001; Kilbinger 2015).

We measure the ξ+ and ξ− correlation functions using the
ATHENA software (Kilbinger et al. 2014) with 900 logarithmic bins
in the range 0.5′ ≤ θ ≤ 300′ and rebin to 9 points logarithmically
spaced between the separation limits. In contrast to other KiDS-450
2nd-order cosmic shear studies (Hildebrandt et al. 2017; Köhlinger
et al. 2017; van Uitert et al. 2017) which follow a tomographic ap-
proach, we use a single redshift bin in the range 0.1 ≤ zB ≤ 0.9. The
first reason for this is that we want to compare peaks and 2PCFs
with similar approaches, and the second is that in this analysis we
get the cosmological constraints from comparing the 2PCFs of the
observations with that of the simulations, and the simulated mocks
we are using are not suited for the tomographic approach. This
analysis is also different from the other KiDS cosmic shear papers,
as we derive the constraints from N-body simulations and not from
an analytical prescription. Although using a theoretical description
of the variation of the 2PCFs with cosmology is more accurate,
we prefer to use the simulations in this study because we are only
interested in the qualitative improvement from the combination of

Figure 11. Joint correlation matrix for peaks in the range 0 ≤ S/N ≤ 4, ξ+,
and ξ−. Each square represents the correlation of one estimator.

constraints and to ensure that systematics from the simulation ap-
proach affect both peaks and 2PCFs measurements. Also, only two
cosmological parameters are allowed to vary (Ωm and σ8), rather
than 5 or more in the other KiDS-450 cosmic shear studies.

We measure the 2PCFs in the observation and in the Diet-
rich & Hartlap (2010) simulations which follow the KiDS foot-
print, with same weights and shape noise amplitude as in the data.
We note that the 2PCFs do not depend on galaxy positions such
that we can use the same positions as in the data in the simulations
without biasing the 2PCFs. This allows us to measure the 2PCFs on
the exact same mocks as for the peaks, which is important to assess
the level of correlation between the two probes.

Following Hildebrandt et al. (2017), we use only the 7 first
bins of ξ+ and the last 6 bins of ξ−. These are displayed in Fig. 10
as measured in the data (green dots) with error bars from the diag-
onal elements of the fiducial covariance matrix, in the fiducial sim-
ulations (black line for the mean) and in the various cosmologies
ranging from low S 8 (blue) to high (red). As for the case of peaks
(see Fig. 4), we find a clear dependence on cosmology, with higher
S 8 corresponding to higher level of correlation of the shear. The
shear correlation in the data is also slightly higher than the fiducial
cosmology favoring a moderately higher S 8 value. We note that
at the largest scale, ξ− presents large error bars. This is because the
simulations we use are only 6×6 square degrees and we are probing
correlations between pairs separated by as much as 5 degrees, sig-
nificantly lowering the number of pairs compared to smaller scales.

The joint correlation matrix is given in Fig. 11, for the 175
fiducial mocks, and averaged over five random realizations of shape
noise. The peaks span the range 0 ≤ S/N ≤ 4, and ξ+ and ξ− cor-
respond to the 7 and 6 aforementioned bins, respectively. We see
a strong correlation between the different scales of ξ+ and also be-
tween ξ+ and ξ−. This is also seen in the correlation matrix pre-
sented in the appendix of Hildebrandt et al. (2017) for the tomo-
graphic case. We also find some correlation between the high-SN
peaks and the small-scale ξ+ and ξ−. This is expected as the peaks
are probing LSS on scales of about the size of the filter applied in
the aperture mass. However, at other scales we note that the corre-
lations remain low, highlighting that the peak statistics are largely
independent from the 2PCFs.
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We build new data vectors to estimate cosmological con-
straints with the same method as in the rest of the paper. We use
the Sellentin & Heavens (2016) likelihood with the data, the co-
variance matrix from the mocks with fiducial cosmologies, and the
model from the simulations with various cosmologies interpolated
from the mesh at which simulations exist. We probe the constraints
from the 2PCFs alone with the concatenation between ξ+ and ξ−
as the data vector, and also the joint constraints with the concate-
nation of peaks between 0 ≤ S/N ≤ 4, ξ+ and ξ−. The number of
bins of these data vectors are respectively 13 and 25, which is still
reasonably low compared to the 175 realizations of the fiducial cos-
mologies used to estimate the covariance matrix.

Figure 12 shows the constraints for the 2PCFs and the joint
constraints. There is a very good agreement between the present
non-tomographic 2PCFs constraints and the tomographic con-
straints of Hildebrandt et al. (2017) both in the (Ωm,σ8) degen-
eracy and in the S 8 estimate. Our errors are however ∼ 39%
larger because we do not use the information from the differ-
ent redshifts. Quantitatively, the constraints from 2PCFs only are
S 8 = 0.757+0.062

−0.065, which is the same value as for the peaks but
with ∼ 16% larger statistical errors. This highlights the very high
potential of peak statistics as a cosmological probe compared to
the classical WL probe. Furthermore, the combination of both
yields an ∼ 20% improvement compared to the 2PCFs alone with
S 8 = 0.757+0.046

−0.055 but no significant improvement from peaks alone.
We however stress that this study presents some limitations. First,
the likelihood is quite noisy due to sparsity in the probed cosmolo-
gies. Second, no systematics are accounted for in this part of the
discussion, so only the statistical errors are considered. This is be-
cause the impact of systematics on constraints from peak statistics
is not known with the same accuracy as that of the 2PCFs, mainly
because of the very recent development of peak statistics.

Our results are nonetheless very promising for peak statistics
and call attention to the great interest of developing peaks further
in terms of systematics comprehension. Our study also confirm
the predictions from simulation-based analyses of the improvement
of constraints from joint 2nd-order and higher-order cosmic shear
over 2nd-order alone (e.g., Dietrich & Hartlap 2010; Hilbert et al.
2012). Finally, we note that in their study of CFHTLenS, Liu et al.
(2015a) also found only marginal improvement from adding con-
vergence peaks to the convergence power spectrum compared to
peaks alone, and ∼ 40% improvement compared to power spec-
trum alone, taking the full covariance between the two probes into
account as we do here.

8 CONCLUSION

In this paper, we derive constraints on S 8 = σ8
√

Ωm/0.3 by com-
paring the peak statistics in the WL mass map of KiDS-450 to that
of simulations with various cosmologies. Mass maps are computed
by averaging the tangential shear in a 12.5 arcmin radius aperture
with an NFW-like weighting function, which is compensated in the
convergence field to avoid the mass sheet degeneracy.

We find constraints on S 8 in good agreement with those from
2PCFs (Hildebrandt et al. 2017), and also from the independent
peak statistics study of Paper I. The latter uses convergence peaks
and analytical predictions, focusing on the high-S/N peaks corre-
sponding to high-mass halos. Our S 8 estimate is 1.6σ lower than
the value estimated with Planck CMB when we account for sys-
tematics. We also measure the gain of information when adding
the low-S/N peaks, which correspond to projections of low-mass
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Figure 12. Cosmological constraints on (Ωm,σ8) from peaks and 2PCFs.
1σ and 2σ confidence regions are displayed in dark and light areas re-
spectively. Green contours correspond to KiDS-450 tomographic 2PCFs
constraints marginalized over systematics (Hildebrandt et al. 2017), blue
to the KiDS-450 2PCFs constraints (top), and to the joint peaks in the range
0 ≤ S/N ≤ 4 and 2PCFS constraints (bottom), and red to Planck "TT+lowP"
(Planck Collaboration et al. 2016). The top right legend shows the S 8 best
value and 68% errors for each study.

halos, to the high-S/N peaks, corresponding to high-mass halos.
Quantitatively, the S 8 estimate improves by ∼ 25% when adding
peaks with S/N lower than 3. We measure the peak distribution
with various filter scales finding only a mild (∼ 10%) improvement
from combining scales. Refining the covariance matrix to properly
account for sample variance only affects cosmological constraints
at the level of a few percents, validating the fiducial approach of
this paper. Finally, we measure the non-tomographic 2PCFs and
find consistent S 8 estimates between peaks and 2PCFs. Combin-
ing both probes yields an ∼ 20% improvement compared to 2PCFs
alone, highlighting the high potential of peak statistics for future
WL surveys.
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APPENDIX A: EVALUATING THE INTERPOLATION OF
THE PEAK DISTRIBUTION

In Sect. 5.2 we describe how we interpolate the peak distribution
from our 157 different points in the (Ωm,σ8) plane to an evenly
spaced grid with a step of 0.01 for both parameters. To evaluate the
robustness of this interpolation we compare the interpolated num-
bers of peaks with the measured ones for every simulation. The
relative difference is displayed in Fig. A1 for the same bin of S/N
as that of Fig. 5: 3.33 ≤ S/N ≤ 3.66. The percentage residual is
always lower than 5% and ranges from −5 to +3%. The number
of peaks in this bin being roughly 450, the Poisson error is about
5%. The error in the interpolation process is therefore always lower
than the Poisson error. In addition we calculate the distribution of
the residuals (Fig. A2) and find that it is centered around 0% and
that more than 85% of the simulations have a relative error due to
the interpolation of less than 2%. This shows that the interpolation
process does not add any significant systematic bias.

APPENDIX B: REFINED COVARIANCE MATRIX

In this section, we use the set of mocks described in Sect. 3.3
to measure the impact of simulation types on the derived cos-
mological constraints, and validate part of the analyzing process.
The SLICS mocks benefit from several improvements compared to
those of Dietrich & Hartlap (2010) used in the rest of the paper.
First, the SLICS simulations (Harnois-Déraps et al. 2015) have a
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Figure A1. Percentage residuals from the interpolation of the number of
peaks in the bin 3.33≤ S/N≤ 3.66. The black polygon represents the convex
hull within which we trust the interpolation.

Figure A2. Distribution of the percentage residuals from the interpolation
of the number of peaks in the bin 3.33 ≤ S/N ≤ 3.66.

higher resolution with 15363 particles against 2563, extend to z = 3,
and cover 100 deg2 instead of 36 deg2. In addition, having access
to the full shear planes, we could tailor the simulations specifically
for our project and populate the maps with galaxies following the
position and n(z) of the KiDS-450 data, without having to rely on
the interpolation scheme that we applied to the Dietrich & Hartlap
(2010) mocks. We also extend the redshift range to the full DIR red-
shift distribution of KiDS-450 while the Dietrich & Hartlap (2010)
mocks have almost no galaxies at z > 2 due to the redshift distribu-

Figure B1. Difference between the fiducial correlation matrix of Fig. 6 and
the refined correlation matrix for peaks in the range 0 ≤ S/N ≤ 4.

tion they used, although the simulations also extend to z = 3. Sam-
ple variance is also better included in these refined mocks by using
different N-body simulations to tile the KiDS-450 area, instead of
repeating a single simulation across this area.

We run the same algorithm to identify peaks in these mocks,
and derive the cosmological constraints using the covariance matrix
from this set of simulations but still using the Dietrich & Hartlap
(2010) simulations to compute the model of the peak dependence
on cosmology. We use 5 random realizations of shape noise, the
same number as in our fiducial analysis. The number of fiducial
mocks is 67 which is lower than the 175 of the main analysis but
each of these mocks now better accounts for sample variance. We
also note that the cosmological parameters are slightly different in
the fiducial SLICS than in the Dietrich & Hartlap (2010) simula-
tions, but we do not expect a large variation of the covariance ma-
trix with cosmology.

In Fig. B1, we display the difference between the correlation
matrix of the first set of simulations shown in Fig. 6 and the refined
correlation matrix. The agreement between the two correlation ma-
trices is good, both presenting low correlation between peaks, with
somewhat higher correlations at the high S/N-peaks, leading to ho-
mogeneous residual correlation. However, the new correlation ma-
trix shows higher scatter than the previous one, and lower corre-
lations, leading to residual correlation of up to 0.2. This can be
attributed to the larger area covered by the SLICS simulations and
the proper handling of sample variance, which provides us with a
more representative population of peaks. We also re-computed the
Dietrich & Hartlap (2010) correlation matrix with only 67 simula-
tions finding that the observed differences are not due to the use of
different number of simulations.

As described in Sect. 6.3, the constraints on S 8 using the re-
fined covariance matrix are almost identical to that of the main
analysis. This validates the various approximations we made when
building the mocks from the Dietrich & Hartlap (2010) simulations.
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