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1Institut de Ciències de l’Espai (IEEC-CSIC), E-08193 Bellaterra (Barcelona), Spain
2Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, Netherlands

4 December 2018

ABSTRACT

We use the Fisher matrix formalism to study the expansion and growth
history of the Universe using galaxy clustering with 2D angular cross-
correlation tomography in spectroscopic or high resolution photometric
redshift surveys. The radial information is contained in the cross corre-
lations between narrow redshift bins. We show how multiple tracers with
redshift space distortions cancel sample variance and arbitrarily improve
the constraints on the dark energy equation of state ω(z) and the growth
parameter γ in the noiseless limit. The improvement for multiple tracers
quickly increases with the bias difference between the tracers, up to a factor
∼ 4 in FoMγω. We model a magnitude limited survey with realistic density
and bias using a conditional luminosity function, finding a factor 1.3-9.0
improvement in FoMγω – depending on global density – with a split in a
halo mass proxy. Partly overlapping redshift bins improve the constraints
in multiple tracer surveys a factor ∼ 1.3 in FoMγω. This findings also apply
to photometric surveys, where the effect of using multiple tracers is magni-
fied. We also show large improvement on the FoM with increasing density,
which could be used as a trade-off to compensate some possible loss with
radial resolution.

1 INTRODUCTION

One of the most exciting and enigmatic discoveries in
the recent years is the late time accelerated expansion
of the Universe, confirmed in late 1990s from Type
Ia supernovae (Riess et al. 1998, Perlmutter et al.
1999). During the last decade a wide range of obser-
vations (see Weinberg et al. 2013) has provided ro-
bust evidence for cosmic acceleration, consistent with
a ΛCDM model dominated by a new component called
dark energy, which properties and origin remain un-
known.

Cosmic expansion is parametrized by Ω(z) and
the DE equation of state w(z) while cosmic growth
is parametrized by γ, which gives the growth rate as
f(z) = Ω(z)γ . For General Relativity (GR) γ ∼ 0.55,
while Modify Gravity models can give different val-
ues of gamma for the same expansion history (e.g.
Gaztañaga & Lobo 2001, Lue, Scoccimarro & Stark-
man 2004, Huterer et al. 2015). Here we study the dark
energy equation of state ω(z) and growth rate γ con-
straints using galaxy clustering in spectroscopic sur-
veys. Galaxy clustering is able to probe the expansion
and growth history almost independently, unlike weak
lensing surveys alone, which are limited to projected,

2D information (see Gaztañaga et al. 2012, Weinberg
et al. 2013). Galaxies are easy to observe and by ac-
curately measuring their redshift one can reconstruct
the 3D clustering information.

Unfortunately, the relation between galaxy and
dark matter is not straight-forward, and in the lin-
ear regime, for large scales, it can be modeled by a
factor called linear bias b(k, z), such that δg(k, z) =
b(k, z)δm(k, z), where δg and δm are galaxy and dark
matter fluctuations. An independent measurement is
needed to break the degeneracy between bias and γ, as
galaxy clustering alone cannot (e.g. see Eq.10 below).
One can break this degeneracy using cross-correlation
with lensing surveys (e.g. Gaztañaga et al. 2012, Wein-
berg et al. 2013), but in this paper we will focus on
spectroscopic surveys or high resolution photometric
surveys (Mart́ı et al. 2014). In this case, to determine
bias one can measure the redshift space distortion
parameter β ≡ f(z)/b(z). Redshift space distortions
(RSD) in the linear regime (Kaiser 1987) enhance clus-
tering in the line of sight by a factor (1 + f) due to
local infall of bodies as a result of gravity. Measuring
with different angles relative to the line of sight one
can determine f(z). However, the random nature of
fluctuations (sampling variance) limits the accuracy
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with which one can determine β and thus cosmolog-
ical parameters. McDonald & Seljak (2009) proposed
to use multiple tracers of the same underlying distri-
bution to beat this limit measuring along many direc-
tions and improve the constraints canceling sampling
variance with RSD. Sampling variance cancellation
can also be achieved with other observables (e.g. Pen
2004, Seljak 2009). This technique has been explored
in recent literature (e.g. White, Song & Percival 2009,
Gil-Maŕın et al. 2010, Bernstein & Cai 2011, Abramo
2012, Abramo, Secco & Loureiro 2016), also for pho-
tometric surveys (Asorey, Crocce & Gaztañaga 2014)
and combining lensing and spectroscopic surveys (Cai
& Bernstein 2012, Eriksen & Gaztañaga 2015a).

We use 2D angular correlations C` (see §2.4)
to avoid assuming a cosmology and avoid overcount-
ing overlapping modes without including the full co-
variance between them (Eriksen & Gaztañaga 2015b).
We forecast spectroscopic surveys with narrow red-
shift bins (∆z = 0.01(1 + z)) such that the radial
linear modes will be in the cross correlations between
redshift bins. In the fiducial forecast we will compute
the correlations using redshift space distortions (RSD,
§2.3) and we include baryon acoustic oscillation mea-
surements (BAO). In this paper we will study the con-
straints from single spectroscopic tracers as compared
to splitting one population into two tracers. The sin-
gle tracers are denoted as B1 and B2 and the mul-
tiple tracer survey as B1xB2. The cosmological pa-
rameter error estimation is done using the Fisher ma-
trix formalism from §2.5, and we quantify the relative
strength of the surveys through the Figures of Merit
(FoMs) defined in §2.6, which focus on measuring the
expansion and growth history simultaneously. In sub-
section 2.7 we present our fiducial forecast assump-
tions.

This paper is organized as follows. In section 2
we present our modeling and fiducial forecast assump-
tions. Section 3 discusses sample variance cancellation
in surveys with multiple tracers and explores the ef-
fect of the relative bias amplitude between two tracers
and the dependence on galaxy density. In section 4 we
model galaxy bias using a conditional luminosity func-
tion (CLF) and halo model to build an apparent lim-
ited survey to study the tradeoff between galaxy bias
and galaxy density when we split a survey into two
subsamples. Section 5 investigates the impact of hav-
ing partly overlapping redshift bins between two trac-
ers in a multi tracer survey and how this affects the
constraints. Moreover, it studies radial resolution by
increasing the number of redshift bins. In section 6 we
present our conclusions. Appendix A studies the im-
portance of RSD and BAO in the constraints and the
degeneracy with cosmological parameters. Appendix
B shows the dependence that the constraints have on
the bias evolution in redshift.

In this paper we have produced the results
with the forecast framework developed for Gaztañaga
et al. (2012), Eriksen & Gaztañaga (2015b), Eriksen
& Gaztañaga (2015a), Eriksen & Gaztañaga (2015c)
and Eriksen & Gaztañaga (2015d).

2 MODELING AND FORECAST
ASSUMPTIONS

2.1 Cosmological model

For a flat Friedmann-Lemâıtre-Robertson-Walker
metric, the Hubble distance is (Dodelson 2003)

H2(z) ≡
(
ȧ

a

)2

= H2
0

[
Ωma

−3 + Ωka
−2 + ρDE(z)

]
(1)

where Ωm and Ωk are the matter and curvature den-
sity, respectively, and a is the expansion scale factor
between the comoving distance χ and the physical dis-
tance d, d = aχ. Using the parametrization from Lin-
der (2003) for the dark energy equation of state

ω(a) = ω0 + ωa(1− a) (2)

then the dark energy density is

ρDE(z) = ΩDE a
−3(1+ω0+ωa) exp (−3ωa z/(1 + z)).

(3)

Matter fluctuations are defined as δ = n/n̄− 1, where
n is the matter density in a certain region and n̄ the
mean density. In the linear regime (δ � 1), the cosmic
evolution of fluctuations is (Peebles 1980)

δ̈ + 2Hδ̇ = 4πGρmδ (4)

which has the solution

δ(z) = D(z)δ(0) (5)

where D(z) is the growth factor, which depends on the
expansion history H(a) and can be defined through

f ≡ ∂ lnD

∂ ln a
=
δ̇

δ
≡ Ωγm(a) (6)

where γ ≈ 0.55 from GR with cosmological constant,
and

Ωm(a) = Ωma
−3 H2

0

H2(a)
. (7)

When normalizing the growth D(z = 0) = 1 today’s
value we have

D(a) = exp

[
−
∫ 1

a

d ln a f(a)

]
(8)

2.2 Galaxy bias

In the local bias model (Fry & Gaztanaga 1993), where
fluctuations are small, one can approximate the rela-
tion between galaxy overdensities δg to matter over-
densities δm through

δg(k, z) = b(k, z)δm(k, z) (9)

where b(z, k) is the galaxy bias, which can in general
depend on the scale and redshift. It also varies be-
tween different galaxy populations (galaxies hosted by
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more massive haloes tend to be more biased, eg. Scoc-
cimarro et al. 2001). Then, for scale independent bias
b(z) = b(k, z) the angular correlations ξgg ≡ 〈δgδg〉 we
have that

ξgg(θ, z) = b2(z) ξmm(θ, z) ∝ b2(z) D2(z) (10)

where in the last step we have used the linear growth,
Eq. 5. Galaxy bias can also include an stochastic com-
ponent r, see also Eq. 41, which is also a common
measure of non-linearity

r ≡ ξgm√
ξggξmm

. (11)

In Gaztañaga et al. (2012) it was shown that it can
be treated as a re-normalisation of bias in large scales
and here it is fixed to r = 1. In addition, non local bias
can also modify the galaxy correlation function, but
this is a smaller effect (Chan, Scoccimarro & Sheth
2012).

2.3 Redshift Space Distortions (RSD)

If a galaxy is comoving to the Hubble expansion then
its observed redshift is the true redshift. However,
most galaxies have a nonnegligible peculiar velocity,
vp, with respect to the comoving expansion. Defining
the measured redshift distance as s ≡ cz (in velocity
units) and the true cosmological distance as r ≡ H0 d
in the linear redshift regime, they are related by its
peculiar velocity along the line of sight, vp ≡ r̂ · v, as

s = r + vp. (12)

These displacements are the so-called redshift space
distortions (RSD). According to the continuity equa-
tion (mass conservation), the velocity divergence is

∇ · v = −δ̇ Eq.6
===⇒ ∇ · v = −f δ. (13)

In the linear regime, imagine a slightly overdense cir-
cular region which is beginning to collapse. In the line
of sight, galaxies in front of the center of the distribu-
tion will be moving farther, while galaxies behind the
center will be moving towards us. As a result, there
will be a squashing effect by a factor (1 + f) in the
2-point redshift correlation function. What we mea-
sure is the distorted fluctuations in redshift space, δs.
How these are related to the true underlying distribu-
tion δ was first solved by Kaiser (1987). In the linear
regime, at low redshift and using the plane-parallel
approximation then,

δs(k, µ) = (1 + fµ2) δ(k). (14)

where µ ≡ (ẑ · k)/k = k‖/k. Looking at the line of
sight, µ = 1, one recovers the squashing factor (1 + f)
for overdensities in redshift space. If we assume that
the galaxy fluctuations are biased, Eq. 9, but galaxy
velocities are not, then

δs(k, µ) = (b+ fµ2) δ(k). (15)

In general, as fµ2 > 0, the fluctuations will be seen
larger in redshift space. In practice, we usually mea-
sure the relative contribution β ≡ f/b, using the spe-
cific angular dependence, µ, in redshift space. The
galaxy power spectrum in redshift space is then

Ps(k, µ) =
[
b+ fµ2]2 P (k). (16)

Even if we decide not to measure β and measure the
power spectrum by averaging over all directions µ,
RSD will still overestimate it:

P̄s(k) =

[
1 +

2

3
β +

1

5
β2

]
P (k). (17)

2.4 Angular correlation function and Power
spectrum

Consider the projection of a spatial galaxy fluctua-
tions δg(x, z) along a given direction in the sky r̂

δg(r̂) =

∫
dz φ(z) δg(r̂, r, z), (18)

where φ(z) is the radial selection function. We define
the angular correlation between galaxy density fluctu-
ations as

ω(θ) ≡ 〈δg(r) δg(r + θ̂)〉. (19)

Expanding the projected density in terms of spherical
harmonics we have

δ(r̂) =
∑
`≥0

∑̀
m=−`

a`mY`m(r̂) (20)

where Y`m are the spherical harmonics. The coeffi-
cients a`m have zero mean 〈a`m〉 = 0, as 〈δ〉 = 0
by construction, and their variance form the angular
power spectrum

〈a`ma`′m′〉 ≡ δ``′δmm′ C` (21)

which can be related to the angular correlations with

ω(θ) =
∑
`≥0

2`+ 1

4π
L`(cos θ)C` (22)

where L`(cos θ) are the Legendre polynomials of order
`. The C` can be expressed in Fourier space (Crocce,
Cabré & Gaztañaga 2011) as

Cij` =
1

2π2

∫
4πk2dk P (k)ψi`(k)ψj` (k) (23)

where P (k) is the matter power spectrum and ψi`(k)
is the kernel for population i. For the matter power
spectrum P (k) we use the linear power spectrum from
Eisenstein & Hu 1998 for linear scales, which accounts
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4 Alex Alarcon, Martin Eriksen, Enrique Gaztañaga

for baryon acoustic oscillations (BAO). In real space
(no redshift space distortions), taking into account
only the intrinsic component of galaxy number counts,
this kernel is (Eriksen & Gaztañaga 2015b)

ψ`(k) =

∫
dz φ(z)D(z) b(z, k) j`(kr(z)) (24)

where φ(z) is the galaxy selection function and b(z, k)
is the galaxy bias, Eq. 9. When including RSD, one
has to add an extra term that in linear theory is given
by (Kaiser 1987, Fisher, Scharf & Lahav 1994, Fisher
et al. 1995, Taylor & Heavens 1995)

ψ`(k) =ψReal` + ψRSD`

ψRSD` =

∫
dz f(z)φ(z)D(z) [L0(`) j`(kr)

+L1(`) j`−2(kr) + L2(`) j`+2(kr)]

(25)

where f(z) is the growth rate defined at Eq. 6 and

L0(`) ≡ (2`2 + 2`− 1)

(2`+ 3)(2`− 1)

L1(`) ≡ − `(`− 1)

(2`− 1)(2`+ 1)

L2(`) ≡ − (`+ 1)(`+ 2)

(2`+ 1)(2`+ 3)

(26)

The fiducial modeling includes RSD in the kernel and
BAO in the power spectrum, but we will also forecast
removing one or both of these effects.

2.4.1 Covariance

Angular cross correlations between a redshift bin i and
redshift bin j correspond to the variance of spherical
harmonic coefficients a`m (Eq. 21). Assuming that a`m
are Gaussianly distributed and in a full sky situation,
one can then estimate each ` angular power spectrum
using the 2`+ 1 available modes,

C̃ij` =
1

2`+ 1

∑̀
m=−`

ai`ma
j
`m. (27)

However, in a more realistic situation, we only have
partial coverage of the sky so that the different modes
` become correlated. Using the approach of Cabré
et al. (2007), the covariance scales with 1/fSky (where
fSky is the survey fractional sky), and we use ∆` bin-
ning which makes the covariance approximately block
diagonal. Then, we have

Cov [Ĉij` , Ĉ
kl
` ] = N−1(`)(Ĉik` Ĉ

jl
` + Ĉil` Ĉ

jk
` ). (28)

where N(`) = fSky(2` + 1)∆`, and the correlation Ĉ
includes observational noise

Ĉij` = Cij` + δij
1

n̄g
(29)

where n̄g =
Ng
∆Ω

is the galaxy density per solid an-
gle. The first term in Eq. 29 is referred as the cosmic
variance contribution to the covariance, while the sec-
ond one is usually referred as shot-noise. Then, we can
define the χ2 as

χ2 =
∑
l,l′

(
Cl({λi})− Ĉl

) (
Cov−1)

l,l′

(
Cl′({λi})− Ĉl′

)
(30)

where Cl({λi}) depend on the parameters that we are
looking for, Ĉl are the observed Cl’s and Cov the co-
variance matrix between the Ĉl’s.

2.4.2 Nonlinearities

As we are working in the linear regime we have to
limit the scales that we include in the forecast. We
restrict the forecast to scales between 10 ≤ ` ≤ 300.
In addition we apply a further cut in lmax

`max = kmax r(zi)− 0.5, (31)

for which correlations to include, as these are the
scales contributing to C(`) for a given narrow redshift
bin zi (Eriksen & Gaztañaga (2015b)). In the fore-
cast we use the Eisenstein-Hu power spectrum and
the MICE cosmology with a maximum scale kmax of
(see Eriksen & Gaztañaga 2015c)

kmax(z) = exp (−2.29 + 0.88z). (32)

2.5 Fisher matrix formalism

One application of the Likelihood function (L ∝
e−χ

2/2) is the so-called Forecasting, i.e. predict the ex-
pected uncertainties in cosmological parameters given
the anticipated error in observables of future exper-
iments. Many ongoing and planned massive surveys
will be delivering large amounts of data in order to
constrain cosmological parameters. Therefore, opti-
mization and forecasting of galaxy surveys has become
a crucial tool to best benefit from them, reduce costs
of experimental design and explore new ideas. Even
if we don’t have any data, we can tell how χ2({λµ})
will vary in the parameters space defined by {λµ}. Ex-
panding χ2 in the Gaussian approximation around its
minimum the Fisher matrix is (Fisher 1935, Dodelson
2003)

Fµν =
∑
l,l′

∑
ij,mn

∂Cijl
∂λµ

(
Cov−1)

l,l′
∂Cmnl′

∂λν
, (33)

and it follows that

Cov [λµ, λν ] =
[
F−1]

µν
. (34)

If we allow the ith parameter λi to vary freely, this
means to integrate the joint likelihood probability over
it. This is called marginalizing over λi. What we re-
ally do (Coe 2009, Albrecht et al. 2009) is to invert F ,
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Cosmological constraints from multiple tracers in spectroscopic surveys 5

remove the rows and columns that are being marginal-
ized over, and then invert the result to obtain the
reduced Fisher matrix. In addition, combining inde-
pendent measurements means adding Fisher matrices.
Furthermore, there is a theorem, the Rao-Cramer in-
equality, that states that no other unbiased estimator
can measure smaller variance than Eq. 34, (Kendal &
Stuart 1969)

Cov [λµ, λµ] = σ2
µ ≥

[
F−1]

µµ
. (35)

The parameters included in the Fisher matrix forecast
are (Eriksen & Gaztañaga 2015c)

{λµ} = ω0, ωa, h, ns,Ωm,Ωb,ΩDE , σ8, γ,Galaxy bias.
(36)

The forecast use one galaxy bias parameter per red-
shift bin and population, with no scale dependence.
Less bias parameters and other bias parameterization
give similar results (see Fig. 6 or Eriksen & Gaztañaga
2015d). We use Planck priors for all parameters except
for γ and galaxy bias.

2.6 Figure of Merit (FoM)

The Figure of Merit (FoM) for a certain parameter
subspace S is defined as

FoMS ≡
1√

det [F−1]S
, (37)

marginalizing over parameters not in S. This is a good
estimator of the error for different dimensional sub-
spaces S. For one parameter, then this is the inverse
error (Eq. 34) of the parameter. For two parameters
it is proportional to the inverse area included within
1-sigma error ellipse. For three parameters it is the in-
verse volume within 1-sigma error ellipsoid, and so on.
In this paper we focus in the figures of merit defined
in (Eriksen & Gaztañaga 2015c):

• FoMDETF. S = (ω0, ωa). Dark Energy Task Force
(DETF) Figure of Merit (Albrecht et al. 2006). In-
versely proportional to the error ellipse of (ω0, ωa).
The growth factor γ is fixed.
• FoMω : Equivalent to FoMDETF, but instead of

γ = 0.55 from GR, γ is considered a free parameter
and is marginalized over.
• FoMγ . S = (γ). Corresponds to the inverse error

of the growth parameter γ, Eq. 6. Therefore, FoMγ =
10, 100 corresponds to 10%, 1% expected error on γ.
The dark energy equation of state parameters (ω0, ωa)
are fixed.
• FoMγω. S = (ω0, ωa, γ). Combined figure of

merit for ω0, ωa and γ.

It is important to note that, when not including priors,
the different FoMs scale with area A in the following
way

FoMDETF ∝ A,
FoMω ∝ A,

FoMγ ∝ A1/2,

FoMγω ∝ A3/2.

(38)

Doubling the area would give a factor ∼ 2.83 higher
FoMγω.

2.7 Fiducial galaxy sample

We define two galaxy populations based on the follow-
ing fiducial spectroscopic (Bright1, B) population. We
define a magnitude limited survey, with iAB < 22.5
as the fiducial flux limit in the i-band. The fiducial
survey area is 14000 deg2. The fiducial redshift range
is 0.1 < z < 1.25, and the number of redshift bins
is 71, with a narrow bin width of 0.01(1 + z). Spec-
troscopic surveys usually have great redshift determi-
nation, so we define a Gaussian spectroscopic redshift
uncertainty of σ68 = 0.001(1 + z), much lower than
the bin width.

The fiducial bias is interpolated within 4 redshift
pivot points, z = 0.25, 0.43, 0.66, 1.0, which scale with
redshift in the following way,

bB(z) = 2 + 2(z − 0.5). (39)

Recall that there is one bias parameter per redshift
bin and population. The fiducial redshift distribution
of galaxies is characterized with the number density
of objects per solid angle and redshift as

dN

dΩdz
= N

(
z

z0

)α
exp

(
−
(
z

z0

)β)
, (40)

and is constructed by fitting a Smail type n(z) (Ef-
stathiou et al. 1991) to the public COSMOs photo-
z sample (Ilbert et al. 2010). The values for α, β
and z0 in Eq. 40 correspond exactly to the values in
Gaztañaga et al. 2012: z0 = 0.702, α = 1.083 and
β = 2.628. The normalization N sets the density of
galaxies per solid angle, being the fiducial density for
this work ng = 0.4 gal/arcmin2. Table 1 summarizes
the parameters that characterize our fiducial spectro-
scopic survey.

3 SAMPLE VARIANCE CANCELLATION

When two populations in a survey overlap in the same
area (B1xB2) one gets additional cross-correlations
and covariance between them. If one is able to split
one galaxy sample into two galaxy overdensities in the

1 This population definition is in correspondence with pre-
vious work such as Gaztañaga et al. (2012) and Eriksen &
Gaztañaga (2015c)

c© 0000 RAS, MNRAS 000, 000–000



6 Alex Alarcon, Martin Eriksen, Enrique Gaztañaga

Area [deg2] 14,000

Magnitude limit iAB < 22.5

Redshift range 0.1 < z < 1.25
Redshift uncertainty 0.001(1 + z)

zBin width 0.01(1 + z)

Number of zbins 71

Bias: b(z) 2+2(z-0.5)

Density [gal/arcmin2] 0.4

n(z) - z0 0.702
n(z) - α 1.083

n(z) - β 2.628

Table 1. Parameters that describe our fiducial spectro-

scopic survey.

same area by some observable (i.e. luminosity, color),
the resulting subsamples become correlated as they
trace the same underlying dark matter fluctuations.
As a result, using multiple tracers allow for sampling
variance cancellation and can considerably improve
the constraints. This multi-tracer technique was first
introduced in McDonald & Seljak (2009).

Assume B1 and B2 are two galaxy populations,
one with bias b and the other with bias αb. Their den-
sity perturbation equations in redshift space (Eq. 15)
and in the linear regime are

δB1(k) = (b+ fµ2) δ(k) + ε1, (41)

and

δB2(k) = (αb+ fµ2) δ(k) + ε2, (42)

where µ ≡ k‖/k is defined to be the cosine of the

angle between the line of sight and the wavevector k̂,
and εi are stochasticity parameters that can refer to
a standard shot-noise or to other random component.

Even when having an infinite galaxy sample,
there will be cosmic variance as each mode δ(k) is
a random realization of a Gaussian field. However, if
we have two tracers sampling the field we can average
over many modes and cancel the sampling variance.
To illustrate this we divide Eq.42 over Eq.41 (with no
stochasticity) and obtain

δB2

δB1
=
αβ−1 + µ2

β−1 + µ2
, (43)

where β ≡ f/b, which has explicit angular depen-
dence, but no dependence on the random field δ, which
allows to extract α and β separately, and determine β
exactly in the absence of shot-noise. In McDonald &
Seljak (2009) the authors compute an analytical exam-
ple considering a pair of transverse and radial modes
(µ = 1 and µ = 0), and already found that can arbi-
trarily improve the determination of β with respect to
the single galaxy in the limit of zero shot-noise.

Furthermore, when splitting one spectroscopic
survey into two there exists covariance between both
populations. The fact that including covariance induce

better constraints might seem counter-intuitive. When
correlating two populations we introduce covariance
between their cosmological parameters which reduce
the information, as they are no longer independent.
However, we also include covariance in their nuinsance
parameters (as bias) which improve the constraints
as they have less freedom (for details see Eriksen &
Gaztañaga 2015a). Therefore, splitting a survey opti-
mizes the constraints by canceling the random nature
in the amplitude of the modes (Eq. 43) and also adds
correlation between nuisance parameters, with the last
effect being subdominant.

In the following subsections we show the impact
in our forecast of the relative bias amplitude (subsec-
tion 3.1) and the dependence on galaxy density (sub-
section 3.3) for the single and multi tracer surveys. In
subsection 3.2 we show the FoMs for α = 0.5, which is
the fiducial relative bias amplitude value for subsec-
tion 3.3, section 5 and §A.

3.1 Relative bias amplitude (α)

In Fig. 1 we show FoMγω (§2.6) (for other FoM see
Fig. A1) for the two single tracers (B1 and B2) defined
in Eqs. 41 and 42, without stochasticity, as function
of the relative bias amplitude α (Eq. 42). They both
follow the fiducial configuration from Table 1 except
for the α parameter. B2 is shown with the fiducial
density and with four times less density. Furthermore,
we show what happens if we merge both single tracers
into one overlapping survey B1xB2, for the two density
cases of B2. All lines are normalized to the B1 FoM,
which does not depend on α.

In the example considering a pair of transverse
and radial modes from McDonald & Seljak (2009),
the authors find that the improvement measuring β is
proportional to

σ2
β(1 tracer)

σ2
β(2 tracers)

∝ (α− 1)2

α2
, (44)

which is minimum at α = 1. When doing the full
analysis in Fig. 1 we take into account the whole range
of µ, and our results for 2 tracers (B1xB2) also show a
minimum when the bias amplitudes are equal (α = 1).

When increasing the bias ratio, α 6= 1, we can-
cel sample variance and we quickly improve our con-
straints up to a factor 4 from B1 to B1xB2 for the
fiducial density. If we reduce four times the density of
B2 the improvement between B1 and B1xB2 is a factor
∼ 2.3, which is lower because shot-noise is higher. For
B2 with the fiducial density, the constrains are sim-
ilar for α < 1 (lower bias amplitude), and get worse
with α > 1 (more bias). Here two effects overlap: RSD
effect becomes more important with lower bias which
has a great impact in γ constraints, whereas a higher
bias increases the amplitude of the correlations, which
weakens the impact of shot noise, and in particular im-
proves the ω constraints. For this reason, reducing B2
density has a larger impact with lower bias both in
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Figure 1. FoMγω dependence on the relative bias ampli-
tude α (Eq.42) for the fiducial density (circles) compared

to when B2 density is four times lower, 0.1 gal/arcmin2,

(triangles). The blue (dotted) lines correspond to B1xB2,
the green (dashed) to B2 and the red (solid) to B1. All

lines are normalized to the B1 forecast.

B2 and B1xB2, as it mitigates the benefits from RSD
and as the signal from correlations is lower shot noise
is more predominant.

For a detailed study of the impact of RSD and
BAO with bias and α in all FoMs see §A1 to A3.

3.2 Fiducial model (α = 0.5)

In this subsection we study several effects fixing α =
0.5, which will be the fiducial value for the relative
bias amplitude in the following subsections, except for
section 4. Table 2 presents four tabulars, one for each
FoM, with the two single population cases (B1, B2)
and the multitracer case (B1xB2) for the rows. In the
columns we present the fiducial case (labeled ‘Fidu-
cial’) and the impact of some physical effects, like fix-
ing bias (‘xBias’), computing correlations in real space
(‘No RSD’), not including BAO wiggles (‘No BAO’)
and combinations of these.

Looking first at the ‘Fiducial’ column, one sees
how the multitracer case has better constraints than
the single tracer cases, for all FoMs, due to sample
variance cancellations. Comparing to the best single
tracer, there is a 133% improvement for FoMγω, 23%
for FoMγ , 50% for FoMω and 32% for FoMDETF.

Galaxy bias can be fixed from lensing sur-
veys and its cross-correlations with galaxy cluster-
ing (see Bernstein & Cai 2011, Cai & Bernstein
2012, Gaztañaga et al. 2012, Eriksen & Gaztañaga
2015c). Fixing bias greatly improves the constraints
as it breaks strong degeneracies, but the gains from
sample variance cancellations are still present, which
shows that they are not caused by measuring bias. As
pointed in §2.3-2.4 RSD allow to measure galaxy bias
and the growth separately, but not the random nature
of the fluctuations, so fixing bias will not break the de-
generacy with the rms amplitude of fluctuations, but
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B1xB2 (split)

B1xB2 (split) No x-corr
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101
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Figure 2. Impact of spectroscopic galaxy density on the

constraints. The relative bias amplitude is fixed at α = 0.5.

The red dotted (B1) and green dot-dashed (B2) lines cor-
respond to the single tracers. B1xB2 (blue dashed line)

is the overlapping survey of merging B1 and B2, and
thus has double the density of each alone. B1xB2 (black

solid) has the same total density as the single tracers, as

splitting one single tracer into two. The cyan dots show
B1xB2 (split) without cross correlations between B1 and

B2, which is equivalent to adding the auto correlations from

each B1 and B2 population alone plus the covariance be-
tween them. The vertical line shows the fiducial density,

0.4 gal/arcmin2.

multiple tracers will. When removing redshift space
distortions (‘No RSD’), sample variance cancellations
are no longer possible, and the gain for B1xB2/B1 is
much lower. Also, without RSD, our ability to mea-
sure γ drops, which translates in a much lower FoMs.
Not including BAO measurements reduce the FoMs,
affecting more the ω constraints while having little im-
pact on FoMγ (see §A for a discussion of the impact
of RSD and BAO). We have also checked the effect
of weak lensing magnification using the magnification
slopes given in Eriksen & Gaztañaga (2015c). We find
that they contribute less than 0.5%.
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8 Alex Alarcon, Martin Eriksen, Enrique Gaztañaga

Fiducial xBias No RSD No BAO No RSD-xBias No BAO-xBias

10−3 FoM γω:

B1xB2 13.7 117 1.61 9.25 41.4 64.2
B2 5.88 36.1 0.62 4.37 16.7 24.7
B1 5.53 45.4 1.45 3.78 37.9 31.6

FoM γ:
B1xB2 62 190 9.9 58 105 143
B2 51 152 7.6 49 78 121
B1 38 147 9.6 38 102 133

FoM ω:
B1xB2 221 615 163 160 395 450
B2 116 238 82 90 212 204
B1 147 310 152 100 373 238

FoM DETF:
B1xB2 237 875 209 171 841 787
B2 129 513 106 104 479 422
B1 180 801 196 137 797 696

Table 2. Sample variance cancellation for multitracing (B1xB2) of two spectroscopic populations. The relative bias ampli-

tude between both populations is set to α = 0.5. Each column show the impact of removing different effects, while rows

show the single and overlapping population cases.

3.3 Galaxy density

The auto-correlations for a redshift bin include a shot-
noise term (see §2.4) due to the discrete nature of
the observable (galaxy counts), which depend on the
galaxy density. Previously in the introduction of sec-
tion §3 we have discussed that multiple tracers in red-
shift space can cancel sampling variance, and then
our ability to improve our constraints is only limited
to the signal-to-noise of the tracers (except when in-
cluding bias stochasticity). Therefore, if there is no
bias stochasticity, by increasing the survey density we
can improve our cosmology constraints as much as
we want. However, surveys usually have a fixed expo-
sure time, so increasing survey density requires going
deeper (longer exposures), which results in a smaller
survey area. In this subsection we do not study this
trade off between galaxy density and area, but increase
galaxy densities for a fixed area. Moreover, spectro-
scopic surveys are characterized by having very good
redshift determination since it has spectras where one
can locate the emission lines, but it requires to take
longer exposure times which results into lower densi-
ties.

Fig. 2 shows how FoMγω and FoMγ depend on
galaxy density. B1 and B2 correspond to the single
tracer surveys. The blue line (B1xB2, merged) is a
multiple tracer survey which merges the single tracer
surveys B1 and B2 over the same area, as the multi-
tracer surveys studied in Fig. 1 and Table 2. There-
fore, it has double of the density of one single tracer
alone, and the x-axis refers to the density of one of
the subsamples of the survey. On the other hand, the
black line (B1xB2, split) studies the constraints when
splitting one single tracer like B1 into two, keeping the
total density, and thus the density of each subsample is
reduced by half. Therefore, when comparing to the sin-
gle tracers the black line addresses the gains from co-
variance and cross-correlations but adding shot-noise
in the subsamples, and the blue line adds the gains
from extra density from merging B1 with B2. Note
that in a real survey we are interested in the gains
coming from splitting into two subsamples.

As expected, the single tracer result flattens out
at the high density limit and saturate. For multiple
tracers there is sample variance cancellation and the
constraints improve beyond the single tracer noise-

less limit. At lower densities we observe that B1xB2
(split) and B1 lines cross. When shot-noise is already
high we do not expect further splitting to improve the
constraints. Moreover, B1xB2 (merge) has better con-
straints than B1xB2 (split) as the higher density re-
duces shot-noise. For the single tracers, in FoMγ the
constraints are similar for B1 and B2 at low densi-
ties, while we observe a clear difference (due to bias)
between them on the noiseless limit. Lower bias pop-
ulations (B2) get better constraints because in FoMγ

RSD is vital for breaking degeneracies and is enhanced
with a lower bias amplitude (see §A1 for details), but
when shot noise becomes dominant then this effect
disappears. On the other hand, in FoMγω we observe
that B1 and B2 lines cross, as for the ω constraints a
lower bias gives lower constraints in general, but this
effect is more noticeable with high noise, as in that
case having more signal is more relevant, while in the
noiseless limit the constraints are similar for different
bias (see, for example, right panel in Fig. B1).

The cyan dots correspond to removing cross cor-
relations between B1 and B2 in the black line. This
is equivalent to adding the correlations (transverse
and radial within redshift bins), of each population
B1 and B2 (B1+B2) plus the same sky covariance. It
shows the relative importance of covariance between
the tracers and the additional cross correlations in the
gains that we are observing. We find that there is only
a tiny contribution from cross-correlations (< 2% at
high density), which shows that the multiple tracer
improvement comes mainly from sample variance can-
cellations.

From now on we label B1xB2 (split) as simply
B1xB2, and use it in the following subsections.

3.3.1 Fixing bias

Fig. 3 shows the constraints from B1xB2, B1 and B2
when fixing bias compared to the free bias case (free
bias means marginalizing over the bias parameters).
When we fix bias we break strong degeneracies and the
constraints improve by an order of magnitude. We find
that not all improvement comes from measuring bias,
as we find similar relative gains with the fixed and
free bias cases. The fact that for B1xB2 the free and
fixed bias lines approach comes from the γ constraints,
while for the ω constraints the difference is rather flat
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Figure 3. Shows the constraints of FoMγω for the free and

fixed bias case, for the B1, B2 and B1xB2 surveys. Free

bias means marginalizing over the bias parameters, and
corresponds to the fiducial forecast (Labeled as ’Fiducial’).

(not shown). Note that some extreme density values
are shown, which are included to study the potential
gains from a theoretical point of view.

4 RELATION BETWEEN BIAS AND
DENSITY

In the last subsections we have studied the constraints
dependence on galaxy density and relative bias ampli-
tude when splitting one spectroscopic population into
two. When splitting by luminosity or absolute mag-
nitude, brighter galaxies tend to live in more massive
haloes, which tend to be more biased and less abun-
dant. Therefore, there is a relation between galaxy
density and bias. In the other sections we fix α = 0.5
and ignore this relation to understand different physi-
cal effects from a theoretical point. To account for this
effect, in this subsection we model galaxy bias using a
conditional luminosity function (CLF) fitted to SDSS
data from Cacciato et al. (2013) combined with a halo
model (HM). The CLF determines how galaxies with
a given luminosity populate dark matter haloes of dif-
ferent mass, Φ(L|M), while the HM set the abundance
of dark matter haloes of a certain mass, n(M, z). Us-
ing this modeling we define a magnitude limited sur-
vey 18 < rAB < 23 and we are able to determine the
abundance of galaxies and galaxy bias as a function of
redshift, halo mass or galaxy luminosity. To define the
apparent limited survey we only consider luminosities
in redshift such that rAB(L, z) ∈ [18, 23], since Cac-
ciato et al. (2013) fit the HOD model using the SDSS
r-band data.

4.1 Conditional Luminosity Function

The conditional luminosity function from Cacciato
et al. (2013) has two separate descriptions for the cen-
tral and satellite galaxies:

Φ(L|M) = Φc(L|M) + Φs(L|M),

Φc(L|M) dL =
log e√
2πσc

exp

[
− (logL− logLc)

2

2σ2
c

]
dL

L
,

Φs(L|M) dL = φ∗s

(
L

L∗s

)αs+1

exp

[
−
(
L

L∗s

)2
]
dL

L
,

(45)

where log is the 10-based logarithm and Lc, σc, φ
∗
s ,

αs and L∗s are all function of halo mass M ,

Lc(M) = L0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
,

L∗s(M) = 0.562Lc(M),

αs(M) = αs,

log [φ∗s(M)] = b0 + b1(logM12) + b2(logM12)2.

(46)

For the total set of CLF parameters we use the me-
dian of the marginalized posterior distribution given
in Cacciato et al. (2013) for their fiducial model.

4.2 Halo Model

The comoving number density of haloes per unit halo
mass can be well described (Press & Schechter 1974,
Sheth & Tormen 1999) by

dnh
dM

= f(σ)
ρm
M2

d lnσ−1

d lnM
, (47)

where ρm is the mean density of the universe and
σ2(M, z) the density variance smoothed in a top hat
sphere at some radius R(M) = (3M/4πρm)1/3,

σ2(M, z) =
D2(z)

2π2

∫
dk k2 P (k) |W (kR)|2 , (48)

where W (x) = 3j1(x)/x. For the differential mass
function f(σ, z) we use the fit to the MICE simula-
tion from Crocce et al. (2010),

f(σ, z) = A(z)
[
σ−a(z) + b(z)

]
exp

[
−c(z)
σ2

]
(49)

with A(z) = 0.58(1 + z)−0.13, a(z) = 1.37(1 + z)−0.15,
b(z) = 0.3(1 + z)−0.084, c(z) = 1.036(1 + z)−0.024. We
define the halo mass function in arcmin2 units as

nh(M, z) ≡ dNh/dM

dΩ dz
=
( π

10800

)2 c χ2(z)

H(z)

dnh
dM

(z).

(50)

To model halo bias function we use the fitting function
from Tinker et al. (2010),

bh(M, z) = 1− A(z) νa(z)

νa(z) + δ
a(z)
c

+B(z)νb(z) + C(z)νc(z)

(51)

where ν ≡ δc/σ(M, z), δc ' 1.686 is the linear density
collapse, and where we use the parameter values from
Table 2 with ∆ = 200 from the same paper (see also
Hoffmann, Bel & Gaztañaga 2015 for other values).
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10 Alex Alarcon, Martin Eriksen, Enrique Gaztañaga

4.3 Splitting methods

Once the halo mass function and the halo bias func-
tion are specified we can determine the galaxy number
density and galaxy bias for an apparent limited sur-
vey. The average number of galaxies of a given halo
mass with L1 < L < L2 is

Φ(M, z) =

∫ L2(z)

L1(z)

Φ(L|M) dL, (52)

and the number density of galaxies per unit redshift
is

n̄(z) =

∫ Mmax

Mmin

Φ(M, z)nh(M, z) dM, (53)

while the corresponding mean galaxy bias is

b̄(z) =

∫
dM bh(M, z) Φ(M, z)nh(M, z)/n̄g(z). (54)

Here we define L1(z) and L2(z) such that
rAB(L2(z)) = 18 and rAB(L1(z)) = 23. We in-
tegrate between Mmin = 10 and Mmax = 15 in
log [M/M�h

−1] units and consider Φ(L|M) = 0 out-
side of this boundaries. To split the survey into two
subsamples we consider two methods:

• Splitting by halo mass: split the spectroscopic
sample introducing a Mcut in Eqs. 53-54 which de-
fines two populations, B1 with Mmin < M < Mcut

and B2 with Mcut < M < Mmax.
• Splitting by apparent magnitude: split the spec-

troscopic sample introducing an Lcut(z) in Eq.52
which defines two populations, B1 with L1 < L <
Lcut and B2 with Lcut < L < L2. Notice that
rAB(Lcut(z)) = rcut.

Within this two methods we consider two cases, one in
which the cutting variable (Mcut and rcut) is the same
for all redshifts. The another case fix the density ratio
(i.e. n̄1(z)/n̄2(z) = const.) as a function of redshift
by fitting the Mcut(z) and rcut(z) which produces the
corresponding density ratio. This results in a total of
four different forecasts. Notice that fixing the density
ratio cutting in apparent magnitude rcut(z) or abso-
lute magnitude (luminosity) Lcut(z) is the same.

Fig. 4 shows the four cases that have just been
described for FoMγω in the left panels and FoMγ in
the right panels. Two density cases are studied, 0.4
gal/arcmin2 (top panels) and 40 gal/arcmin2 (bottom
panels). The x-axis shows the density ratio between
the two subsamples for each case, while the two twin
axis show the correspondence of this density ratio to
the cutting variable (halo mass and apparent r-band
magnitude) for the two cases in which the cutting vari-
able is constant in redshift. All lines have been normal-
ized to the FoM when not splitting the galaxy sample.

Fig. 4 shows that a split of galaxies using the
halo mass gives a better improvement in the con-
straints than splitting with apparent magnitude. Split-
ting with halo mass improves up to a factor 1.27 in
FoMγω with low density (top left panel) while split-
ting with an r-band cut gives a factor 1.05. The peaks
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Figure 5. Density versus bias ratios between the two

subsamples. The top panel shows the split with halo
mass, Mcut, while the bottom panel shows a split with
r-band magnitude, rcut. Each line corresponds to a given

Mcut/rcut, which value is indicated in a box next to the
start of each. The colorbar shows the redshift evolution for

each line. There are 5 dots in each line indicating the po-

sition of z = 0.1, 0.4, 0.7, 1.0, 1.25. The dashed line shows
the case where FoMγω is maximum (see the details in the

text).

are found at halo mass Mcut ' 13.5 (log [M/M�h
−1])

and rcut ' 21.3. Forcing the density ratio between the
subsamples to be the same in redshift (labelled as cut
with constant density in Fig. 4) slightly improves the
constraints to a factor 1.29 for a cut in halo mass and
leaves it near the same for an r-band split. When using
a denser population (bottom left) the improvement
raises to a factor 9.2 in FoMγω for a halo mass split
and a factor 2.7 for r-band split. When fixing the den-
sity ratio the factors are 9.6 and 3.0, respectively. The
maximum gains are obtained for n̄1/n̄2 ∼ 7 when cut-
ting in r-band and n̄1/n̄2 ∼ 30 when cutting in mass.
In practice, one does not need to know the mass or the
r-band, but only to have an observational proxy that
allows to rank the galaxies to allow the sample split
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Figure 4. FoMγω (left panels) and FoMγω (right panels) when using a CLF Φ(L|M) and HM models to build an r-band

limited magnitude survey, rAB = [18, 23]. Two splitting methods are shown, splitting in halo mass, Mcut, and splitting
in r-band, rcut. Two cases are studied for each method, splitting with constant Mcut/rcut in redshift and splitting with

constant density ratio in redshift, n̄1(z)/n̄2(z) ∝ const. The top panels have a total density of 0.4 gal/arcmin2, while the
bottom panels have 40 gal/arcmin2. The x-axis shows the density ratio between the two subsamples, and the two twin axis

show the correspondence of this ratio to a given constant Mcut and rcut in redshift. All lines are normalized to the FoM

when not splitting the galaxy sample.

(e.g., richness in the case of halo mass). For FoMγ and
low density (top right) the factors are 1.11 and 1.02
for Mcut ' 13.5 and rcut ' 19.4, although for the r-
band cut the maximum would be found at brighter
cuts which were numerically unstable. For a denser
survey (bottom right), when fixing the density ratio,
the constraints improve up to a factor 3.43 for halo
mass and 1.79 for r-band.

When splitting a population into two subsam-
ples one want to maximize the bias difference in red-
shift between them while keeping their densities as
similar as possible in order to maximize the FoM. To
do so, we would like to have a quantity that increase
monotonically with bias with small scatter. Halo mass
is such a quantity and so it maximizes the FoM. Split-
ting in apparent magnitude gives a distribution in halo
mass, Φ(L|M), reducing the bias difference.

Fig. 5 shows the density-bias ratio evolution
in redshift for different cut values when cutting in
halo mass (top panel) and r-band magnitude (bottom
panel). The dots in the figure show the position of the
5 ticks from the colorbar (z = 0.1, 0.4, 0.7, 1.0, 1.25).
For a halo mass cut the bias difference is low when
splitting at low halo masses as bias evolves linearly

in that regime and the abundance of galaxies over-
weights that region in front of the high biased one.
Cutting at higher masses results into an increasingly
greater bias difference, but also makes a more un-
even density split. The maximum in FoMγω is found
at Mcut ' 13.5, which has a similar density ratio in
redshift n̄1/n̄2 = 40 ∼ 50 and a bias difference of
α = b̄1/b̄2 = 0.3 ∼ 0.4.

When splitting with apparent magnitude (Fig.
5, lower panel) the density ratios quickly span over
large ranges in redshift when the bias difference in-
creases, which limits the amount of improvement. For
most magnitude cuts an important part of the distri-
bution is very unevenly splitted, which increase the
shot-noise. Furthermore, at a density ratio of 40 ∼ 50,
(i.e. the peak with a halo mass cut in Fig.4), there
is no magnitude cut at any redshift which produces
an α . 0.55, which is a factor 1.4 ∼ 1.8 less bias
difference than in the halo mass situation. In the high
density case we are not shot-noise dominated and thus
the improvement goes from a marginal 5% to a 3 times
better FoMγω.

In addition, Fig. 4 shows a relative minimum at
Mcut ' 12.6 and a relative maximum at Mcut ' 12.1
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12 Alex Alarcon, Martin Eriksen, Enrique Gaztañaga

for the halo mass cuts at lower density cases, in
both FoMγω and FoMγ . Fig. 5 shows that although
Mcut ' 12.6 has a 10% ∼ 15% greater bias difference
depending on redshift it has a more uneven density
split. A cut in Mcut ' 12.1 gives a density ratio in red-
shift which extends over n̄1/n̄2 ∼ [0.1, 16], with some
cuts in redshift being close/equal to a density ratio of
unity, which maximally reduces shot noise, whereas a
cut in Mcut ' 12.6 results in n̄1/n̄2 ∼ [1.3, 20]. The
increment in bias difference does not compensate the
induced shot noise. With higher density (Fig. 4 lower
panels) shot-noise has a lower impact and the relative
minimum disappears resulting in a flattened region
instead.

Moreover, we have split in absolute magnitude
(not shown) by fixing the luminosity cut Lcut as a
function of redshift. The FoM were worse than with
an apparent magnitude cut, and in most cases worse
than not splitting the sample at all. Having a mag-
nitude limited survey gives an incompletness of lumi-
nosity in redshift, meaning that several redshift ranges
have very few galaxies or no galaxies at all, which in-
troduces large amounts of shot-noise.

5 PARTLY OVERLAPPING REDSHIFT
BINS

In Fig. 6 we show the effect of having partly overlap-
ping redshift bins between two spectroscopic popula-
tions (B1xB2) by shifting the beginning of the red-
shift range zmin of one of the populations (B1) while
keeping the other fixed. This shifts all the B1 red-
shift bins with respect to the B2 ones and determines
the amount of overlap between them. In Fig. 6, the
panels on the left show the FoM normalized to the
fully overlapping bins value (i.e. normalized to the
B1 zmin = 0.1 or 0 ∆z shift value of the FoMs) for
FoMγω, FoMγ and FoMω, while the panels on the
right show the absolute values. The fiducial forecast
line (red solid) shows oscillations that are minimum at
the edges of the fiducial binning (marked by vertical
grey lines on the plots) and are maximum when the
redshift bins half overlap with each other (when B1
bins start in the middle of a B2 bin and viceversa). In
the fiducial forecast we parametrize bias with one pa-
rameter per redshift bin and tracer. The black dashed
lines show an alternative bias parameterization which
parametrize the bias with four redshift pivot points
zi ∈ [0.25, 0.43, 0.66, 1.0] and linearly interpolate be-
tween them. We find similar constraints from both
bias parameterizations and this shows that the gain
does not artificially come from the choice of bias pa-
rameterization.

When bins half overlap with each other (when
B1 bins start in the middle of a B2 bin and viceversa)
the gain is maximum, a factor 1.33 for FoMγω, 1.06
for FoMγ , 1.26 for FoMω and 1.33 for FoMDETF (not
shown). Having partially overlapping bins induces an
effective thinner binning that allows to probe smaller
scales which improve constraints. Most of this im-
provement comes from the cross correlations between

both populations, as the smaller scales information
comes mostly from cross-correlating with the shifted
bins. When removing them (red solid to pink dash-
dash-dot line) the gain factors at the peaks reduce to
1.07 for FoMγω, 1.00 for FoMγ , 1.07 for FoMω and
1.12 for FoMDETF, and for FoMγ (center left panel)
shifting bins even leads to worse constraints. When
B1 zmin starts exactly at the second bin of B2 the
constraints drop as all bins perfectly overlap again,
but with the forecast having one less bin the FoMs
are slightly lower compared to the fiducial forecast.
The effect of removing the first bins does not reduce
much the FoMs as the first bins are often removed
from cutting in k, but the FoMs eventually start to
drop when removing more bins.

When fixing bias (blue dotted line) the absolute
constraints greatly improve, as expected from break-
ing degeneracies. FoMω shows substantially relative
lower oscillations (bottom left panel), which means
that part of the improvement came form better mea-
suring bias, while FoMγ shows greater oscillations
when bias is fixed. FoMγω combines these effects and
improves a factor 1.2 at the peak when fixing bias
(10% lower than the fiducial). When removing RSD
(purple dot-dashed), the constraints for γ reduce con-
siderably and look flat in the absolute values (center
right panel). FoMγ shows higher oscillations (center
left panel), but now these come from measuring γ di-
rectly from the growth rate in front of the power spec-
trum, and not from RSD. In FoMω the constraints are
worse, but the relative gains are very similar.

Fig. 7 shows the impact of the redshift bin width
on the oscillations in FoMγω. We parametrize the bin
width as ∆z = w(1 + z). The lines correspond to:
w = 0.01 (red solid, fiducial value), w = 0.0075 (blue
dashed) and w = 0.0125 (green dotted). All lines are
normalized to their respective values at B1 zmin =
0.1. It shows that redshift bin width has an important
impact on the relative gains. For the thinner binning
the relative improvement is only of a factor 1.2, while
for the thick binning is ∼1.5 (the fiducial is 1.33). This
shows that if the binning is narrower the relative gain
is lower as the radial resolution is better, but recall
that the maximum resolution is limited by only using
linear scales (kmax).

Fig. 8 shows B1xB2 as function of the relative
bias amplitude for different B1 zmin shift values, which
shows the impact of partially overlapping bins from
having full overlap (B1 zmin shift = 0.0 ∆z, red solid
line) to almost half overlap (B1 zmin shift = 0.45 ∆z,
blue dashed). In FoMγ (top right panel) increasing the
partial overlap has several effects. When bias ampli-
tudes are similar there is more gain from partial over-
lap, while when the bias amplitude grows this gain de-
creases until the point that shifting bins leads to worse
constraints. Also, for half overlapping bins FoMγ flat-
tens for α > 1. For FoMω and FoMDETF there is al-
ways gain from partial overlap. The different lines are
closer for lower α where the gain is minimum, which
increases until α = 1. From that point the lines are
quite parallel. When there is full overlap we have the
minimum at α = 1 (same bias case) and the FoMs
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increase with the bias difference, but when there is
half overlap between the redshift bins of both popula-
tions B1xB2 behaves like a single tracer, in the sense
that FoMγ decreases with bias while FoMω, FoMDETF

increase with bias (see Fig. A1). On the other hand,
FoMγω combines the effects from FoMγ and FoMω

and keeps the minimum, increasing the FoM for higher
partial overlap, meaning the gain is higher when bias
is similar.

5.1 Radial resolution

In this subsection we study the impact of increasing
the number of spectroscopic redshift bins. In the fidu-
cial forecast we use spectroscopic surveys with 71 nar-
row redshift bins, such that at each bin we mainly
account for transverse modes from angular spectra,
while the radial information (modes) is contained in
the cross correlations between redshift bins. This to-
mography study can approximately recover the full

3D clustering information when the comoving redshift
bin separation, ∆r = c∆z/H(z), corresponds approx-
imately to the minimum linear 3D scale λ3D

min = 2π
kmax

,
(Asorey et al. 2012). As we are limited by the linear
regime, including more bins would eventually lead to
include nonlinear modes, which would require mod-
eling the nonlinear angular power spectrum. The bin
width ∆z = w(1 + z) is set by the number of redshift
bins,

w =
Nz
√

1 + zmax
1 + z0

− 1, (55)

which divide the interval [z0, zmax] into Nz redshift
bins (see Eriksen & Gaztañaga 2015c).

Fig. 9 shows how the constraints improve when
increasing the number of redshift bins for FoMγω.
The lines show B1 (blue dotted), B2 (green dot-dash),
B1xB2 increasing both B1 and B2 redshift bins (red
solid), and B1xB2 keeping fixed B1 number of red-
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shift bins to 71 (black dashed). Both single popula-
tions and combined surveys improve when increasing
the number of bins. There are several effects when we
increase the number of redshift bins Nz (see Asorey
et al. 2012). As the redshift bin width corresponds ap-
proximately with the minimum scale, increasing the
number of redshift bins in the same redshift range

allows for probing smaller scales, which gives more in-
dependent modes and improve constraints. The signal
to noise at each bin remains nearly constant as the
auto power spectrum has higher clustering from hav-
ing more close pairs while the density per bin is lower,
increasing both signal and shot noise. Therefore, in-
creasing Nz increase the number of transverse modes
without lowering their signal to noise, which improve
constraints. Eventually, the redshift bins will become
correlated and this gain will saturate (see Eriksen &
Gaztañaga 2015c). In addition, when increasing Nz we
also add more cross-correlations between redshift bins,
which is very important as RSD depends on the rela-
tion between radial and transverse modes (µ = k‖/k).

In Fig. 9 we also study the effect of fixing the
bins of one of the populations in the overlapping sur-
vey. The black dashed line refers to B1xB2 with the
B1 redshift bins fixed to 71, while the number of B2
bins vary. This results in a flatter improvement than
when increasing the bins for both populations as we
are adding less redshift bins. An interesting behav-
ior happens when B1 and B2 have similar (but dif-
ferent) number of redshift bins (zoomed region). As
we have previously discussed, having two populations
with partly overlapping bins improve the constraints.
FoMγω improves by a factor 1.2 (1.25) when using one
less (more) redshift bins in B2. This gain is equivalent
to be using ∼ 80 redshift bins for both populations
instead of the fiducial 71.
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5.1.1 Sample variance cancellation in photometric
surveys

Using thicker redshift bins we can model the loss of
radial information and study the impact of sample
variance cancellation in photometric surveys. Fig. 10
shows FoMγω with (α = 0.5, 2.0) and without (α =

1.0) cancellation for a smaller number of redshift bins
(recall that with α = 1 cancellation is no longer
possible). We show the effect for typical photomet-
ric surveys such as DES or EUCLID (5 ∼ 10 bins),
for narrow photometric surveys like PAU (∼ 40 bins)
and compare it to spectroscopic-like surveys (fiducial
71 bins). The top panel shows that FoMγω improves
strongly when increasing the radial resolution, spe-
cially in the free bias case where it improves 3 orders
of magnitude from 5 to 100 bins as opposed to 2 or-
ders in the fixed bias case. Radial cross-correlations
are more important in a free bias forecast, which leads
to more radial dependence. Bottom panel shows the
sample variance cancellation effect in photometric sur-
veys in the ratio between α = 2.0 and α = 1.0. We
find that the contribution from sample variance can-
cellation has a larger or at least similar effect in pho-
tometric surveys for both free and fixed bias. Note
how density (e.g. compare to Fig. 2) is as important
as redshift accuracy in that it can also change FoMγω

by 3 orders of magnitude.
Table 3 shows there is a strong density depen-

dence in the ratio, specially in surveys with less num-
ber of redshift bins. While for spectroscopic surveys
(e.g. 71 bins and 0.4 gal/arcmin2) the ratios are 2.2
and 2.4 for free and fixed bias, for photo-z surveys
(e.g. 5 bins and 8.0 gal/arcmin2) the ratios become
19.5 and 5.32. Surveys with a low number of redshift
bins are more dominated by radial auto-correlations,
which are affected by shot-noise, so they become more
density dependent, as shown in Table 3. For a sur-
vey density of 0.4 gal/arcmin2 auto-correlations con-
tribute up to 72% for a survey with 10 redshift bins
with free bias, while only 29% and 10% for 40 and
71 bins. This high density dependence explains the
turnover in the free bias ratio for low number of bins in
Fig. 10, where shot-noise limits the gains from sample
variance cancellations, and also produces very large
gains for higher densities as shown in Table 3.

Concerning absolute FoMs for photo-z and spec-
z surveys, the loss of radial resolution from photomet-
ric uncertainties is in some part compensated by a
gain in density in photometric surveys. The combined
figures of merit FoMγω for a survey without split take
the values of 7.19 and 5453 for photo-z (5 bins and 8.0
gal/arcmin2) and spec-z (71 bins and 0.4 gal/arcmin2)
surveys. Using the fiducial configuration (α = 0.5)
with sample variance cancellation leads to a FoMγω

of 138 and 8979, reducing the ratio between the FoM
between both surveys by a factor ∼ 12 (compare blue
and green lines in Fig. 10).

6 CONCLUSIONS

In this paper we have estimated dark energy (ω0, ωa)
and growth rate (γ) constraints of multiple tracers in
spectroscopic surveys using the Fisher matrix formal-
ism. In the fiducial forecast we use galaxy clustering
from 2D angular correlations in 71 narrow redshift
bins which include baryon acoustic oscillation (BAO)
in the linear Eisenstein-Hu power spectrum (Eisen-
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Bias
Density

(gal/arcmin2)
5 bins 10 bins 40 bins 71 bins

0.4 2.93 3.27 2.47 2.20
Free 8.0 19.5 16.2 8.81 6.94

80.0 138 93.4 66.1 38.4

0.4 1.85 2.61 3.40 2.43
Fixed 8.0 5.32 7.10 8.80 5.29

80.0 13.4 15.2 29.3 21.3

Table 3. Ratio between FoMγω [α = 2/α = 1], which

shows the relative contribution of sample variance cancel-
lation (see the text). On the columns there are 4 different

binnings (5, 10, 40 and 71 redshift bins), while on the rows

there are 3 different total survey densities for free and fixed
bias.

stein & Hu 1998) and the linear Kaiser effect (Kaiser
1987) to account for redshift space distortions (RSD).
To compress the information of our constraining power
in one number we define four Figures of Merit: FoMγω,
FoMγ , FoMω and FoMDETF (§2.6). Details of the mod-
elling and fiducial forecast assumptions can be found
in section 2.

Section 3 studied how multiple tracers in the
same region of the sky can break degeneracies and
improve the constraints on dark energy and growth
rate. We split one spectroscopic survey into two pop-
ulations (named B1 and B2) by some galaxy property
such that there is a relative bias amplitude (α) be-
tween both populations. This allows for multi-tracing
the same underlying matter distribution, which can-
cels the random nature (sample variance) of fluctua-
tions in redshift space. Using redshift space distortions
and two populations as multiple tracers we quickly
improve the constraints when increasing the bias dif-
ference between the tracers, with no or very little im-
provement with no bias difference (Fig. 1). Fixing the
bias ratio to α = 0.5, we increased the galaxy density
and showed that B1xB2 FoMs outperform the single
tracers by beating the sampling variance limit in the
noiseless limit (Fig. 2). We showed that this improve-
ment comes from sample variance cancellation and not
from additional cross-correlations between B1 and B2,
which contribute less than 2%. Also, Fig. 3 showed
that not all improvement was coming from measuring
bias.

In section 4 we have set up an r-band limited
survey with a CLF and HM to model galaxy bias.
We have split the survey into two subsamples cutting
in halo mass and r-band magnitude, computing the
galaxy bias and galaxy density of each subsample in
redshift. In this way, we account for the relation be-
tween galaxy bias and galaxy density. We showed that
for a cut in halo mass we can improve FoMγω up to
a factor 1.3 as compared to doing no split. Splitting
in r-band magnitude lead to a factor 1.05 improve-
ment as magnitude scatter halo mass which reduced
the bias difference. When increasing the total density
of the survey we found huge improvements for both
split methods, giving a factor 9.6 and 3.0 in FoMγω

for halo mass and r-band cut, respectively.
In section 5 we have studied the effect of having

partially overlapping redshift bins in a multiple tracer
survey. We have shown that as a result of the over-

lap the FoMs improve (Fig. 6), having a peak when
the redshift bins are shifted half of the bin width. At
the peak the FoMs improve a factor 1.33 for FoMγω,
1.06 for FoMγ , 1.26 for FoMω and 1.33 for FoMDETF.
We have shown that the gain is not artificially pro-
duced by the particular bias parameterization, but it
is rather coming from the cross-correlations between
B1 and B2. We have also shown that the gain is a fac-
tor ∼ 1.5 in FoMγω when using a 25% thicker binning,
while a factor ∼ 1.2 when using a 25% thinner bin-
ning (Fig. 7). Fig. 8 showed how FoMs improve from
partly overlapping bins for different α values, indicat-
ing that there is more improvement when relative bias
difference is small, and low or no improvement when
there is more bias difference between populations. In
Fig. 9 we showed how FoMs improve when increas-
ing the number of redshift bins. When using one more
or less redshift bin in one of the populations, the im-
provement in FoMγω is equivalent to having 80 red-
shift bins in both populations compared to the 71 from
the fiducial forecast. In section 5.1.1 we find that the
multi-tracer gains are larger for photometric samples,
specially when we increase the density. In fact, having
a larger density can compensate the loss in resolution
(see Fig. 10).

In §A1 to A3 we have studied the impact of RSD
and BAO effects in the FoMs. In Fig. A1 we show the
improvement from B1xB2 for different bias difference
in the four FoMs. The constraints quickly improve in
all FoMs, up to a factor 4 in FoMγω. In real space (no
RSD, Fig. A2) sample variance cancellations are no
longer possible and the improvements are less than a
factor 1.5 in FoMγω, having almost no gain in FoMγ

(less than 2%). In Fig. A3 we have shown that RSD
is very important in γ constraints as it breaks degen-
eracy between galaxy bias and f(z). For FoMγ the
B1xB2 ratio RSD/No RSD is 4 ∼ 9, while the ra-
tio BAO/No BAO is lower than 1.08. For dark en-
ergy constraints it happens the opposite, in FoMω the
BAO/No BAO rate is 1.4 ∼ 1.5 while RSD/No RSD
is ∼ 1.0 when bias amplitudes are similar, but up to
∼ 1.5 when there is more bias difference. The ω con-
straints depend more on the shape of the power spec-
trum and then are enhanced more from including BAO
wiggles.

In §A4 we have fixed cosmological parameters
to study possible degeneracies. We find that multiple
tracers help breaking degeneracies in the dark energy
constraints, specially at high densities. In §B we stud-
ied the impact of a different bias evolution slope in
redshift (Fig. B1). It shows a dependence for the B1
population, but the B1xB2 forecast is insensitive to
the bias slope.

The trends found in Section 3 are in good agree-
ment with a number of studies such as McDonald &
Seljak (2009), White, Song & Percival (2009), Gil-
Maŕın et al. (2010), Bernstein & Cai (2011). Direct
quantitative comparison is hard to make due to very
different survey configurations, along with different
modeling and observables. Gil-Maŕın et al. (2010) sug-
gested that cuts other than halo mass such as peak-
height ν might be more competitive for a dark matter
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haloes split, as they find a ∼ 10% improvement at low
redshift with a cut in halo mass. In section 4 we have
stressed that these gains are highly density dependent
and that the split for galaxies can be optimized by
looking at the bias-density relation of the tracers.

In this analysis we have assumed a number of
idealizations, such as linear theory, deterministic bias,
no stochasticity between tracers nor nonlinearities.
Several studies indicate that linear theory (Kaiser
1987) start to break down at scales as large as kmax >
0.02hMpc−1 (Okumura & Jing 2011, Bianchi et al.
2012), specially at low mass haloes, and that scale
dependence in β varies between tracers. As shown in
Gil-Maŕın et al. (2010) even small amounts of nonlin-
earity can degrade your FoM down to 50%, which em-
phasize the need for more realistic models for galaxies
and nonlinear RSD (e.g. Reid & White 2011, Okumura
et al. 2015). Lately, a number of techniques have been
developed to reduce shot-noise and stochasticity un-
der the Poisson level by optimally weighting the trac-
ers (see Seljak, Hamaus & Desjacques 2009, Hamaus
et al. 2010, Cai, Bernstein & Sheth 2011, Pearson,
Samushia & Gagrani 2016) which become of most in-
terest in combination with multi-tracer surveys and
could further improve the FoMs.

In summary, our results suggest that we can im-
prove FoM significantly and break degeneracies in cos-
mological inference if we split the samples by a density
ratio of n̄1/n̄2 ∼ 7 using apparent magnitude as rank-
ing or n̄1/n̄2 ∼ 30 using a mass halo proxy ranking
(e.g., richness). Using another proxy for bias (such as
local density, see Pujol et al. 2015, or color) to split
the sample, will give similar benefits. Splitting vol-
ume limited samples does not provide significant im-
provements. Our analysis also shows that when doing
angular clustering tomography is optimal to use over-
lapping bins for cross-correlation. These finding can
be applied to future redshift surveys such as DESI
or Euclid and will also work for photometric sam-
ples (see Fig. 10), such as DES and LSST and its
cross-correlations (as shown in Eriksen & Gaztañaga
2015c). We also show large improvement on the FoM
with increasing galaxy density. This can be used as a
trade-off to compensate a possible loss of radial resolu-
tion when using high resolution photometric redshifts
(Mart́ı et al. 2014) instead of spectroscopic redshifts.
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APPENDIX A: RSD AND BAO EFFECTS
IN SAMPLE VARIANCE CANELLATION
AND DEGENERACIES

A1 Redshift space

In Fig. A1 we present our results for the four FoMs.
The blue (dotted) lines corresponds to the same sky
case (B1xB2), the green (dashed) lines to B2 and the
red (solid) lines to B1, with all lines being normal-
ized to the B1 lines. Recall from Eqs. 41-42 that a
change in α modifies the B2 bias but leaves the B1
bias equal to the fiducial. Focusing first on the B1xB2
lines, the four FoMs show an improvement compared
to the single tracer cases, as expected, due to sample
variance cancellations. We can see how the improve-
ment for B1xB2 increases with the bias difference and
is minimum when B1 and B2 have the same bias, as
then we cannot cancel sample variance. FoMγω shows
the biggest gains (factor of 4 and 3 at α ' 0.1 and
α ' 2) as it combines the gains from FoMγ (factor
of 2) and FoMω (factor of 2). Part of the gain comes
from B1xB2 doubling the density of the single tracers,
as we have merged both single tracers and it reduces
shot-noise. To see the effect of splitting B1 into B1xB2
to keep the shot-noise level see Fig. 2.

The B2 lines show the impact that bias ampli-
tude has on the single survey case. FoMγ shows that
γ constraints improve for lower bias. This is in the
line of Asorey, Crocce & Gaztañaga (2014), where the
authors find similar results for the dependence of γ
constraints on bias for a photometric survey. This is
because lower bias gives larger relative importance to
RSD, which turns into a better measurement of f(z)
and thus γ. On the contrary, ω constraints improve
with larger bias, as shown in FoMω and FoMDETF.
This is due larger bias increasing the signal of cor-
relations and thus reducing the relative impact of
shot noise (see Fig. B1 bottom right panel for simi-
lar trends).

A2 Real space

In Fig. A2 we have removed redshift space distortions
(RSD). It includes a purple (dashed, flat) line which
shows the ratio RSD/No RSD for B1. Looking at the
B1xB2 line we see how all FoMs now grow with bias
ratio, while the characteristic minimum and big im-
provements from sample variance cancellation have
vanished (factor of 1.5 for FoMγω now, as opposed
to 4 with RSD).

In real space the density perturbation equation
is Eq.9, which does not have specific angular depen-
dence and does not allow to cancel sampling variance
anymore. The auto correlations for a redshift bin i
will then be proportional to b2i , while the cross cor-
relations between a bin i and a bin j is proportional
to bibj . Therefore, signal will increase as bias does.
Moreover,

when α→ 0 then FoM[B1xB2] ' FoM[B1],

when α� 1 then FoM[B1xB2] ' FoM[B2].
(A1)
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Figure A1. FoM dependence on the relative bias ampli-

tude (α) in redshift space. The blue (dotted) line corre-

spond to the same sky case (B1xB2), the green (dashed)
line to B2 and the red (solid) line to B1. All lines are nor-

malized to the B1 FoM value (which is constant). The ver-

tical lines indicate the same bias amplitude case (α = 1).
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Figure A2. FoM dependence on the relative bias ampli-

tude (α) in real space. The blue (dotted) line correspond to

the same sky case (B1xB2), the green (dashed with dots)
line to B2 and the red (solid) line to B1. All lines are nor-

malized to the B1 FoM value (which is constant). The pur-

ple (dashed) line shows the ratio RSD/No RSD for the
fiducial bias (B1).

This is a result of B1 correlations dominating
over B2 ones at α ' 0, and viceversa for α � 1.
Also, the B2 FoMs have a steeper slope than B1xB2,
as we are only changing the B2 bias, which only af-
fects a subset of correlations on B1xB2. While FoMω

improves up to a 40% at α = 2, the gain in FoMγ

is marginal, and part of it comes from B1xB2 having
more density and reducing shot-noise.

The purple (dashed flat) line shows the ratio be-
tween the normalizations when computing the corre-
lations in redshift space and in real space. This shows
the overall impact of removing RSD in each FoM. As
can be seen in the top-right panel, FoMγ is about 4
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Figure A3. Impact of removing BAO and RSD effects

on the constraints, for different relative bias amplitudes

(α). The left/right panels correspond to removing the
RSD/BAO effect for B1xB2 (blue solid), B2 (green dashed)

and B1 (red dotted). All the lines show the ratio between

the Fiducial forecast where RSD and BAO effects are in-
cluded and when removing one of the effects. There is no

further normalization.

times lower, as RSD are crucial for breaking degen-
eracies between f(z) and b(z), which affect the γ con-
straints. For the ω constraints, the normalizations are
similar. However, as we have discussed, including RSD
is still very important as it allows to cancel sampling
variance and improve the ω constraints.

A3 Relative impact of RSD and BAO

In Fig. A3 we explore the effect that removing RSD
and BAO has on the absolute value of the FoMs, for
different relative bias amplitudes (α). We show the ra-
tios ‘RSD/No RSD’ (left panels) and ‘BAO/No BAO’
(right panels), where ‘RSD’ and ‘BAO’ refers to the
fiducial forecast that includes both RSD and BAO ef-
fects. The left/right panels correspond to removing
RSD/BAO for B1xB2 (blue solid), B2 (green dashed)
and B1 (red dotted).

The trends in FoMγ (center panels) show how
RSD has a strong relative importance in γ constraints,
while BAO in comparison has very little impact. On
the other hand, FoMω (bottom panels) shows how
BAO is more important to measure ω than RSD. This
happens because measuring γ depends more on deter-
mining the amplitude of the power spectrum P (k),
which is enhanced by RSD as it breaks degeneracies
between bias and the growth factor, while ω(z) mea-
surements comes more from measuring its shape and
thus including BAO wiggles measurements improves
it. In addition, for FoMω, B1xB2 ( solid) shows a peak
at α = 1 in BAO/No BAO ratio, because the BAO
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contribution is relatively higher when RSD is less im-
portant. On the other hand, for FoMγ the BAO con-
tribution in B1xB2 gets enhanced with a better RSD
signal. The impact of RSD in B1xB2 is higher for more
bias difference in all FoMs, as previously discussed (see
§A1), due to sample variance cancellations.

For a single tracer (see B2 in Fig A3), the impact
of RSD increases very fast at low bias (decreasing α)
in all FoMs, because RSD include an additional term
such that the signal of the correlations does not drop
when bias tend to zero (as happens when we do not
have RSD, see B2 in Fig. A2). On the contrary, in
FoMω the impact of BAO improves with more bias
because shot-noise has less effect, while in FoMγ is
the opposite and for α ≥ 1 it has a negative effect,
although the effect is tiny. FoMγω (top panels) com-
bines the effects from γ and ω constraints, and shows
that RSD has a bigger effect in the constraints than
BAO.

A4 Fixing cosmological parameters

In this subsection we investigate how fixing one cosmo-
logical parameter affects the forecast by breaking de-
generacies. Fig. A4 shows the relative gain from fixing
each parameter for B1xB2 (left panels) and B1 (right
panels), for FoMγω and FoMγ on the rows, as a func-
tion of survey density. For FoMγω in B1xB2 there are
strong gains (a factor 2∼3) when fixing Ωm, ΩDE , Ωb
or h, which constrains the cosmic expansion history,
while when fixing σ8 and ns FoMγω only improves by
a factor 1.2∼1.3. Comparing to the single tracer, in
FoMγω multiple tracers help breaking degeneracies for
Ωm, Ωb, ΩDE and h parameters, specially at the noise-
less limit where the relative gains lower from a factor
3.5 ∼ 4 in B1 to a factor 2 in B1xB2. For B1xB2 in
FoMγ the gains are quite low (< 10%) when fixing
any parameter, with σ8 and ns the most relevant at
low density, whereas at high density the gain from σ8

drops and Ωm, ΩDE and h become more important.
For B1 we find a similar level of degeneracy in FoMγ .

APPENDIX B: BIAS EVOLUTION

In this section we study the impact that different bias
evolution has on the constraints. For concreteness, we
parametrize the bias evolution in redshift as

bB1(z) = 1 + κz, (B1)

where κ = 2 corresponds to the fiducial forecast
value, while we keep α = 0.5. Fig. B1 shows the
FoMs for B1xB2 (left panels) and B1 (right panels)
in the columns and FoMγω (top), FoMγ (center) and
FoMω (bottom) for the rows, for different slope values,
κ ∈ [0.0, 0.5, 1.0, 1.5, 2.0] (red, green, blue, black, pur-
ple). FoMDETF is very similar to FoMω and therefore
not shown.

Looking at the multitracer panels (B1xB2) (Fig.
B1, left panels) it is clear that the constraints are
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Figure A4. Relative gains when fixing a parameter for

B1xB2 (left panels) and B1 (right panels), for FoMγω and

FoMγ on the rows, as a function of survey density. All lines
are normalized to the respective fiducial forecast values.
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Figure B1. FoM dependence on the bias slope κ (bB1(z) =

1 + κz), with α = 0.5 fixed. The panels on the left (right)
shows the FoMs for B1xB2 (B1). On the rows we show

FoMγω (top), FoMγ (center) and FoMω (bottom), with
FoMDETF very similar to FoMω and therefore not in-
cluded. The lines correspond to κ = 0.0 (red dotted),

κ = 0.5 (green dashed), κ = 1.0 (blue dash-dot), κ = 1.5

(black thicker dash-dot ), κ = 2.0 (purple solid).

not much affected by the bias evolution history. This
shows that for the multi tracer it is much more rel-
evant the relative bias amplitude between the popu-
lations rather than the bias evolution in redshift or
the bias amplitude itself. Only at low densities we see
some gains for higher bias, coming from the ω con-
straints, while the γ constraints remain very similar
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for the different bias evolutions at all densities. In
other words, the constraining power of B1xB2 does
not rely on how biased are the samples themselves,
but on the contrast between its subsamples.

For the single tracer (B1) there is instead a clear
dependence on the bias evolution in redshift (right
panels). In FoMγ the constraints are much more af-
fected by the different bias slopes at the noiseless
limit, leading to better constraints for lower slope
(and thus lower bias), as then RSD has more relative
importance. For higher shot-noise the relative gains
from RSD are lower as shot-noise dominates and the
lines converge. The opposite happens in FoMω, the
dependence on bias slope is clear when shot-noise is
big, while at the noiseless limit the constraints flatten
and tend to the same value. As we have previosly re-
marked, dark energy constraints benefit from higher
bias as this increases signal and reduces the relative
impact of noise. This is observed clearly in this fig-
ures, as the FoMs benefit from higher bias at low den-
sities, while with high densities they tend to the same
value as the relative impact of noise is already small.
FoMγω combines these effects and we see how all lines
cross with each other, leading to better constraints
for higher bias at low densities and viceversa at high
densities. This results agree with Fig. A1 and Fig. 2.
In addition, a complete unbiased tracer (i.e. κ = 0)
has the best constraints at the noiseless limit for all
FoMs.
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