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ABSTRACT

We describe the application of the supervised machine-learning algorithms to identify the likely multi-wavelength

counterparts to submillimeter sources detected in panoramic, single-dish submillimeter surveys. As a training set,

we employ a sample of 695 (S870µm >
∼ 1 mJy) submillimeter galaxies (SMGs) with precise identifications from the

ALMA follow-up of the SCUBA-2 Cosmology Legacy Survey’s UKIDSS-UDS field (AS2UDS). We show that radio

emission, near-/mid-infrared colors, photometric redshift, and absolute H-band magnitude are effective predictors that
can distinguish SMGs from submillimeter-faint field galaxies. Our combined radio + machine-learning method is able

to successfully recover ∼ 85 percent of ALMA-identified SMGs which are detected in at least three bands from the

ultraviolet to radio. We confirm the robustness of our method by dividing our training set into independent subsets

and using these for training and testing respectively, as well as applying our method to an independent sample of ∼ 100
ALMA-identified SMGs from the ALMA/LABOCA ECDF-South Survey (ALESS). To further test our methodology,

we stack the 870µm ALMA maps at the positions of those K-band galaxies that are classified as SMG counterparts

by the machine-learning but do not have a > 4.3σ ALMA detection. The median peak flux density of these galaxies is

S870µm = (0.61±0.03)mJy, demonstrating that our method can recover faint and/or diffuse SMGs even when they are

below the detection threshold of our ALMA observations. In future, we will apply this method to samples drawn from
panoramic single-dish submillimeter surveys which currently lack interferometric follow-up observations, to address

science questions which can only be tackled with large, statistical samples of SMGs.
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1. INTRODUCTION

The bulk of the population of submillimeter-luminous

galaxies (SMGs) are massive, dust-enshrouded sys-

tems which are forming stars at rates of >
∼ 102–

103M⊙ yr−1. At these star-formation rates (SFRs),
these systems would in principle be able to form

the stellar mass of massive galaxies (M∗
>
∼ 1011M⊙)

within just ∼ 100 Myr (e.g., Chapman et al. 2005;

Bothwell et al. 2013; Casey et al. 2014). Although

such strongly star-forming galaxies are rare in the lo-
cal Universe, the space density of bright SMGs (i.e.,

S850µm > 1 mJy, corresponding to a far-infrared lu-

minosity, LIR >
∼ 1012L⊙) increases rapidly with look-

back time and appears to peak at z ∼ 2–3 (e.g.,
Barger et al. 1999; Chapman et al. 2005; Yun et al.

2012; Smolčić et al. 2012; Simpson et al. 2014). Due to

their potentially rapid formation, SMGs have been pro-

posed to be the progenitors of spheroidal galaxies in the

local Universe (e.g., Lilly et al. 1999; Swinbank et al.
2006; Simpson et al. 2014, 2017). They are also thought

to be linked to quasi-stellar object (QSO) activity due

the similarity of their redshift distribution to that of lu-

minous QSOs (e.g., Coppin et al. 2008), as well as being
linked to compact, red galaxies seen at z ∼ 1–2 (e.g.,

Cimatti et al. 2008; Whitaker et al. 2012; Toft et al.

2014). These characteristics mean that SMGs may be

an important stage in the formation and evolution of

massive galaxies and hence are a key element to con-
strain models of galaxy formation and evolution.

Submillimeter/millimeter galaxy selection bene-

fits from the strong negative K-correction in these

wavebands (Blain & Longair 1993), which enables
us to detect sources above a constant flux limit

and hence with near constant star-formation rates

out to high redshift (z ∼ 6). In the past two

decades, numerous wide-field, submillimeter surveys

have been undertaken on the James Clerk Maxwell
Telescope (JCMT), IRAM 30 m, APEX, and ASTE

equipped with the SCUBA/SCUBA-2, MAMBO,

LABOCA, and AZTEC cameras respectively (e.g.,

Smail et al. 1997; Barger et al. 1998; Hughes et al.
1998; Scott et al. 2002, 2012; Coppin et al. 2006;

Weiß et al. 2009; Ikarashi et al. 2011; Geach et al. 2017;

Wang et al. 2017, and see Casey et al. (2014) for a re-

view). The main challenge for follow-up studies of the

sources selected from these surveys is the coarse an-
gular resolution of the single-dish maps, with the full

width at half maximum (FWHM) typically around ∼

8′′–10′′ at 450µm (but only for relatively small sur-

veys, Geach et al. 2013; Wang et al. 2017) and ∼ 15′′–
20′′ in the wide-field surveys undertake at 850–1100µm

(Weiß et al. 2009; Geach et al. 2017) which results in

uncertain identifications of the counterparts at other

observed frequencies.

Traditionally, the likely counterparts for single-dish

submillimeter sources were identified by using indirect
tracers of the far-infrared/submillimeter emission such

as the radio, 24µm, or mid-infrared properties (e.g.,

Ivison et al. 1998; Smail et al. 2002; Pope et al. 2006;

Ivison et al. 2007; Barger et al. 2012; Micha lowski et al.

2012; Cowie et al. 2017). These properties roughly track
the far-infrared luminosity of galaxies and they have two

additional advantages: that observations in these bands

are typically at significantly higher angular resolution

than the submillimeter, and that the surface densities of
sources in these wavebands is relatively low, so that the

rate of chance associations is also low. Unfortunately,

the negative K-correction experienced in the submil-

limeter band arises from the steeply rising Rayleigh-

Jeans part of the spectral energy distribution (SED),
the absence of which in these other wavebands means

that even the deepest radio continuum or mid-infrared

maps will miss the highest redshift SMGs. Neverthe-

less, ∼ 50 percent of submillimeter sources can be lo-
cated via a radio or mid-infrared identified counterpart

(e.g., Ivison et al. 2002, 2007, 2010; Hodge et al. 2013).

To improve on this situation and so construct more

complete samples of SMGs it is necessary to combine

a broader range of multi-wavelength properties to iso-
late potential SMGs from the less active galaxies which

are found within the error-circles of single-dish submil-

limeter sources (e.g., Chapin et al. 2011; Alberts et al.

2013; Chen et al. 2016). One additional complication
of these statistical identifications is the fact that recent

studies using interferometric observations in the submil-

limeter/millimeter suggest that >
∼ 20 percent of single-

dish-detected submillimeter sources actually correspond

to blends of multiple SMGs (e.g., Wang et al. 2011;
Karim et al. 2013; Simpson et al. 2015a,b; Stach et al.

2018a,b).

Recently, interferometric observations undertaken at

submillimeter/millimeter wavelengths with the Ata-
cama Large Millimeter/submillimeter Array (ALMA)

are helping to improve our understanding of SMGs.

With angular resolution better than 1′′, and thus

sub-arcsecond positional precision, we are starting to

obtain a more complete understanding of the multi-
wavelength characteristics of SMGs (e.g., Hodge et al.

2013; Thomson et al. 2014; Swinbank et al. 2014, 2015;

Aravena et al. 2016; Walter et al. 2016; Simpson et al.

2017; Dunlop et al. 2017; Wardlow et al. 2017; Danielson et al.
2017). However, for single-dish submillimeter surveys

of fields in the northern sky, it is not possible to per-

form ALMA follow-up, and so we must rely instead



4 An et al.

on the use of Submillimeter Array (SMA) or IRAM’s

Northern Extended Millimetre Array (NOEMA) to ob-

tain interferometric identifications (e.g., Hill et al. 2017;

Smolčić et al. 2012). Moreover, for very large samples
of submillimeter sources it may be challenging to obtain

complete identifications even with ALMA.

The rapid growth of data from panoramic, single-dish

submillimeter surveys (Geach et al. 2017; Wang et al.

2017; Simpson et al. 2018) requires the adoption of fast,
automatic techniques for identifying the likely coun-

terparts to single-dish-detected submillimeter sources.

Automatised classification using machine-learning al-

gorithms has recently gained popularity in astronomy
and has been applied to a number of problems in-

cluding star/galaxy/quasars classification (Bloom et al.

2012; Solarz et al. 2012; Ma lek et al. 2013; Kurcz et al.

2016), or the identification of different type of supernova

(du Buisson et al. 2015; Lochner et al. 2016).
In this work, we test two machine-learning algorithms,

Support Vector Machine (SVM) and Extreme Gradient

Boosting (XGBoost), to identify probable SMG coun-

terparts from optical/near-infrared-selected galaxies.
SVMs are a class of supervised learning algorithms

based on the structural risk minimization principle de-

veloped by Vapnik (1995). The main idea behind Sup-

port Vector Classification (SVC) is to determine decision

planes between sets of objects with different class labels
and then to calculate a decision boundary by maximis-

ing the margin between the closest points of the classes.

Each single object is then classified based on its relative

position in a multidimensional parameter space.
The second machine-learning algorithm we test is XG-

Boost (Chen & Guestrin 2016), which is a modified ver-

sion of gradient boosting (Friedman 2001) used for su-

pervised learning problems. The basic model of XG-

Boost is a tree ensemble, which is a set of classification
and regression trees. In this model each input feature of

an object will be divided into different “leaves” and each

“leaf” will be assigned a score. This score will be used as

a quality on a tree structure. A greedy algorithm, that
starts from a single leaf and iteratively adds branches to

the tree, is used to construct structures of a tree. In this

gradient boosting tree model, one of the basic functions

is to search for an optimal split at each node. To make

this decision, XGBoost calculates the structure score of
all possible splits and find the best solution among them.

In practice, multiple trees will be used together to be

trained on the properties of objects in the training set

and the final prediction will be made by summing the
scores in the corresponding leaves of each individual tree

in the tree ensemble model (Chen & Guestrin 2016).

Generally, there are four steps to perform a supervised

machine-leaning classification: 1) construct a training

set; 2) identify the optimal features that can best sepa-

rate different classes; 3) train the machine-learning mod-
els to build a classifier; 4) apply to the test sample to

classify the unknown objects.

In this work we exploit the multi-wavelength coun-

terparts of ∼ 700 ALMA-detected SMGs identified by

Stach et al. (2018a,b) in their ALMA follow-up of the
SCUBA-2 Cosmology Legacy Survey (S2CLS, Geach et

al. 2017) observations of the UKIRT Infrared Deep Sky

Survey (UKIDSS, Lawrence et al. 2007) Ultra Deep Sur-

vey (UDS) field (Almaini et al. in prep.). We begin by
identifying counterparts to ALMA SMGs by matching

them to a deep K-band-selected photometric catalog of

the UKIDSS-UDS field (Almaini et al. in prep; Hartley

et al. in prep.). We then compare the multi-wavelength

properties of the SMGs and a sample of non-SMG field
galaxies (which lie within the footprint of our ALMA ob-

servations, but are individually undetected in these sen-

sitive submillimeter maps) and identify those properties

that can best separate these two populations. We train
the machine-learning classifiers based on these selected

properties to construct a method to identify probable

SMG counterparts for single-dish-detected submillime-

ter sources that are not yet, or cannot, be observed with

ALMA. By utilising our method, we can construct larger
and more robust samples of counterparts to SMGs that

can be used to answer the science questions related to

the evolutionary cycle of SMGs and their connections

with other populations.
Given the proven success of radio observations in lo-

cating counterparts to a subset of the SMG population,

we adopt a two-pronged approach, where we combine

a simple probability cut to select likely radio counter-

parts, followed by a machine-learning method applied
to multi-wavelength data to increase the completeness

of the resulting SMG sample. We choose to apply

these two selections separately, rather than combining

the radio fluxes into the machine-learning analysis, pri-
marily because of the requirements in terms of multi-

wavelength detections needed for the SVM machine-

learning analysis. As we show, applying the radio

and SVM machine-learning classifications independently

maximises the completeness of the final SMG sample.
The plan of this paper is as follows. We introduce

the observations of the training set we use in the S2CLS

UDS field and an independent test sample from the Ex-

tended Chandra Deep Field South (ECDFS) in §2. Our
methodology is described in §3. We present and discuss

our results in §4. The main conclusions of this work

are given in §5. Throughout this paper we adopt a cos-



A machine-learning method for identifying SMGs 5

mology with [ΩΛ, ΩM , h70] = [0.7, 0.3, 1.0]. The AB

magnitude system (Oke 1974) is used unless otherwise

stated.

2. OBSERVATIONAL TRAINING SET AND TEST

SAMPLE

2.1. ALMA-identified sample of submillimeter galaxies

To construct our training set and the test sample, we

employ two wide-field, single-dish submillimeter surveys
that have been uniformly followed-up using ALMA in

the same submillimeter band as the original surveys (to

remove ambiguity in the identification of counterparts).

These then provide us with a sample of SMGs with a

wide range of properties and submillimeter fluxes, and
equally importantly, they yield samples of field galax-

ies that fall within the ALMA survey footprint but are

undetected in those maps and hence can be used as a

control sample of submillimeter-faint galaxies to try to
distinguish the unique characteristics of SMGs.

2.1.1. Single-dish sample

The UKIDSS-UDS field (RA/Dec: 02h, −05◦; Fig-

ure 1) was mapped with the SCUBA-2 bolometer cam-
era (Holland et al. 2013) on the JCMT at 850µm as

part of SCUBA-2 Cosmology Legacy Survey. We pro-

vide a brief overview here, the full details of obser-

vations, data reduction, and catalogue are described

in Geach et al. (2017). The coverage of 0.96 degrees2

in UDS is relatively uniform with instrumental noise

varying by only ∼ 5 percent across the field (Fig. 3 in

Geach et al. 2017). The final matched-filtered map has

a noise ≤ 1.3 mJy beam−1 rms over 0.96 degrees2 and
of 0.82 mJy beam−1 in the deepest part. The empiri-

cal point spread function (PSF) has an FWHM of 14.′′8.

Geach et al. (2017) identify a total of 716 submillimeter

sources above a 4 σ limit, with a false detection rate of

∼ 2 percent (Fig. 13 in Geach et al. 2017).
We also employ a second single-dish survey sample in

our analysis as an additional test of our method. This

sample comprises the 126 submillimeter sources with

single-to-noise (S/N) > 3.7 from the LABOCA ECDFS
submillimeter Survey (LESS; Weiß et al. 2009) taken

with the Atacama Pathfinder Experiment (APEX) tele-

scope. This 870-µm map covers 0.25 degree2 with a 19.′′2

FWHM and a 1-σ depth of S870µm = 1.2 mJy. The prop-

erties of this sample are thus similar to those of the
S2CLS-UDS sample, but in a completely independent

field with different multi-wavelength coverage and pho-

tometric selection. We refer the reader to Weiß et al.

(2009) for the details of these observations.

2.1.2. ALMA follow-up

Band 7 (870µm) observation have been obtained

with ALMA of all the 716 submillimeter sources from

the S2CLS UDS map, which are described in full in

Stach et al. (2018a,b). Observations of thirty of the
brightest (S850µm ≥ 8 mJy) single-dish sources were

undertaken in Cycle 1 as part of a pilot project,

2012.1.00090.S (Simpson et al. 2015a,b, 2017), while

observations of the bulk of the sample were obtained

through the Cycle 3 project 2015.1.01528.S and the
Cycle 4 project 2016.1.00434.S. The Cycle 1 pilot ob-

servations relied on an early interim map and in the

thirty ALMA maps, 52 SMGs were detected at ≥ 4-σ

significance (Simpson et al. 2015a,b). However, in the
final SCUBA-2 maps, three of these thirty sources fall

below our sample selection criteria leaving 27 of them

in our final sample of single-dish detected submillimeter

sources. In Cycles 3 and 4, we observed the remaining

686 sources with S850µm ≥ 3.5 mJy from the final S2CLS
map (Stach et al. 2018a,b). These observations achieve

typical 1-σ depths of σ870µm ∼ 0.25 mJy with synthe-

sised beams of 0.′′15–0.′′3. The ALMA maps are tapered

to ∼ 0.′′5 resolution before sources are identified. Across
all 716 single-dish submillimeter sources, we detect 695

SMGs above > 4.3σ (corresponding to a false detection

rate of two percent). We refer to our complete 870µm

ALMA survey of 716 SCUBA-2 sources in the UDS

field as the “AS2UDS” survey. We note that the ALMA
primary beam of our observation is 17.′′4 which encom-

passes the area of the SCUBA-2 beam. Full details of

the observation, data reduction, source detection and

cataloging are presented in Stach et al. (2018a,b).
Among the 716 ALMA maps, 108 do not con-

tain any ALMA-identified SMG at > 4.3σ. We label

these as “blank-ALMA” maps. In the remaining 608

ALMA maps, we detected 695 SMGs with fluxes from

S850µm = 0.89 to 30 mJy. In the following these maps
are described as “maps with ALMA ID”.

The goal of this study is to develop a method to re-

liably and robustly identify counterparts to single-dish-

detected submillimeter sources in wide-field surveys by
utilising the multi-wavelength properties of the sample

of ALMA-identified SMGs. Therefore, we include the

multi-wavelength galaxies lying within the 108 “blank-

ALMA” maps in our analysis to guarantee the complete-

ness of our parent single-dish sample.
In our analysis we will use independent subsets of

the AS2UDS SMG sample to test the reliability of our

method. We also include an additional sample for

this purpose: the ALMA follow-up of the LESS sur-
vey. The ALESS survey obtained ALMA 870-µm ob-

servations in Cycle 0 of 122 of the 126 LESS sources

(Hodge et al. 2013). These early ALMA observations
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have a typical synthesised beam of ∼ 1.′′6 and 1-σ depths

of ∼ 0.4 mJy, but with a wider range of data quality

than the later AS2UDS survey. For this reason in this

work we only use the 88 “good quality” ALMA maps
from Hodge et al. (2013) to construct our test sample.

Again these include 19 “blank-ALMA” maps, which lack

detected SMGs. These 88 maps yield a sample of 96

ALMA-detected SMGs with multi-wavelength coverage

from Simpson et al. (2014), which we will employ in our
analysis. We note that the properties of this test sample

differ from those of the AS2UDS sample as it is based

on an IRAC-selected photometric catalog, as opposed to

K-band for AS2UDS, and the photometric redshifts are
derived using different codes in the two fields. This com-

parison is intended to illustrate the results which would

be obtained if a training set from one field is simply ap-

plied directly to a sample selected from a second survey,

with different selection and photometric coverage.

2.2. Multi-wavelength observations

We next describe the multi-wavelength observa-

tions of the UDS and ECDFS fields, which are

used to determine the properties of our SMG sam-
ples. We will focus on the radio and redder op-

tical and near-infrared bands, as the dusty, star-

forming SMGs are expected to be typically brighter

in these wavebands than the bulk of the field popula-

tion (e.g., Wardlow et al. 2011; Micha lowski et al. 2012;
Hodge et al. 2013; Simpson et al. 2014).

2.2.1. VLA observations

Since radio synchrotron emission arises from super-

nova remnants it provides a powerful tracer of obscured

star formation. As such radio emission has been tra-
ditionally used to identify counterparts to SMGs (e.g.,

Ivison et al. 1998, 2002).

In this work, we exploit the VLA observations of the

UDS at 1.4 GHz (21 cm), which were carried out by the

UDS20 survey (Arumugam et al. in prep.). These VLA
observations cover an area of 1.3 deg2 centred on the

UDS field. The typical rms noise across the full VLA

map is 10µJy, and it is 7µJy beam−1 at its deepest point

in the centre. In total, 6,861 radio sources are detected
above 4 σ. The details of the observations, data reduc-

tion, and catalogue will be discussed in Arumugam et

al. (in prep.). In total, 714/716 ALMA pointings fall

within the VLA map (Figure 1).

2.2.2. Optical/near-infrared observations in UDS

Deep near-infrared imaging data are crucial for inves-

tigating the properties of SMGs because of their high

redshifts and dusty nature. The UKIDSS-UDS repre-

sents one of the deepest near-infrared imaging surveys

Figure 1. A map showing the distribution of our ALMA
survey compared to the coverage of the K-band, Spitzer,
and VLA observations of the UDS field and overlaid on the
SCUBA-2 map. We circle the positions of our 716 ALMA
pointings. All but the most western two ALMA pointings are
covered by the radio map. In addition 643/716 (∼ 90 per-
cent) of the ALMA pointings fall within the deepest UKIDSS
near-infrared coverage. High-quality photometric redshifts
are available for those sources within the overlap region of
the UKIDSS and the Spitzer IRAC 3.6µm (Ch 1) and 4.5µm
(Ch 2) imaging. There are 607/716 (∼ 85 percent) of ALMA
pointings in this region, which are suitable for using as a
training set for our machine-learning method. We therefore
limit our machine-learning analysis to this region.

over a wide area, covering 0.8 degree2. As shown in Fig-
ure 1, ∼ 90 percent (643/716) of our ALMA pointings

are covered by the UKIDSS survey.

The near-infrared image we exploit in our analysis

is taken from UDS data release 11 (DR11; Almaini et
al. in prep.), which represents the final UDS release

over the whole field. Details of observations, data re-

duction, and catalogue extraction will be presented in

the forthcoming UDS data paper (Almaini et al. in

prep.). Briefly, the DR11 reaches 3-σ median depths of
J = 26.2, H = 25.7, K = 25.9 mag, which are measured

in a 2′′ diameter aperture. In total, 296,007 sources were

detected from the K-band image using SExtractor

(Bertin & Arnouts 1996) with the photometry in the
J and H-bands obtained in SExtractor dual-image

mode.

The Y -band data are from the Visible and Infrared

Survey Telescope for Astronomy (VISTA) Deep Ex-

tragalactic Observations (VIDEO) survey with 3-σ
depths of Y = 25.3 mag (Jarvis et al. 2013). The optical

B, V , Rc, i′, and z′-band observations of UDS were
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carried out using Suprime-Cam on Subaru telescope

(Furusawa et al. 2008) with 3-σ depths of B = 28.4,

V = 27.8, Rc = 27.7, i′ = 27.7, and z′ = 26.6 mag in

2′′ diameter apertures. The field was also observed
by the Megacam on the Canada-France-Hawaii Tele-

scope (CFHT) in u′-band to a 3-σ limiting depth of

u′ = 27.3 mag, again in a 2′′ diameter aperture.

The mid-infrared observations of the UDS were taken

with IRAC and at 24µm with MIPS by the Spitzer

Legacy Program (SpUDS, PI: J. Dunlop). The 5-σ

depths of the IRAC 3.6µm and 4.5µm observations are

[3.6] = 24.2 and [4.5] = 24.0 mag.

In total, twelve-band data (UBV RIzY JHK[3.6][4.5])
are utilised to derive photometric redshifts for the

296,007 K-band-detected sources. Details of the pho-

tometric matched catalog and color measurement will

be described in Hartley et al. (in prep.). Hartley et

al. used EAZY (Easy and Accurate Redshifts from
Yale; Brammer et al. 2008) to estimate the photomet-

ric redshift for the K-band-detected sample. To obtain

unbiased and high quality photometric redshifts, they

only considered those sources within the joint IRAC
(SpUDS) and UKIDSS coverage and also excluded those

sources that have contaminated photometry (i.e., due

to halos from bright stars or other artifacts). In total,

∼ 85 percent (607/716) of the ALMA pointings fall in

the region for which reliable photometric redshifts are
available. Photometric redshifts were derived in the

manner described by Simpson et al. (2013) (see also

Hartley et al. (2013); Mortlock et al. (2013)). Hartley

et al. compare the estimated photometric redshift of
∼ 6,500 sources with available spectroscopic redshifts in

the DR11 and find that the accuracy of photometric

redshift is |zspec − zphot|/(1 + zspec) = 0.019± 0.001.

2.2.3. Multi-wavelength observations in ECDFS

The radio, optical and near-infrared observations

of our independent test sample in ECDFS are pre-

sented in Simpson et al. (2014). The VLA 1.4 GHz data
used in Simpson et al. (2014) and this work are from

Miller et al. (2008). We use the radio catalog from

Miller et al. (2008) to identify radio counterparts to

IRAC-based galaxies in ECDFS. Biggs et al. (2011) re-

reduced the VLA 1.4 GHz imaging data in ECDFS and
created a deep radio catalog containing sources down

to an signal-to-noise ratio (S/N) of 3 for searching ra-

dio counterparts to single-dish-detected SMGs. We also

use this deep radio catalog in our analysis to calculate
the completeness of radio identification in ECDFS. The

depth and quality of the multi-wavelength coverage of

ECDFS is broadly comparable to that available for UDS,

in terms of number and depth of the photometric bands.

For detailed information on the depth and coverage of

the optical and near-infrared data in the ECDFS the

reader is referred to Table 2 of Simpson et al. (2014).

2.3. Matching SMGs to multi-wavelength data

As the first step in our analysis we match the ALMA-
identified SMGs to the multi-wavelength data from their

respective fields and determine the properties of ALMA

SMGs based on their multi-wavelength counterparts.

2.3.1. Matching to radio counterparts in UDS

Since radio identification has been proven to be

an efficient tool to search for counterparts of bright
SMGs (e.g., Ivison et al. 2002; Chapman et al. 2005;

Hodge et al. 2013), we first match our SMGs to the

radio source catalogs. As shown in Figure 1, 714 of 716

ALMA maps in the UDS field are covered by the avail-

able VLA observations. There are 404 radio sources
(Figure 2) which fall inside the 17.′′4 diameter FWHM

of the primary beam coverage of the 714 ALMA maps.

To identify probabilistic radio counterparts to the low-

resolution, SCUBA-2-detected submillimeter sources,
we include all 404 ≥ 4 σ radio sources within the ALMA

maps in our analyses.

Before matching ALMA SMGs to the radio sources,

we first check the cumulative number of matches to ob-

tain an appropriate matching radius between ALMA
SMGs and radio sources. A radius of 1.′′6 is chosen be-

cause the cumulative number of matches becomes flat

beyond this radius. Within this matching radius, the

false match rate is ∼ 1 percent. From the 695 AS2UDS
SMGs, 693 are covered by the VLA radio observations.

Among these, 268 ALMA SMGs match to 259 radio

sources within 1.′′6 (Figure 2), with nine radio sources

having two ALMA counterparts. In total 39 percent

(268/695) of AS2UDS SMGs have a radio counterparts
brighter than the 4-σ limit of the VLA catalog.

We then first assess the robustness of our ≥ 4 σ ra-

dio catalog. As we showed above, there are 404 ra-

dio sources in the area covered by our ALMA maps,
of these 259 radio sources are counterparts to ALMA

SMGs, along with 42 radio sources which lack both K-

band and ALMA counterparts (and hence may be spu-

rious). However, using the IRAC coverage of the field,

we find that 17 of the 42 have 3.5µm and 4.6µm detec-
tions, indicating that about half of these are real radio

sources but lack the K and ALMA detections. This

suggests that the spurious source fraction in our radio

catalog is less than 25/404 or . 6 percent. Raising the
significance cut on the radio catalog to ≥ 5σ reduces

the number of K/IRAC/ALMA blank radio sources to

10 (from 310 radio sources, or an upper limit on the spu-

rious fraction of . 3 percent), but would also remove 40
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Figure 2. The radio flux densities for all radio sources within the primary beams of the AS2UDS ALMA maps as a function
of the corrected-Poissionian probability, p-value, (Left) and the offset of these radio sources from the SCUBA-2 single-dish
source position (Right). In total, there are 404 radio sources within the ALMA maps in UDS (open circles). Among those, 259
radio sources are matched to 268/695 ALMA SMGs within a radius of 1.′′6 (solid points), including nine ALMA SMGs which
have double radio counterparts. Hence, ∼ 63 percent of radio sources within the ALMA maps correspond to counterparts of
ALMA SMGs. We utilise the corrected-Poissonian probability, p-value, to estimate the likelihood of a radio source being the
counterpart of a single-dish detected submillimeter source. We show the fraction of counterparts of ALMA SMGs from all 404
radio sources within the ALMA maps as a function of p-value in the inset plot of the left panel. The number of counterparts
of SMGs dramatically decreases when p > 0.065. Therefore, we choose p ≤ 0.065 as a cut of “robust” radio identifications in
this work. There are 41 radio sources which have p > 0.065 (blue squares), the majority of these are not associated with SMGs
and so we adopt p ≤ 0.065 as our limit for identifying radio counterparts to SMGs. Using this p-value, the precision of radio
identification for identifying counterparts of SCUBA-2-detected SMGs is then ∼ 70 percent.

radio-counterparts to ALMA SMGs and so reduce the

completeness of our identifications. For this reason we

have chosen to retain the ≥ 4 σ flux limit on the radio

catalog.
To start with, for the SCUBA-2-detected submillime-

ter sources, we first consider all ≥ 4 σ radio sources

within the ALMA primary beam as potential counter-

parts. Then we calculate the corrected-Poissonian prob-

ability, p-value (Downes et al. 1986; Dunlop et al. 1989),
for all 404 radio sources falling in our ALMA maps by

using:

E = Pc P ∗ ≥ Pc

E = P ∗{1 + ln(Pc/P
∗)} P ∗ ≤ Pc (1)

where Pc is the critical Poission probability level given
by Pc = πr2sNT in which NT is the surface density of

radio sources and rs is the search radius (in this work

it is the radius of ALMA primary beam). Then given

P ∗ for a radio source, we can derive the probability that

is is a counterpart of single-dish-detected submillimeter

sources by p = {1 − exp(−E)}.

As shown in Figure 2, the fraction of counterparts of

ALMA SMGs among the radio sources dramatically de-
crease when p > 0.065. Hence we adopt p ≤ 0.065 as our

limit for the probabilistic association of radio sources

to single-dish submillimeter sources, while we consider

those radio sources with p = 0.065–0.10 as “possible”

identifications. Looking at all 404 radio sources falling
in our ALMA maps, 41 of these have p > 0.065–0.10 and

are thus only classed as “possible” counterparts (Fig-

ure 2). Of these “possible” counterparts, the vast major-

ity (36/41), do not match to an ALMA-identified SMG.
As a result, the five radio sources from these 41 which do

match to ALMA SMGs within 1.′′6 are also removed by

utilising the p-value cut. We also show the spatial offset

of SCUBA-2 source positions and radio sources in Fig-

ure 2. We see that those radio sources with p > 0.065
have spatial offsets larger than 5.′′5 from the nominal

SCUBA-2 positions. However, if we simply adopt this
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smaller match radius to search for radio counterparts

to SCUBA-2 sources, we will remove ∼ 20 of the radio

counterparts to actual ALMA SMGs. Therefore, in this

work, we prefer to consider all radio sources within the
ALMA primary beam, but apply a p ≤ 0.065 cut to iden-

tify those that are likely counterparts to the SCUBA-2

detected submillimeter sources. As a result, the preci-

sion of radio identification of counterparts to single-dish-

detected sources increases from 64 percent (259/404) to
70 percent (254/363) by utilising this p-value cut. Pre-

cision is defined as the ratio between the correctly iden-

tified SMGs and the total number of predicted SMGs by

radio identification/machine-learning classification.
To identify those multi-wavelength properties that dif-

ferentiate the SMGs from the wider field population, we

define radio sources that do not match to an ALMA-

detected SMG within 2.′′6 (this is conservatively chosen

to be larger than our 1.′′6 matching radius) as “non-
SMG” radio sources. Including the 53 radio sources

within the “blank-ALMA” maps, in total there are 137

non-SMG radio sources falling within our ALMA maps.

Although, as we show later, on average the radio sources
within the “blank-ALMA” maps have faint submillime-

ter emission, we put them into the sample of non-SMGs

for simplicity before we perform the stacking analysis.

We will discuss the properties of radio sources that are

counterparts of SMGs and non-SMGs in §4.

2.3.2. Matching to near-infrared/optical counterparts in
UDS

To develop a method to differentiate SMGs and non-
SMGs using multi-wavelength data, we adopt the UDS

DR11 photometric matched near-infrared/optical cata-

logue (Hartley et al. in prep.) to identify counterparts

and measure near-infrared/optical colors of SMGs.

As we described above, only those sources within the
overlapped region of UKIDSS and IRAC have sufficient

photometric coverage and estimated photometric red-

shifts as well as absolute magnitudes, which we will use

in our machine-learning method. Hence we limit our
identification of counterparts to the ALMA SMGs in

this region. In total, 607/716 ALMA maps fall in this

region, and 583/695 ALMA SMGs are detected within

these maps with K ≤ 25.9 mag.

To select a suitable matching radius between K-band
galaxies and ALMA SMGs, we test radii between 0.′′5

and 1.′′0 in steps of 0.′′1 and match the K-band galax-

ies with the ALMA SMGs. At each step, we randomly

offset the K-band galaxies in right ascension or declina-
tion by 10–20′′ to estimate the false match fraction as a

function of matching radius. At a match radius of 0.′′6,

514 K-band galaxies from UKIDSS DR11 photometric

catalog match to ALMA SMGs with a false match frac-

Figure 3. The number of multi-wavelength counterparts to
ALMA-detected SMGs within the overlap regions of UKIDSS
and IRAC coverage in the UDS field. As shown in Figure 1,
∼ 85 percent of our ALMA maps are covered by UKIDSS
and IRAC observations, and 583/695 ALMA-detected SMGs
lie in the combined footprint. The horizontal lines indicate
the 3σ (or 5σ) limit of the corresponding photometric band
which is used as part of the multi-wavelength selection when
identify the counterparts to SMGs. We can see that ∼ 83 per-
cent of the ALMA-identified SMGs have a K-band counter-
part, but the number of detected counterparts dramatically
decreases at bluer wavelengths. We also show the number of
ALMA-identified SMGs which have a photometric redshift
estimate and absolute rest-frame H-band magnitude. The
vertical lines show the fraction of SMGs which have six fea-
tures (dotted line – (z−K), (J−K), (K− [3.6]), [3.6]− [4.5],
zphot and MH) or five features (dot-dashed line, removing
(z−K)) which will be used in our machine-learning method.

tion of ∼ 3.5 percent (∼ 18 false matches). A match ra-

dius of 0.′′5 reduces the false match fraction to 2 percent

(∼ 10 false matches) but also reduces the total number

of matches by 20. A larger match radius increases the
matched sources, but the new matches are dominated

by false matches. Therefore, we adopt a match radius

of 0.′′6.

In the overlap region of UKIDSS and IRAC, there

are 483 K-band galaxies that match to ALMA SMGs
within our adopted 0.′′6 matching radius. We show the

number and fraction of multi-wavelength counterparts of

ALMA-detected SMGs in Figure 3. We find that ∼ 83

percent (483/583) of the ALMA SMGs have K-band
counterparts, but the number of counterparts dramati-

cally decreases at bluer wavelengths due to their dusty

nature (and their likely high redshifts). For the optical

and near-infrared data, we use the 3-σ limits to iden-
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tify the counterparts as shown in Figure 3. Because of

the relatively low resolution of the IRAC data, a more

conservative 5-σ cut is adopted for identifying counter-

parts and measuring colors in these bands. Figure 3
also presents the number of SMGs that have photomet-

ric redshifts, which are estimated based on DR11 photo-

metric catalogue, and hence have absolute H-band mag-

nitudes available to be used in the following analyses.

2.3.3. Radio and optical/near-infrared counterparts in
ECDFS

The details of the identification of radio, optical/near-

infrared counterparts to the ALESS SMGs in the

ECDFS field are presented in Hodge et al. (2013) and

Simpson et al. (2014) respectively. Out of the 96 ALMA
SMGs, 45 have radio counterparts (Hodge et al. 2013).

Simpson et al. (2014) measured aperture photometry in

19 wavebands for the 96 ALMA SMGs. Among these,

77 are securely detected and have sufficient photome-
try to derive a photometric redshift and estimate the

rest-frame H-band absolute magnitudes.

For the single-dish-detected submillimeter sources, we

first use the IRAC-based photometric catalog of sources

in ECDFS from Simpson et al. (2014) to match 88 LESS
submillimeter sources (Weiß et al. 2009) for which there

are good-quality ALMA maps from Hodge et al. (2013).

We include in this the 19 submillimeter sources for which

the corresponding ALMA map detected no SMG (the
“blank-ALMA” maps). In total, there are 323 IRAC-

detected galaxies located within the 88 ALMA primary

beams. We will use these galaxies to test our method-

ology in the following analysis.

3. METHOD: RADIO + MACHINE-LEARNING

IDENTIFICATIONS

To apply supervised machine-learning classification we
require a list of observed properties for a training sample

made up of submillimeter-detected and submillimeter-

undetected galaxies. Therefore, firstly, we need to se-

lect those features of SMGs which best separate them
from field galaxies (“non-SMGs”). Given the power of

radio-identification to locate the counterparts we adopt

a two-pronged approach, where we combine likelihood

test to select probable radio counterparts, along with a

machine-learning method to increase the completeness
of the resulting SMG sample. As we will show, we apply

these two tests separately in part because of the require-

ments in terms of multi-wavelength detections needed

for the machine-learning analysis and in part because of
differences in the coverage of the field in the radio and

optical and near-infrared imaging datasets.

For the machine-learning analysis, we note that

previous work has shown that SMGs are in general

at high redshift, are relatively bright in the rest-

frame near-infrared and have red colors in optical

and near-infrared wavebands (e.g., Smail et al. 2002;

Chapman et al. 2005; Hainline et al. 2009; Wang et al.
2012; Micha lowski et al. 2012; Alberts et al. 2013;

Simpson et al. 2014; Chen et al. 2016). To compare

the properties of the SMGs to the field, we use as our

(“non-SMG”) control sample of those K-band-detected

sources that are located within the primary beams of
our ALMA maps, but that are > 1.′′6 away from an

ALMA-identified SMG. In total, there are 4,658 non-

SMG K-band galaxies within the ALMA primary beam

area (a total area of 47.3 arcmin2). Among them, 799
lie within the 108 “blank-ALMA” maps.

3.1. “Blank-ALMA” maps

As we described in §2.1.2, we include the 108 “blank-
ALMA” maps in our analysis to ensure our tests accu-

rately reflect the success rate of identifying counterparts

to “typical” single-dish submillimeter sources. However,

due to the ambiguity about the submillimeter emission
from those galaxies lying in the “blank-ALMA” maps,

we first investigate the average far-infrared emission of

these “blank-ALMA” maps before we include them into

the sample of “non-SMG” galaxies used to identify the

properties that can cleanly differentiate SMGs and non-
SMGs and to construct the training set for machine-

learning.

We note that the false positive rate for the SCUBA-2

catalog (weighted by the number of sources at a given
signal to noise) is ∼ 2 percent at > 4 σ (Geach et al.

2017) meaning that we expect around ∼ 15 of our

SCUBA-2 sources to be spurious, with these sources

contributing to the 108 “blank-ALMA” maps. To test

this we stack the Herschel / SPIRE maps at the position
of all 108 “blank-ALMA” maps. We detected signifi-

cant emission with flux densities 16.4± 0.6, 16.0± 0.8

and 10.4± 1.0 mJy at 250, 350 and 500µm respectively.

Adopting the typical 850/500µm color for SMGs from
Swinbank et al. (2014) this corresponds to a typical

850µm flux of 3.8± 0.5 mJy, comparable to that which

was detected by SCUBA-2. This indicates that the

sample of “blank-ALMA” maps is dominated by real

submillimeter sources.
We divide the “blank-ALMA” maps into five bins ac-

cording to their SCUBA-2 flux density to further check

the influence of false positive rate of SCUBA-2 sources.

We stack the SPIRE maps at the position of these maps
separately and detect the emission in all SPIRE bands

in all cases, with flux densities 7–20 mJy. We also note

that stacking the SPIRE images of the faintest 10 per-

cent of the SCUBA-2 sources with “blank-ALMA” maps
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yields detections at 250 and 350µm. This confirms that

the majority of the SCUBA-2 sources that correspond

to “blank-ALMA” maps are real and that our estimate

of 2 percent false positive sources in the parent SCUBA-
2 sample is probably reasonable. The non-detection of

SMGs with ALMA in these regions may due to multi-

plicity (Hodge et al. 2013; Karim et al. 2013).

We will show results of stacking the “blank-ALMA”

maps at the position of machine-learning identified
SMGs in §4 which confirms that there are faint sub-

millimeter galaxies in these maps. Therefore, to ensure

a clear separation between SMG and non-SMG sam-

ples we do not include the K-band galaxies within the
“blank-ALMA” maps in the “non-SMG” sample when

identifying the characteristic properties of SMGs (Fig-

ure 4) or for our training set, since they may include

a disproportionate number of galaxies just below our

ALMA detection limit (as we show later).

3.2. Identifying the characteristic properties of SMGs

Having constructed clean samples of SMGs and “non-
SMGs”, we next compare the multi-wavelength proper-

ties of these two populations to identify those properties

to be used in the machine-learning analysis. We show

the distributions of redshift, absolute H-band magni-

tude, optical and near-infrared colors for ALMA SMGs
and non-SMG field galaxies in Figure 4. We also present

the results of Komolgorov-Smirnov (K-S) tests between

the two populations for each of these observables. This

figure demonstrates that photometric redshift, absolute
H-band magnitude, and near-infrared colors are partic-

ularly effective at distinguishing SMGs from non-SMG

galaxies. It is also clear from Figure 4 that those non-

SMGs and SMGs detected in bluer filters show less dif-

ference in optical and ultraviolet colors – mostly as a
result of the exclusion of the redder SMGs from these

plots (which require a detection in at least one of the two

filters used). For this reason, previous attempts to pho-

tometrically select SMG counterparts have also focused
on near-infrared color selection or optical-near-infrared

(OIR) colors (e.g., Smail et al. 1999; Frayer et al. 2004;

Yun et al. 2008; Micha lowski et al. 2012; Alberts et al.

2013; Chen et al. 2016). However, as shown in Figure 4,

although there are clear differences between the distri-
butions of SMGs and non-SMGs in many properties,

the overlap in any individual property is substantial.

Nevertheless, as we will show, the contamination from

field galaxies can be efficiently reduced by combining
optical/near-infrared colors, photometric redshift and

absolute rest-frame H-band magnitude.

The choice of which properties to use to most effi-

ciently separate SMGs from non-SMGs for the machine-

learning analysis has to balance two competing factors:

precision and completeness. We have defined the preci-

sion in § 2.3.1. Completeness is the number of recovered

ALMA SMGs over the total number of ALMA SMGs
within the overlapped region of UKIDSS and IRAC.

Since including more features in the comparison is likely

to yield a more precise separation, we start by using pho-

tometric redshift, absolute H-band magnitude (MH),

(z−K), (J−K), (K−[3.6]), and ([3.6]−[4.5]) (Figure 4).
However, this yields a completeness of only 43 percent

ALMA SMGs, which have all six of these features (as

shown in Figure 3). Hence to increase the completeness,

we therefore remove the (z − K) color which allows us
to employ 57 percent of the full sample. We note that

the precision of our identification is not affected by this

choice since the SMGs that are red in (z−K) also tend

to be red in other three near-infrared colors. In fact,

the precision of the identification increases by about 1
percent, which maybe be due to the enlarged sample

size.

Therefore, the features that we selected for our

machine-learning classification system are: photomet-
ric redshift (zphot), absolute H-band magnitude (MH),

and three near-infrared colors: (J − K), (K − [3.6]),

([3.6] − [4.5]). We find that 69 percent of the ALMA-

detected SMGs lying within the UKIDSS/IRAC foot-

print, which have K-band counterparts, have secure
measurement of all of these five properties (Figure 3).

The completeness will be increased if we use fewer

properties in our machine-learning analyses. However,

the precision of classification decrease to just ∼50 per-
cent if we only use one near-infrared color as the in-

put feature. Therefore, we select the K-band detected

galaxies, which have secure measurement of at least two

near-infrared colors to construct the training set. The

selection of photometric redshift and absolute H-band
magnitude doesn’t affect the sample size because sources

with detection in three near-infrared bands (and lim-

its/detections in the other bands) all have estimated

photometric redshifts in our K-selected sample (Hart-
ley et al. in prep.). Removing the requirement of a se-

cure detection at J-band or 4.5µm modestly increases

the fraction of ALMA SMGs with K-band counterparts

which could be used for machine-learning analysis to

76 percent. In this work, we seek to develop a more
complete and robust method of identifying counterparts

of SMGs that are bright in several bands. This will

enable us to reliably derive the physical properties of

at least a subset of the SMG population. For the rest
of SMGs that are only detected in the submillimeter

band or that have detected counterparts in just one or
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Figure 4. Histograms of different observed properties of SMGs versus non-SMG field galaxies. Non-SMGs are defined as
K-detected galaxies that are located within the ALMA primary beams but > 1.′′6 away from an ALMA-detected SMGs. The
distributions of all properties are normalized to the first property (zphot) to appreciate the difference. The lower part of each
panel shows the cumulative distribution and reports the Komolgorov-Smirnov (K-S) statistic for the corresponding properties.
The photometric redshift, absolute H-band magnitude and near-infrared colors appear to have the most diagnostic power to
separate these two populations, although all of the properties have significance level of the K-S statistic < 10−7, which means
the cumulative distribution function of SMGs is significantly different from non-SMGs. The SMGs tend to lie at higher redshift,
are brighter in the rest-frame H-band and redder in near-infrared colors. There are less distinct differences between the optical
and ultraviolet color distributions for the SMGs and non-SMGs (in part because the reddest SMGs are not included in these
plots). The final panel shows the spatial offset between the SCUBA-2 submillimeter sources position and K-band galaxies. This
shows that we cannot simply use the spatial offset from the single-dish source position to classify SMG and non-SMG because
of the large overlap between these two populations in terms of their spatial distributions.

two other bands, we can learn little about their physical

properties.

3.3. Radio+machine-learning identifications

We construct a training set that includes the ALMA

SMGs and non-SMG field galaxies with the selected

measurements in UDS. We then train the machine-

learning algorithms with these selected properties and
build classifiers that can optimally distinguish the two

different classes from the training set and hence predict

the counterparts to the SMGs from the test sample.

3.3.1. The machine-learning method

Having selected five properties that are likely to have
diagnostic power to differentiate SMGs from the non-

SMGs, we first use the SVM model to build a non-linear

classifier for optimally separating these two populations.

This is implemented by using the algorithm coded in the

scikit-learn1 Python package (Pedregosa et al. 2011).

The SVC takes a labelled training set (in this case
“SMG” versus “non-SMG”) and associated set of feature

vectors (e.g., observable colors) and attempts to build

hyperplanes that maximizes the separation between the

two classes in the n-dimensional ( in this case n = 5) fea-

ture space. Having established the hyperplane(s), new,
unlabelled test data can be presented to the trained clas-

sifier to determine which class it belongs to according to

its relative position in this five-dimensional parameter

space.
We note that the classification can not be performed

using the SVC if an object has a missing feature. This

occurs if we have only a limit on the color of (J − K)

or ([3.6] − [4.5]) due to the lack of a secure detection at

J-band or at 4.5µm. Unfortunately there are a number
of possible causes for the lack of J or 4.5µm detection

including: dust reddening, geometry, star-formation his-

1 http://scikit-learn.org
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tory and redshift. Therefore, we prefer not to predict

these missing values through the statistical imputation

algorithms (e.g., Pelckmans et al. 2005). Instead of mix-

ing the observable properties with predicted values, we
test the influence of sources with missing values using

a second machine-learning model, XGBoost, which has

capacity of performing classification with missing values.

We then train the SVM classifier through a training

set that includes ALMA SMGs and non-SMG K-band
galaxies, which have the secure measurement of five se-

lected properties within the ∼ 50 arcmin2 area covered

by our ALMA maps in UDS. In total, 334 ALMA SMGs

and 1271 non-SMGs that have secure measurements of
our five selected properties are utilised to construct the

training set.

We optimize the classifier parameters via k-fold cross-

validation (Kohavi et al. 1995). Here we use k = 5, i.e.,

we randomly divide the training set into five equally
sized “folds”. The classifier is trained on k − 1 folds

and validated on the remaining fold. We use the recov-

ery rate (also called true positive rate, TPR, recall or

sensitivity in statistics), false positive rate (FPR, also
referred to as the false alarm rate or 1−specificity), and

precision (also called positive predictive value) as the

evaluation metrics to optimize the parameters of the

SVM classifier. The recovery rate is the ratio between

the number of correctly classified SMGs and the total
number of ALMA SMGs in the data set. The FPR is

the number of objects incorrectly classified as SMGs over

the total number of non-SMGs in the data set. We de-

fined the precision in § 2.3.1, as the ratio between the
number of correctly identified SMGs and the total num-

ber of predicted SMGs by the classifier. An optimized

classifier will maximize the recovery rate and precision

while simultaneously minimizing the FPR.

SVM classifiers use a “kernel” to efficiently com-
pute the dot product between two vectors in fea-

ture space (i.e., a similarity measure) and to build

a decision function which is analogous to defining a

“decision” energy resulting from placing a kernel at
the position of the observed properties of a source

(Cristianini & Shawe-Taylor 2000). The five-fold cross-

validation shows that the most efficient kernel function

for separating SMGs from K-band detected galaxies is

the polynomial kernel, which is defined as:

k(x, x′) = (γ(x · x′) + c0)d (2)

where x and x′ represent feature vectors in the input
space, (x·x′) is their inner product, d denotes the degree

of the polynomial kernel function and c0 is a constant

coefficient which is an independent parameter in kernel

function. The other two parameters of the SVM algo-

rithms with a polynomial kernel are γ and C, where γ

represents the adjustable kernel width parameter, which

is responsible for the topology of the decision surface

and C sets the width of the margin separation different
classes of objects (e.g., Ma lek et al. 2013; Kurcz et al.

2016). The five-fold cross-validation shows that the de-

fault value of these parameters in the scikit-learn pack-

age, C = 1.0, γ = 1/n features (here n = 5), d = 3 and

c0 = 0.0, are optimized for performing the classification
in our work by SVM classifier with a polynomial kernel.

The feature selection module in the scikit-learn pack-

age can also select the best features for classification

based on the univariate statistical tests (Pedregosa et al.
2011). The univariate score is derived by Uscore =

− log(p), where p is the p-value of corresponded uni-

variate feature (Pedregosa et al. 2011). Among the five

features we selected, the best one for separating SMGs

from non-SMGs is (J−K) color with a Uscore = 891, fol-
lowed by ([3.6]− [4.5]) color with a score of 707 and then

(K − [3.6]) with a score of 695 and the absolute H-band

magnitude has a Uscore = 579. The photometric redshift

has a relatively lower univariate score of 324, however, as
we described above, including photometric redshift and

absolute H-band magnitude as the input features for

the machine-learning doesn’t affect the completeness of

our analyses but increases the recovery rate of the SVM

classifier by about 6 percent.
The sample we used for performing the SVM machine-

learning classification are K-band detected galaxies that

have secure measurement of all five selected properties.

To increase the completeness, we also include objects
that lack a secure detection at J-band, i.e., have a limit

on their (J −K) color, or lack the detection at 4.5µm,

i.e., or a limit on the ([3.6] − [4.5]) measurement. This

increase the sample size of training set from 1605 to

1832, in which 366 are ALMA SMGs and 1466 are non-
SMGs. The training set we use in our analysis is given

in Table 1.

As a test of the efficiency of the SVM classifier, we

have also applied a second machine-learning classifier
to our sample. This is XGBoost2 (Chen & Guestrin

2016), which is a scalable machine-learning system for

tree boosting. In this tree ensemble model, the input

features will be firstly divided into different “leaves”.

And then the algorithm computes the optimal weight
of each “leaf” and calculates the corresponding optimal

value, which will be used as a quality score of a tree

structure. The structure of a tree is built by a greedy

algorithm that starts from a single leaf and iteratively

2 https://github.com/dmlc/xgboost
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adds branches to the tree. Instead of enumerating all

possible tree structures, XGBoost firstly calculate a gain

of a “leaf”. If the gain of corresponded leaf is smaller

than the minimum loss reduction (γ), the branch will
not be added to the tree. One of the key problems in

tree classifiers is how to find the best split at each node

(in this case “SMG” versus “non-SMG”). XGBoost finds

the best solution among all possible split based on the

aggregated statistics according to percentiles of feature
distribution. For the missing value, XGBoost classifies

the instance into the optimal default direction which is

learnt from the data. The input properties of unlabelled

test data will be divided into the same leaves as the
training set and the final prediction will be calculated

by summing up the score in the corresponding “leaves”

of a test object (Chen & Guestrin 2016).

Similarly, we optimize the parameters of XGBoost

tree classifier via the five-fold cross-validation. Un-
like the SVM implemented in the scikit-learn package,

which directly predicts the class label of an object, the

XGBoost classifier estimates a probability of an ob-

ject being a SMG. We then also use the area-under-
the-curve (AUC) of a receiver operating characteristic

(ROC) curves (Fawcett 2004) as well as the assessment

metrics: recovery rate, precision and FPR, we used be-

fore to optimize the parameters of XGBoost classifier.

The ROC curves are constructed by comparing the re-
covery rate against the FPR, as the probability thresh-

old is varied. Typically, an AUC higher than 0.9 indi-

cates an excellent classifier (e.g., Lochner et al. 2016).

For boosting trees, we find that a learning rate η = 1.0
and a maximum number of iterations num round = 5

are enough for performing a good classification (AUC

> 0.9). The other two parameters for a binary classi-

fication are the minimum loss reduction (γ), which is

required to make a further partition on a leaf node of
the tree and the maximum depth of a tree. The five-fold

cross-validation indicates that γ = 1.0 and the maxi-

mum depth of 6, are the optimized parameters for the

XGBoost classifier. An object is classified as a SMG if
the probability ≥ 0.5.

For both machine-learning algorithms, we use a uni-

form weight for all objects and properties. We repeat the

five-fold cross-validation 100 times and calculate the me-

dian and standard deviation of each metric and present
the values of these metrics for the optimized classifiers

in Table 2.

Table 1. UDS training set for machine-learning models

Label zphot MH (J − K) (K − [3.6]) ([3.6] − [4.5])

1a 3.56 −24.59 2.35 0.73 0.50

1 2.50 −24.05 2.87 0.96 0.31

1 4.19 −24.34 ... 1.25 0.27

1 3.10 −24.22 3.18 1.16 0.60

0 0.64 −21.22 1.36 −0.14 −0.33

0 0.35 −21.34 1.46 −0.48 0.17

0 2.90 −21.91 1.49 0.11 0.15

0 0.95 −23.05 1.88 0.63 −0.18

0 0.42 −18.27 1.16 −0.68 ...

aSMGs are labeled as 1 and non-SMGs are labeled as 0;

Note—Table 1 is published in its entirety in machine-readable format.

3.3.2. Test 1: self-test

To test the efficiency of our machine-learning method,

first we carry out a “self-test”, i.e., using all K-band

galaxies within the ALMA primary beams to build a
test set. The K-band galaxies in the 108 “blank-ALMA”

maps are also included in the test sample since it is not

possible to know a-priori which submillimeter sources

will have “blank-ALMA” maps (i.e., contain no SMG

above a 4.3-σ significance cut) when we identify coun-
terparts for single-dish-detected submillimeter sources.

In total, 2033 K-band galaxies lie within the ALMA

primary beams and have secure measurements of five

selected properties, 363 of these are in “blank-ALMA”
maps. We then first utilise the training set and SVM

model to identify the likely SMGs in this test sample and

compare this to the actual catalog of ALMA-detected

SMGs in these maps.

We present the results of the “self-test” in Figure 5.
The SVC classifies 378 counterparts as “SMGs” from

the 2033 K-band-detected galaxies within the ALMA

primary beams, somewhat more than the 334 ALMA-

detected SMGs in these fields. For the 334 ALMA-
detected SMGs with all five features, 252/334 (75 per-

cent) are recovered by the SVC model. The precision

of this machine-learning method is therefore 67 percent

(252/378). We note that this is a lower-limit on the pre-

cision for the machine-learning since we consider all K-
band galaxies in the “blank-ALMA” maps as non-SMGs.

However, our stacking of far-infrared observations show

that there are faint SMGs present in the “blank-ALMA”

maps and some of machine-learning method classified
“SMGs” in the “blank-ALMA” maps will be true coun-

terparts of SMGs which are marginally too faint to be

detected by ALMA (as we show later). The results of

the five-fold cross-validation shown in Table 2 indicate
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Figure 5. The results of applying the support vector machine-learning classifier to identify SMGs from non-SMGs to the galaxies
in the UDS field, based on a training set of the full sample of ALMA-identified SMGs in AS2UDS (termed a “self-test”). We
show the distributions of near-infrared colors, photometric redshift, and absolute H-band magnitude of 2,033 K-band-detected
galaxies lying within the ALMA maps (small grey open circles). The solid points show the 334 counterparts of ALMA-detected
SMGs which have secure measurement of all five observational properties. The galaxies which are classified to be counterparts
of SMGs by the SVC are marked by blue open squares. We also mark those sources which have radio counterparts by large
green open circles. The SVC recovers 75 percent of SMGs with a precision of > 67 percent. By including radio identifications
with p ≤ 0.065, the completeness of our method reaches 85 percent with a precision of > 62 percent. As we have considered
all K-band galaxies within the “blank-ALMA” maps to be non-SMGs for this test, even though our stacking results show they
typically have submillimeter emission just below our detection limit, the recovery rate and precision we present in the plot
should be considered as lower limits.

that the precision would increase to 82 percent if we had

excluded the “blank-ALMA” maps from the analysis.

As shown in Figure 5, those galaxies that are classified

as “SMGs” by the SVM classifier, but that are not de-
tected by ALMA at > 4.3σ (typically S870µm ≥ 0.9 mJy)

have very similar properties to the ALMA-detected

SMGs, i.e., they are red in the near-infrared, at high-

redshift, and bright in the rest-frame H-band. We will
discuss the properties and the results of stacking the

ALMA maps at the position of these galaxies in §4. We

also note that the SMGs’ counterparts that are not re-

covered by the machine-learning code tend to be those

at lower redshifts, which are faint in the rest-frame H-
band or blue in their near-infrared colors.

We also highlight in Figure 5 those K-band galaxies

which have radio counterparts with p-value p ≤ 0.065.

As we described in §2.3.1, we use the p-statistic to iden-
tify radio counterparts for single-dish-detected submil-

limeter sources. For the 2033 K-band galaxies in the

UDS test sample, 235 also have > 4-σ radio detections

with p ≤ 0.065. Among these, 167/235 (71 percent) are

matched to ALMA-detected SMGs within 1.′′6. There-
fore, half of the 334 ALMA SMGs are recovered by radio

identification alone. Combining the machine-learning

classification with the radio identification, 285/334 (85

percent) of the ALMA SMGs are recovered with a pre-
cision > 62 percent. This proves that our combined ra-

dio and machine-learning method can efficiently recover

SMGs from the general population of K-band-selected

galaxies.

To increase the completeness of the self-test sample,

we also include the K-band detected galaxies that lack
a secure detection at J-band or at 4.5µm and adopt the

XGBoost machine-learning module to perform the clas-

sification. The sample size is increased to 2305 with 366

of them being ALMA-detected SMGs. The XGBoost
model identifies 409 “SMGs” from this enlarged test

sample. For the ALMA SMGs, 270/366 (74 percent) are

recovered with an precision of > 66 percent. Combin-

ing with the radio identification, 310/366 (85 percent)

of ALMA SMGs have been recovered with a precision of
> 62 percent.

We note that the performances of the two machine-

learning modules are very similar according to the five-

fold cross-validation and this self-test (Table 2). To keep
the consistence with Figure 5, we show the analyses of

the SVM classification in the following figures and use

machine-learning to refer to SVM method, unless we

explicitly state we are using XGBoost.

3.3.3. Test 2: independent test

We expect the “self–test” will provide an overly opti-

mistic indication of the success rate of our method as it
uses the same sample for both the training and testing.

For that reason we also undertake a number of indepen-

dent tests, which use distinct samples for the training

and testing.
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Table 2. Summary of machine-learning/radio combined machine-learning performances for the different tests

Method Machine-learninga Radio+Machine-learning

Test/metrics Recovery rate Precision FPRb Recovery rate Precision FPR

SVMc (77.2 ± 4.7)% (82.0 ± 4.9)% (4.7 ± 1.5)% ... ... ...

XGBoostc (76.7 ± 4.9)% (81.1 ± 4.3)% (4.6 ± 1.2)% ... ... ...

AS2UDS self-test (SVM) 75.4% 66.7% 7.4% 85.3% 62.2% 10.2%

AS2UDS self-test (XGBoost) 73.8% 66.0% 7.2% 84.7% 62.2% 9.7%

AS2UDS “half-half” test (75.1 ± 3.4)% (64.1 ± 3.5)% (8.3 ± 1.2)% (86.3 ± 2.7)% (60.7 ± 3.0)% (10.1 ± 1.9)%

12 percent AS2UDS test (75.6 ± 6.1)% (67.4 ± 7.0)% (8.3 ± 1.2)% (86.0 ± 5.0)% (63.0 ± 6.6)% (10.1 ± 1.9)%

ALESS test 61.7% 70.7% 6.5% 72.3% 65.4% 9.7%

ALESS self-test 72.3% 73.9% 6.5% 78.7% 68.5% 9.2%

aThe machine-learning refers to the SVM unless we state that we used XGBoost;

b False positive rate (FPR) which is defined as the number of objects that are incorrectly classified as SMGs over the total number of non-SMGs in
the data set;

c The results of five-fold cross-validation for the optimized machine-learning classifier.

Firstly, we divide the AS2UDS sample into indepen-

dent halves to test our method, which we will term a
“half–half” test. We randomly assign the K-band galax-

ies in half the ALMA maps to the training set and use

the galaxies within the other half of the ALMA maps

as the test sample. We then utilise this training set and

our combined radio and SVC machine-learning method
to classify the likely counterparts of SMG in the inde-

pendent test sample. We repeat this “half–half” test

100 times to estimate the scatter in the recovery rate

and precision. The median recovery rate of the com-
bined radio and machine-learning method of these tests

is 86± 3 percent with a media precision of 61± 3 percent

(Figure 6). This “half–half” test confirms the success of

our method when used to identify the counterparts of

SMGs using a training set with similar photometric cov-
erage and depth. This success rate is therefore expected

to be representative of that which will be achieved when

we apply our method to identify the SMG counterparts

in the S2COSMOS survey (Simpson et al. 2018).
The next independent test we perform is to apply

the trained SVM classifier to the independent sample

of ALMA-identified SMGs in the ECDFS field from the

ALESS survey (Hodge et al. 2013; Simpson et al. 2014).

As we described in §2.3.3, there are 323 IRAC-selected
galaxies located within the 88 ALMA primary beams.

232/323 of these galaxies have secure measurement of

the five selected properties which are used in our SVM

classification. Among these, 47/232 sources match to
ALESS MAIN sample SMGs within 1.′′5.

We show the results from applying the SVM classifier,

trained on the AS2UDS sample, to the identification of

the SMGs in ALESS in Figure 6. The recovery rate of

the machine-learning is 62 percent with a precision > 71

percent. As we have included the 19 “blank-ALMA”
maps in our test sample (which include some galaxies

classified as non-SMG, but which are actually just below

our submillimeter flux limit), we believe this precision

is a lower limit. We also match these 232 IRAC-based

galaxies with radio catalog from Miller et al. (2008).
Again, the radio identification can recover half of ALMA

SMGs with a precision of 75 percent. Hence, combin-

ing the radio identification and machine-learning classi-

fication, we recover 72 percent of ALMA SMGs with a
lower-limit on the precision of 65 percent.

We note that the recovery rate for ALESS sample

is lower than that achieved in either the “self-test” or

“half–half” tests on the AS2UDS sample. To under-

stand the cause of this we also carry out a “self-test” on
the ALESS sample (i.e., we use the ALESS SMGs and

non-SMGs as both the training and analysis samples)

and find that the recovery rate of classification increases

from 72 to 79 percent while the precision increases to
69 percent. The recovery rate of ALESS SMGs is still

lower than that of “self-test” on the AS2UDS SMGs.

It may be that the lower success rate for the ALESS

sample is simply due to small number statistics: the

number of ALMA maps in ALESS is only 12 percent
(88/716) of that in AS2UDS. We can test this using

AS2UDS, by selecting test samples of galaxies from 88

randomly selected ALMA maps from the AS2UDS sur-

vey and determining the variation in the recovery rate
and precision between these test samples. We call this

the “12 percent test” and we repeat this test 100 times

to obtain the scatter. The median recovery rate of our

combined radio and machine-learning method for a sam-
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Figure 6. The results of applying the support vector
machine-learning method to the independent samples from
the AS2UDS and ALESS surveys. The blue open half cir-
cle shows the media precision (64± 3 percent) and recovery
rate (75± 3 percent) of our machine-learning method for the
“half–half” test – this involves constructing a training set
from the galaxies in half of the ALMA maps in AS2UDS
and testing the method on an independent sample from the
other half of the ALMA maps. The filled half circle shows the
results of the combined radio and machine-learning method
for the “half–half” test. We show error bars estimated from
the variation in the derived precision and recovery rate based
on 100 bootstrap simulated “half–half” tests. We also apply
our combined radio and machine-learning method, trained
on the AS2UDS sample, to the independent ALESS sam-
ple in the ECDFS field and plot this as a filled square. We
recover 72 percent of ALESS SMGs with a precision of 65
percent, which can be compared to the success rate indi-
cated by a “self-test” on the ALESS sample (filled star). To
investigate the variation in recovery rate and precision as a
function of sample size, we also randomly select sub-samples
of 88 AS2UDS ALMA maps (12 percent of AS2UDS sample)
matching the number of ALMA maps in ALESS. We show
the results of recovery rate (86± 5 percent) and precision
(63± 7 percent) of the combined radio and machine-learning
method for this “12 percent” test sample by filled triangle,
and for just the machine-learning as a large open triangle.
The small open triangles represent the results of machine-
learning method for 100 individual sub-tests. Four of these
“12 percent” tests have a recovery rate as low as that seen
for the ALESS test sample, while the median recovery rate of
these 100 tests is same to the “self–test” of AS2UDS. These
results illustrate the success rate of our combined radio and
machine-learning method and the expected scatter in the
recovery and precision when applied to smaller samples, in-
cluding those selected from different fields from those used
for the training set.

ple of galaxies in 88 ALMA maps is 86± 5 percent with a

lower-limit on the precision of 63± 7 percent (Figure 6).

When we compare the results with the “half–half” test,

we find that the smaller sample size causes larger uncer-
tainties in the machine-learning classification. We also

note that four of these 100 tests have the recovery rate

as low as that of ALESS SMGs but with a range of

precisions. Therefore, it appears that the recovery rate

and precision as low as those seen for the ALESS test
sample are possible, just simply due to the small sam-

ple size. However, we note that there are also poten-

tial astrophysical reasons for the different success rates.

In particular, the ALESS SMGs are typically fainter at
870µm, median flux density of S870µm = 2.2 mJy com-

pared to AS2UDS SMGs, S870µm = 3.8 mJy. As shown

in Figure 7, the recovery rate of the combined radio and

machine-learning method is higher for brighter SMGs.

And we note that the beam of LABOCA/APEX, which
is the basis of ALESS, is larger than that of SCUBA-

2/JCMT used for AS2UDS, which will reduce the pre-

cision of identification of counterparts to single-dish-

detected submillimeter sources.
Thus we argue that the decrease in the recovery rate

when using the AS2UDS training set applied to the

ALESS sample is probably partly caused by the relative

faintness of the SMGs and larger beams of the single-

dish survey in the ECDFS field. The difference between
a K-selected training set in UDS and the IRAC-selected

test sample in ECDFS may also affect the results of our

method.

We also undertook these same tests but now using the
XGBoost machine-learning classifier. The two machine-

learning modules have a very similar performance on the

“half-half” and “12 percent” tests, while the XGBoost

classifier gives a marginally higher recovery rate (64 per-

cent) with a relatively lower precision (65 percent) for
the ALESS sample.

4. RESULTS AND DISCUSSION

To determine the completeness of our method for re-

covering ALMA SMGs, we first summarise in Table 2 the

three evaluation metrics: recovery rate, precision and

false positive rate, from the machine-learning classifica-

tion, and the radio combined machine-learning method
for SMGs in both the training set and test samples. We

note that only K-band galaxies within the combined

coverage of UKIDSS and IRAC have sufficient photo-

metric coverage to be suitable for the machine-learning
method. Hence, the completeness was defined as the

ratio between the number of recovered SMGs and the

total number of ALMA SMGS within this overlapped

region (§ 3.2).
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Table 3. Summary of radio-detected or machine-learning-classified & ALMA-faint galaxies

Type of ALMA maps All ALMA maps Maps with ALMA ID “Blank-ALMA” maps

SVC-classified & ALMA faint 126/607a 75/512 51/95

Radio-detected & ALMA faint 137/714 84/606 53/108

aValues report number of galaxies and the number of eligible ALMA maps available.

We also report the number of radio-detected galaxies

that are located within ALMA maps, but that do not

have a > 4.3σ ALMA detection in Table 3. We refer to

these radio sources as “radio-detected & ALMA faint”

galaxies in the following analysis since our stacking anal-
ysis shows that they are typically just below the sub-

millimeter detection limit of our ALMA maps. For the

same reason, the K-band galaxies which are classified

as “SMGs” by the SVC machine-learning, but do not
have a secure ALMA detection are termed “machine-

learning-classified & ALMA faint” galaxies. To ver-

ify that on average there is fainter submillimeter emis-

sion from galaxies within the “blank-ALMA” maps, as

suggested by their detection in the far-infrared stack-
ing analysis in §3.1, we separately study the properties

of radio-detected/machine-learning-classified & ALMA

faint galaxies within the “blank-ALMA” maps and those

maps which contain at least one ALMA-identified SMGs
and list the number of each of them in Table 3.

4.1. Incompleteness of our multi-wavelength IDs

We first investigate the completeness of our method

for recovering ALMA SMGs in the UDS. We show the
recovery rate of the combined radio and SVC machine-

learning method as a function of flux density of SCUBA-

2 detected submillimeter sources (S870µm) in Figure 7.

For the 583 AS2UDS SMGs within the overlapped re-

gion of UKIDSS and IRAC , 352/583 (60 percent) can be
recovered by the combined radio and machine-learning

method and for those submillimeter sources brighter

than 4.5 mJy at 870µm, this fraction increases to 71 per-

cent. Of the 583 ALMA-identified SMGs, 334 have se-
cure measurements of five selected properties and there-

fore qualify for the SVC machine-learning method. The

SVC successfully selected 75 percent of these ALMA

SMGs from a sample of all K-band-detected galaxies

within the ALMA primary beams. By including the ra-
dio identifications, the recovery rate increase to 85 per-

cent (285/334).

Looking at the full SMG sample from AS2UDS within

the combined UKIDSS and IRAC coverage, the radio
identification alone can recover 234/583 (40 percent) of

all ALMA-detected SMGs, and for the brighter single-

dish-detected submillimeter sources (S850µm ≥ 4.5 mJy),

the recovery rate increases to 49 percent. For the

Figure 7. The recovery rate and completeness of our com-
bined radio and SVC machine-learning methodology for iden-
tifying SMGs’ counterparts as a function of flux density of
SCUBA-2-detected submillimeter sources (S870µm). We limit
our identification of counterparts to single-dish-detected sub-
millimeter sources in the combined region of UKIDSS and
IRAC since only K-band galaxies within this coverage are
suitable for the machine-learning method. For the SMGs
which have secure measurements of the five features used
to train the SVC, our method successfully recovers 85 per-
cent of SMGs, of these 77 percent can be recovered with just
the machine-learning and this fraction increases to 81 per-
cent for those submillimeter sources brighter than 4.5 mJy
at 870µm. For the full sample of AS2UDS SMGs within the
combined UKIDSS and IRAC coverage (not just those with
the five features), 40 percent of SMGs have radio counter-
parts, and this fraction increases to 46 percent for brighter
submillimeter sources (S870µm > 4.5 mJy). Around 57 per-
cent SMGs have the five features we use and so are qualified
for our machine-learning method, and this fraction does not
depend upon their submillimeter flux. Combining the radio
identification and the machine-learning results, shows that
60 percent of ALMA-detected SMGs can be recovered and
this fraction increases to 71 percent for the brighter submil-
limeter sources.

AS2UDS SMGs that do not have secure measurement of

five properties within the overlap-region of the UKIDSS

and IRAC observations (and which we therefore can-

not apply the SVC machine-learning method to), radio
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identification recovered an additional 67 SMGs. For the

other 231/583 (40 percent) ALMA SMGs which are nei-

ther qualified for the SVC machine-learning method nor

have radio counterparts, it is infeasible to identify their
multi-wavelength counterparts. This fraction reduces to

29 percent for just those submillimeter sources brighter

than 4.5 mJy.

The purpose of this work is to construct a training

set based on a large sample of ALMA-detected SMGs
and deep ancillary data in the UDS field which can then

be used to identify counterparts to single-dish-detected

submillimeter sources from surveys of other fields which

either have not yet been observed by ALMA or cannot
be observed. Therefore, as a more representative test

we also determine the completeness and recovery rate

of our method when applied to independent test sam-

ples: to separate halves of the AS2UDS survey sample

and to the ALESS survey. For the “half–half” test on
AS2UDS, applying a training set constructed from half

the AS2UDS maps to the galaxies in the other half of

the maps, the machine-learning recovers (75± 3) percent

of SMGs with a lower limit on the precision of 64± 4
percent. When combined with the radio identifications,

(86± 3) percent of SMGs in the “half–half” AS2UDS

test are recovered with a precision > 61± 3 percent. For

the ALESS SMGs, 47/96 (49 percent) of ALESS SMGs

are qualified for the machine-learning method and 29 of
them were recovered. By including the radio identifica-

tion, we can identify counterparts for 34/47 SMGs (72

percent). The radio identification recovers another 21

ALMA-detected SMGs by using the radio catalog from
Biggs et al. (2011) (Hodge et al. 2013; Simpson et al.

2014). In terms of the full-sample of ALESS SMGs,

the combination of radio and machine-learning methods

yields identifications for 55/96 (57 percent) of the coun-

terparts to single-dish-detected submillimeter sources in
the ECDFS.

One of the limitations that causes incompleteness

in our method is the fact that SVC machine-learning

method cannot deal with missing features unless they
are artificially filled as we described in § 3.3.1. To

test the affect of this limitation, we adopted the sec-

ond machine-learning model, XGBoost, which has ca-

pacity of performing classifications with the missing val-

ues. The two machine-learning algorithms have very
similar performances as we show in Table 2. The sam-

ple size for the machine-learning analysis is enlarged by

including objects that lack J-band or 4.5µm detection.

This improve the completeness of analyses from 60 per-
cent to 64 percent. However, for the other 46 percent

AS2UDS SMGs, which are only detected in the submil-

limeter, or which have only counterparts in one or two

wavebands, the opportunities to learn more about their

properties even if they are correctly identified is limited

due to the paucity of information available on them.

4.2. Properties of ALMA-detected and ALMA-faint

radio sources

We investigate the population of radio-detected

& ALMA faint galaxies by comparing the multi-
wavelength properties of ALMA-detected and ALMA-

faint radio sources in UDS. The radio imaging covers

714/716 ALMA pointings. In total, 404 radio sources

fall inside the 714 ALMA primary beams. Among these,
259 match to ALMA SMGs within 1.′′6, hence, are

counterparts of ALMA SMGs. We define 137 radio

sources as “non-SMGs” since they are located within

the ALMA primary beams but > 2.′′6 away from ALMA

SMGs or are within the “blank-ALMA” maps (eight
radio sources lie between 1.′′6–2.′′6 from ALMA SMGs

and are excluded from this analysis as their associ-

ations are ambiguous). We show the comparison of

the multi-wavelength properties of these two samples
of submillimeter-detected/undetected radio sources in

Figure 8. We present the distribution of non-SMG ra-

dio sources lying in ALMA maps with a detected SMG

and radio sources within the “blank-ALMA” maps sepa-

rately, since the far-infrared stacking analysis shows that
there may fainter submillimeter emissions from galaxies

within the “blank-ALMA” maps (§3.1). The non-SMG

radio sources within maps with an ALMA SMG tend to

lie at lower redshift and are bluer in their near-infrared
colors than the SMGs, i.e., they have the same proper-

ties as K-band-detected non-SMGs. This also confirms

that our selected properties for the machine-learning can

efficiently separate SMGs from field galaxies. Many of

the radio sources within the “blank-ALMA” maps have
properties like SMGs, while some show the properties

of non-SMGs.

To further investigate the radio-detected, but ALMA-

undetected, galaxies in our field, we stack the primary-
beam-corrected ALMA maps at the position of these

radio sources. There are 404 radio sources located

within the ∼ 50 arcmin2 covered by our ALMA sur-

vey. Among these, 137 are defined as non-SMGs since

they do not correspond to a > 4.3σ ALMA counter-
part. We separately stack the 53 radio sources that lie

in “blank-ALMA” maps and 84 non-SMG radio sources

in maps with at least one ALMA-detected SMG. We

show the stacked results of 53/137 radio sources within
the “blank-ALMA” maps in the left panel of Figure 9.

The median flux density of the stacked ALMA images

is S870µm = (0.51 ± 0.05) mJy which is consistent with

the detection of significant far-infrared emission in the
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Figure 8. The distributions of photometric redshift and near-infrared colors for those radio sources that have submillimeter
counterparts (SMGs) versus those that are not individually detected by ALMA (non-SMGs). Of the 137 non-SMG radio sources
lying within our ALMA coverage, 53 are located in the “blank-ALMA” maps. We show the distribution of non-SMG radio
sources within those maps which contain ALMA-identified SMG (green filled region) and those radio sources within the “blank-
ALMA” maps (blue shaded region) respectively. The non-SMG radio sources lying in maps with an ALMA-detected SMG tend
to lie at lower redshift and have bluer near-infrared colors. The distributions of radio sources within the “blank-ALMA” maps
suggest that they may contain a mix of both higher-redshift, submillimeter sources and lower-redshift, non-SMGs, which is
consistent with our stacking results as we show later.

Figure 9. The results of stacking the primary-beam-
corrected ALMA maps at the position of those radio sources
that are individually undetected at 870µm with ALMA. The
left panel shows the average stacking results of the 53 ra-
dio sources which are in “blank-ALMA” maps (those with
no detected SMGs). The median peak flux density of these
galaxies is S870µm = (0.51±0.05) mJy. Contours indicate the
significance of the 870µm emission at 3, 6, 8, 10σ. The right
panel is the similar stacked emission from the 84 non-SMG
radio sources, but now lying in the maps which contain at
least one ALMA-detected SMG. The stack results confirms
that these radio sources are not submillimeter sources with
a 3σ limit of S870µm = 0.14 mJy. However, for the radio
sources within “blank-ALMA” maps, at least, some of the
radio sources are submillimeter sources, although these are
just too faint (or too diffuse) to be individually detected in
our ALMA observations.

SPIRE stacks of these maps (§3.1), indicating that most

of them correspond to real SCUBA-2 sources. We also

stack the 84 radio sources which are individually un-

detected by ALMA, but lie in a map with an ALMA-

detected SMGs. This confirms that these galaxies do
not have detectable submillimeter emission, i.e., they

are non-SMGs. Based on the fraction of SMGs and non-

SMGs in the maps with an ALMA-identified SMG, we

estimate that at least ∼ 70 percent (Figure 2) of radio
sources in the “blank-ALMA” maps have real submil-

limeter emission, although, they are too faint to be de-

tected individually in our ALMA observations.

4.3. Stacking machine-learning-classified & ALMA

faint K-band galaxies

As shown in Figure 5, the machine-learning-classified
& ALMA faint K-band galaxies have similar proper-

ties to ALMA-detected SMGs: they lie at high redshift,

they are bright in the rest-frame H-band and red in

optical/near-infrared colors.

To determine whether these galaxies are submillimeter-
emitters that lie slightly below the detection limit of our

870µm ALMA maps, we perform a stacking analysis at

their positions in the ALMA maps. In Figure 5, we

show that the machine-learning method classifies 378
“SMGs” from the 2033 K-band galaxies within the

ALMA primary beams. Among these, 252 match to

ALMA-identified SMGs. We show the stacked results

of the other 126 SVC-classified, but ALMA-undetected,

K-band galaxies in Figure 10. The median flux density
of these 126 galaxies is S870µm = (0.61 ± 0.03) mJy,

which indicates that on average these sources have sub-

millimeter emission, but are too faint (or too diffuse) to

be detected by our ALMA observations.
Among these 126 K-band galaxies, 51 of them lie in

the “blank-ALMA” maps (those without an individu-

ally detected SMG). The stacked median flux density

of these 51 galaxies is S870µm = (0.92 ± 0.05) mJy.
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Figure 10. The results of stacking the primary-beam-corrected ALMA maps at the position of K-band galaxies which are
classified as “SMG” counterparts by the machine-learning method, but which are not individually detected above > 4.3 σ
in our ALMA maps. a) The average stacking results of all 126 such galaxies. We measure a median peak flux density of
S870µm = (0.61 ± 0.03) mJy. Contours represent significance levels of 3, 6, 8, 10, 12, 14 σ at 870µm. b) The stacking results
of the 51 machine-learning-classified & ALMA faint galaxies which fall within “blank-ALMA” maps. The median peak flux
for these galaxies is S870µm = (0.92 ± 0.05) mJy. c) The averaged stacking results of the other 75 machine-learning-classified
& ALMA faint galaxies within those ALMA maps which contain a detected SMG. The median peak flux density for these
sources is S870µm = (0.42 ± 0.04) mJy. Therefore, at least, on average the stacking results confirm that these machine-learning
method-classified “SMGs” have detectable submillimeter emission at the ∼ 0.5–1 mJy level. Equally interestingly, the median
flux density of the machine-learning “SMGs” within “blank-ALMA” maps is twice that of similar “SMGs” in non-blank ALMA
maps, which confirms that the SCUBA-2 detections in these regions are likely to be real (even if no individual galaxy was
detectable with ALMA). d) The stacking results of 131 redder ((J −K) > 2.0, (K − [3.6]) > 0.5, ([3.6] − [4.5]) > 0.05), high-
redshift (zphot > 1.5), brighter (MH < −22.0 mag) K-band galaxies which are classified as “non-SMGs” by machine-learning.
The stacking result shows that, on average, there is also fainter submillimeter emission from these galaxies. However, the peak
flux density of this stacked map is S870µm = (0.30 ± 0.03) mJy which is half of the peak flux density of stacked maps at the
position of 126 machine-learning classified “SMGs” (which also do not have a > 4.3 σALMA detection). This confirms that the
machine-learning tends to pick out the brighter submillimeter galaxies.

The other 75 galaxies, those in maps with an ALMA-

identified SMG, have stacked median flux density of
S870µm = (0.42 ± 0.04) mJy (Figure 10). Therefore, the

machine-learning classified “SMGs” within the “blank-

ALMA” maps have submillimeter emission that is twice

as bright as similar galaxies in those maps that already
contain an individually-detected SMG. This confirms

our suggestion that some galaxies within the “blank-

ALMA” maps have submillimeter emission just be-

low the detection threshold of our ALMA observations.

Therefore, because of the ambiguous classification of the
sources within the “blank-ALMA” maps, we chose not

to include them when originally constructing the train-

ing sets for the machine-learning (3.3.1), as they would

have blurred the distinction between the properties of
the SMGs and non-SMGs. We also investigate the effect

on the machine-learning training by including K-band

galaxies within the “blank-ALMA” maps into the non-

SMG sample of the training set. In this case, the recov-

ery rate of SMGs based on the “self-test” decreases by
about 10 percent. The reason for this is that in this case

we are labelling some galaxies which have the same prop-

erties as counterparts of ALMA SMGs as “non-SMGs”.

We also compare the machine-learning results to that
of simple cuts on the near-infrared colors, photomet-

ric redshifts, and absolute H-band magnitudes to se-

lect the redder (((J − K) > 2.0, (K − [3.6]) > 0.5,

([3.6]− [4.5]) > 0.05)), higher-redshift (zphot > 1.5), and
brighter (MH < −22.0 mag) galaxies as probable coun-

terparts of SMGs. There are 483 K-band galaxies in

the AS2UDS test sample that meet the above criteria.

Among these, 251 are ALMA-detected SMGs. There-
fore, the recovery rate of this simple method is similar

to that of the machine-learning method (which recov-

ers 252 ALMA-detected SMGs). However, the precision

of this simple method is just 52 percent (251/483), 15

percent lower than that of the machine-learning method.
Thus while simple cuts on a small number of observables

can be used to identify probable SMG counterparts, the

contamination from non-submillimeter-bright galaxies is

significantly worse than that achieved by the machine-
learning method. In fact from the 483 redder, higher-

redshift, and brighter galaxies selected by these simple

parametric cuts, 131 are classified as “non-SMGs” by

the machine-learning method. Stacking the primary-

beam-corrected ALMA maps at the position of these
131 K-band galaxies, we find that the peak flux den-

sity of the stacked map is S870µm = (0.30 ± 0.03) mJy.

This is half of the peak flux density of the stacked maps

at the positions of the 126 machine-learning classified
“SMGs” (which also do not have an > 4.3 σ ALMA de-

tection, Figure 10). This confirms that the machine-
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learning approach is more effective than simple cuts in

terms of identifying the counterparts of brighter submil-

limeter sources.

5. CONCLUSIONS

From ALMA follow-up observations of the 716

SCUBA-2 detected submillimeter sources in the S2CLS
UKIDSS-UDS field (Stach et al. 2018a,b), we exploit a

sample of 695 submillimeter galaxies (> 4.3σ) within

608 ALMA maps. We label the other 108 ALMA

maps which do not contain a > 4.3σ ALMA SMGs
as “blank-ALMA” maps. Utilising our high-resolution

ALMA data, we first identify radio, optical, and near-

infrared counterparts to the ALMA SMGs. We define

as a “non-SMG” any radio/K-band galaxies that are

located within the primary beams of our ALMA maps
but are > 2.′′6 (radio non-SMGs) or >1.′′6 (K-band non-

SMGs) away from an ALMA-detected SMGs. Based

on the samples of ALMA SMGs and non-SMGs, we

develop a combined radio and machine-learning method
using Support Vector Classification to identify multi-

wavelength counterparts to the single-dish-detected sub-

millimeter sources. The main conclusions from our work

are as follows:

1. We identify radio counterparts to the ALMA SMGs
in the UDS. In total, there are 404 radio sources within

the primary beam coverage of our ALMA maps. Out

of 695 ALMA SMGs, 268 match to 259 radio sources

within 1.′′6. We adopt a p-value cut to identify radio
counterparts to single-dish submillimeter sources. We

consider 363 of the 404 radio sources with p < 0.065 as

counterparts to SMGs. Among them, 254 are matched

to 263 ALMA SMGs within 1.′′6. The radio identification

step can recover 37 percent of SMGs from the single-dish
survey in UDS with a precision > 70 percent.

2. We identify optical/near-infrared counterparts by

matching the ALMA SMGs to a deep K-band-detected

photometric catalog. Within the overlap region of
UKIDSS and IRAC coverage, 483 K-band galaxies

match to ALMA SMGs within 0.′′6. Therefore, ∼ 83

percent (483/583) of the ALMA SMGs in this region

have K-band counterparts. We find that the photomet-

ric redshift, absolute rest-frame H-band magnitude, and
near-infrared colors ((J−K), (K−[3.6]) and ([3.6]-[4.5]))

of these SMGs appear to provide the most diagnostic

power to differentiate SMGs from non-SMGs. We con-

struct a training set that includes ALMA SMGs and
non-SMG K-band galaxies with secure measurements

of these five selected properties. We do not include

those K-band galaxies within the “blank-ALMA” maps

in the non-SMG sample used in the training set since

our stacking results indicate that these sources are faint

submillimeter emitters.

3. We train the SVC machine-learning classifier using

a training set of SMGs and non-SMGs and then clas-
sify the sources in a test sample. We perform a “self-

test” of our machine-learning method by classifying all

of the 2033 K-band galaxies that have secure measure-

ments of the five selected properties and which within

the ALMA primary beams in the UDS. Among these,
334 are AS2UDS ALMA-detected SMGs. The machine-

learning classifies 378 K-band galaxies as the counter-

parts of SMGs with a recovery rate of 75 percent and a

precision of 67 percent. Our stacking results show that
there is faint submillimeter emission which is just below

our ALMA detection threshold from the galaxies which

are classified as “SMGs” (but are not ALMA detected)

by the SVC machine-learning method. Therefore, both

the recovery rate and precision of the machine-learning
method should be considered as the lower limits. Com-

bined with the radio identification, our method can re-

cover > 85 percent SMGs which have secure measure-

ments of five selected features with a precision of > 62
percent.

4. To test our method we use a training set con-

structed from the galaxies in a randomly selected half of

our AS2UDS ALMA maps to an independent test sam-

ple from the other half of the ALMA maps. We esti-
mate a recovery rate of 86± 3 percent and a precision of

> 61± 3 percent from this “half–half” test, confirming

the robustness of our method of identifying counterparts

for single-dish-detected submillimeter sources when us-
ing a training set from the same field. We also apply

our method from a K-detected training set in the UDS

field to the IRAC-detected galaxies in the ECDFS field

to predict counterparts to LABOCA-detected submil-

limeter sources. We use the ALMA-detected SMGs in
this field from the ALESS survey to check the recovery

rate and precision of our method. The combined ra-

dio and machine-learning method recovers 72 percent of

ALMA SMGs with a lower limit on the precision of 65
percent. We show that the decrease of recovery rate is

likely to be partly the relative faintness of the ALESS

SMGs and larger beam of APEX/LABOCA, compared

to those in the AS2UDS training set. The difference

between K-band-detected training set in the UDS field
and IRAC-detected test sample in the ECDFS field may

also affect the precision of our method. We also show

that the smaller sample size of ALESS causes increased

uncertainties in the classifications.
5. The main limitation of our method is that we miss

those SMGs that do not qualify for the machine-learning

and do not have a radio counterparts. We estimate the
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fraction of missed sources by checking the recovery rate

of ALMA SMGs. In the overlapped region of ALMA,

UKIDSS, IRAC and VLA, 60 percent of ALMA SMGs

in the UDS field are recovered by our combined radio
and machine-learning method. This fraction increases

to 71 percent for SMGs brighter than S850µm ≥ 4.5 mJy.

The completeness of recovered SMGs increases to 64

percent if we adopt a second machine-learning module,

XGBoost. This machine-learning algorithm has a very
similar performance as SVM in classifying SMGs from

K-band detected field galaxies but can deal with missing

features and so can employ a slightly large test sample

by including objects with only limits on their J-band or
4.5µm fluxes.

6. By stacking the emission in ALMA maps at the po-

sition of the machine-learning classified, but individually

ALMA-undetected, K-band galaxies we show that on

average there is faint submillimeter emission from these
galaxies. Moreover, a stack of the far-infrared Herschel

SPIRE maps at the position of the “blank-ALMA” maps

and a stack of “blank-ALMA” maps at the position of

machine-learning classified “SMGs” within these maps
demonstrate that the majority of SCUBA-2 sources are

real, although the submillimeter galaxies responsible for

these sources are either too faint and/or diffuse to be

detected by ALMA.

In summary, the combined radio and machine-learning
technique developed in this work can be used to con-

struct large samples of likely SMG counterparts from

wide-field single-dish submillimeter surveys which cur-

rently lack interferometric submillimeter follow-up, such
as the remaining fields in S2CLS (Geach et al. 2017) or

S2COSMOS (Simpson et al. 2018). These statistically

large samples will enable us to investigate science ques-

tions related to the formation of SMGs, their evolution-

ary connections with other populations, such as high-
redshift QSOs, and compact, red galaxies at z ∼ 1–3

and ultimately massive galaxies at z ∼ 0.

We publish the training set of SMG and non-SMG

sources from the AS2UDS survey as a machine-readable
catalog with this paper to allow others to apply the

machine-learning method we adopted in this work to

other fields.
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Weiß, A., Kovács, A., Coppin, K., et al. 2009, ApJ, 707,

1211

Whitaker, K. E., Kriek, M., van Dokkum, P. G., et al. 2012,

ApJ, 745, 179

Yun, M. S., Aretxaga, I., Ashby, M. L. N., et al. 2008,

MNRAS, 389, 333

Yun, M. S., Scott, K. S., Guo, Y., et al. 2012, MNRAS, 420,

957


