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ABSTRACT

Drawing from the LEGA-C dataset, we present the spectroscopic view of the stellar population

across a large volume- and mass-selected sample of galaxies at large lookback time. We measure the

4000Å break (Dn4000) and Balmer absorption line strengths (probed by Hδ) from 1019 high-quality

spectra of z = 0.6 − 1.0 galaxies with M∗ = 2 × 1010M� − 3 × 1011M�. Our analysis serves as a

first illustration of the power of high-resolution, high-S/N continuum spectroscopy at intermediate

redshifts as a qualitatively new tool to constrain galaxy formation models. The observed Dn4000-

EW(Hδ) distribution of our sample overlaps with the distribution traced by present-day galaxies, but

z ∼ 0.8 galaxies populate that locus in a fundamentally different manner. While old galaxies dominate

the present-day population at all stellar masses > 2 × 1010M�, we see a bimodal Dn4000-EW(Hδ)

distribution at z ∼ 0.8, implying a bimodal light-weighted age distribution. The light-weighted age

depends strongly on stellar mass, with the most massive galaxies > 1× 1011M� being almost all older

than 2 Gyr. At the same time we estimate that galaxies in this high mass range are only ∼ 3 Gyr

younger than their z ∼ 0.1 counterparts, at odd with pure passive evolution given a difference in

lookback time of > 5 Gyr; younger galaxies must grow to > 1011M� in the meantime, and/or small

amounts of young stars must keep the light-weighted ages young. Star-forming galaxies at z ∼ 0.8 have

stronger Hδ absorption than present-day galaxies with the same Dn4000, implying larger short-term

variations in star-formation activity.

Keywords: galaxies: evolution — galaxies: high-redshift — galaxies: stellar content

1. INTRODUCTION

Corresponding author: Po-Feng Wu

pofeng@mpia.de

The Sloan Digital Sky Survey (SDSS; York et al. 2000)

produced one of the most valuable legacy datasets for

galaxy evolution studies. From the strengths and shapes

of spectral lines, the SDSS spectra provide diagnostics

for fundamental physical properties of individual galax-

ies: ages and metal content of stellar populations, star-
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formation rates (SFRs), metallicity in the inter-stellar

medium (ISM), and internal dynamics. Furthermore,

with hundreds of thousands of spectra, the SDSS had

characterized various galactic scaling relations (Brinch-

mann et al. 2004; Tremonti et al. 2004; Gallazzi et al.

2005, to name a few). This information shaped our un-

derstanding of the formation of galaxies.

Despite its tremendous success, the SDSS is mainly

confined to the nearby Universe. The median redshift

of the SDSS spectroscopic main sample is z ∼ 0.1, which

corresponds to ∼ 1 Gyr of look-back time (Strauss et al.

2002). On the other hand, deep wide-field optical and

near infrared (NIR) imaging surveys have pushed the

census of galaxy population to z ∼ 4 (Marchesini et al.

2009; Ilbert et al. 2013; Muzzin et al. 2013). From pho-

tometric studies, we have constructed the growth history

of the stellar mass density as a function of cosmic time.

We know that ∼ 90% of stars form after z ∼ 2 and

about half of stars formed since z ∼ 1 (Rudnick et al.

2003; Muzzin et al. 2013; Madau & Dickinson 2014).

The relative abundance of quiescent and star-forming

galaxies also evolves with cosmic time. At low redshifts,

massive galaxies are mainly quiescent, while at z & 2,

star-forming galaxies become the dominant population

at all masses (Ilbert et al. 2010; Muzzin et al. 2013).

These observations show that the stellar population in

high redshift galaxies are very different from local galax-

ies. However, we have not yet understood the processes

driving the assembly of stellar masses and shaping the

star-forming properties of galaxies throughout cosmic

time.

Spectroscopic redshift surveys, such as DEEP2 (New-

man et al. 2013), zCOSMOS (Lilly et al. 2007), VVDS

(Le Fèvre et al. 2013), or VIPERS (Guzzo et al. 2014;

Garilli et al. 2014), have gathered tens of thousands of

galaxy spectra using multi-object spectrographs on 8-

10 m-class telescopes, thereby pushing the spectroscopic

census of galaxy population to z ∼ 1 and beyond. In or-

der to obtain a large number of spectra, these surveys

need to compromise on the signal-to-noise ratio or spec-

tral resolution in exchange for sample sizes. They pro-

vide a profound resource for studying the star-formation

and ISM properties through emission lines. However,

the quality of these spectra is usually not good enough

to constrain the ages and metallicities of stars in indi-

vidual galaxies through the stellar continuum. So far,

our understanding of stellar populations of galaxies at

z ∼ 1 and beyond only comes from studies with sam-

ple sizes of a few dozens, mainly massive and quiescent

galaxies (Kelson et al. 2001; Treu et al. 2005; van der

Wel et al. 2005; Jørgensen & Chiboucas 2013; van de

Sande et al. 2013; Gallazzi et al. 2014; Choi et al. 2014;

Belli et al. 2015; Onodera et al. 2015). This is far from

representative of the galaxy population at that epoch.

To achieve both the depth and sample size required for

characterizing the stellar content in the early Universe,

we carry out the Large Early Galaxy Astrophysics Cen-

sus (LEGA-C) survey (van der Wel et al. 2016). The

LEGA-C survey will obtain ∼ 3000 Ks-band-selected

spectra at z ∼ 1 with typical signal-to-noise ratio (S/N)

of 20 Å−1. The quality of the spectra allows us to char-

acterize the stellar populations of individual galaxies

and galaxies as a population, akin to what has been

achieved by the SDSS (Kauffmann et al. 2003a; Brinch-

mann et al. 2004; Gallazzi et al. 2005).

In this paper, we present measurements of two age-

sensitive absorption line indices, the equivalent width

of Hδ absorption [EW(Hδ)] and Dn4000 index, of 1019

galaxies selected from the LEGA-C survey. For a sim-

ple stellar population (SSP), the Dn4000 index increases

monotonically with time. On the other hand, the

EW(Hδ) increases rapidly in the first few hundreds Myrs

when the O- and B-type stars fade and the A-type stars

dominate the spectrum. The EW(Hδ) then decreases af-

terwards when A-type stars also fade. For a composite

stellar population, the peak strength of the Hδ absorp-

tion depends on whether the star-formation rate varies

rapidly or changes smoothly. These two spectral fea-

tures have been extensively used as diagnostics for the

ages of the stellar population and to discern recent star-

formation histories (Kauffmann et al. 2003a; Le Borgne

et al. 2006; Kauffmann 2014; Maltby et al. 2016).

In the local Universe, Kauffmann et al. (2003b)

showed that both the Dn4000 and EW(Hδ) of galaxies

exhibit bimodal distributions, suggesting a bimodality

in the light-weighted stellar ages. On average, lower-

mass galaxies have smaller Dn4000 and larger EW(Hδ),

which indicate younger stellar populations. Further-

more, for star-forming galaxies, low-mass galaxies have

stronger Hδ absorption and the scatter of EW(Hδ)

at fixed Dn4000 is larger than massive star-forming

galaxies. These features suggest that low-mass star-

forming galaxies have more bursty star-formation histo-

ries (SFHs) (Kauffmann et al. 2003a; Kauffmann 2014).

Recent spectroscopic surveys has pushed the census on

the stellar ages of galaxies to higher redshifts. Similar

to galaxies in the local Universe, the Dn4000 of galaxies

varies with the stellar mass and the bimodal distribu-

tion is in place up to z ∼ 1 (Vergani et al. 2008; Haines

et al. 2017). Studies on the EW(Hδ) is limited, target-

ing mainly on quiescent galaxies and through stacked

spectra (Siudek et al. 2017). Because of the typically

low S/N and/or low spectral resolution of high-redshift

spectroscopic surveys, the uncertainty of EW(Hδ) mea-
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surements on individual galaxies is too large and the

emission line infilling cannot be estimated, preventing

accurate constraints on recent star-formation activity.

In this paper we show that the individual LEGA-C

spectrum contains precise age information for both star-

forming and quiescent galaxies. With over 1000 galaxies,

we are able to describe the average age and the patterns

of recent star-formation activities at a look-back time

of∼ 7 Gyrs. We describe the galaxy sample and the

quality of the spectral index measurements in Section 2.

In Section 3, we present the distribution of Dn4000 and

EW(Hδ) at z ' 0.8 and the comparison to SDSS galaxies

at z ' 0.1. We discuss the implications of our results in

Section 4 and Section 5. We summarize the paper and

point out future directions in Section 6.

2. DATA AND ANALYSIS

2.1. The LEGA-C Sample at z ' 0.8

The LEGA-C survey is a 4-year survey using the Visi-

ble Multi-Object Spectrograph (VIMOS; Le Fèvre et al.

2003) mounted on the 8 m Very Large Telescope to ob-

tain rest-frame optical spectra of ∼ 3000 Ks-band se-

lected galaxies mainly at 0.6 ≤ z ≤ 1.0. Each galaxy

receives ∼ 20 hrs of integration at a spectral resolution

of R ∼ 3500. The typical continuum signal-to-noise ra-

tio (S/N) is 20 Å−1

This study is based on the first two years of data

of the LEGA-C survey. The primary sample of the

LEGA-C survey consists of those galaxies brighter than

Ks = 20.7 − 7.5 × log((1 + z)/1.8) and with redshifts

0.6 ≤ z ≤ 1.0 (van der Wel et al. 2016). From the

LEGA-C primary sample, we then select galaxies with

stellar mass 10.3 ≤ log(M∗/M�) ≤ 11.5 to make a mass-

limited sample. The lower mass limit ensures that the

Ks-band magnitude-limit of the LEGA-C survey does

not introduce a strong bias against red galaxies at the

low mass end. We also require that the spectra cover

the wavelength range for measuring the Dn4000 and

EW(Hδ). We then exclude galaxies detected in X-ray,

whose spectra are usually contaminated by the AGN.

There are in total 1050 galaxies fulfill the redshift and

stellar mass criteria. We then also require a minimum

median S/N = 5Å−1 between rest-frame wavelength

4000 Å and 4300 Å. This S/N cut exclude 31 galax-

ies, ∼ 3% of the sample. The spectral indices of these

low-S/N spectra are mostly unphysical, therefore, we

decide to exclude them from the sample. The major-

ity of these galaxies are bright enough in Ks-band to

be included in the survey, but have red colors and faint

optical magnitudes, resulting in low S/N spectra. They

tend to have axis ratios < 0.5. These galaxies are likely

edge-on galaxies whose optical light is attenuated due

to the inclination. We have also included these galaxies

and repeated our analysis in the paper, the results are

not affected. The final sample contains 1019 galaxies

from the 1550 galaxies.

We derive galaxy stellar masses by fitting the observed

multi-wavelength spectral energy distributions (SEDs)

from the UltraVISTA catalog (Muzzin et al. 2013) us-

ing the FAST code (Kriek et al. 2009). The SED tem-

plates are from the Bruzual & Charlot (2003) stellar

population synthesis models with exponentially declin-

ing star-formation rates. We adopt a Chabrier (2003)

initial mass function (IMF) and the Calzetti et al. (2000)

dust extinction law. The SFRs are estimated from the

UV and IR luminosities, following the prescription of

Whitaker et al. (2012). The distribution of redshifts

and stellar masses of the sample is shown in Figure 1.

Every galaxy has a volume completeness correction

that consists of the traditional Vmax correction and a

survey completeness correction. Both corrections are

well understood, as the Ks-band flux is the only factor

that determines the probability that a galaxy is part

of the LEGA-C survey (van der Wel et al. 2016). We

refer to the forthcoming Data Release paper for details

(Straatman et al. in prep). We apply the completeness

correction when comparing the LEGA-C sample to the

completeness-corrected SDSS sample (see Section 2.3).

2.2. Measuring Dn4000 and EW(Hδ) from LEGA-C

spectra

In this paper we measure two stellar absorption line

indices: the 4000Å break, Dn4000, and the equivalent

width of the Balmer absorption, EW(Hδ). To separate

the stellar continuum from the ionized gas emission, we

model the observed spectrum using the Penalized Pixel-

Fitting (pPXF) method (Cappellari & Emsellem 2004)

with the updated Python routines (Cappellari 2017).

Each galaxy spectrum is fit by a combination of two

templates representing the stellar and the gas emission.

The stellar template is a linear, optimal non-negative

combination of Vazdekis (1999) SSP models with the

Medium resolution INT Library of Empirical Spectra

(MILES; Sánchez-Blázquez et al. 2006) empirical stellar

spectra and Girardi et al. (2000) isochrones. All emis-

sion lines are fit as a single kinematic component, i.e.,

with the same velocity and velocity dispersion, but the

strength of each line is a free parameter. We refer to

Bezanson et al. (2017) for the detailed fitting process

and Fig. 2 for an example.

We adopt the definition of the Dn4000 in Balogh

et al. (1999) and the Hδa index in Worthey & Ottaviani

(1997) as our EW(Hδ). Both indices are measured from

emission-line-subtracted spectra. The emission line sub-
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Figure 1. The distributions of redshifts and stellar masses of the LEGA-C and the SDSS sample. Upper panels: The histograms
of the LEGA-C sample. Lower panels: The distributions of the LEGA-C (blue) and SDSS (white) samples with the completeness
correction (see Section 2).

traction has little effect on Dn4000 but is important for

EW(Hδ). Our visual inspection suggests that the fit cap-

tures weak emission line infilling well. Using 25 galaxies

observed twice by the LEGA-C survey, we estimate the

uncertainty on our emission line strength measurements.

We estimate the typical uncertainties of our final Dn4000

and EW(Hδ) measurements to be ∼ 0.03 and ∼ 0.4Å,

respectively.

In Fig. 3a, we show three galaxies with SSP ages of

∼ 1− 2 Gyrs (see Section 3). Our spectra clearly differ-

entiate the evolution of the Hδ strength within ∼ 1 Gyrs.

Fig. 3b shows three galaxies with older SSP ages of

∼ 2− 3 Gyrs. The different shapes of the continua can

be easily identified by visual inspection and quantified

by the Dn4000 index.

2.3. SDSS sample at z ∼ 0.1

From the SDSS DR7 (Abazajian et al. 2009), we first

select galaxies from a narrow redshift range 0.04 ≤
z ≤ 0.14 (zmedian ' 0.1) and mass range 10.3 ≤
log(M∗/M�) ≤ 11.5. We further require a redshift-

dependent lower mass limit, log(M∗/M�) ≥ 10.6+2.28×
log(z/0.1), the mass completeness limit of the SDSS

spectroscopic sample (Chang et al. 2015).

The SDSS spectra are obtained with a fiber spectro-

graph, while the LEGA-C spectra is obtained with slits.

To make a proper comparison between the two datasets,

we first require a g-band fiber aperture covering fraction

of ≥ 20% from the comparison of the 3-arcsecond fiber

flux with the total flux to mitigate the bias that fiber

spectra sample only the central part of galaxies. We

then apply a statistical correction on the Dn4000 and

EW(Hδ) to account for the age gradients of galaxies.

We describe the derivation of the statistical correction

in Section 2.4.

We adopt the stellar mass and spectral measure-

ments by the MPA/JHU group (Kauffmann et al. 2003a;

Brinchmann et al. 2004; Salim et al. 2007). The stellar

masses are estimated by SED fitting, using templates

constructed from the Bruzual & Charlot (2003) popula-

tion synthesis code, assuming a range of star-formation

histories and metallicities with a Chabrier (2003) IMF.

The basic assumptions are the same as the templates we

used for deriving the stellar masses of LEGA-C galaxies.

For the Dn4000 and EW(Hδ), we adopt the measure-

ment on the data after subtracting emission lines. To ac-

count for volume incompleteness, each galaxy is assigned

a weight 1/Vmax, where Vmax is the maximum volume

for which the galaxy would be included in the sample

based on our redshift-dependent lower mass limit. The

redshift and mass distributions of the SDSS sample are

shown in Fig. 1.

2.4. Estimating the bias on indices introduced by SDSS

fibers
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Figure 2. An example of the LEGA-C spectrum and the best-fit model. The gray line in the upper panel shows the observed
spectrum near 4000Å. The stellar continuum (red) and the line emission (blue) are fit simultaneously. Important spectral lines
are labeled with vertical dashed lines. The green line is the best-fit model (continuum plus line emission). We then subtract
the best-fit emission line model from the observed spectrum (middle panel). The EW(Hδ) and Dn4000 are measured from the
emission-line-subtracted spectrum. The bottom panel shows the uncertainty.

The SDSS fiber spectra probe the central part of

galaxies. Recent IFU surveys have shown that galaxies

in the local Universe have on average negative age gradi-

ents, i.e., galaxy outskirts are younger than galaxy cen-

ter (González Delgado et al. 2015; Goddard et al. 2017;

Wang et al. 2017). Any redshift evolution is therefore

exacerbated if we use SDSS fiber spectra to create a low-

redshift baseline sample, as those measurements will be

biased toward old ages. In the local Universe, age gradi-

ents depend on galaxy morphological types, where early-

type galaxies have only mild age gradients but late-type

galaxies, especially Sa and Sb galaxies, exhibit strong

age gradients (González Delgado et al. 2015; Goddard

et al. 2017). Estimating the aperture bias by galaxy

types is thus necessary.

Wang et al. (2017) measured the Dn4000 and EW(Hδ)

as a function of the effective radius (Re) out to 1.5Re
for galaxies in the Mapping Nearby Galaxies at APO

(MaNGA, Bundy et al. 2015) survey. They reported the

profiles of Dn4000 and EW(Hδ) as a function of stellar

masses and star-formation properties of galaxies (Fig. 8

in Wang et al. 2017).

Briefly, Wang et al. (2017) presented the index gradi-

ents of three types of galaxies, categorized by the equiv-

alent width of Hα emission and Dn4000: ’star-forming’,

’partially quenched’, and ’totally quenched’. The ra-

dial profiles of indices of ’star-forming’ and ’partially

quenched’ galaxies are similar, therefore, we take the

average of the two and refer them as ’star-forming’ here-

after.

We use the index gradients to derive a statistical cor-

rection for our SDSS comparison sample. Using the

slopes of Dn4000 and EW(Hδ) presented in Figure 8

of Wang et al. (2017), we calculate the difference be-

tween indices measured from the integrated light within

0.5Re and 1.5Re as the correction to be applied to the

SDSS fiber measurements. Assuming a Sérsic n = 4

light profile, the two radii enclose ∼ 30% and ∼ 60% of

total light, similar to the median fiber and slit covering

fraction of our SDSS and LEGA-C sample, respectively.

We apply the correction of ’totally quenched’ galax-

ies to galaxies with weak Hα emission (EW(Hα) >

−1Å), and the correction of ’star-forming’ galaxies to

the rest. This scheme is motivated by Fig. 11 of Wang

et al. (2017), which showed that the integrated EW(Hα)



6 Wu et al.

0.0

0.5

1.0

1.5

F
λ
/F

λ
,4

0
0
0
Å

observed spectrum

(a)ID: 121595
ID: 107853
ID: 209377

3800 3850 3900 3950 4000 4050 4100 4150 4200
Restframe wavelength (Å)

0.0

0.5

1.0

1.5

F
λ
/F

λ
,4

0
0
0Å

emission line subtracted

EW(Hδ)Dn4000 = 1.50±0.02, EW(Hδ) = 1.7±0.3 Å
Dn4000 = 1.45±0.02, EW(Hδ) = 3.8±0.4 Å
Dn4000 = 1.49±0.01, EW(Hδ) = 5.5±0.2 Å

0.0

0.5

1.0

1.5

F
λ
/
F
λ
,4

00
0Å

observed spectrum

(b)ID: 206501
ID: 211401
ID: 132394

3800 3850 3900 3950 4000 4050 4100 4150 4200
Restframe wavelength (Å)

0.0

0.5

1.0

1.5

F
λ
/
F
λ
,4

00
0Å

emission line subtracted
Dn4000

Dn4000 = 1.59±0.03, EW(Hδ) = 0.8±0.7 Å
Dn4000 = 1.73±0.02, EW(Hδ) = 0.3±0.3 Å
Dn4000 = 1.80±0.02, EW(Hδ) = 0.5±0.3 Å

Figure 3. The comparison among the spectra of galaxies with different ages. (a) Three galaxies with comparable Dn4000 but
different EW(Hδ). The SSP-equivalent ages of the three galaxies are between ∼ 1−2 Gyrs. (b) Three galaxies with comparable
EW(Hδ) but different Dn4000. The SSP-equivalent ages of the three galaxies are between ∼ 2− 3 Gyrs. The shapes of spectra
of different stellar ages can be clearly identified through visual inspection. For each spectrum, the flux is normalized relative
to the flux around 4000Å. The upper and the bottom panel shows spectra before and after subtracting emission line models,
respectively. The dashed-dotted lines and the solid lines above the spectra show the bands for measuring the EW(Hδ). The
dashed lines in the bottom indicate the wavelength ranges of the blue and the red bands for computing the Dn4000. Narrow
spikes in the spectra are due to imperfect sky subtraction at the locations of bright atmospheric emission lines.
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measured from the SDSS fiber spectra.

within 0.5Re serves as a reasonable demarcation be-

tween the two types of galaxies.

In summary, the correction to the SDSS sample de-

pends on stellar mass and the equivalent width of Hα

emission in the fiber (Fig. 4). The correction is larger for

’star-forming’ galaxies than ’quiescent’ galaxies, qualita-

tively consistent with the expectation from galaxy mor-

phological types (González Delgado et al. 2015; Goddard

et al. 2017). We implicitly assume that all SDSS galax-

ies have a Sérsic n = 4 light profile and the fiber covers

out to 0.5Re then correct the indices to the values as

they were observed out to 1.5Re. Different Sérsic pro-

files have little effect; the correction differs by ∼ 20%

between n = 1 and n = 6. A more accurate comparison

would involve creating mock slit spectra from MaNGA

or other local IFU surveys like CALIFA (Sánchez et al.

2012; Walcher et al. 2014) and SAMI (Bryant et al.

2015), mimicking the observing condition and aperture

size of the LEGA-C survey (Bezanson et al. 2017, sub-

mitted).

The corrected Dn4000 is smaller and EW(Hδ) is larger
than the measured values (Fig. 4). Galaxies shift along

the locus on the Dn4000-EW(Hδ) plane in Section 3. We

also repeat the analysis in this paper using uncorrected

indices. The inferred stellar age in Section 5 becomes

< 1 Gyr older. Our main conclusion in the paper does

not change.

3. THE 4000 Å BREAK AND BALMER

ABSORPTION STRENGTH OF GALAXIES AT

Z ∼ 0.8

About half of stars in the present-day Universe formed

since z ∼ 1 (Dickinson et al. 2003; Rudnick et al. 2003;

Ilbert et al. 2010; Muzzin et al. 2013). The stellar pop-

ulation at z ∼ 0.8 is thus expected to be very different

from galaxies in the local Universe. With over 1000

high-quality spectra, we are able to construct the distri-

butions of Dn4000, EW(Hδ), and for the first time, the

distribution of galaxies on the Dn4000–EW(Hδ) plane

at ∼ 7 Gyrs look-back time. In this section, we present

the inventories of stars in galaxies of the same stellar

masses at two epochs.

3.1. The distribution of Dn4000 and EW(Hδ) as a

function of stellar masses

Fig. 5 shows the histogram of Dn4000 and EW(Hδ) of

the completeness-corrected LEGA-C and SDSS samples

in each stellar mass bin. The median, 68th, and 95th

percentiles of the distribution are listed in Table 1.

At z ∼ 0.8, the Dn4000 distribution depends on the

stellar mass. The median Dn4000 shifts from 1.43 in

the low mass bin to 1.68 in the high mass bin. The dis-

tribution of Dn4000 is narrower in the high mass bin,

as quantified by the 16th and 84th percentiles. There

is only a small fraction of galaxies with Dn4000 < 1.4,

which is the median value of the low mass bin. This

result is in broad agreement with the distribution mea-

sured from the VVDS and the VIPERS survey based

on lower S/N spectra (Vergani et al. 2008; Haines et al.

2017). At z ∼ 0.1, the Dn4000 distribution depends less

on mass, with peaks at Dn4000 ' 1.8 at all masses. The

major difference is that the tail to low Dn4000 vanishes,

as can be seen from the 2.5 and 16 percentiles in Table 1.

Fig. 5b shows for the first time the distribution of

EW(Hδ) at z ∼ 0.8. Similar to the distribution of

Dn4000, the EW(Hδ) distribution at z ∼ 0.8 also de-

pends strongly on the stellar mass. In the low mass

bin, the EW(Hδ) distributes around EW(Hδ) ' 4Å. In

the high mass bin, the median shifts to EW(Hδ) ' 0Å

and there are very few galaxies with EW(Hδ) > 4Å. On

the other hand, the distributions at z ∼ 0.1 center at

EW(Hδ) ' −1Å for all masses. Similarly, the tail to the

younger end (larger EW(Hδ)) vanishes in the high mass

bin.

3.2. The Dn4000–EW(Hδ) plane

Fig. 6 shows LEGA-C galaxies on the Dn4000–

EW(Hδ) plane. Overall, galaxies at z ∼ 0.8 are located

along a diagonal sequence on the Dn4000–EW(Hδ)

plane. As the stellar mass increases, the population

moves from the top-left towards the bottom-right corner

of the panel, i.e., larger Dn4000 and smaller EW(Hδ),

indicating an overall older stellar population in more

massive galaxies (Kauffmann et al. 2003b; Siudek et al.

2017).

In Fig. 6a, galaxies are color-coded according to the

specific star-formation rate (sSFR), the SFR divided

by the stellar mass. The sSFR and Dn4000 are cor-

related such that galaxies with high sSFRs also have

small Dn4000. The correlation between the sSFR and
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Table 1. Dn4000 and EW(Hδ) Distributions as a Function of Stellar Mass

LEGA-C, z ∼ 0.8

log(M∗/M�) Dn4000 EW(Hδ)

2.5% 16% 50% 84% 97.5% 2.5% 16% 50% 84% 97.5%

10.3 < log(M∗/M�) < 10.7 1.16 1.26 1.43 1.66 1.83 -0.93 0.68 3.69 5.88 7.86

10.7 < log(M∗/M�) < 11.1 1.21 1.36 1.56 1.73 1.88 -1.19 -0.12 1.86 4.70 7.25

11.1 < log(M∗/M�) < 11.5 1.35 1.53 1.68 1.78 1.94 -1.49 -0.74 0.45 2.60 5.66

All 1.17 1.30 1.49 1.71 1.86 -1.16 0.23 2.94 5.52 7.76

SDSS, z ∼ 0.1

log(M∗/M�) Dn4000 EW(Hδ)

2.5% 16% 50% 84% 97.5% 2.5% 16% 50% 84% 97.5%

10.3 < log(M∗/M�) < 10.7 1.21 1.41 1.76 1.90 2.00 -3.14 -1.97 -0.44 3.12 5.69

10.7 < log(M∗/M�) < 11.1 1.26 1.53 1.80 1.91 2.01 -3.19 -2.07 -0.82 1.77 5.00

11.1 < log(M∗/M�) < 11.5 1.39 1.70 1.86 1.94 2.02 -3.00 -2.11 -1.17 0.33 3.48

All 1.23 1.46 1.78 1.91 2.00 -3.15 -2.02 -0.66 2.55 5.47
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Figure 5. Distribution of Dn4000 and EW(Hδ) of LEGA-C (blue, z ∼ 0.8) and SDSS (white, z ∼ 0.1) samples with completeness
correction. Each panel shows galaxies in 0.4 dex stellar mass bins. The errorbars indicate the 16th, 50th, and 84th percentiles
of the distributions. At fixed stellar mass, LEGA-C galaxies have on average smaller Dn4000 and larger EW(Hδ), indicating
younger populations. At z ∼ 0.8, the distributions of both Dn4000 and EW(Hδ) depend on stellar mass.
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Figure 6. The distribution of LEGA-C and SDSS galaxies on the Dn4000–EW(Hδ) plane in different stellar mass bins. (a)
The colors dots are individual LEGA-C galaxies, color-coded by sSFR. Galaxies with sSFR < 10−10 yr−1 are in red. The
Dn4000 correlates with sSFR, where high sSFR galaxies have small Dn4000. The cross in the bottom-left corner is the typical
uncertainty. The EW(Hδ) uncertainty is smaller than the EW(Hδ) distribution at Dn4000, therefore, our measurements resolve
the recent star-formation histories of individual galaxies through EW(Hδ). (b) The same LEGA-C galaxies as in panel (a),
color-coded by the star-forming/quiescent classification in the UVJ two-color scheme. The star-forming galaxies and quiescent
galaxies are roughly separated by Dn4000 ' 1.55 and EW(Hδ) ' 2Å. (c) Distributions of completeness-corrected LEGA-C
and SDSS samples. Blue filled contours represent the LEGA-C sample and the dashed contours represent the SDSS sample.
Contours levels are at the 0.05, 0.20, 0.40, and 0.80 times the peak value for each sample. The LEGA-C sample exhibit a
bimodal distribution on the Dn4000–EW(Hδ) plane, while the SDSS sample does not. (d) An illustration of how galaxy evolves
on the Dn4000–EW(Hδ) plane with different SFH. Four SFH are shown (top to bottom): SSP, 0.5, 2, and 4 Gyr τ decaying
time. All models are with solar metallicity. The models with 2 and 4 Gyr τ decaying time occupy almost the same loci. The
contour levels are the same as in panel (c).
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the Dn4000 is qualitatively similar to the correlation

found for galaxies at z ∼ 0.1 (Brinchmann et al. 2004).

Fig. 6b shows again the LEGA-C galaxies. Star-

forming galaxies and quiescent galaxies in the UVJ

two-color classification scheme (Muzzin et al. 2013)

are plotted in blue and red, respectively. The star-

forming/quiescent classification based on the UVJ col-

ors and sSFR, adopting sSFR = 10−10 yr−1 as de-

marcation, are in good agreement. On the Dn4000–

EW(Hδ) plane, the star-forming and quiescent galax-

ies can be roughly separated by Dn4000 ' 1.55 and/or

EW(Hδ) ' 2Å.

Fig. 6c shows the density contours of LEGA-C

galaxies with the completeness correction in blue and

SDSS galaxies in black. For galaxies with 10.3 <

log(M∗/M�) < 11.5, the LEGA-C distribution is

double-peaked, with a valley located at Dn4000 ' 1.55

and EW(Hδ) ' 2Å, corresponding to the separation

between star-forming and quiescent galaxies. This bi-

modal distribution of galaxies on the Dn4000–EW(Hδ)

plane is also present in the nearby Universe with similar

demarcation (Kauffmann et al. 2003b).

Galaxies at z ∼ 0.8 and z ∼ 0.1 occupy a qualitatively

similar locus on the Dn4000-EW(Hδ) plane but populate

this locus differently. At z ∼ 0.1, the distribution peaks

at Dn4000 ∼ 1.9 and EW(Hδ) ∼ −2Å. On the contrary,

quiescent galaxies at z ∼ 0.8 have on average smaller

Dn4000 and larger EW(Hδ). Also, there are very few

galaxies at z ∼ 0.8 with Dn4000 > 1.9 or EW(Hδ) <

−2Å. Furthermore, Fig. 6c shows that the distribution of

LEGA-C galaxies extends to higher EW(Hδ), especially

for galaxies with small Dn4000. Previous studies based

on Principal Component Analysis of spectra also suggest

a higher fraction of galaxies with strong Hδ at higher

redshifts (Wild et al. 2009; Rowlands et al. 2018).

4. THE STRONG Hδ ABSORPTION AT Z ∼ 0.8

Fig. 7 shows the distribution of EW(Hδ) in four nar-

row Dn4000 bins for galaxies with Dn4000 ≤ 1.5, where

star-forming galaxies dominate the population. Except

for the lowest Dn4000 bin, the EW(Hδ) distributions

of galaxies z ∼ 0.8 extend to larger EW(Hδ) and are

on average broader. We fit a Gaussian profile to each

EW(Hδ) distribution and list the best-fit parameters in

Table 2.

The strong Balmer absorption lines in star-forming

galaxies are usually interpreted as evidence for a rapidly

declining star-formation rate in the last . 1 Gyr. An

illustration is shown in Fig. 6d. We plot Bruzual &

Charlot (2003) evolutionary tracks of 4 different star-

formation histories with solar metallicity: an SSP and 3

exponential-decay SFHs with 0.5, 2, and 4 Gyr decaying

time τ . The strength of the Hδ absorption increases

after the O- and B-type stars fade away and the A-type

stars dominate the optical spectrum. Rapidly declining

SFHs, e.g., SSP or τ = 0.5 Gyr, will elevate the EW(Hδ)

at Dn4000 . 1.5 for several hundred Myrs comparing to

a more gently declining SFH. Thus, the higher EW(Hδ)

suggests that the SFRs of z ∼ 0.8 star-forming galaxies

change more rapidly than in low-z star-forming galaxies.

Based on observed evolution of the star-formation

main sequence (MS), Leitner (2012) derived analytic for-

mulae for average SFHs of star-forming galaxies. We can

thus calculate the average declining rate of the SFRs

in the 1 Gyr period prior to z ∼ 0.8 and z ∼ 0.1.

Adopting the parametrized MS evolution ψ(M∗, z) ∝
M1+β

∗ (1 + z)α with α = 3.45 and β = −0.35 (Karim

et al. 2011, see also Damen et al. (2009); Oliver et al.

(2010); Fumagalli et al. (2012)) and the analytic formu-

lae in Leitner (2012), the average SFHs of star-forming

galaxies in the 1 Gyr period prior to z ∼ 0.8 and z ∼ 0.1

can be approximated by the τ model with τ ' 2 Gyrs

and τ ' 4 Gyrs, respectively.

Exponentially declining SFH models with τ ' 2 Gyr

and τ ' 4 Gyr occupy very similar loci on the Dn4000–

EW(Hδ) plane, therefore, the increase in average SFR

from z ∼ 0.1 to z ∼ 0.8 does not explain the stronger Hδ

absorption at z ∼ 0.8. Instead, the strong Hδ absorp-

tion implies that the SFRs of individual galaxies have

stronger time variabilities than the average evolution of

the star-formation MS at z ∼ 0.8. A star-forming galaxy

may experience starburst events while it stays in the MS

or oscillate up and down within the MS in a timescale

shorter than the evolution of average sSFR. Galaxies

with recent rapidly declining SFHs will have stronger

Balmer absorptions and deviate from the main locus on

the Dn4000-EW(Hδ) plane for a few hundred Myrs, cre-

ate an excess at large EW(Hδ) and the EW(Hδ) distri-

bution becomes broader (Kauffmann et al. 2003a).

The high variability SFRs in star-formation galaxies

at higher redshifts is also suggested by the cosmological

zoom-in simulations. The Feedback in Realistic Envi-

ronments (FIRE; Hopkins et al. 2014) showed that all

galaxies at high redshifts (z & 1) have bursty SFHs,

while massive, ∼ L∗ galaxies settle to steady SFHs at

z . 1 (Sparre et al. 2017; Orr et al. 2017; Faucher-

Giguère 2018). The strong time variability of SFRs

have been observed in local dwarf galaxies by compar-

ing SFRs derived from Hα and FUV emission, which

trace different timescales (Weisz et al. 2012). The large

scatter of the EW(Hδ) in low-mass galaxies at z ∼ 0.1

is another sign of burty SFHs (Kauffmann et al. 2003a;

Kauffmann 2014). At z ∼ 0.7, Guo et al. (2016) used Hβ

and FUV and found that the SFRs of low-mass galax-
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Figure 7. The distribution of EW(Hδ) at fixed Dn4000. The white and blue histograms show the distribution of completeness-
corrected SDSS and LEGA-C galaxies, respectively. The gray dashed line and the blue solid lines are the best-fit Gaussian to
each histogram. The central EW(Hδ) and the dispersion of the best-fit Gaussians are labeled as the errorbars. The best-fit
Gaussian parameters are listed in Table 2. At Dn4000 > 1.2, more galaxies at z ∼ 0.8 have large EW(Hδ) and the distribution
is also wider. The difference between the EW(Hδ) distribution implies that the SFR of star-forming galaxies at z ∼ 0.8 changes
more rapidly than star-forming galaxies at z ∼ 0.1.

ies (M∗ < 109.5M�) have stronger time variability than

galaxies at low redshifts. This redshift evolution is in

qualitative agreement with numerical simulations. Our

result provides an evidence that the SFRs of higher mass

galaxies at z ∼ 0.8 also vary at a short timescale. The

rapidly changing SFRs left imprints on the stellar pop-

ulation through the Hδ absorption, which lasts for a

longer timescale of a few hundred Myrs and the differ-

ence between z ∼ 0.8 and z ∼ 0.1 is visible on the

Dn4000-EW(Hδ) plane.

Except for SFHs, the spectral indices also depend on

the stellar metallicity and are affected by dust extinc-

tion. Based on the stellar mass-stellar metallicity rela-

tion presented by Gallazzi et al. (2014), a solar metallic-

ity is in general a good approximation for both z ∼ 0.8

and z ∼ 0.1 populations. Only galaxies M∗ . 1010.5M�
at z ∼ 0.8 appear to be slightly sub-solar, with an aver-

age log(Z∗/Z�) = −0.21 (Gallazzi et al. 2014). We have

compared the loci of the Bruzual & Charlot (2003) mod-

els of solar and sub-solar metallicity (Z∗/Z� = 0.4) with

various SFHs on the Dn4000-EW(Hδ) plane. We find

that the sub-solar metallicity does not produce larger

EW(Hδ) at fixed Dn4000.

Alternatively, dust can alter both the Dn4000 and

EW(Hδ). The Dn4000, which is essentially a color in-

dex, will in general be larger when the dust attenuation

is more severe (MacArthur 2005). The effect of dust

on the EW(Hδ) depends on the dust geometry. The

EW(Hδ) will be boosted up if the dust is distributed

mainly around the birth clouds of young stars. In this

case, the featureless continuum of hot stars is obscured

and the Balmer absorption feature from intermediate

age stars becomes more prominent. On the other hand,

the diffuse interstellar dust has little effect on the mea-

sured EW(Hδ) (MacArthur 2005).

If the difference in the EW(Hδ) distribution is entirely

due to the dust attenuation, galaxies at z ∼ 0.8 must

have a birth cloud V-band attenuation AV ' 2 magni-

tudes larger than that of SDSS galaxies to elevate the

EW(Hδ) by ∼1Å (MacArthur 2005). On the other hand,

if we artificially decrease the Dn4000 of LEGA-C galax-

ies by ∼ 0.07, the EW(Hδ) distributions at fixed Dn4000

match that of the SDSS galaxies better. This shift in

Dn4000 indicates that LEGA-C galaxies have AV more

than 1.5 magnitudes larger than SDSS galaxies, assum-

ing the Cardelli et al. (1989) extinction law. In either

case, such a heavy extinction is inconsistent with pre-

vious studies, which found that the dust extinction of

star-forming galaxies at z ∼ 0.8 is similar to or only

slightly higher than galaxies at z ∼ 0.1 of the same
stellar mass (Garn & Best 2010; Garn et al. 2010; Za-

hid et al. 2013; Leslie et al. 2018, see also Sobral et al.

(2012); Domı́nguez et al. (2013); Kashino et al. (2013)

for results up to z ∼ 1.6).

In summary, the large EW(Hδ) can only be explained

by a rapidly changing SFR at z ∼ 0.8. Changes in

metallicity and dust attenuation cannot explain it. A

full analysis incorporating star-formation history, metal-

licity, and dust requires using more spectral features,

i.e., full-spectral fitting and/or combing with multi-

wavelength photometry (e.g., Pacifici et al. 2012, 2013).

We will present the star-formation histories of individ-

ual galaxies at z ∼ 0.8 constructed from the LEGA-C

spectra in forthcoming papers (Chauke et al., submit-

ted; Pacifici et al. in prep.).
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Table 2. Best-fit Gaussian Parameters for the EW(Hδ) distribution

LEGA-C, z ∼ 0.8 SDSS, z ∼ 0.1

EW(Hδ)0 σ(Hδ) A EW(Hδ)0 σ(Hδ) A

1.1 < Dn4000 ≤ 1.2 5.23±0.13 0.97±0.13 0.17±0.02 5.46±0.02 0.97±0.02 0.19±0.00

1.2 < Dn4000 ≤ 1.3 5.34±0.11 1.62±0.11 0.12±0.01 4.81±0.02 1.06±0.02 0.18±0.00

1.3 < Dn4000 ≤ 1.4 4.36±0.10 1.26±0.10 0.14±0.01 3.70±0.02 1.18±0.02 0.16±0.00

1.4 < Dn4000 ≤ 1.5 3.73±0.17 1.68±0.17 0.12±0.01 2.52±0.01 1.27±0.01 0.15±0.00

The Gaussian model is A× exp[−(EW (Hδ)− EW (Hδ)0)2/(2× σ(Hδ)2)]

5. STELLAR AGES FROM DN4000 AND EW(Hδ)

The Dn4000 and EW(Hδ) are commonly used as

proxies for the light-weighted stellar ages. Fig. 8a

shows again the distribution of LEGA-C galaxies on the

Dn4000-EW(Hδ) plane, together with Bruzual & Char-

lot (2003) evolutionary tracks of SSP and exponential-

decline SFHs with τ =0.5, 2, and 4 Gyr with solar metal-

licity. For the stellar mass range discussed in this paper,

a solar metallicity population is a good approximation

for galaxies at both z ∼ 0.1 and z ∼ 0.8 (Gallazzi et al.

2014).

Motivated by the evolutionary tracks in Fig. 8a, we

combine Dn4000 and EW(Hδ) to construct the distribu-

tion of galaxies along the ridge line of the diagonal dis-

tribution on the Dn4000–EW(Hδ) plane. We compute a

spectral age index as 15×Dn4000−EW(Hδ)−20.5. This

new index represents for the distribution on the Dn4000–

EW(Hδ) plane projected onto the ridge of LEGA-C con-

tours (the black line in Fig. 8a). The ridge of LEGA-C

contours tracks closely to the τ = 2 Gyr model as well

as the SSP model for old populations. If galaxies evolve

as the model SFHs, galaxies of the same age have the

same spectral age index. A larger index corresponds

to an older stellar population. The constant −20.5 is
chosen so that the zero-point falls between the bimodal

distribution (e.g., Dn4000 ' 1.55 and EW(Hδ) ' 2Å;

Kauffmann et al. 2003b; Haines et al. 2017). The spec-

tral age indices can be translated into ages according to

Fig. 8b based on different SFHs.

Fig. 8c shows the distributions of the spectral age in-

dices of the SDSS and the LEGA-C sample. Fig. 8d,e,

and f show the distributions in each stellar mass bins.

The corresponding SSP ages are labeled on the top of the

panels. The median, 68th, and 95th percentiles of the

distribution are listed in Table 3. We note that the SSP

ages should be interpreted with care. For star-forming

galaxies, a single number of a luminosity-weighted age

may not be a good quantitative age diagnostic (Zibetti

et al. 2017, Chauke et al., submitted). On the other

hand, for very old stellar populations, the spectral in-

dices evolve little with time (see Fig. 8b), thus, not sen-

sitive to stellar ages. Also, we assume a solar metallic-

ity for all galaxies. The age would be underestimated

if galaxies have sub-solar metallicities and vise versa.

The spectral age indices and the corresponding SSP ages

are slightly affected by the dust extinction. Assuming

a typical extinction at z ∼ 1, we estimate a < 0.5 Gyr

effect on the SSP ages for both star-forming and quies-

cent galaxies. For comparing the age difference between

z ∼ 0.8 and z ∼ 0.1, the effect of dust is likely min-

imum because of the similar amount of extinction in

both populations (Sobral et al. 2012; Domı́nguez et al.

2013; Kashino et al. 2013; Gallazzi et al. 2014).

At z ∼ 0.8, the age increases with stellar mass. The

mass-dependent stellar ages supports the downsizing

galaxy formation, where more massive galaxies formed

in earlier times (Thomas et al. 2010) and this archaeo-

logical trend is already in place in the first half of the

cosmic time. The oldest galaxies with M∗ > 1011M�
are ∼ 5 Gyr old, indicating that they form at z & 3.

The formation redshifts are similar to those z > 3 quies-

cent galaxies spectroscopically-confirmed recently (Go-

bat et al. 2012; Straatman et al. 2015; Glazebrook et al.

2017).

The distribution of the spectral age indices of the

LEGA-C sample is double-peaked: the distribution of

the spectral age index is better fit by a 2-Gaussian model

than a single Gaussian model. Using the F-test, we find

that for the entire population and the two lowest mass

bins, the null hypothesis that an 1-Gaussian model pro-

vides no better fit than a 2-Gaussian model is rejected

with probability of 0.01. On the other hand, the highest

mass bin does not show as a clear bimodal distribution

as in other mass bins. The overall bimodal spectral age

indice distribution implies a bimodal light-weighted stel-

lar age distribution. Fig. 9 shows the fraction of galaxies

with old stellar population (spectral age index > 0) as

a function of stellar masses. At z ∼ 0.8, the fraction

of the old population changes sharply with the stellar

mass, from . 40% at the lowest mass bins to > 80% at

the highest mass bin. At log(M∗/M�) ' 10.8, the old

and the young population have similar number densities.
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Figure 8. (a) Distribution of LEGA-C galaxies on the Dn4000–EW(Hδ) plane, overplotted with model evolutionary tracks.
The contours are the same as in Fig. 6c and model tracks are the same as in Fig. 6d. The τ = 2 Gyr and the τ = 4 Gyr models
overlap with each other. Time steps of 0.5, 1, 2, 4, 8, and 12 Gyrs are marked with black circle, gray squares, and white triangles
for the SSP, τ = 0.5 Gyr, and τ = 2 Gyr models, respectively. The black line indicates the ridge line of the distribution. (b) The
spectral age index as a function of time with different SFHs. The definition of the age spectral index is explained in Section 5.
The red, green, and blue curves represent for SSP, τ = 0.5 Gyr, and τ = 2 Gyr SFHs, respectively. The same time steps as in
panel (a) are labeled. (c,d,e,f) The distribution of the spectral age index of LEGA-C galaxies (blue) and SDSS galaxies (white).
Galaxies with older stellar populations have larger indices. The SSP ages are labeled on the top of each panel, assuming a solar
metallicity. The solid curves are the best-fit two-Gaussian models of the LEGA-C sample. The errorbars indicate the 16th,
50th, and 84th percentiles of the distributions.

This result is in broad agreement with several previous

studies which classify galaxies using either broadband

colors (Bundy et al. 2006; Pozzetti et al. 2010; David-

zon et al. 2013; Muzzin et al. 2013) or Dn4000 (Vergani

et al. 2008; Haines et al. 2017).

Using the SSP age inferred from the spectral age in-

dex, we find that the massive galaxies (log(M∗/M�) >

11.1) at z ∼ 0.8 are on average ∼ 3 Gyr younger than

massive galaxies at z ∼ 0.1. The difference of galaxy

ages is smaller than the age difference of the Universe

between the two epochs (∼ 5.5 Gyr). Pure passive evo-

lution of the massive galaxies at z ∼ 0.8 cannot repro-

duce the massive galaxy population at z ∼ 0.1. The

current analysis assumes that massive galaxies at the

two epochs both have solar metallicities. The conclusion

does not change if we instead use super-solar metallic-

ities (Jørgensen et al. 2017). Furthermore, if massive

galaxies at lower redshifts are slightly more metal-rich,

as suggested by previous studies (Choi et al. 2014; Gal-

lazzi et al. 2014), the inferred age difference will be even

smaller, further strengthening our result. The conclu-

sion is consistent with Gallazzi et al. (2014), who de-

rived ages using both SSP and composite stellar popula-

tions. Massive galaxies at high-redshifts need to acquire

younger stars from either star-formation or merging with

other younger galaxies. Alternatively, lower mass galax-

ies at z ∼ 0.8 need to grow their stellar masses and

become young massive galaxies at z ∼ 0.1 (Bell et al.

2004; Gallazzi et al. 2014). Obtaining the stellar matal-

licities of both star-forming and quiescent galaxies will

help to constrain the evolutionary routes (Choi et al.

2014; Gallazzi et al. 2014).
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Table 3. Spectral Age Index Distributions as a Function of Stellar Mass

LEGA-C, z ∼ 0.8

log(M∗/M�) Index

2.5% 16% 50% 84% 97.5%

10.3 < log(M∗/M�) < 10.7 -9.3 -7.1 -2.9 3.7 7.2

10.7 < log(M∗/M�) < 11.1 -8.4 -4.8 1.1 5.5 8.4

11.1 < log(M∗/M�) < 11.5 -5.1 -0.1 4.1 6.7 9.2

All -9.1 -6.2 -1.1 4.8 7.9

SDSS, z ∼ 0.1

log(M∗/M�) Index

2.5% 16% 50% 84% 97.5%

10.3 < log(M∗/M�) < 10.7 -7.7 -2.4 6.5 9.7 11.7

10.7 < log(M∗/M�) < 11.1 -6.3 0.8 7.4 10.0 11.9

11.1 < log(M∗/M�) < 11.5 -2.8 5.0 8.6 10.5 12.1

All -7.3 -1.1 7.1 9.9 11.8

10.5 11.0 11.5
log(M ∗ /M¯ )
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Figure 9. The relative abundance of the old galaxy popula-
tions as a function of stellar masses. The LEGA-C samples
are shown by filled circles. The SDSS samples are shown
by filled triangles. The uncertainties are smaller than the
symbols. At z ∼ 0.8, the relative abundance of the old pop-
ulation depends on the stellar mass, from . 40% to & 80%
among three mass bins. On the other hand, at z ∼ 0.1,
galaxies belong mostly to the old population at all masses
discussed in this paper.

6. CONCLUSION AND FUTURE WORK

We measure the Dn4000 and EW(Hδ) of 1019 galax-

ies at 0.6 ≤ z ≤ 1.0 with 10.3 ≤ log(M∗/M�) ≤ 11.5

using the first two years of data of the LEGA-C survey.

With a typical S/N of ∼20 Å−1 and a spectral resolu-

tion R ' 3500, we can separate the absorption features

of the stellar continuum from the emission lines from

the ISM, accurately quantifying the stellar population

in both star-forming and quiescent galaxies. We show

the distributions of Dn4000 and EW(Hδ) as a function

of stellar mass and for the first time, where galaxies at

z ∼ 0.8 are located on the Dn4000-EW(Hδ) plane for

both individual galaxies and galaxies as a population.

At z ∼ 0.8, galaxies exhibit a bimodal distribu-

tion on the Dn4000–EW(Hδ) plane. The star-forming

and quiescent populations can be roughly separated by

Dn4000 = 1.55 and EW(Hδ) = 2Å as in the local Uni-

verse. The majority of galaxies with log(M∗/M�) .
10.7 are star-forming galaxies and populate the upper-

left corner on the Dn4000–EW(Hδ) plane. As the

stellar mass increases, galaxies have on average larger

Dn4000 and smaller EW(Hδ), indicating a progressively

older stellar population. At log(M∗/M�) & 11.1, most

galaxies have already moved onto the red sequence at

z ∼ 0.8 and occupy mainly the lower-right corner on the

Dn4000–EW(Hδ) plane.

Using Dn4000 and EW(Hδ) as age indicators, we find

that at z ∼ 0.8, more massive galaxies have older stel-

lar populations than less massive ones, confirming the

downsizing galaxy formation scenario. The oldest mas-

sive galaxies at z ∼ 0.8 are consistent with forming at

z & 3.

The ages of galaxies at z ∼ 0.8 and z ∼ 0.1 are incon-

sistent with a passive evolution scenario even for massive

galaxies. Massive galaxies at z ∼ 0.8 need acquire young

stars from either star-formation in galaxies and/or merg-

ing with other young galaxies, or lower mass galaxies at

z ∼ 0.8 need grow masses and become younger massive

galaxies at z ∼ 0.1.

At fixed Dn4000, star-forming galaxies at z ∼ 0.8 have

on average stronger Hδ absorption and the distribution
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of EW(Hδ) is wider than galaxies at z ∼ 0.1. This fea-

ture indicates that the SFR in star-forming galaxies at

z ∼ 0.8 vary rapidly. The SFRs of individual galaxies

change in a time scale shorter than the average evolu-

tion of the star-formation main sequence. Star-forming

galaxies at z ∼ 0.8 may experience starburst events more

often and/or oscillate up and down within the main se-

quence.

We will derive the stellar ages of individual galaxies

using all available spectral features, taking into account

the effects of metallicity, dust attenuation, and complex

SFHs (Gallazzi et al. 2014). We have carried out full

spectral fitting to reconstruct the SFHs of individual

galaxies (Chauke et al. 2017, submitted). These stellar

age estimates of galaxies at ∼ 7 Gyr lookback time will

provide new constraints on galaxy formation models.

Based on observations made with ESO Telescopes at

the La Silla Paranal Observatory under programme ID

194-A.2005 (The LEGA-C Public Spectroscopy Survey).
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