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ABSTRACT

Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap
between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime
targets for searching planets using direct imaging instruments, like VLT/SPHERE.
Aims. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in
the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast
direct imaging, during the SHINE GTO. Positions of the inner and outer belts were estimated by SED fitting of the infrared excesses or, when
available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such
non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses,
eccentricities and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with
SPHERE.
Methods. The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone
depends on the mass ratio between the planet and the star, on the semi-major axis and on the eccentricity of the planet and it can be estimated
analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behaviour and then selected the
best formula for estimating the planet physical and dynamical properties required to open the observed gap. We then apply the formalism to the
case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular
orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp,ap), derived
from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE.
Results. For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such hypothesis since in most cases
this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single
planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi
planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for
the perturbing planets which would remain undetected by our SPHERE observations. Also the case of two equal-mass planets on eccentric orbits
is of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our
results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets
possibly of low mass and on an eccentric orbits whose sizes are below the present detection limits.

Key words. Methods: analytical, data analysis, observational - Techniques: high angular resolution, image processing - Planetary systems -
Kuiper belt - Planet-disk interactions

1. Introduction

Debris disks are optically thin, almost gas-free dusty disks ob-
served around a significant fraction of main-sequence stars (20-
30%, depending on the spectral type, see Matthews et al. 2014)
older than about 10 Myr. Since the circumstellar dust is short-
lived, the very existence of these disks is considered as an evi-

? Based on observations collected at Paranal Observatory, ESO
(Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865 and 198.C-
0209

dence that dust-producing planetesimals are still present in ma-
ture systems, in which planets have formed- or failed to form a
long time ago (Krivov 2010; Moro-Martin 2012; Wyatt 2008).
It is inferred that these planetesimals orbit their host star from a
few to tens or hundreds of AU, similarly to the Asteroid (∼ 2.5
AU) and Kuiper belts (∼ 30 AU), continually supplying fresh
dust through mutual collisions.
Systems that harbor debris disks have been previously investi-
gated with high-contrast imaging instruments in order to infer a
correlation between the presence of planets and second gener-
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ation disks. The first study in this direction was performed by
Apai et al. (2008) focused on the search of massive giant planets
in the inner cavities of 8 debris disks with VLT/NACO. Addi-
tional works followed like, for example, the NICI (Wahhaj et al.
2013), the SEEDS (Janson et al. 2013) statistical study of plan-
ets in systems with debris disks and the more recent VLT/NaCo
survey performed with the Apodizing Phase Plate on six sys-
tems with holey debris disks (Meshkat et al. 2015). However,
in all these studies single-component and multi-components de-
bris disks were mixed up and the authors did not perform a
systematic analysis on putative planetary architectures possibly
matching observations. Similar and more detailed analysis can
be found for young and nearby stars with massive debris disks
such as Vega, Fomalhaut and ε Eri (Janson et al. 2015) or β Pic
(Lagrange et al. 2010).
In this context, the main aim of this work was to analyze systems
harboring a debris disk composed of two belts, somewhat sim-
ilar to our Solar System: a warm Asteroid-like belt in the inner
part of the system and a cold Kuiper-like belt farther out from
the star. The gap between the two belts is assumed to be almost
free from planetesimals and grains. In order to explain the exis-
tence of this empty space, the most straightforward assumption
is to assume the presence of one or more planets orbiting the
star between the two belts (Kanagawa et al. 2016; Su et al. 2015;
Kennedy & Wyatt 2014; Schüppler et al. 2016; Shannon et al.
2016).
The hypothesis of a devoid gap may not always be correct. In-
deed, dust grains which populate such region may be too faint to
be detectable with spatially resolved images and/or from SED
fitting of infrared excesses. This is for example the case for
HD131835, that seems to have a very faint component (barely
visible from SPHERE images) between the two main belts (Feldt
et al. 2016). In such cases the hypothesis of no free dynamical
space between planets that we will adopt in Section 6 could be
relaxed and smaller planets, very close to the inner and outer
belts respectively, could be the responsible for the disk’s archi-
tecture. However, these kind of scenarios introduce degeneracies
that cannot be validated with current observation whereas a dy-
namically full system is described by a univocal set of parame-
ters that we can promptly compare with our data.
In this paper we follow the assumption of planets as responsible
for gaps which appears to be the most simple and appealing in-
terpretation for double belts. We explore different configurations
in which one or more planets are evolving on stable orbits within
the two belts with separations which are just above their stabil-
ity limit (packed planetary systems) and test the implications of
adopting different values of mass and orbital eccentricity. We ac-
knowledge that other dynamical mechanisms may be at play pos-
sibly leading to more complex scenarios characterized by further
rearrangement of the planets architecture. Even if planet–planet
scattering in most cases cause the disruption of the planetesi-
mal belts during the chaotic phase (Marzari 2014), more gentle
evolutions may occur like that invoked for the solar system. In
this case, as described by Levison et al. (2008), the scattering of
Neptune by Jupiter and the subsequent outward migration of the
outer planet by planetesimal scattering lead to a configuration
in which the planets have larger separations compared to that
predicted only from dynamical stability. Even if we do not con-
template these more complex systems, our model gives an idea
of the minimum requirements in terms of mass and orbital ec-
centricity for a system of planets to carve the observed double–
belts. Even more exotic scenarios may be envisioned in which
a planet near to the observed belt would have scattered inward
a large planetesimal which would have subsequently impacted

a planet causing the formation of a great amount of dust (Kral
et al. 2015). However, according to Geiler & Krivov (2017), in
the vast majority of debris disks, which include also many of
the systems analyzed in this paper, the warm infrared excess is
compatible with a natural dynamical evolution of a primordial
asteroid-like belt (see Section 2). The possibility that a recent
energetic event is responsible for the inner belt appears to be re-
mote as a general explanation for the stars in our sample.
One of the most famous systems with double debris belts is
HR8799 (Su et al. 2009). Around the central star and in the
gap between the belts, four giant planets were observed each of
which has a mass in the range [5, 10] MJ (Marois et al. 2008,
2010a; Zurlo et al. 2016) and there is room also for a fifth planet
(Booth et al. 2016). This system suggests that multi-planetary
and packed architectures may be common in extrasolar systems.
Another interesting system is HD95086 that harbors a debris
disk divided into two components and has a known planets that
orbits between the belts. The planet has a mass of ∼ 5 MJ and
was detected at a distance of ∼ 56 AU (Rameau et al. 2013),
close to the inner edge of the outer belt at 61 AU. Since the
distance between the belts is quite large, the detected planet is
unlikely to be the only responsible for the entire gap and multi-
planetary architecture may be invoked (Su et al. 2015).
HR8799, HD95086 and other similar systems seem to point to
some correlations between planets and double components disks
and a more systematic study of such systems is the main goal
of this paper. However, up to now very few giant planets were
found orbiting far from their stars, even with the help of the
most powerful direct imaging instruments such as SPHERE or
GPI (Bowler 2016). For this reason, in the hypothesis, that the
presence of one or more planets are responsible for the gap in
double debris belts systems, we have to estimate the dynamical
and physical properties of these potentially undetected objects.
We analyze in the following a sample of systems having debis
disks with two distinct components determined by fitting the
spectral energy distribution (SED) from Spitzer Telescope data
(coupled with previous flux measurements) and observed also
with the SPHERE instrument that performs high contrast direct
imaging searching for giant exoplanets. The two belts architec-
ture and their radial location obtained by Chen et al. (2014) was
also confirmed in the vast majority of cases by Geiler & Krivov
(2017) in a further analysis. In our analysis of these double belts
we assume that the gap between the two belts is due to the pres-
ence of one, two or three planets in circular or eccentric or-
bits. In each case we compare the model predictions in terms
of masses, eccentricities and semi-major axis of the planets with
the SPHERE instrument detection limits to test their observabil-
ity. In this way we can put stringent constraints on the potential
planetary system responsible for each double belt. This kind of
study was already applied at HIP67497 and published in Bon-
nefoy et al. (2017).
Further analysis involves the time needed for planets to dig the
gap. In Shannon et al. (2016) they find a relation between the
typical time scales, tclear, for the creation of the gap and the num-
bers of planets, N, between the belts as well as their masses: for
a given system’s age they can thus obtain the minimum masses
of planets that could have carved out the gap as well as their
typical number. Such information is particularly interesting for
young systems because in these cases we can put a lower limit
on the number of planets that orbit in the gap. We will not take
into account this aspect in this paper since our main purpose
is to present a dynamical method but we will include it in fur-
ther statistical studies. Other studies, like the one published by
Nesvold & Kuchner (2015), directly link the width of the dust-
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devoid zone (chaotic zone) around the orbit of the planet with the
age of the system. From such analysis emerges that the resulting
gap for a given planet may be wider than expected from classical
calculations of the chaotic zone (Wisdom 1980; Mustill & Wyatt
2012), or, equivalently, observed gaps may be carved by smaller
planets. However, these results are valid only for ages ≤ 107 yrs
and, since very few systems in this paper are that young, we will
not take into account the time dependence in chaotic zones equa-
tions.
In Section 2 we illustrate how the targets were chosen; in Section
3 we characterize the edges of the inner and outer components
of the disks; in Section 4 we describe the technical character-
istics of the SPHERE instrument and the observations and data
reduction procedures; in Section 5 and 6 we present the analysis
performed for the case of one planet, and two or three planets,
respectively; in Section 7 we study more deeply some individ-
ual systems of the sample; in Section 8, finally, we provide our
conclusions.

2. Selection of the targets

The first step of this work is to choose the targets of interest.
For this purpose, we use the published catalog of Chen et al.
(2014) (from now on C14) in which they have calibrated the
spectra of 571 stars looking for excesses in the infrared from
5.5 µm to 35 µm (from the Spitzer survey) and when available
(for 473 systems) they also used the MIPS 24 µm and/or 70
µm photometry to calibrate and better constrain the SEDs of
each target. These systems cover a wide range of spectral type
(from B9 to K5, corresponding to stellar masses from 0.5 M� to
5.5 M�) and ages (from 10 Myr to 1 Gyr) with the majority of
targets within 200 pc from the Sun.
In Chen et al. (2014), the fluxes for all 571 sources were
measured in two bands, one at 8.5 − 13 µm to search for weak
10 µm silicate emission and another at 30 − 34 µm to search
for long wavelengths excess of cold grains. Then, the excesses
of SEDs were modeled using zero, one and two blackbodies
because debris disks spectra typically do not have strong
spectral features and blackbody modeling provides typical dust
temperatures. We select amongst the entire sample only systems
with two distinct black-body temperatures, as obtained by Chen
et al. (2014).
SED fitting alone suffers from degeneracies and in some cases
systems classified as double belts can also be fitted as singles
belt changing belt width, grains properties, etc. However, in
Geiler & Krivov (2017), the sample of 333 double belt systems
of C14 was reanalyzed to investigate the effective presence
of an inner component. In order to perform their analysis,
they excluded 108 systems for different reasons (systems with
temperature of black-body T1,BB ≤ 30K and/or T2,BB ∼ 500K;
systems for which one of the two components was too faint with
respect to the other or for which the two components had similar
temperatures; systems for which the fractional luminosity of the
cold component was less than 4 × 10−6) and they ended up with
225 systems that they considered to be reliable two-component
disks. They concluded that of these 225 stars, 220 are compat-
ible with the hypothesis of a two-component disk, thus 98%
of the objects of their sample. Furthermore, they pointed out
that the warm infrared excesses for the great majority of the
systems are compatible with a natural dynamical evolution of
inner primordial belts. The remaining 2% of the warm excesses
are too luminous and may be created by other mechanisms, for
example by transport of dust grains from the outer belt to the
inner regions (Kral et al. 2017b).

The 108 discarded systems are not listed in Geiler & Krivov
(2017) and we cannot fully crosscheck all of them with the
ones in our sample. However, two out of three exclusion criteria
(temperature and fractional luminosity) can be replicated just
using parameters obtained by Chen et al. (2014). This results
in 79 objects not suitable for their analysis and between them
only HD71155, β Leo and HD188228 are in our sample. We
cannot crosscheck the last 29 discarded systems but, since they
are a minority of objects, we can apply our analysis with good
confidence.
Since the gap between belts typically lies at tens of AU from the
central star the most suitable planet hunting technique to detect
planets in this area is direct imaging. Thus, we crosschecked
this restricted selection of objects of the C14 with the list of
targets of the SHINE GTO survey observed with SPHERE
up to February 2017 (see Section 4). A couple of targets with
unconfirmed candidates within the belts are removed from
the sample as the interpretation of these systems will heavily
depend on the status of these objects. We end up with a sample
of 35 main-sequence young stars (t ≤ 600 Myr) in a wide
range of spectral types, within 150 pc from the Sun. Stellar
properties are listed in Table 1. We adopted Gaia parallaxes
(Lindegren et al. 2016), when available, or Hipparcos distances
as derived by van Leeuwen (2007). Masses were taken from
C14 (no error given) while luminosities have been scaled to be
consistent with the adopted distances. The only exception is
HD106906 that was discovered to be a close binary system after
the C14 publication and for which we used the mass as given by
Lagrange et al., submitted. Ages, instead, were obtained using
the method described in Section 4.2.

3. Characterization of gaps in the disks

For each of the systems listed in Table 2, temperatures of the
grains in the two belts, T1,BB and T2,BB, were available from
C14. Then, we obtain the blackbody radii of the two belts (Wyatt
2008) using the equations

Ri,BB =

(
278K
Ti,BB

)2( L∗
L�

)0.5

AU, (1)

with i = 1, 2.
However, if the grains do not behave like perfect blackbodies
a third component, the size of dust particles, must be taken
into account. Indeed, now the same SED could be produced
by smaller grains further out or larger particles closer to the
star. Therefore, in order to break this degeneracy, we searched
in literature for debris disks in our sample that have been
previously spatially resolved using direct imaging. In fact, from
direct imaging data many peculiar features are clearly visible
and sculptured edges are often well constrained. We found
19 resolved objects and used positions of the edges as given
by images of the disks (see Appendix B). We note, however,
that usually disks resolved at longer wavelengths are much
less constrained than the ones with images in the near IR or
in scattered light and only estimations of the positions of the
edges are possible. Moreover, images obtained in near IR and
visible wavelengths usually have higher angular resolutions.
This is not the case for ALMA that works at sub-millimeter
wavelengths using interferometric measurements with resulting
high angular resolutions. For these reasons, we preferred for a
given system images of the disks at shorter wavelengths and/or,
when available, ALMA’s data.

Article number, page 3 of 22



A&A proofs: manuscript no. draft

Table 1. Stellar parameters for directly imaged systems with SPHERE. For each star we show spectral type, mass (in solar mass units), luminosity
(in solar luminosity units), age and distance.

Name Spec Type M∗/M� L∗/L� Age Dist
(Myr) (pc)

HD1466 F8 1.1 1.6 45+5
−10 42.9±0.4 a

HD3003 A0 2.1 18.2 45+5
−10 45.5±0.4 b

HD15115 F2 1.3 3.9 45+5
−10 48.2±1 a

HD30447 F3 1.3 3.9 42+8
−7 80.3±1.6 a

HD35114 F6 1.2 2.3 42+8
−7 47.4±0.5 a

ζ Lep A2 1.9 21.6 300±180 21.6±0.1 b

HD43989 F9 1.1 1.6 45+5
−10 51.2±0.8 a

HD61005 G8 0.9 0.7 50+20
−10 36.7±0.4 a

HD71155 A0 2.4 40.5 260±75 37.5±0.3 b

HD75416 B8 3 106.5 11±3 95±1.4 b

HD84075 G2 1.1 1.4 50+20
−10 62.9 ±0.9 a

HD95086 A8 1.6 8 16±5 83.8±1.9 a

β Leo A3 1.9 14.5 50+20
−10 11±0.1 b

HD106906 F5 2.7 c 6.8 16±5 102.8±2.5 a

HD107301 B9 2.4 42.6 16±5 93.9±3 b

HR4796 A0 2.3 26.8 10±3 72.8±1.7 b

ρ Vir A0 1.9 15.9 100±80 36.3±0.3 b

HD122705 A2 1.8 12.3 17±5 112.7±9.3 b

HD131835 A2 1.9 15.8 17±5 145.6±8.5 a

HD133803 A9 1.6 6.2 17±5 111.8±3.3 a

β Cir A3 2 18.5 400±140 30.6±0.2 b

HD140840 B9 2.3 37.4 17±5 165±10.4 a

HD141378 A5 1.9 17 380±190 55.6±2.1 a

π Ara A5 1 13.7 600±220 44.6±0.5 b

HD174429 G9 1 1.6 24±5 51.5±2.6 b

HD178253 A2 2.2 31 380±90 38.4±0.4 b

η Tel A0 2.2 21.3 24±5 48.2±0.5 b

HD181327 F6 1.3 3 24±5 48.6±1.1 a

HD188228 A0 2.3 26.6 50+20
−10 32.2±0.2 b

ρ Aql A2 2.1 21.6 350±150 46±0.5 b

HD202917 G7 0.9 0.8 45+5
−10 47.6±0.5 a

HD206893 F5 1.3 3 250+450
−200 40.7±0.4 a

HR8799 A5 1.5 8 42+8
−7 40.4±1 a

HD219482 F6 1 2.3 400+200
−150 20.5±0.1 b

HD220825 A0 2.1 22.9 149+31
−49 47.1±0.6 b

a Gaia parallaxes (Lindegren et al. 2016);
b Hipparcos parallaxes (van Leeuwen 2007);
c Mass of the star from Bonavita et al. (2016).

For all the other undetected disks by direct imaging, we applied
the correction factor Γ to the black-body radius of the outer
belt which depends on a power law of the luminosity of the
star expressed in solar luminosity (Pawellek & Krivov 2015).
More details on the Γ coefficient are given in Appendix A. We

indicate with R2 in Table 2 the more reliable disk radii obtained
multiplying R2,BB by Γ.
The new radii that we obtain need a further correction to be
suitable for our purposes. Indeed, they refer to the mid-radius
of the planetesimal belt, since we predict that the greater part of
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the dust is produced there, and do not represent the inner edge
of the disk that is what we are looking for in our analysis. Such
error should be greater with increasing distance of the belt from
the star. Indeed, we expect that the farther the disk is placed the
wider it is due to the weaker influence of the central star and to
effects like Poynting-Robertson and radiation pressure (Krivov
2010; Moro-Martin 2012). Thus, starting from data of resolved
disks (see Table B.1) we adopt a typical value of ∆R/R2 = 0.2,
where ∆R = R2 − d2 is the difference between the estimated
position of the outer belt and the inner edge of the disk. Such
value for the relative width of the outer disk is also supported
by other systems that are not in our sample as, for example, ε
Eridani for which ∆R = 0.17 (Booth et al. 2017) or as the Solar
System itself for which ∆R = 0.18 for the Kuiper belt (Gladman
et al. 2001). Estimated corrected radii and inner edges for each
disk can be found in Table 2 in columns 6 (R2) and 7 (d2).
Following the same arguments of Geiler & Krivov (2017), we
do not apply the Γ correction to the inner component since it
differs significantly with respect to the outer one having, for
example, quite different sizes distribution and composition of
grains. However, for the inner belts results from black-body
analysis should be more precise as confirmed in the few cases
in which the inner component was resolved (Moerchen et al.
2010). Moreover, in systems with radial velocity planets we
can apply the same dynamical analysis that we present in this
paper and estimate the position of the inner belt. Indeed, for RV
planets the semi-major axis, the eccentricity and the mass (with
an uncertainty of sin i) are known and we can estimate the width
of the clearing zone and compare it with the expected position
of the belt. Results from such studies seem to point to a correct
placement of the inner component from SED fitting (Lazzoni et
al., in prep).
In Table 2 we show for each system in the sample the tem-
perature of the inner and the outer belts, T1,BB and T2,BB, the
black-body radius of the inner and outer belts, R1,BB and R2,BB
respectively. In column d2,sol of Table 2 we show the positions
of the inner edge as given by direct imaging data for spatially
resolved systems. We also want to underline that the systems in
our sample are resolved only in their farther component, with
the exception of HD71155 and ζ Lep that also have resolved
inner belts (Moerchen et al. 2010). Indeed, the inner belts are
typically very close to the star so that for the instruments used it
was not possible to separate their contributions from the flux of
the stars themselves. We illustrate all the characteristics of the
resolved disks in Table B.1.

4. SPHERE observations

4.1. Observations and data reduction

The Spectro-Polarimetric High-contrast Exoplanet REsearch in-
strument is installed at the VLT (Beuzit et al. 2008) and is
designed to perform high-contrast imaging and spectroscopy
in order to find giant exoplanets around relatively young and
bright stars. It is equipped with an extreme adaptive optics sys-
tem, SAXO (Fusco et al. 2006; Petit et al. 2014), using a 41 x
41 actuators, pupil stabilization, differential tip-tilt control. The
SPHERE instrument has several coronagraphic devices for stel-
lar diffraction suppression, including apodized pupil Lyot coro-
nagraphs (Carbillet et al. 2011) and achromatic four-quadrants
phase masks (Boccaletti et al. 2008). The instrument has three
science subsystems: the Infra-Red Dual-band Imager and Spec-
trograph (IRDIS, Dohlen et al. 2008), an Integral Field Spectro-

graph (IFS, Claudi et al. 2008) and the Zimpol rapid-switching
imaging polarimeter (ZIMPOL, Thalmann et al. 2008). Most of
the stars in our sample were observed in IRDIFS mode with IFS
in the Y J mode and IRDIS in dual-band imaging mode (DBI; Vi-
gan et al. 2010) using the H2H3 filters. Only HR8799, HD95086
and HD106906 were also observed in a different mode using IFS
in the YH mode and IRDIS with K1K2 filters.
Observations settings are listed for each system in Table 3.
Both IRDIS and IFS data were reduced at the SPHERE data
center hosted at OSUG/IPAG in Grenoble using the SPHERE
Data Reduction Handling (DRH) pipeline (Pavlov et al. 2008)
complemented by additional dedicated procedures for IFS (Mesa
et al. 2015) and the dedicated Specal data reduction software
(Galicher in prep.) making use of high contrast algorithms such
as PCA, TLOCI, CADI.
Further details and references can be found in the various papers
presenting SHINE (SpHere INfrared survEy) results on individ-
ual targets, e.g., Samland et al. (2017). The observations and data
analysis procedures of the SHINE survey will be fully described
in Langlois et al. (2017, in prep), along with the companion can-
didates and their classification for the data acquired up to now.
Some of the datasets considered in this study were previously
published in Maire et al. (2016), Zurlo et al. (2016), Lagrange
et al. (2016), Feldt et al. (2016), Milli et al. (2017b), Olofs-
son et al. (2016) and one is from papers already submitted (HIP
107412: Delorme et al.).

4.2. Detection limits

The contrast for each dataset was obtained using the procedure
described in Zurlo et al. (2014) and in Mesa et al. (2015). The
self-subtraction of the high contrast imaging methods adopted
was evaluated by injecting simulated planets with known flux in
the original datasets and reducing these data applying the same
methods.
To translate the contrast detection limits into companion mass
detection limits we used the theoretical model AMES-COND
(Baraffe et al. 2003) that is consistent with a hot-start planetary
formation due to disk instability. These models predict lower
planet mass estimates than cold-start models (Marley et al. 2007)
which, instead, represent the core accretion scenario, and affect
considerably detection limits. We do not take into account the
cold model since with such hypothesis we would not be able
to convert measured contrasts in Jupiter masses close to the star.
Spiegel & Burrows (2012) developed a compromise between the
hottest disk instability and the coldest core accretion scenarios
and called it warm-start. For young systems (≤ 100Myrs) the dif-
ferences in mass and magnitude between the hot- and warm-start
models are significant. Thus, the choice of the former planetary
formation scenario has the implication of establishing a lower
limit to detectable planet masses. We want to point out, how-
ever, that even if detection limits would be strongly influenced
by the choice of warm- in place of hot-start models our dynam-
ical conclusions (as obtained in the following sections) would
not change significantly. Indeed, we would obtain in any case
that for the great majority of the systems in our sample the gap
between the belts and the absence of revealed planets would be
explained only adding more than one planet and/or considering
eccentric orbits.
In order to obtain detection limits in the form ap vs. Mp we re-
trieved the J, H and Ks magnitudes from 2MASS and the dis-
tance to the system from Table 2. The age determination of the
targets is based on the methodology described in Desidera et al.
(2015) but adjusting the ages of several young moving groups to
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Table 2. Debris disks parameters for direct imaged systems with SPHERE. Tgr,1 and Tgr,2 are the black-body temperatures, R1,BB and R2,BB the
black-body radii; R2 and d2 are the "real" radius and inner edge obtained with the Γ correction; d2,sol is the position of the inner edge for the
spatially resolved systems.

Name T1,BB R1,BB T2,BB R2,BB R2 d2 d2,sol
(K) (AU) (K) (AU) (AU) (AU) (AU)

HD1466 b 374+7
−5 0.70±0.01 97+5

−7 10.5+0.5
−0.8 51.8+2.7

−3.7 41.4+2.1
−3.0 (...)

HD3003 b 472+7
−5 1.50±0.02 173+5

−5 11.0±0.3 20.7±0.6 16.6±0.5 (...)

HD15115 a 182+4
−7 4.6+0.1

−0.2 54±5 52.6±4.9 182.4±16.9 145.9±13.5 48

HD30447 a 106+6
−5 13.6+0.8

−0.6 57+4
−6 47.0+3.3

−5.0 163.6+11.5
−17.2 130.9+9.2

−13.8 60

HD35114 b 139+12
−7 6.0+0.5

−0.3 66+10
−15 26.7+4.0

−6.1 115.5+17.5
−26.3 92.4+14.0

−21.0 (...)
ζ Lep b 368±5 2.70±0.04 133±5 20.3±0.8 35.6±1.3 28.5±1.1 (...)

HD43989 b 319+30
−26 1.0±0.1 66+9

−10 22.3+3.0
−3.4 111.5+15.2

−16.9 89.2+12.2
−13.5 (...)

HD61005 a 78+6
−4 10.5+0.8

−0.5 48±5 27.6±2.9 (...) (...) 71
HD71155 a 499+0

−7 2+0.00
−0.03 109±5 41.4±1.9 56.5±2.6 45.2±2.1 69

HD75416 b 393+4
−6 5.2±0.1 124+7

−5 51.9+2.9
−2.1 48.1+2.7

−1.9 38.5+2.2
−1.6 (...)

HD84075 b 149 +23
−18 4.1+0.6

−0.5 54+7
−10 31.3+4.1

−5.8 164.4+21.3
−30.4 131.5+17.0

−24.4 (...)
HD95086 a 225+10

−7 4.3+0.2
−0.1 57±5 67.1±5.9 175.6±15.4 140.5±12.3 61

β Leo a 499+0
−9 1.2+0.00

−0.02 106±5 26.2±1.2 53.9±2.5 43.1±2.0 15

HD106906 a 124+11
−8 13.1+1.2

−0.8 81+7
−12 30.7+2.6

−4.5 85.6+7.4
−12.7 68.5+5.9

−10.1 56
HD107301 b 246±5 8.3±0.2 127±5 31.3±1.2 41.8±1.6 33.5±1.3 (...)

HR4796 a 231+5
−6 7.5±0.2 97±5 42.6±2.2 68.5±3.5 54.8±2.8 73

ρ Vir a 445+6
−7 1.60±0.02 78±5 50.6±3.2 100.5±6.4 80.4±5.2 98

HD122705 b 387+5
−6 1.80+0.02

−0.03 127+6
−8 16.8+0.8

−1.1 36.9+1.7
−2.3 29.6+1.4

−1.9 (...)
HD131835 a 216±5 6.6±0.2 78±5 50.5±3.2 100.4 ±6.4 80.4±5.2 89
HD133803 b 368±5 1.40±0.02 142±5 9.6±0.3 27.6±1.0 22.1±0.8 (...)

β Cir b 387+6
−7 2.20+0.03

−0.04 155+5
−7 13.8+0.4

−0.6 25.8 +0.8
−1.2 20.7+0.7

−0.9 (...)
HD140840 b 341+4

−7 4.1±0.1 88±5 61.0±3.5 86±4.9 68.8±3.9 (...)

HD141378 a 347+7
−5 2.60+0.05

−0.04 69±5 66.9±4.8 129.3±9.4 103.4±7.5 133

π Ara a 173±5 9.6±0.3 54+6
−4 98.2+10.9

−7.3 206.7+23.0
−15.3 165.3+18.4

−12.2 122
HD174429 b 460+39

−67 0.50+0.04
−0.07 39±7 64.5±11.6 319.8±57.4 255.8±45.9 (...)

HD178253 b 307±6 4.6±0.1 100+5
−7 43.0+2.2

−3.0 65.4+3.3
−4.6 52.3+2.6

−3.7 (...)

η Tel a 277+5
−9 4.7+0.1

−0.2 115+4
−7 27.0+0.9

−1.6 47.6+1.7
−2.9 38.1+1.3

−2.3 24
HD181327 a 94±5 15.3±0.8 60±5 37.5 ±3.1 144±12 115.2±9.6 70
HD188228 a 185+37

−56 11.6+2.3
−3.5 72±6 76.9±6.4 124.2±10.3 99.3±8.3 107

ρ Aql a 268+6
−5 5.0±0.1 66±5 82.4±6.2 144.7±11.0 115.8±8.8 223

HD202917 a 289+47
−33 0.8±0.1 75+5

−6 11.9+0.8
−1.0 (...) (...) 61

HD206893 a 499+0
−10 0.50+0.00

−0.01 48±5 57.7±6.0 224.3±23.4 179.4±18.7 53

HR8799 a 155+6
−8 9.1+0.4

−0.5 33+5
−3 200.7+30.4

−18.2 524.2+79.4
−47.7 419.4+63.5

−38.1 101
HD219482 b 423+11

−8 0.70+0.02
−0.01 78±5 19.2±1.2 82.8±5.3 66.2±4.2 (...)

HD220825 b 338+8
−9 3.2±0.1 170±7 12.8±0.5 21.9±0.9 17.6±0.7 (...)

a spatially resolved system, used position of the farther edge d2,sol ;
b spatially unresolved system, used position of the farther edge d2 ;

the latest results as in Vigan et al. (2017).
Eventually, the IFS and IRDIS detection limits were combined
in the inner parts of the field of view (within 0.7 arcsec), adopt-

ing the lowest in terms of companions masses. Detection limits
obtained by such procedures are mono-dimensional since they
depend only on the distance aP from the star. More precise bi-
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Table 3. Observations of the sample. DIT ((detector integration time) refers to the single exposure time, NDIT (Number of Detector InTegrations)
to the number of frames in a single data cube.

Name Date IFS IRDIS Angle (◦) Seeing (”)
NDIT DIT NDIT DIT

HD1466 2016-09-17 80 64 80 64 31.7 0.93
HD3003 2016-09-15 80 64 80 64 32.2 0.52

HD15115 2015-10-25 64 64 64 64 23.7 1.10
HD30447 2015-12-28 96 64 96 64 19.5 1.36
HD35114 2017-02-11 80 64 80 64 72.3 0.81
ζ Lep 2017-02-10 288 16 288 16 80.8 0.74

HD43989 2015-10-27 80 64 80 64 49.0 1.00
HD61005 2015-02-03 64 64 64 64 89.3 0.50
HD71155 2016-01-18 256 16 512 8 36.3 1.49
HD75416 2016-01-01 80 64 80 64 22.3 0.89
HD84075 2017-02-10 80 64 80 64 24.6 0.43
HD95086 2015-05-11 64 64 256 16 23.0 1.15
β Leo 2015-05-30 750 4 750 4 34.0 0.91

HD106906 2015-05-08 64 64 256 16 42.8 1.14
HD107301 2015-06-05 64 64 64 64 23.8 1.36

HR4796 2015-02-03 56 64 112 32 48.9 0.57
ρ Vir 2016-06-10 72 64 72 64 26.8 0.66

HD122705 2015-03-31 64 64 64 64 35.9 0.87
HD131835 2015-05-14 64 64 64 64 70.3 0.60
HD133803 2016-06-27 80 64 80 64 125.8 1.11
β Cir 2015-03-30 112 32 224 16 26.0 1.93

HD140840 2016-04-20 64 64 64 64 32.7 3.02
HD141378 2015-06-05 64 64 64 64 39.1 1.75
π Ara 2016-06-10 80 64 80 64 24.9 0.50

HD174429 2014-07-15 2 60 6 20 7.6 0.88
HD178253 2015-06-06 128 32 256 16 48.8 1.44
η Tel 2015-05-05 84 64 168 32 47.1 1.10

HD181327 2015-05-10 56 64 56 64 31.7 1.41
HD188228 2015-05-12 256 16 256 16 23.7 0.67
ρ Aql 2015-09-27 128 32 256 16 25.0 1.50

HD202917 2015-05-31 64 64 64 64 49.5 1.35
HD206893 2016-09-15 80 64 80 64 76.2 0.63

HR8799 2014-07-13 20 8 40 4 18.1 0.8
HD219482 2015-09-30 120 32 240 16 27.1 0.84
HD220825 2015-09-24 150 32 300 16 41.5 1.05

dimensional detection limits could be implemented to take into
account the noise due to the luminosity of the disk and its incli-
nation (see for instance Figure 11 of Rodet et al. 2017). Whereas
the disk’s noise is for most systems negligible (it becomes rel-
evant only for very luminous disks), the projection effects due
to inclination of the disk could strongly influence the probability
of detecting the planets. We will consider the inclination caveat
when performing the analysis for two and three equal mass plan-
ets on circular orbits in Section 6.

5. Dynamical predictions for a single planet

5.1. General Physics

A planet sweeps an entire zone around its orbit that is propor-
tional to its semi-major axis and to a certain power law of the
ratio µ between its mass and the mass of the star.
One of the first to reach a fundamental result in this field was
Wisdom (1980) who estimated the stability of dynamical sys-
tems for a non linear Hamiltonian with two degrees of free-
dom. Using the approximate criterion of the zero order reso-
nance overlap for the planar circular-restricted three-body prob-

lem, he derived the following formula for the chaotic zone that
surrounds the planet

∆a = 1.3µ2/7ap, (2)

where ∆a is the half width of the chaotic zone, µ the ratio be-
tween the mass of the planet and the star, ap is the semi-major
axis of the planet’s orbit.
After this first analytical result, many numerical simulations
have been performed in order to refine this formula. One par-
ticularly interesting expression regarding the clearing zone of a
planet on a circular orbit was derived by Morrison & Malhotra
(2015). The clearing zone, compared to the chaotic zone, is a
tighter area around the orbit of the planet in which dust particles
become unstable and from which are ejected rather quickly. The
formulas for the clearing zones interior and exterior to the orbit
of the planet are

(∆a)in = 1.2µ0.28ap (3)

(∆a)ext = 1.7µ0.31ap. (4)
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The last result we want to highlight is the one obtained by Mustill
& Wyatt (2012) using again N-body integrations and taking into
account also the eccentricities e of the particles. Indeed, particles
in a debris disk can have many different eccentricities even if the
majority of them follow a common stream with a certain value
of e. The expression for the half width of the chaotic zone in this
case is given by

∆a = 1.8µ1/5e1/5ap. (5)

The chaotic zone is thus larger for greater eccentricities of parti-
cles. The equation (5) is only valid for values of e greater than a
critical eccentricity, ecrit, given by

ecrit ∼ 0.21µ3/7. (6)

For e < ecrit this result is not valid anymore and equation (2) is
more reliable. Even if each particle can have an eccentricity due
to interactions with other bodies in the disk, such as for example
collisional scattering or disruption of planetesimals in smaller
objects resulting in high e values, one of the main effects that
lies beneath global eccentricity in a debris disk is the presence of
a planet on eccentric orbit. Mustill & Wyatt (2009) have shown
that the linear secular theory gives a good approximation of the
forced eccentricity e f even for eccentric planet and the equations
giving e f are:

e f ,in ∼
5aep

4ap
(7)

e f ,ex ∼
5apep

4a
, (8)

where e f ,in and e f ,ex are the forced eccentricities for planetes-
imals populating the disk interior and exterior to the orbit of
the planet, respectively; ap and ep are, as usual, semi-major axis
and eccentricity of the planet, while a is the semi-major of the
disk. We note that such equations arise from the leading-order
(in semi-major axis ratio) expansion of the Laplace coefficients,
and hence are not accurate when the disk is very close to the
planet.
It is of common use to take the eccentricities of the planet and
disk as equal, because this latter is actually caused by the pres-
ence of the perturbing object. Such approximation is also con-
firmed by equations (7) and (8). Indeed, the term 5/4 is balanced
by the ratio between the semi-major axis of the planet and that
of the disk since, in our assumption, the planet gets very close to
the edge of the belt and thus the values of ap are not so different
from that of a, giving e f ∼ ep.
Other studies, such as the ones presented in Chiang et al. (2009)
and Quillen & Faber (2006), investigate the chaotic zone around
the orbit of an eccentric planet and they all show very similar
results to the ones discussed here above. However, in no case the
eccentricity of the planet appears directly into analytical expres-
sions, with the exception of the equations presented in Pearce &
Wyatt (2014) that are compared with our results in Section 5.2.

5.2. Numerical simulations

All the previous equations apply to the chaotic zone of a planet
moving on a circular orbit. When we introduce an eccentricity
ep the planet varies its distance from the star. Recalling all the
formulations for the clearing zone presented in Section 5.1 we
can see that it always depends on the mean value of the distance

between the star and the planet, ap, that is assumed to be almost
constant along the orbit.
The first part of our analysis considers one single planet as the
only responsible for the lack of particles between the edges of
the inner and external belts. We will show that the hypothesis of
circular motion is not suitable for any system when considering
masses under 50 MJ . For this reason, the introduction of eccen-
tric orbits is of extreme importance in order to derive a complete
scheme for the case of a single planet.
In order to account for the eccentric case we have to introduce
new equations. The empirical approximation that we will use
(and that we will support with numerical simulations) consists
in starting from the old formula (2) and (5) suitable for the cir-
cular case and replace the mean orbital radius, ap, with the posi-
tions of apoastron, Q, and periastron, q, in turn. We thus get the
following equations

(∆a)ex = 1.3µ2/7Q (9)

(∆a)in = 1.3µ2/7q, (10)

which replace Wisdom formula (2), and

(∆a)ex = 1.8µ1/5e1/5Q (11)

(∆a)in = 1.8µ1/5e1/5q, (12)

which replace Mustill & Wyatt’s equation (5) and in which we
choose to take as equal the eccentricities of the particles in the
belt and that of the planet, e = ep. The substitution of ap with
apoastron and periastron is somehow similar to consider the
planet as split into two objects, one of which is moving on cir-
cular orbit at the periastron and the other on circular orbit at
apoastron and both with mass Mp.
In parallel with this approach, we performed a complementary
numerical investigation of the location of the inner and outer lim-
its of the gap carved in a potential planetesimal disk by a massive
and eccentric planet orbiting within it to test the reliability of the
analytical estimations in the case of eccentric planets.
We consider as a test bench a typical configuration used in nu-
merical simulations with a planet of 1 MJ around a star of 1
M� and two belts, one external and one internal to the orbit
of the planet, composed of massless objects. The planet has a
semi-major axis of 5 AU and eccentricities of 0, 0.3, 0.5 and
0.7 in the four simulations. We first perform a stability anal-
ysis of random sampled orbits using the frequency map anal-
ysis (FMA) (Marzari 2014). A large number of putative plan-
etesimals are generated with semi-major axis a uniformly dis-
tributed within the intervals ap + RH < a < ap + 30RH and
ap − 12RH < a < ap − RH , where RH is the radius of the Hill’s
sphere of the planet. The initial eccentricities are small (lower
than 0.01) so that the planetesimals acquire a proper eccentricity
equal to the one forced by the secular perturbations of the planet.
This implicitly assumes that the planetesimal belt was initially in
a cold state.
The FMA analysis is performed on the non-singular variables h
and k, defined as h = e sin$ and k = e cos$, of each planetes-
imal in the sample. The main frequencies present in the signal
are due to the secular perturbations of the planet. Each dynam-
ical system composed of planetesimal, planet and central star is
numerically integrated for 5 Myr with the RADAU integrator
and the FMA analysis is performed using running time windows
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extending for 2 Myr. The main frequency is computed with the
FMFT high precision algorithm described in Laskar (1993) and
Šidlichovský & Nesvorný (1996). The chaotic diffusion of the
orbit is measured as the logarithm of the relative change of the
main frequency of the signal over all the windows, cs. The steep
decrease in the value of cs marks the onset of long term stabil-
ity for the planetesimals and it outlines the borders of the gap
sculpted by the planet.
This approach allows a refined determination of the half width
of the chaotic zone for eccentric planets. We term the inner and
outer values of semi-major axis of the gap carved by the planet
in the planetesimal disk ai and ao, respectively. For e = 0, we
retrieve the values of ai and ao that can be derived from eq. (2)
even if ao is slightly larger in our model (6.1 AU instead of 5.9
AU). For increasing values of the planet eccentricity, ai moves
inside while ao shifts outwards, both almost linearly. However,
this trend is in semi-major axis while the spatial distribution of
planetesimals depends on their radial distance.
For increasing values of ep, the planetesimal eccentricities grow
as predicted by equations (7) and (8) and the periastron of the
planetesimals in the exterior disk moves inside while the apoas-
tron in the interior disk moves outwards. As a consequence, the
radial distribution trespasses ai and ao reducing the size of the
gap. To account for this effect, we integrated the orbits of 4000
planetesimals for the interior disk and just as many for the exte-
rior disk.
The bodies belonging to the exterior disk are generated with
semi-major axis a larger than ao while for the interior disk a is
smaller than ai. After a period of 10 Myr, long enough for their
pericenter longitudes to be randomized, we compute the radial
distribution. This will be determined by the eccentricity and pe-
riastron distributions of the planetesimals forced by the secular
perturbations. In Figure 1 we show the normalized radial distri-
bution for ep = 0.3. At the end of the numerical simulation the
radial distribution extends inside ao and outside ai.
The inner and outer belts are detected by the dust produced in
collisions between the planetesimals. There are additional forces
that act on the dust, like the Poynting-Robertson drag, slightly
shifting the location of the debris disk compared to the radial
distribution of the planetesimals. However, as a first approxima-
tion, we assume that the associated dusty disk coincides with
the location of the planetesimals. In this case the outer and inner
borders d2 and d1 of the external and internal disk, respectively,
can be estimated as the values of the radial distance for which
the density distribution of planetesimals drop to 0. In alternative,
we can require that the borders of the disk are defined where the
dust is bright enough to be detected and this may occur when
the radial distribution of the planetesimals is larger than a given
ratio of the peak value, fM , in the density distribution.
We arbitrarily test two different limits, one of 1/3 fM and the
other of 1/4 fM , for both the internal and external disks. In this
way, the low density wings close to the planet on both sides are
cut away under the assumption that they do not produce enough
dust to be detected.
The d2 and d1 outer and inner limits of the external and inter-
nal disks are given in all three cases (0, 1/3 and 1/4) in Table 4
and 5 for each eccentricity tested. The first three columns report
the results of our simulations and are compared to the estimated
values of the positions of the belts (last two columns) that we
obtained in first place, calculating the half width of the chaotic
zone from equations (10) and (12) for the inner belt and (9) and
(11) for the outer one, and then we use the relations

(∆a)in = q − d1 (13)

Table 4. Position of the inner belt

ep cut d1,num(AU) Wisdom Mustill
0 0 4.1 4.11 4.11
0 1/3 4.48 4.11 4.11
0 1/4 4.48 4.11 4.11

0.3 0 2.5 2.88 2.27
0.3 1/3 2.8 2.88 2.27
0.3 1/4 3.1 2.88 2.27
0.5 0 1.74 2.05 1.53
0.5 1/3 1.96 2.05 1.53
0.5 1/4 2.24 2.05 1.53
0.7 0 1.1 1.23 0.87
0.7 1/3 1.32 1.23 0.87
0.7 1/4 1.38 1.23 0.87

(∆a)ex = d2 − Q (14)

obtaining, in the end, d1 and d2.
We plot the positions of the two belts against the eccentricity for
cut off of 1/3 in Figure 2. As we can see, results from simulations
are in good agreement with our approximation. Particularly, we
note how Wisdom is more suitable for eccentricities up to 0.3
(result that has already been proposed in a paper by Quillen &
Faber (2006) in which the main conclusion was that particles in
the belt do not feel any difference if there is a planet on circu-
lar or eccentric orbit for ep ≤ 0.3). For greater values of ep also
equations (11) and (12) give reliable results.
In Pearce & Wyatt (2014) a similar analysis is discussed for what
regards the inner edge of a debris disk due to an eccentric planet
that orbits inside the latter. As known from the second Kepler’s
law, the planet has a lower velocity when it orbits near apoastron
and thus it spends more time in such regions. Thus, they assumed
that the position of the inner edge is mainly influenced by scat-
tering of particles at apocenter in agreement with our hypothesis.
Using the Hill stability criterion they obtain for the chaotic zone
the following expression

∆aex = 5RH,Q, (15)

where RH,Q is the Hill radius for the planet at apocenter, given
by

RH,Q ∼ ap(1 + ep)
[ Mp

(3 − ep)M∗

]1/3
. (16)

Comparing ∆aext to equations (9), (11) and (15) for a planet of
1 MJ that orbits around a star of 1 M� with a semi-major axis of
ap = 5AU (that are the typical values adopted in Pearce & Wyatt
(2014)) and eccentricity ep = 0.3, we obtain results that are in
good agreement and differ by 15%. For the same parameters but
higher eccentricity (ep = 0.5) the difference steeply decreases
down to 2%. Thus, even if our analysis is based on different
equations with respect to (15) the clearing zone that we obtain is
in good agreement with values as expected by Pearce & Wyatt
(2014), giving a farther corroboration of our assumption for
planets on eccentric orbits.

5.3. Data analysis

Once we have verified the reliability of our approximations, we
proceed analyzing the dynamics of the systems in the sample.
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Fig. 1. Numerical simulation for a planet of 1 MJ around a star of 1
M� with a semi-major axis of 5 AU and eccentricity of 0.3. We plot
the fraction of bodies that are not ejected from the system as a function
of the radius. Green lines represent the stability analysis on the radial
distribution of the disk. Red lines represent the radial distributions of
4000 objects.

Table 5. Position of the outer belt

ep cut d2,num(AU) Wisdom Mustill
0 0 6.1 5.89 5.89
0 1/3 6.26 5.89 5.89
0 1/4 6.26 5.89 5.89

0.3 0 8.9 7.66 8.79
0.3 1/3 7.84 7.66 8.79
0.3 1/4 7.56 7.66 8.79
0.5 0 10.27 8.84 10.42
0.5 1/3 9.52 8.84 10.42
0.5 1/4 9.24 8.84 10.42
0.7 0 11.6 10.02 12.05
0.7 1/3 11.0 10.02 12.05
0.7 1/4 10.79 10.02 12.05

The first assumption that we tested is of a single planet on a cir-
cular orbit around its star. We use the equations for the clearing
zone of Morrison & Malhotra (3) and (4). We vary the mass of
the planet between 0.1 MJ , i. e. Neptune/Uranus sizes, and 50
MJ in order to find the value of Mp, and the corresponding value
of ap, at which the planet would sweep an area as wide as the gap
between the two belts. 50 MJ represents the approximate upper
limit of applicability of the equations, since they require that µ is
much smaller than 1. Since (∆a)in + (∆a)ex = d2 − d1, knowing
Mp, we can obtain the semi-major axis of the planet by

ap =
d2 − d1

1.2µ0.28 + 1.7µ0.31 . (17)

With these starting hypothesis we cannot find any suitable solu-
tion for any system in our sample. Thus objects more massive
than 50 MJ are needed to carve out such gaps but they would
clearly lie well above the detection limits.
Since we get no satisfactory results for the circular case, we then
consider one planet on eccentric orbit. We use the approximation
illustrated in the previous paragraph with one further assump-
tion: we consider the apoastron of the planet as the point of the
orbit nearest to the external belt while the periastron as the near-
est point to the inner one. We let again the masses vary in the

Fig. 2. Position of the inner (up) and external (down) belt for cuts off of
1/3.

range [0.1, 50] MJ and, from equations (9), (10), (11) and (12),
we get the values of periastron and apoastron for both Wisdom
and Mustill & Wyatt formulations, recalling also equations (13)
and (14). Therefore, we can deduce the eccentricity of the planet
through

ep =
Q − q
Q + q

. (18)

The equation (5) contains itself the eccentricity of the planet ep,
that is our unknown. The expression to solve in this case is

ep −
d2(1 − 1.8(µep)1/5) − d1(1 + 1.8(µep)1/5)
d2(1 − 1.8(µep)1/5) + d1(1 + 1.8(µep)1/5)

= 0 (19)

for which we found no analytic solution but only a numerical
one. We can now plot the variation of the eccentricity as a func-
tion of the mass. We present two of these graphics, as examples,
in Figure 3.
In each graphic there are two curves one of which represents the
analysis carried out with the Wisdom formulation and the other
with Mustill & Wyatt expressions. In both cases, the eccentricity
decreases with increasing planet mass. This is an expected result
since a less massive planet has a tighter chaotic zone and needs
to come closer to the belts in order to separate them of an amount
d2−d1, that is fixed by the observations (and viceversa for a more
massive planet that would have a wider ∆a). Moreover, we note
that the curve that represents Mustill & Wyatt’s formulas de-
creases more rapidly than Wisdom’s curve does. This is due to
the fact that equation (5) takes also into account the eccentricity
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Fig. 3. ep versus Mp for HD35114 (up) and HD1466 (down)

of the planetesimals (in our case e = ep) and thus ∆a is wider.
Comparing the graphics of the two systems, representative of
the general behavior of our targets, we note that whereas for
HD35114, for increasing mass, the eccentricity reaches interme-
diate values (≤ 0.4), HD1466 needs planets on very high ec-
centric orbits even at large masses (≥ 0.6). From Table 2, the
separation between the belts in HD35114 is of ∼ 86 AU whereas
in HD1466 is only ∼ 40 AU. We can then wonder why in the
first system planets with smaller eccentricity are needed to dig a
gap larger than the one in the second system. The explanation re-
gards the positions of the two belts: HD35114 has the inner ring
placed at 6 AU whereas HD1466 at 0.7 AU. From equations (2)
and (5) we obtain a chaotic zone that is larger for further planets
since it is proportional to ap.
From the previous discussion, we deduce that many factors in
debris disks are important in order to characterize the properties
of the planetary architecture of a system, first of all the radial
extent of the gap between the belts, the wider the more mas-
sive and/or eccentric planets needed, but also the positions of the
belts (the closer to the star, the more difficult to sculpt) and the
mass of the star itself.
For most of our systems the characteristics of the debris disks are
not so favorable to host one single planet since we would need
very massive objects that have not been detected. For this reason
we now analyze the presence of two or three planets around each
star.
Before considering multiple planetary systems, however, we
want to compare our results with the detection limits available in
the sample and obtained as described in Section 4.2. We show,
as an example, the results for HD35114 and HD1466 in Figure 4

in which we plot the detection limits curve, the positions of the
two belts (the vertical black lines) and three values of the mass.
From the previous method we can associate to each value of the
mass a value of ap and ep noting that, as mentioned above, Wis-
dom gives more reliable results for ep ≤ 0.3 whereas Mustill &
Wyatt for ep > 0.3. Moreover, we choose three values of masses

Fig. 4. SPHERE detection limits for HD35114 (up) and HD1466
(down). The bar plotted for each Mp represents the interval of distances
covered by the planet during its orbit, from a minimum distance (peri-
astron) to the maximum one (apoastron) from the star. The two vertical
black lines represent the positions of the two belts. Projection effects in
case of significantly inclined systems are not included.

because they represent well the three kinds of situations that we
could find: for the smallest mass the planet is always below the
detection limits and so never detectable; for intermediate mass
the planet crosses the curve and thus it is at certain radii of its or-
bit detectable and at others undetectable (we note however that
the planet spends more time at apoastron than at periastron so
that it is more likely detectable in this latter case); the higher
value of Mp has only a small portion of its orbit (the area near
to the periastron) that is hidden under the curve and thus unde-
tectable.
We note that in both figures there is a bump in the detection lim-
its curves: this is due to the passage from the deeper observations
done with IFS that has field of view (≤ 0.8 arcsec) to the IRDIS
ones that are less deep but cover a greater range of distances (up
to 5.5 arcsec).
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6. Dynamical predictions for two and three planets

6.1. General physics

In order to study the stability of a system with two planets, we
have to characterize the region between the two. From a dynam-
ical point of view, this area is well characterized by the Hill cri-
terion. Let us consider a system with a star of mass M∗, the inner
planet with mass Mp,1, semi-major axis of ap,1 and eccentricity
ep,1, and the outer one with mass Mp,2, semi-major axis ap,2 and
eccentricity ep,2. In the hypothesis of small planet masses, i.e.
Mp,1 << M∗, Mp,2 << M∗ and Mp,2 + Mp,1 << M∗, the system
will be Hill stable (Gladman 1993) if

α−3
(
µ1 +

µ2

δ2

)
(µ1γ1 + µ2γ2δ)2 ≥ 1 + 34/3 µ1µ2

α4/3 , (20)

where µ1 and µ2 are the ratio between the mass of the inner/outer
planet and the star respectively, α = µ1 + µ2, δ =

√
1 + ∆/ap,1

with ∆ = ap,2 − ap,1 and, at the end, γi =
√

1 − e2
p,i with i = 1, 2.

If the two planets in the system have equal masses, the previous
equation, taking Mp,2 = Mp,1 = Mp and µ = Mp/M∗, can be
rewritten in the form

α−3
(
µ +

µ

2δ2

)
(µγ1 + µγ2δ)2 − 1 − 34/3 µ2

α4/3 ≥ 0 (21)

and substituting the expressions for α, δ, ∆ and γi we obtain

1
8

(
1+

ap,1

ap,2

)(√
1 − e2

p,1 +

√
1 − e2

p,2

√
ap,2

ap,1

)2
−1−

(3
2

)4/3
µ2/3 ≥ 0.

(22)

Thus, the dependence of the stability on the mass of the two plan-
ets, in the case of equal masses, is very small since it appears
only in the third term of the previous equation in the form µ2/3,
with µ << 1 and µ ≥ 0, and, for typical values, it is two orders
of magnitude smaller than the first two terms. The leading terms
that determine the dynamics of the system are the eccentricities
ep,1 and ep,2. For this reason, we expect that small variation in
the eccentricities will lead to great variation in masses.
A further simplification to the problem comes when we consider
two equal-mass planets on circular orbits. In this case the stabil-
ity equation (20) takes the contracted form

∆ ≥ 2
√

3RH , (23)

where ∆ is the difference between the radii of the planets’ or-
bits and RH is the planets mutual Hill radius that, in the general
situation, is given by

RH =
( Mp,1 + Mp,2

3M∗

)1/3(ap,1 + ap,2

2

)
. (24)

In the following, we will investigate both the circular and the
eccentric cases with two planets of equal masses.
The last case that we present is a system with three coplanar and
equal-mass giant planets on circular orbits. The physics follows
from the previous discussion since the stability zone between the
first and the second planet, and between the second and the third
is again well described by the Hill criterion. Once fixed the inner
planet semi-major axis ap,1, the semi-major axis of the second
and third planets are given by

ap,i+1 = ap,i + KRHi,i+1 (25)

where the K value that ensure stability is a constant that depends
on the mass of the planets and RHi,i+1 is the mutual Hill radius
between the first and the second planets for i = 1 and between
the second and the third for i = 2. K produces parametrizations
curves, called K-curves, that are weakly constrained. However,
we can associate to K likely values that give us a clue on the
architecture of the system. Following Marzari (2014), the most
used values of K for giant planets are:

– K ∼ 8 for Neptune-size planets;
– K ∼ 7 for Saturn-size planets;
– K ∼ 6 for Jupiter-size planets .

There is no analysis in literature that gives analytical tools to
explore the case of three or more giant planets with different
masses and/or eccentric orbits. Thus, it would be worth doing
further investigations even if they go beyond the scope of this
work.
As we will see in the following sections, once we have estab-
lished the stability of a multi-planetary system we apply again
the equations for the chaotic/clearing zone derived previously
for a single planet as a criterion to describe the planet-disk in-
teraction. However, for two and three planets more complex dy-
namical effects due to mean motion and secular resonances may
change the expected positions of the edges. We have compared
our analytical predictions with the results obtained by Moro-
Martín et al. (2010) who performed numerical simulations in
four systems (HD128311, HD202206, HD82943 and HR8799)
with known companions in order to determine the positions of
the gap. While the outer edge of the inner belt is well repro-
duced by the formulas we have exploited, the inner edge of the
outer belt is slightly shifted farther out for each system in the
numerical modeling. This is in part related to the stronger and
more stable mean motion resonances in the single planets case.
A full investigation of this problem is complex since the parame-
ter space is wide as both the mass and eccentricity of the planets
may change. However, we are interested in a first order study and
the differences due to the dynamical models are compatible with
the error bars on the positions of the belts. Since we want only to
give a method to obtain a rough estimation of possible architec-
tures of planetary systems, such corrections will not be included
in this paper but we stress that deeper analysis are needed to ob-
tain stronger and more precise conclusions.

6.2. Data analysis

6.2.1. Two and three planets on circular orbits

The first kind of analysis that we perform consists in taking into
account two coplanar planets on circular orbits. In this case, be-
tween the two belts the system is divided into three different
zones from a stability point of view. The first one extends from
the outer edge of the internal disk to the inner planet and it is de-
termined from interaction laws between two massive bodies (the
star and the planet) and N massless objects. The second zone is
included between the inner and the outer planets and is domi-
nated by the Hill’s stability. Eventually, the third zone goes from
the outer planet to the inner edge of the external belt and is an
analog of the first one.
From equation (23) we note that a system with two planets is
stable if ∆ = ap,2 − ap,1 is greater or equal to a certain quantity.
However, since we do not observe any amount of dust grains
in the region between the planets we expect it to be completely
unstable for small particles. The condition needed to reach such
situation is called max packing and it corresponds to take the two
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planets as close as possible to have a still stable system. There-
fore, the max packing condition is satisfied by the equation

ap,2 − ap,1 = 2
√

3
(2Mp

3M∗

)1/3(ap,1 + ap,2

2

)
. (26)

The other two equations that we need are the ones of Morrison
& Malhotra, (3) and (4), from which we obtain ap,1 and ap,2 in
the form

ap,1 =
d1

1 − 1.2µ0.28 (27)

ap,2 =
d2

1 + 1.7µ0.31 (28)

and substituting in (26) we get

d2 − d1 =
√

3
(2
3

)1/3
µ1/3(d1 + d2)+

+
√

3
(2
3

)1/3
(d11.7µ0.31+1/3 − d21.2µ0.28+1/3)+

+ 1.2d2µ
0.28 + d11.7µ0.31. (29)

This is a very complex equation to solve for Mp and we need to
make some simplifications. We note that all the exponents of µ
have very similar values with the exception of the two µ in the
third term on the right side of the equation in which, however,
the exponents are about double of all others. Thus, we choose as
a mean value µ0.31 and in the third term µ0.62 for both terms in the
brackets. Calling x = µ0.31 we have now to solve the quadratic
equation

√
3
(2
3

)1/3
(1.2d2 − 1.7d1)x2−

−
(
1.2d2 + 1.7d1 +

√
3
(2
3

)1/3
(d1 + d2)

)
x + d2 − d1 = 0. (30)

We can finally obtain the value of Mp, given the positions of the
two belts and the mass of the star

Mp = M∗

(1.2d2 + 1.7d1 +
√

3
(

2
3

)1/3
(d1 + d2)

2
√

3
(

2
3

)1/3
(1.2d2 − 1.7d1)

−

−

√(
1.2d2 + 1.7d1 +

√
3
(

2
3

)1/3
(d2 + d1)

)2
−

2
√

3
(

2
3

)1/3
(1.2d2 − 1.7d1)

−4
√

3
(

2
3

)1/3
(1.2d2 − 1.7d1)(d2 − d1)

2
√

3
(

2
3

)1/3
(1.2d2 − 1.7d1)

)10/31

. (31)

The numerical outcomes of the equation show that this for-
mula is reliable. We recall that our equations are valid only for
µ � 1, thus we choose again as upper limit 50 MJ and arbitrarily
we consider only masses bigger than 0.1 MJ . In the case of two
equal mass planets on coplanar circular orbits we obtain satisfy-
ing results only in 8 cases out of 35 presented in Table 2.
The case of three planets of equal mass on circular orbits is quite
similar and of particular interest. Indeed, systems of three (or
more) lower mass planets may be more likely sculptors than two
massive planets on eccentric orbits that will be considered in the
next Section, both because the occurrence rate of lower mass
planets is higher than Jovian planets (at least in regions close

to the star) as seen, for example, from Kepler (Howard et al.
2012) or RV (Mayor et al. 2011; Raymond et al. 2012) planets
occurrence rates, and because the disk would not have to survive
planet–planet scattering without being depleted (Marzari 2014).
For the three planets case, we have to consider four zones of in-
stability for the particles: the first and the fourth are determined
by the inner and the outer planet assuming equations (3) and (4)
respectively, while the second and the third by the Hill criterion.
From equation (25), we can express the mutual dependence be-
tween the positions of the three planets as

ap,2 = ap,1 + K
(2Mp

M∗

)1/3 ap,1 + ap,2

2
(32)

ap,3 = ap,2 + K
(2Mp

M∗

)1/3 ap,2 + ap,3

2
. (33)

We can obtain ap,2 from equation (32) and substituting it in (33)
we get

ap,3 = ap,1

(
1 + K

2

(
2
3µ

)1/3)2

(
1 − K

2

(
2
3µ

)1/3)2 , (34)

where ap,1 and ap,3 are determined by equations (3) and (4). The
final expression to solve for Mp becomes

d2

d1

1 − 1.2µ0.28

1 + 1.7µ0.31 =

(
1 + K

2

(
2
3µ

)1/3)2

(
1 − K

2

(
2
3µ

)1/3)2 . (35)

In analogy with the previous cases, we impose a lower limit
on the mass at 0.1 MJ but we have a further constraint on the
upper one since values of K are valid only up to some Jupiter
masses. Thus we take as upper limit for the three planets model
15 MJ . The values of K are the ones described in the previous
paragraph, with K = 8 for masses up to 0.3 MJ , K = 7 for
masses in the range [0.3, 0.9]MJ and K = 6 for Mp ≥ 1MJ . For
three equal mass planets on circular coplanar orbits we obtain
more encouraging results since with such configuration the gap
could be explained in 25 cases out of 35. Results of the analysis
of two and three planets on circular orbits are shown in Figure
5.
Together with the values of the masses for each system suitable

to host two and/or three planets on circular orbit, we indicate
the detectability of such planets comparing their masses and
semi-major axis with SPHERE detection limits. The condition
for detectability in this case is that at least one object in the
two or three planets model is above the detection limits curve.
However, as mentioned in Section 4, inclination of the disk
may affect the detectability of the putative planets due to
projection effects. Indeed, objects that are labeled as detectable
in Figure 5 are always observable only if the disk is face-on.
With increasing inclination, the chance to detect the planets
decreases. Whereas for the two-planets case the probability of
detecting at least the outer objects is usually really high due to
the big masses obtained, for the three-planets case half of the
systems labeled as detectable are indeed observable only 50%
of the time (the worst case is for the outer putative planet of
HD133863 which would be detectable only 37% of the time).
With the exception of very few systems, such as for example
HD174429, HR8799, HD206893 and HD95086, no giant
planets or brown dwarfs have been discovered between the
two belts in the systems of our selected sample using direct
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Fig. 5. Masses (Mp/MJ) for the systems with two and three equal-mass
planets on circular orbits: red circles represent a system with two planets
that are detectable, while green and blue circles represent three planets
detectable and undetectable respectively. Since the equations are not
fully correct for more massive planets, for the two planets-case we show
only systems for which MP ≤ 50MJ whereas for the three planets-case
we show only systems for which MP ≤ 15MJ

imaging techniques. Thus, we expect that if planets are indeed
present, they must remain undetectable with our observations.
In all systems, with the exception of HD131835, two planets
on circular orbits would have been detected, since large masses
are required. The situation quite improves for the three planets
model because many systems can be explained with planets
that would remain undetected. Therefore, in most cases, the
assumption of three equal mass planets on circular orbits is
more suitable than the one with two planets with the same
characteristics.
Obviously in this paragraph we have made very restrictive
hypotheses: circular orbits and equal mass planetary sys-
tems. Varying these two assumptions would give many suitable
combinations in order to explain what we do (or do not) observe.

6.2.2. Two planets on eccentric orbits

The last model we want to investigate is two equal-mass plan-
ets on eccentric orbits. The system is again divisible in three re-
gions of stability. The zone between the two planets follows the
Hill criterion for the condition of max packing given by equa-
tion (22) with the equal sign. For the outer and inner regions the
force is exerted by the planets on the massless bodies in the belts.
This time, however, we will use Wisdom and Mustill & Wyatt
expressions instead of Morrison & Malhotra’s, suitable only for
the circular case. Precisely, we apply the equation of Wisdom
for eccentricities up to 0.3 whereas for greater values of ep we
use Mustill & Wyatt, together with the substitution of ap with
apoastron and periastron of the planets.
We have four different situations:

– if ep,1 and ep,2 are both ≤ 0.3, then we used equations of
Wisdom (9) and (10), from which we obtain ap,1 and ap,2 in
the form

ap,1 =
d1

1 − 1.3µ2/7

1
1 − ep,1

(36)

ap,2 =
d2

1 + 1.3µ2/7

1
1 + ep,2

; (37)

– if ep,1 ≤ 0.3 and ep,2 > 0.3 we apply at the inner planet the
equation of Wisdom (10) and at the outer one equation (11)
from Mustill & Wyatt, thus obtaining

ap,1 =
d1

1 − 1.3µ2/7

1
1 − ep,1

(38)

ap,2 =
d2

1 + 1.8µ1/5e1/5
p,2

1
1 + ep,2

; (39)

– if ep,1 > 0.3 and ep,2 ≤ 0.3 we have the opposite situation
with respect to the one described above, thus we use Mustill
& Wyatt for the inner planet and Wisdom for the outer one

ap,1 =
d1

1 − 1.8µ1/5e1/5
p,1

1
1 − ep,1

; (40)

ap,2 =
d2

1 + 1.3µ2/7

1
1 + ep,2

; (41)

– if ep,1 and ep,2 are both > 0.3 we use Mustill & Wyatt for the
two planets

ap,1 =
d1

1 − 1.8µ1/5e1/5
p,1

1
1 − ep,1

; (42)

ap,2 =
d2

1 + 1.8µ1/5e1/5
p,2

1
1 + ep,2

; (43)

Thus, depending on the values of ep,1 and ep,2 we substitute in
equation (22) expressions of ap,1 and ap,2 as obtained above.
Varying the masses in the range [0.1, 25]MJ , we obtain the re-
spective values of eccentricities for the two planets. We note that
we are implicitly assuming that the two eccentric planets will
remain on the same orbits for their whole lifetime whereas, in
reality, their eccentricities will fluctuate. This may imply lower
masses of the two planets required to dig the gap as the systems
are unlikely to be observed at the peak of an eccentric cycle.
We show in Figure 6 the results of this analysis for HD35114.
For each system, we obtain a set of suitable points identified
by the three coordinates [ep,1, ep,2,Mp] (we recall that the two
planets in the system have the same mass). Therefore, we pre-
pare a grid with the two values of eccentricities on the axes and
we associate a scale of colors to the mass range (see Figure 6
top panel). Moreover, in order to determine which planets would
have been detected we confront, as always, values of semi-major
axis and mass with the detection limits curves and use as a cri-
terion of detectability the condition in which at least one of the
two planets is above the curve even just in partial zones of its
orbit (see Figure 6).
In the graphics, we indicate with a black line the approximate
detection limits: points above the line are undetectable whereas
points below are detectable. From Figure 6 it is clearly visible
how mass (and thus detectability) decreases with increasing ec-
centricities. Moreover, small variations of ep,1 and/or ep,2 cause
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Fig. 6. Analysis for HD35114 with two equal-mass planets on eccentric
orbits. On the axes the eccentricity of the inner (e1) and outer (e2) plan-
ets. The graduation of colors represent values of Mp/MJ . The black line
represents the approximate detection limits: points above the line are
undetectable whereas points below are detectable. The discontinuity at
e = 0.3 is due to the passage from Wisdom’s equation to Mustill and
Wyatt’s one.

a great damp in mass since, as already mentioned above, the sta-
bility depends very little on the mass of the two planets.
From this study emerges that the apparent lack of giant planets in
the sample of systems analyzed can easily be explained by tak-
ing quite eccentric planets of moderate masses that lay beneath
detection limits curve. Indeed, large eccentricities are common
features of exoplanets (Udry & Santos 2007) and thus we have
not to abandon the hypothesis that gaps between two planetes-
imals belts are dig by the presence of massive objects that sur-
round the central star.

7. Particularly interesting systems

7.1. HD106906

HD106906AB is a close binary system (Lagrange et al. 2016,
submitted) where both stars are F5 and are located at a distance
of 91.8 pc. They belong to the Lower Centaurus Crux (LCC)
group, which is a subgroup of the Scorpius–Centaurus (Sco-
Cen) OB association. Bailey et al. (2014) detected a companion
planet, HD106906 b, of 11 ± 2 MJ located at ∼ 650 AU in pro-
jected separation and an asymmetric circumbinary debris disk
nearly edge-on resolved by different instruments (see Appendix
B). The evident asymmetries of the disk could be a hint of in-
teractions between the planet and the disk (Rodet et al. 2017;
Nesvold et al. 2017). The gap in the disk is located between 13.1
AU and 56 AU and the detected companion orbits far away from
this area. Since the gap is quite small we find promising results
for one or more undetected companions. As mentioned in Sec-
tion 5, it is not possible to explain the gap with a single planet
(with MP ≤ 50MJ) on circular orbit. In Figure 7 we show ep
vs. Mp for one eccentric planet to be responsible for the empty
space between the belts: we do not need particularly high eccen-
tricity even at low masses. Thus the gap, together with the non
detection of another companion (besides HD106906 b), could be
explained by a single planet on eccentric orbit as shown in Figure
8. For example, a planet with a mass of 1 MJ , semi-major axis
ap ∼ 45 AU and a reasonable value of eccentricity, ep ∼ 0.4,
would be able to dig the gap and be undetectable at the same

time. However, we can consider a more complex architecture.
In Figure 8 and 9 we show two and three equal-mass planets on
circular orbits and two planets on eccentric orbits: whereas two
planets on circular orbits would have been easily detected, two
of the three circular planets-case are undetectable and the far-
thest one is very close to detection limits. Moreover, combining
the orbital parameters of the third planets with the projection ef-
fects due to the inclination of the disk (i = 85◦) we obtain that it
would be detectable only 55% of the time. Eventually, two plan-
ets on eccentric orbits with eccentricities ≥ 0.2 would be under
detection limits curve.

Fig. 7. One planet on eccentric orbit around HD106906.

Fig. 8. Three different values of mass (1, 5 and 10 MJ) of putative
planets with their respective semi-major axis and eccentricities and the
detection limits curve for the HD106906 system (pink lines) and two
(green circles) and three (red circles) planets on circular orbits around
HD106906.

7.2. HD174429 (PZ Tel)

HD174429, or PZ Tel A, is a G9IV star member of the moving
group β Pictoris. It is located at a distance of 49.7 pc and a
M brown dwarf companion was discovered independently by
Mugrauer et al. (2010) and Biller et al. (2010) to orbit this star
at a separation of ∼ 25AU on a very eccentric orbit (e > 0.66,
Maire et al. 2016). The mass of PZ Tel B varies in the range
[20, 40] MJ depending on the age of the system (Ginski et al.
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Fig. 9. Predictions and comparison with the SPHERE detection limits
(black line) for the eccentric two-planet model for HD106906.

(2014); Schmidt et al. (2014)).
From SED fitting, Chen et al. (2014) found that the debris disk
of PZ Tel is better represented by two components. However,
excesses in the near-IR typical of the warm component were
never observed and small deviation from the spectral energy
distribution of the star could be attributed to the presence of
the brown dwarf. For what regard the cold component, Chen
et al. (2014) obtained a temperature of 39 K that, together with
the Γ correction, places the belt at 317.5 AU. In spite of this,
Riviere-Marichalar et al. (2014) rejected the hypothesis of the
presence of a debris disk because they did not find infrared
excesses with Herschel/PACS at 70, 100 and 160 µm.
Since the literature on this disk is quite poor and discordant, we
want to apply our method to the known companion in order to
check if it can add constraints on the existence of the disk. The
orbit of the brown dwarf is still a matter of debate but we know
that it has to be very eccentric. Thus, we can use 30 MJ as a
mean value for the mass and the three best orbits presented in
Table 13 of Maire et al. (2016) together with the formulation
for one single planet on eccentric orbit. We obtained as a result
that for the first two orbits the planet does not cross the external
disk placing the edge at ∼ 250 AU for the first one (very near to
our estimated inner edge) and at ∼ 150 AU in the second one
(leaving some free dynamical space). The third orbit, instead,
would cross the disk and destroy its configuration. Thus, we
cannot exclude completely the presence of a cold debris disk
component.

7.3. HR8799

HR8799 is a γ Dor-type variable star (Gray & Kaye 1999). The
most incredible characteristic of HR8799 is that it hosts four gi-
ant planets in the gap between the two components of the disk,
with masses in the range [5, 7]MJ and distances in the range
[15, 70] AU (Marois et al. 2010b). Moreover, the disk around
this star is spatially resolved in its outer component in far IR and
millimeter wavelengths (Su et al. 2009; Booth et al. 2016) and,
besides the warm and cold belts placed at ∼ 9 AU and ∼ 200 AU
respectively, it shows an extended halo up to 2000 AU. Our dy-
namical analysis takes into account three planets so that we are
not able to determine the precise dynamical behavior of HR8799
bcde. However, we can make some guess starting from our re-

sults. We show the results for three planets on circular orbits in
Figure 10 that are the ones that comes nearer to the real archi-
tecture of HR8799 represented by the pink circles in the same
figure (Konopacky et al. 2016, indeed, orbits with large eccen-
tricities are not favored by current analyses). We find three equal-
mass planets of 6.6 MJ that are similar to the estimated masses
of HR8799 bcde. Thus it seems that this system, in order to be
stable, must be dynamically full and even more packed to host
four giant planets and mean motion resonances, that are not in-
cluded in our analysis, may be at work (Esposito et al. 2016;
Goździewski & Migaszewski 2014).

Fig. 10. Analytical results for three planets on circular orbits (green cir-
cles) and the actual four detected planets (pink circles) around HR8799
.

7.4. HR4796

HR4796A is a A0 star and it is part of the TW Hydra kine-
matic group. It is part of a binary system with the M2 companion
HR4796B orbiting at a projected separation of 560 AU. The de-
bris disk around this star is resolved in scattered light and near
IR. The images show a thin, highly inclined ring with an ec-
centricity of ∼ 0.06 at ∼ 75 AU from the star (Kastner et al.
2008). The eccentricity of the disk and the sharpness of its inner
edge seems to point to the presence of a planet orbiting right in-
side the gap. However, no companion was detected so far (Milli
et al. 2017b). Thus we would expect a planet with small mass
under detection limits curve or with high eccentricity such that it
passes, at some time of its orbit, in areas sufficiently near to the
star even if the second hypothesis should imply an higher forced
eccentricity of the disk. Comparing Figure 11 and 12 we ob-
tain that objects with masses ≤ 2 MJ are undetectable but, at the
same time, they need high eccentricities (≥ 0.6). Moreover, if we
consider equation (8) for the forced eccentricity exerted by the
planet on the belt we should expect an eccentricity of the latter of
∼ 0.1 that would require masses ≥ 50 MJ well above detection
limits curve. Thus, we consider a more complex configuration
with two and three planets (Figures 12 and 13). No result was
found for two planets on circular orbits whereas for three com-
panions we find masses of 8.7 MJ each. In this last scenario two
of the three planets would have been detected (even taking into
account the inclination of the disk, i = 75◦, the farthest puta-
tive planet would be always detectable) so we move to consider
the case of two planets on eccentric orbits. Since, as explained
in Section 6, the eccentricities of the two planets have a greater
importance than the masses for this kind of analysis, we finally
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find possible solutions to explain the gap with the presence of
undetectable objects (see the ellipses in Figure 13).

Fig. 11. One planet on eccentric orbit around HR4796.

Fig. 12. Three different values of mass (1, 5 and 10 MJ) with their
respective semi-major axis and eccentricities and the detection limits
curve for the system (pink lines) and three planets on circular coplanar
orbits around HR4796 (red circles).

8. Conclusions and perspectives

In this work we studied systems that harbor two debris belts
and a gap between them. The main assumption was that one
or more planets are responsible for the gap. In a sample of 35
systems with double belts also observed as part of the SPHERE
GTO survey we found no planet or brown dwarf within the gap
with the exception of HD218396 (HR8799), HD174429 (PZ
Tel), HD206893 and HD95086. We note that some systems in
our sample have detected and/or candidate companions that
however orbit outside the gap (Langlois et al. 2017, in prep).
The lack of planet detections within the belt may be due either
to the dynamical and physical properties of the planets placing
them below the detection limits of actual instruments or to some
complex mechanism for which such systems were born with
two separate disk components (Kral et al. 2017a) .
We focus on the first hypothesis and test the detectability
of different packed planetary systems which may carve the
observed gap. We first investigated the presence of one single

Fig. 13. Two planets on eccentric orbits around HR4796 and compari-
son with detection limits (black line).

planet on a circular orbit and find that for the systems in our
sample most planets should have been detected or are too
massive to be termed planets.
Our next step was to consider a single planet in an eccentric
orbit using the equations of Wisdom or Mustill & Wyatt for the
chaotic zone of a planet on circular orbit but replacing in the
equations the semi-major axis of the planet with its periastron
or apoastron to compute the border of the inner or outer belt,
respectively. For larger eccentricities, the mass of the planet
decreases slightly but extreme parameters are still required to
model the double belt structure. To have undetectable planets
with masses beneath detection limits we predict values of ep,
greater than 0.7 in most systems. Thus, even if the hypothesis
of one planet could be suitable in some cases, we try a different
approach assuming that the gap is created by a packed system
of lower mass planets. We have explored the case of two or
three planets in the gap to see if we can explain the gap and the
non–detection of planets by SPHERE. The first model considers
two equal-mass planets on circular orbits but even in this case
most of the planets should have been detected by SPHERE.
The most promising scenario models the presence of the gap
as due to the perturbations of either a system of three planets
on circular orbits or two planets on eccentric orbits. In both
these scenarios the planets would be undetected by SPHERE. In
particular, the case with eccentric orbits show that even a small
variation in the eccentricity of one of the two planets lead to a
drop in their masses hiding them from possible detections.
We summarize our result in Table 6. We show values of masses
for the case of one, two and three planets on circular orbits as
found by our dynamical analysis. For the case of three planets,
we indicate with an asterisk the undetectable objects. We show
also results for masses and eccentricities for one and two planets
on eccentric orbits: in eccentric cases the orbital parameters are
not univocally determined because of the degeneracy between
the mass and the eccentricity of the planet. Thus, for one single
planet on an eccentric orbit, we show only the (MP, eP) values
at the boundary between detectability and undetectability. The
same criterion is applied in discerning values of (MP, e1, e2) for
two planets on eccentric orbits. However, we have to apply a
further selection in this case since, given a fixed value of the
mass, different possible combinations of the eccentricities of the
two planets are possible. Therefore, for each system, we choose
to show only the combination for which values of e1 and e2 are
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Table 6. Values of masses and eccentricities needed to carve the gaps for the systems in the sample assuming one, two or three planets. We indicate
with an asterisk undetectable objects. Since for the eccentric case of one single planet solutions are not univocally determined, in columns 3 we
show only (MP, eP) at the boundary between detectability and undetectability. We adopt the same criterion in column 5 for two equal-mass planets
on eccentric orbits. However, for this last case we obtained, given a fixed value of the mass, different possible combinations of the eccentricities
of the two planets. Thus, for each system, we show only the combination for which values for e1 and e2 are similar.

Name One Planet Two Planets Three Planets
Circular Eccentric Circular Eccentric Circular
MP/MJ MP/MJ eP MP/MJ MP/MJ e1 e2 MP/MJ

HD1466 ≥ 50 2.7 0.89 ≥ 50 2.7 0.59 0.61 ≥ 15
HD3003 ≥ 50 1.7 0.66 ≥ 50 1.7 0.36 0.36 9.3

HD15115 ≥ 50 3.5 0.55 49.8 3.5 0.33 0.29 5.1
HD30447 ≥ 50 5.9 0.24 15.4 5.9 0.15 0.16 1.5∗
HD35114 ≥ 50 2.2 0.69 ≥ 50 2.2 0.39 0.39 7.7
ζ Lep ≥ 50 6.5 0.56 ≥ 50 6.5 0.34 0.29 8.3

HD43989 ≥ 50 2.8 0.93 ≥ 50 2.8 0.65 0.65 ≥ 15
HD61005 ≥ 50 2.7 0.42 21.3 2.7 0.29 0.29 2.1∗
HD71155 ≥ 50 11.2 0.80 ≥ 50 11.2 0.48 0.48 ≥ 15
HD75416 ≥ 50 4.3 0.50 ≥ 50 4.3 0.30 0.27 7.8
HD84075 ≥ 50 2.3 0.83 ≥ 50 2.3 0.51 0.51 12.7
HD95086 ≥ 50 2.0 0.70 ≥ 50 2.0 0.39 0.39 9.3
β Leo ≥ 50 1.6 0.68 ≥ 50 1.6 0.38 0.39 9.6

HD106906 ≥ 50 1.9 0.36 28.0 1.9 0.24 0.25 2.8
HD107301 ≥ 50 5.0 0.27 18.7 5.0 0.18 0.20 2.0∗

HR4796 ≥ 50 1.2 0.64 ≥ 50 1.2 0.35 0.35 9.6
ρ Vir ≥ 50 6.0 0.89 ≥ 50 6.0 0.59 0.59 ≥ 15

HD122705 ≥ 50 7.0 0.66 ≥ 50 7.0 0.36 0.36 12.6
HD131835 ≥ 50 4.0 0.65 ≥ 50 4.0 0.36 0.35 10.5∗
HD133803 ≥ 50 10.0 0.61 ≥ 50 10.0 0.32 0.33 11.6
β Cir ≥ 50 13.4 0.45 ≥ 50 13.4 0.26 0.30 7.7∗

HD140840 ≥ 50 5.4 0.70 ≥ 50 5.4 0.39 0.40 15
HD141378 ≥ 50 9.0 0.86 ≥ 50 9.0 0.54 0.55 ≥ 15
π Ara ≥ 50 11.8 0.48 50 11.8 0.29 0.33 5.1∗

HD174429 ≥ 50 2.4 0.99 ≥ 50 2.4 0.83 0.82 ≥ 15
HD178253 ≥ 50 9.9 0.55 ≥ 50 9.9 0.32 0.29 10∗
η Tel ≥ 50 3.8 0.36 30.2 3.8 0.25 0.25 3.4∗

HD181327 ≥ 50 4.3 0.28 16.6 4.3 0.04 0.29 1.6∗
HD188228 ≥ 50 3.3 0.57 ≥ 50 3.3 0.30 0.31 8.0
ρ Aql ≥ 50 10.1 0.84 ≥ 50 10.1 0.52 0.52 ≥ 15

HD202917 ≥ 50 8.7 0.87 ≥ 50 8.7 0.56 0.56 ≥ 15
HD206893 ≥ 50 4.2 0.93 ≥ 50 4.2 0.66 0.67 ≥ 15

HR8799 ≥ 50 2.7 0.61 ≥ 50 2.7 0.33 0.33 6.7
HD219482 ≥ 50 7.5 0.90 ≥ 50 7.5 0.60 0.61 ≥ 15
HD220825 ≥ 50 12.0 0.30 26.9 12.0 0.2 0.2 3.2∗

similar.
We conclude our work noticing that, even if very few planets
have been detected so far in the gap of double belts, we cannot
rule out the hypothesis that the gap is indeed due to massive
objects orbiting within it. One or two planets on circular orbits
would have been revealed for each system, in contrast with our
observations, and more complex architectures should be taken
into account. Multiple planet systems with eccentric orbits may
be responsible for these belts architectures as in the case of
HR8799 or the Solar System.
This paper presents a quick method to estimate the masses and
eccentricities of the planets in these packed configuration to
have a first glimpse to the possible architecture of the planetary
system in the gap. Thanks to the analytical formulations we can
easily obtain masses, semi-major axes and eccentricities of plan-
ets responsible for the gap. When the SPHERE GTO program
will be completed, the number of observed two-components
disks will be more than doubled. All these systems will be

suitable for this kind of analysis and a statistical study on the
presence of planets between belts will be possible. Moreover,
spatially resolved images such as those that are and will be
provided by instruments like SPHERE, GPI, ALMA and JWT,
will be of extreme importance in order to get to more complete
and robust conclusions on debris disks, exoplanets and their
interactions.
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Appendix A: Γ correction

From images of resolved disks we know that outer compo-
nents are placed further away compared to the predicted black-
body positions (Pawellek et al. 2014). In Pawellek & Krivov
(2015) they analyzed a sample of 32 systems resolved by Her-
schel/PACS and found a relation between the real radius of the
disks and the black-body radius.
Defining the ratio between the two radii as Γ, they found that it
depends on a certain power law of the luminosity of the star,

Γ = A(L/L�)B. (A.1)

They explored five different compositions of dust grain: 50%
astrosilicates and 50% vacuum, 50% astrosilicates and 50%
ice, 100% astrosilcates, 50% astrosilicates and 50% carbon
and 100% carbon. With the exception of 100% astrosilicates
particles for which A = 8.26 and B = −0.55, they obtained
similar values of A and B for each combination. We thus exclude
pure astrosilicates and take mean values of the two parameters
between the remaining compositions, A = 6 and B = −0.4.
The use of the Γ factor would be misleading for disks with high
asymmetries or particular features such as extended halos that
were, indeed, not considered by Pawellek & Krivov (2015) in
their analysis. Moreover, the Γ correction is suitable only for
systems with luminosity L∗ ≥ L�.
Morales et al. (2016) reach similar conclusions, showing for a
sample of resolved systems with Herschel that the position of
the disk is better reproduced modeling the SED with dust grains
composed of astrosilicates made of a mixture of dirty ice and
pure water.
We show in Figure A.1 how much the results of SEDs analysis
with black-body hypothesis (upper panel) and with correction Γ
(lower panel) differ from data available in 17 (out of 19, we have
to discard HD61005 and HD202917 because their luminosities
are < L�) resolved systems for the outer belt. The error bars
represent the extension of the disks from the inner edge Rin
at the lower extremity to the outer edge Rout at the upper one.
Some systems have disks with small error bar because they are
best modeled by thin rings centered on the mid-radii of the belts
In the upper panel, we can see a consistent difference and a sys-
tematic upward shift between SED modeling and direct imaging
data, with the black-body fitting placing indeed the belt nearer
to the star. This should not be a surprise since, as mentioned
before, we expect that the disk is placed farther out when the
particles do not behave like perfect absorbers/emitters. For these
systems the situation improves applying the Γ correction, as
shown in the lower panel.
We note that also some error in the SED fitting could exist.
Indeed, dust grains placed so far from the star have low temper-
atures (thus longer wavelengths) that are less constrained and
more difficult to determine and only a few photometric points
are available. Moreover, discordances between SED and direct
imaging analysis could be caused by other factors. For example,
the resolved systems are analyzed at certain wavelengths
depending on the instrumentation used and the disk will appear
quite different for each value of λ whereas SED fitting identifies
only the dust component. However, the fact that the Pawellek
& Krivov (2015) correction, developed for a sample of targets
observed with Herschel, holds reasonably well for a sample of
objects resolved with different instruments/wavelengths indicate
that such effects are not dominant in our sample.

Fig. A.1. Position of the outer belts as obtained from SED analysis with
hypothesis of black-body (above) and with correction factor Γ (beneath)
versus positions obtained from resolved images. The black line repre-
sents the bisector, i.e. when the two positions coincide. The vertical
error bars represent instead the extension of the disk from its inner edge
to its outer one.

Appendix B: Spatially Resolved systems

We list in Table B.1 the systems among the ones of our sam-
ple that were previously resolved in their farthest component by
means of direct imaging. For each of such objects we show the
instrument and the wavelengths at which the disk was resolved,
the position a of the mean radius of the disk and its inner and
outer edges Rin and Rout, the inclination i (measured from face
on in which case i = 0◦) and the position angle P.A.. We note
that the distances of the stars used in different papers may vary
relative to each other and to distances used in this paper. For this
reason we normalized the dimensions of the disks with distances
listed in Table 1. The only caveat is that this procedure should
be entirely correct only when disk parameters are obtained di-
rectly from images and not from further modeling (such as SED
modeling).
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Table B.1. Spatially Resolved systems

Name Instrument λ (µm) a (AU) Rin (AU) Rout (AU) i(◦) P.A.(◦) Reference
HD15115 LBT/PISCES 3.8 (...) 48 96E/120W 87 275 Rodigas et al. (2012)
HD15115 HST/STIS Visible (...) ≤ 19 336E/586W nearly edge-on 30 Schneider et al. (2014)
HD15115 Gemini/NICI Near IR 96 (...) (...) 86.2 98.5 Mazoyer et al. (2014)
HD15115 Subaru/IRCS 1.63 (...) 92 337E/589W 86.3 278.63 Sai et al. (2014)
HD15115 SMA 1300 (...) 46 118 87 278.5 MacGregor et al. (2015)
HD30447 HST/NICMOS Visible (...) 60 200 nearly edge-on 35 Soummer et al. (2014)
HD61005 HST/STIS Visible 147 38 256 85.1 70.3 Schneider et al. (2014)
HD61005 HST/ACS 0.6 (...) ≤ 33 110 80.3 71.7 Maness et al. (2009)
HD61005 HST/NICMOS 1.1 (...) ≤ 11 223 (...) 160 Hines et al. (2007)
HD61005 SMA 1300 73 (...) (...) 70.3 84.3 Steele et al. (2016)
HD61005 Herschel 70, 100, 160 96 90 101 67 65 Morales et al. (2016)
HD61005 VLT/NACO 1.65 65 65 149 84.3 70.3 Buenzli et al. (2010)
HD61005 VLT/SPHERE, ALMA Near IR, 1300 71 (...) (...) 84.5 70.7 Olofsson et al. (2016)
HD61005 Gemini/GPI, Keck/NIRC2 Near IR 48 42 121 80 70.7 Esposito et al. (2016)
HD71155 Herschel/PACS 70, 100 69 (...) (...) 56.7 167.7 Booth et al. (2013)
HD95086 Herschel/PACS 70, 100, 160 202 61 338 25.9 98.3 Moór et al. (2015)
β Leo Herschel/PACS 100,160 39 15 69 35 125 Churcher et al. (2011)

HD106906 VLT/SPHERE Near IR 72 72 123 85 104 Lagrange et al. (2016)
HD106906 Gemini/GPI Visible (...) 56 >559 85 284 Kalas et al. (2015)

HR4796 HST/STIS Visible 79 73 86 76 27 Schneider et al. (2009)
HR4796 Gemini/NICI Near IR (...) 71 87 26 26.47 Wahhaj et al. (2014)
HR4796 VLT/SPHERE Near IR 77 73 92 76.4 27 Milli et al. (2017b)
HR4796 VLT/NACO Near IR 78 71 84 75 26.7 Lagrange et al. (2012)
HR4796 Keck/MIRLIN 12.5, 24.5 76 72 87 (...) (...) Wahhaj et al. (2005)
HR4796 Keck II/OSCIR 10.8, 18.2 76 49 85 77 26.8 Telesco et al. (2000)
HR4796 HST/NICMOS Visible 76 65 85 73.1 26.8 Schneider et al. (1999)
HR4796 Magellan/MagAO Near IR 79 74 85 76.47 26.56 Rodigas et al. (2015)
ρ Vir Herschel/PACS 70, 100, 160 106 98 114 70 94 Morales et al. (2016)

HD131835 Gemini/TReCS 11.7, 18.3 125 41 368 75 61 Hung et al. (2015)
HD131835 Gemini/GPI Visible (...) 89 249 75.1 61.4 Hung et al. (2015)
HD131835 ALMA 1240 120 25 191 73 58 Lieman-Sifry et al. (2016)
HD131835 a VLT/SPHERE Near IR 114 89 166 72.6 -120 Feldt et al. (2016)
HD141378 Herschel/PACS 100, 160 202 133 279 62 113 Morales et al. (2016)
π Ara Herschel/PACS 100, 160 122 (...) (...) 40 3 Morales et al. (2016)
η Tel Gemini/TReCS 11.7, 18.3 24 (...) (...) 83 8 Smith et al. (2009)

HD181327 HST/STIS Visible 83 (...) (...) 30.1 102 Schneider et al. (2014)
HD181327 HST/NICMOS Visible 83 66 100 31.7 107 Schneider et al. (2006)
HD181327 Herschel/PACS 70, 100, 160 84 73 94 31.7 107 Lebreton et al. (2011)
HD181327 ALMA 1300 81 70 91 30 98.9 Marino et al. (2016)
HD188228 Herschel/PACS 70, 100 107 (...) (...) 34.3 11.4 Booth et al. (2013)
ρ Aql Herschel/PACS 100, 160 244 223 265 68 93 Morales et al. (2016)

HD202917 HST/STIS Visible 69 61 76 68.6 108 Schneider et al. (2016)
HD202917 HST/NICMOS Visible (...) (...) 118 70 300 Soummer et al. (2014)
HD206893 Herschel/PACS 70 (...) 53 212 40 60 Milli et al. (2017a)

HR8799 Herschel/PACS 70, 100, 160, 250 218 101 2000 26 (...) Matthews et al. (2014)
HR8799 ALMA 1340 (...) 149 440 40 51 Booth et al. (2016)
HR8799 SMA 880 172 152 304 20 (...) Hughes et al. (2011)
HR8799 Spitzer 40, 70 (...) 92 308 ≤ 25 (...) Su et al. (2009)
HR8799 CSO 350 (...) 102 304 (...) (...) Patience et al. (2011)

a HD131835 shows a multiple rings structure between the belts at ∼ 115 AU and ∼ 6 AU and this could be an indication of the presence of (still forming) planets.
Such internal structures, however, are not well constrained and they may be short-living. Therefore, we will treat this system as all the others in the sample noticing
that further and more precise analysis could be done but it is beyond the aims of this paper.
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