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ABSTRACT

Context. The second Gaia data release (Gaia DR2 ) provides precise five-parameter astrometric data (positions, proper motions,
and parallaxes) for an unprecedented number of sources (more than 1.3 billion, mostly stars). This new wealth of data will enable the
undertaking of statistical analysis of many astrophysical problems that were previously infeasible for lack of reliable astrometry, and
in particular because of the lack of parallaxes. However, the use of this wealth of astrometric data comes with a specific challenge:
how can the astrophysical parameters of interest be properly inferred from these data?
Aims. The main focus of this paper, but not the only focus, is the issue of the estimation of distances from parallaxes, possibly
combined with other information. We start with a critical review of the methods traditionally used to obtain distances from parallaxes
and their shortcomings. Then we provide guidelines on how to use parallaxes more efficiently to estimate distances by using Bayesian
methods. In particular we also show that negative parallaxes, or parallaxes with relatively large uncertainties still contain valuable
information. Finally, we provide examples that show more generally how to use astrometric data for parameter estimation, including
the combination of proper motions and parallaxes and the handling of covariances in the uncertainties.
Methods. The paper contains examples based on simulated Gaia data to illustrate the problems and the solutions proposed. Further-
more, the developments and methods proposed in the paper are linked to a set of tutorials included in the Gaia archive documentation
that provide practical examples and a good starting point for the application of the recommendations to actual problems. In all cases
the source code for the analysis methods is provided.
Results. Our main recommendation is to always treat the derivation of (astro-)physical parameters from astrometric data, in particular
when parallaxes are involved, as an inference problem which should preferably be handled with a full Bayesian approach.
Conclusions. Gaia will provide fundamental data for many fields of astronomy. Further data releases will provide more data, and
more precise data. Nevertheless, to fully use the potential it will always be necessary to pay careful attention to the statistical treatment
of parallaxes and proper motions. The purpose of this paper is to help astronomers find the correct approach.

Key words. astrometry – parallaxes – Methods: data analysis – Methods: statistical – catalogues

1. Introduction

The Gaia Data Release 2 (Gaia DR2 ) Brown et al. (2018) pro-
vides precise positions, proper motions, and parallaxes for an un-
precedented number of objects (more than 1.3 billion). Like Hip-
parcos ESA (1997) in its day, the availability of a large amount
of new astrometric data, and in particular parallaxes, opens the
way to revisit old astrophysical problems and to tackle new ones.
In many cases this will involve the inference of astrophysical
quantities from Gaia astrometry, a task that is less trivial than it
appears, especially when parallaxes are involved.

The naive use of the simple approach of inverting the paral-
lax to estimate a distance can provide an acceptable estimate in a
limited number of cases, in particular when a precise parallax for
an individual object is used. However, one of the important con-
tributions of Gaia DR2 will be the possibility of working with
large samples of objects, all of them with measured parallaxes.
In these cases a proper statistical treatment of the parallaxes in

order to derive distances, especially (but not only) when the rel-
ative uncertainties are large, is mandatory. Otherwise, the effects
of the observational errors in the parallaxes can lead to poten-
tially strong biases. More generally, the use of full astrometric
data to derive astrophysical parameters should follow a similar
approach. A proper statistical treatment of the data, its uncer-
tainties, and correlations is required to take full advantage of the
Gaia results.

This paper is a complement for the Gaia consortium
Gaia DR2 papers. We analyse the problem of the inference of
distances (and other astrophysical parameters) from parallaxes.
In Sect. 2 we start with a short review of the properties of the
Gaia astrometric data. Then in Sect. 3 we review several of the
most popular approaches to using measured parallaxes in as-
tronomy and highlight their intricacies, pitfalls, and problems.
In Sect. 4 we make recommendations on what we think is the
appropriate way to use astrometric data. Finally, in Sect. 5 we
link to some worked examples, ranging from very basic demon-
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strations to full Bayesian analysis, available as Python and R
notebooks and source code from the tutorial section on the Gaia
archive 1.

2. Gaia astrometric data

The Gaia astrometry, i.e. celestial coordinates, trigonometric
parallaxes, and proper motions for more than one billion ob-
jects, results from the observations coming from the spacecraft
instruments and their subsequent processing by the Gaia Data
Processing and Analysis Consortium (DPAC). The astrometric
processing is detailed in Lindegren et al. (2018) and readers are
strongly encouraged to familiarise themselves with the contents
of that paper in order to understand the strengths and weaknesses
of the published astrometry, and in particular of the parallaxes.
The processed data was submitted to extensive validation prior
to publication, as detailed in Arenou et al. (2018). This paper is
also highly recommended in order to gain a proper understand-
ing of how to use and how not to use the astrometric data. As a
simple and striking example: a small number of sources with un-
realistic very large positive and very large negative parallaxes are
present in the data. Advice on how to filter these sources from
the data analysis is provided in the Gaia DR2 documentation.

2.1. Uncertainties

The published parallaxes, and more generally all astrometric
parameters, are measured quantities and as such have an asso-
ciated measurement uncertainty. These uncertainties are pub-
lished, source per source, and depend mostly on position on
the sky as a result of the scanning law and on magnitude.
For parallaxes, uncertainties are typically around 0.04 mas for
sources brighter than ∼14 mag, around 0.1 mas for sources
with a G magnitude around 17, and around 0.7 mas at the faint
end, around 20 mag. The astrometric uncertainties provided in
Gaia DR2 have been derived from the formal errors computed
in the astrometric processing. Unlike for Gaia DR1 , the par-
allax uncertainties have not been calibrated externally, i.e. they
are known, as an ensemble, to be underestimated by ∼8–12%
for faint sources (G >∼ 16 mag) outside the Galactic plane and by
up to ∼30% for bright stars (G <∼ 12 mag). Based on an assess-
ment of the measured parallaxes of a set of about half a million
known quasars, which can be assumed in practice to have zero
parallax, the uncertainties are normally distributed with impres-
sive approximation (Fig. 1). However, as is common when tak-
ing measurements and especially in such large samples like the
Gaia catalogue, there are small numbers of outliers, even up to
unrealistically high confidence levels (e.g. at the 100σ level).

2.2. Correlations

The parallaxes for each source published in Gaia DR2 have
not been derived in isolation, but result from a simultaneous
five-parameter fit of an astrometric source model to the data. In
Gaia DR2 , only one astrometric source model has been used,
that of a single star. This model assumes a uniform, rectilinear
space motion relative to the solar system barycentre. The astro-
metric data in Gaia DR2 thus comprise five astrometric param-
eters2 with their associated uncertainties, but also ten correlation

1 https://repos.cosmos.esa.int/socci/projects/GAIA/
repos/astrometry-inference-tutorials/browse
2 For a subset of the data, only two parameters (right ascension α and
declination δ) could be determined.
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Fig. 1. Distribution of normalised, re-centred parallaxes of 556 849
quasars from the AllWISE catalogue present in Gaia DR2 (blue curve).
The grey curve denotes the subsample composed of 492 920 sources
with parallax errors σ$ < 1 mas. The centring adopted in this plot
reflects a global parallax zero-point shift of −0.029 mas. Ideally, both
curves should follow a normal distribution with zero mean and unit vari-
ance. The red curve shows a Gaussian distribution with the same stan-
dard deviation (1.081) as the normalised centred parallaxes for the full
sample. Figure from Lindegren et al. (2018).

coefficients between the estimated parameters. It is critical to use
the full (5 × 5) covariance matrix when propagating the uncer-
tainties on subsets and/or linear combinations of the astrometric
parameters.

As an example, consider the transformation of the measured
proper motions µα∗ and µδ in equatorial coordinates to equivalent
values µl∗ and µb in galactic coordinates. Following the notation
in ESA (1997, Sections 1.2 and 1.5), we have(
µl∗
µb

)
=

(
c s
−s c

) (
µα∗
µδ

)
, (1)

where the 2 × 2 matrix is a rotation matrix that depends on the
object’s coordinates α∗ and δ: c = c(α∗, δ) and s = s(α∗, δ). In
order to transform the proper-motion errors from the equatorial
to the galactic system, we have

Cl∗b =

(
σ2
µl∗

ρ
µb
µl∗σµl∗σµb

ρ
µb
µl∗σµl∗σµb σ2

µb

)
(2)

= JCα∗δJ ′ (3)

=

(
c s
−s c

) (
σ2
µα∗

ρ
µδ
µα∗σµα∗σµδ

ρ
µδ
µα∗σµα∗σµδ σ2

µδ

) (
c −s
s c

)
, (4)

where the prime denotes matrix transposition, J denotes the Ja-
cobian matrix of the transformation (which for a rotation is the
rotation matrix itself), and C denotes the variance-covariance
matrix. It immediately follows that σµl∗ and σµb depend on the
generally non-zero correlation coefficient ρµδµα∗ between the equa-
torial proper-motion measurements. Neglecting this correlation
term can give seriously incorrect results. Some further examples
of how error propagation should be handled can be found in,
for instance, Brown et al. (1997) and Lindegren et al. (2000).
In addition to error propagation, the covariance matrix should
also be taken into account when estimating model parameters,
for example in chi-square fitting, maximum likelihood estimates,
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Bayesian analysis, etc. For more details, see Volume 1, Section
1.5 of ESA (1997).

2.3. Systematic errors

Both the design of the spacecraft and the design and implemen-
tation of the data processing software and algorithms aim to pre-
vent biases or systematic effects in the astrometry. Systematic
errors at low levels nonetheless exist in Gaia DR2 (see Arenou
et al. 2018; Lindegren et al. 2018). Systematic effects are com-
plicated and largely unknown functions of position on the sky,
magnitude, and colour. Although systematic effects are not dealt
with in the remainder of this paper, it is important for users to be
aware of their presence.

The parallaxes and proper motions in Gaia DR2 may be
affected by systematic errors. Although the precise magnitude
and distribution of these errors is unknown, they are believed
to be limited, on global scales, to ±0.1 mas for parallaxes and
±0.1 mas yr−1 for proper motions. There is a significant aver-
age parallax zero-point shift of about −30 µas in the sense Gaia
minus external data. This shift has not been corrected for and
is present in the published data. Significant spatial correlations
between stars, up to 0.04 mas in parallax and 0.07 mas yr−1 in
proper motion, exist on both small (<∼1◦) and intermediate (<∼20◦)
angular scales. As a result, averaging parallaxes over small re-
gions of the sky, for instance in an open cluster, in the Mag-
ellanic Clouds, or in the Galactic Centre, will not reduce the
uncertainty on the mean below the ∼0.1 mas level.

Unfortunately, there is no simple recipe to account for the
systematic errors. The general advice is to proceed with the anal-
ysis of the Gaia DR2 data using the uncertainties reported in the
catalogue, ideally while modelling systematic effects as part of
the analysis, and to keep the systematics in mind when interpret-
ing the results.

2.4. Completeness

As argued in the next sections, a correct estimation requires full
knowledge of the survey selection function. Conversely, neglect-
ing the selection function can causes severe biases. Derivation
of the selection function is far from trivial, yet estimates have
been made for Gaia DR1 (TGAS) by, for instance, Schönrich &
Aumer (2017) and Bovy (2017).

This paper does not intend to define the survey selection
function. We merely limit ourselves to mentioning a number of
features of the Gaia DR2 data that should be properly reflected
in the selection function. The Gaia DR2 catalogue is essentially
complete between G ≈ 12 and ∼17 mag. Although the com-
pleteness at the bright end (G in the range ∼3–7 mag) has im-
proved compared to Gaia DR1 , a fraction of bright stars in
this range is still missing in Gaia DR2 . Most stars brighter
than ∼3 mag are missing. In addition, about one out of every
five high-proper-motion stars (µ >∼ 0.6 arcsec yr−1) is miss-
ing. Although the onboard detection threshold at the faint end is
equivalent to G = 20.7 mag, onboard magnitude estimation er-
rors allow Gaia to see fainter stars, although not at each transit.
Gaia DR2 hence extends well beyond G = 20 mag. However, in
dense areas on the sky (above ∼400 000 stars deg−2), the effec-
tive magnitude limit of the survey can be as bright as ∼18 mag.
The somewhat fuzzy faint-end limit depends on object density
(and hence celestial position) in combination with the scan-law
coverage underlying the 22 months of data of Gaia DR2 and the
filtering on data quality that has been applied prior to publica-

tion. This has resulted in some regions on the sky showing artifi-
cial source-density fluctuations, for instance reflecting the scan-
law pattern. In small, selected regions, gaps are present in the
source distribution. These are particularly noticeable near very
bright stars. In terms of effective angular resolution, the resolu-
tion limit of Gaia DR2 is ∼0.4 arcsec.

Given the properties of Gaia DR2 summarised above, the in-
terpretation of the data is far from straightforward. This is partic-
ularly true when accounting for the incompleteness in any sam-
ple drawn from the Gaia Archive. We therefore strongly encour-
age the users of the data to read the papers and documentation
accompanying Gaia DR2 and to carefully consider the warnings
given therein before drawing any conclusions from the data.

3. Critical review of the traditional use of parallaxes

We start this section by briefly describing how parallaxes are
measured and how the presence of measurement noise leads to
the occurrence of zero and negative observed parallaxes. In the
rest of the section we review several of the most popular ap-
proaches to using measured parallaxes ($) to estimate distances
and other astrophysical parameters. In doing so we will attempt
to highlight the intricacies, pitfalls, and problems of these ‘tradi-
tional’ approaches.

3.1. Measurement of parallaxes

In simplified form, astrometric measurements (source positions,
proper motions, and parallaxes) are made by repeatedly deter-
mining the direction to a source on the sky and modelling the
change of direction to the source as a function of time as a com-
bination of its motion through space (as reflected in its proper
motion and radial velocity) and the motion of the observing plat-
form (earth, Gaia , etc.) around the Sun (as reflected in the par-
allax of the source). As explained in more detail in Lindegren
et al. (2016) and Lindegren et al. (2012), this basic model of the
source motion on the sky describes the time-dependent coordi-
nate direction from the observer towards an object outside the
solar system as the unit vector

u(t) = 〈r + (tB − tep)(pµα∗ + qµδ + rµr) −$bO(t)/Au〉 , (5)

where t is the time of observation and tep is a reference time, both
in units of Barycentric Coordinate Time (TCB); p, q, and r are
unit vectors pointing in the direction of increasing right ascen-
sion, increasing declination, and towards the position (α, δ) of
the source, respectively; tB is the time of observation corrected
for the Rømer delay; bO(t) is the barycentric position of the ob-
server at the time of observation; Au is the astronomical unit;
and 〈〉 denotes normalisation. The components of proper mo-
tion along p and q are respectively µα∗ = µα cos δ and µδ, $
is the parallax, and µr = vr$/Au is the ‘radial proper motion’
which accounts for the fact that the distance to the star changes
as a consequence of its radial motion, which in turn affects the
proper motion and parallax. The effect of the radial proper mo-
tion is negligibly small in most cases and can be ignored in the
present discussion.

The above source model predicts the well-known helix or
wave-like pattern for the apparent motion of a typical source on
the sky. A fit of this model to noisy observations can lead to
negative parallaxes, as illustrated in Fig. 2. We note how in the
source model described in Eq. (5) the parallax appears as the
factor −$ in front of the barycentric position of the observer,
which means that for each source its parallactic motion on the
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sky will have a sense which reflects the sense of the motion of
the observer around the Sun. In the presence of large measure-
ment noise (comparable to the size of the parallax) it is entirely
possible that the parallax value estimated for the source model
vanishes or becomes negative. This case can be interpreted as the
measurement being consistent with the source going ‘the wrong
way around’ on the sky, as shown in Fig. 2.

2 1 0 1 2 3 4
*  [mas]

8

6

4

2

0

2

 [m
as

]

True: = 0.40, * = 1.00, = 2.00
Fit: = 0.49, * = 1.13, = 1.69
Observations

2
1
0
1
2
3
4

* 
[m

as
]

2015 2016 2017 2018 2019
Time [yr]

8

6

4

2

0

2

 [m
as

]

Fig. 2. Example of a negative parallax arising from the astrometric data
processing. Solid blue lines, true path of the object; red dots, the in-
dividual measurements of the source position on the sky; dashed or-
ange lines, the source path according to the least-squares astrometric
solution, which here features a negative parallax. Left: Path on the sky
showing the effect of proper motion (linear trend) and parallax (loops).
Right: Right ascension and declination of the source as a function of
time. In the fitted solution the negative parallax effect is equivalent to a
yearly motion of the star in the opposite direction of the true parallactic
motion (which gives a phase-shift of π in the sinusoidal curves in the
right panels). The error bars indicate a measurement uncertainty of 0.7
mas, the uncertainties on ∆α∗ and ∆δ are assumed to be uncorrelated.

This example is intended to clarify why parallaxes can have
non-positive observed values and, more importantly, to convey
the message that the parallax is not a direct measurement of the
distance to a source. The distance (or any other quantity depend-
ing on distance) has to be estimated from the observed parallax
(and other relevant information), taking into account the uncer-
tainty in the measurement. A simplified demonstration of how
negative parallaxes arise (allowing us to reproduce Fig. 2) can
be found in the online tutorials accompanying this paper 3.

3.2. Estimating distance by inverting the parallax

In the absence of measurement uncertainties, the distance to a
star can be obtained from its true parallax through r = 1/$True,
with$True indicating the true value of the parallax. Thus, naively
we could say that the distance to a star can be obtained by in-
verting the observed parallax, ρ = 1/$, where now ρ is used
to indicate the distance derived from the observed value of the
parallax. For this discussion the observed parallax is assumed to
be free of systematic measurement errors and to be distributed
normally around the true parallax

p($ | $True) =
1

σ$
√

2π
exp

(
−

($ −$True)2

2σ2
$

)
, (6)

where σ$ indicates the measurement uncertainty on $. Blind
use of 1/$ as an estimator of the distance will lead to unphys-
3 https://repos.cosmos.esa.int/socci/projects/
GAIA/repos/astrometry-inference-tutorials/browse/
luminosity-calibration/DemoNegativeParallax.ipynb)

ical results in case the observed parallax is non-positive. Nev-
ertheless, we could still consider the use of the 1/$ distance
estimate for positive values, for instance, a sample where most
or all of the observed values are positive or, in the limiting case,
where there is a single positive parallax value. In this case, it is
crucial to be aware of the statistical properties of the estimate ρ.
Given a true distance r = 1/$True, what will be the behaviour
of ρ? We can obtain the probability density function (PDF) of ρ
from Eq. (6) as

p(ρ | $True) = p($ = 1/ρ | $True) ·
∣∣∣∣∣d$dρ

∣∣∣∣∣
=

1

ρ2σ$
√

2π
exp

(
−

(1/ρ −$True)2

2σ2
$

)
(7)

In Fig. 3 we depict p(ρ | $True) for two extreme cases of very
low and very high relative uncertainty. The shape of p(ρ | $True)
describes what we can expect when using ρ as an estimate of
the true distance r. The distribution of the figure on the left cor-
responds to a case with a low fractional parallax uncertainty,
defined as f = σ$/$True. It looks unbiased and symmetrical.
Thus, using ρ = 1/$ to estimate the distance in a case like this
is relatively safe and would lead to more or less reliable results.
However, in spite of its appearance, the figure hides an intrin-
sic non-Gaussianity that is made evident in the right-hand fig-
ure. This second plot corresponds to the case of high fractional
parallax uncertainty and the distribution shows several features:
first, the mode (the most probable value) does not coincide with
the true distance value; second, the distribution is strongly asym-
metric; and finally, it presents a long tail towards large values of
ρ. For more extreme values of f there is a noticeable negative
tail to this distribution, corresponding to the negative tail of the
observed parallax distribution.

Fig. 3. PDF of ρ = 1/$ in two extreme cases. The red vertical line indi-
cates the true distance r. Left: Object at r = 100 pc with an uncertainty
on the observed parallax of σ$ = 0.3 mas. Right: Object at r = 2000 pc
with an uncertainty on the observed parallax of σ$ = 0.3 mas.

In view of Fig. 3 it is tempting to apply corrections to the
ρ estimator based on the value of the fractional parallax uncer-
tainty f . Unfortunately, in order to do so we would need to know
the true value of the parallax and f . Using the apparent fractional
uncertainty fapp = σ$/$ is not feasible since the denominator
in f (the true parallax) can be very close to zero, so its distribu-
tion has very extended wings and using fapp will often result in
gross errors.
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Furthermore, reporting a ρ value should always be accompa-
nied by an uncertainty estimate, usually the standard deviation
of the estimator, but the standard deviation or the variance is de-
fined in terms of an unknown quantity: $True. In addition, the
long tail shown in the right panel of Fig. 3 makes the estimates
of the variance quickly become pathological, as discussed below.

In order to clarify the previous assertions, we recall the clas-
sical concept of bias because it plays a central role in the discus-
sion that develops in this section. In statistics, an estimator is said
to be biased if its expected value differs from the true value. In
our case, we aim to infer the true value of the parallax $True (or,
alternatively, related quantities such as the true distance r, ab-
solute magnitude, luminosity, or 3D velocity components), and
we aim to infer it from the measured parallax. In the Gaia case
this measured parallax will be affected by quasi-Gaussian uncer-
tainties (see Sect. 2.1). In this case the expectation value of the
observed parallax coincides with the true value:

E[$] =

∫
$p($|$True)·d$ =

∫
$N($;$True, σ$)·d$ = $True,

(8)

where N($;$True, σ$) represents the Gaussian probability dis-
tribution centred at the true parallax and with a standard devia-
tion σ$. Hence, the observed parallax is an unbiased estimator
of the true parallax (under the strong hypothesis that there are no
systematic biases associated with the survey and that the errors
are normally distributed).

Now, in order to assess the bias of ρ = 1/$ as an estimator
of the true distance we need to calculate its expected value:

E[ρ] = E[1/$] =

∫
1
$
·p($|$True)·d$ =

∫
1
$
·N($True, σ$)·d$

(9)

This bias was approximated by Smith & Eichhorn (1996) (see
Sect. 3.4.1) as a function of the fractional parallax uncertainty f
using a series expansion of the term in the integral and several
approximations for the asymptotic regimes of small and large
values of f , and it indeed shows that the distance estimator 1/$
is unbiased for vanishingly small values of f , but it rapidly be-
comes significantly biased for values of f beyond 0.1. But not
only is 1/$ a biased estimator of the true distance, it is also a
high-variance estimator. The reason for this variance explosion
is related to the long tail towards large distances illustrated in the
right panel of Figs. 3 and 4. Relatively large fractional uncertain-
ties inevitably imply noise excursions in the parallax that result
in vanishingly small observed parallaxes and disproportionate
distances (and hence an inflation of the variance).

The effects discussed above can be illustrated with the use of
simulated data. Figure 4 shows the results of a simulation of ob-
jects located between 0.5 and 2kpc where starting from the true
distances we have simulated observed parallaxes with a Gaus-
sian uncertainty of σ$ = 0.3 mas and then calculated for each
object ρ = 1/$.

The figure on the left shows that (by construction) the errors
in the observed parallaxes are well behaved and perfectly sym-
metrical (Gaussian), while in the centre figure the errors in the
estimation of distances using ρ show a strong asymmetry. The
characteristics of these residuals depend on the distribution of
true distances and uncertainties. This is more evident in the fig-
ure on the right, where the true distance r is plotted against ρ;

there is a very prominent tail of overestimated distances and the
distribution is asymmetrical around the one-to-one line: the more
distant the objects, the more marked the asymmetry. These fea-
tures are very prominent because we have simulated objects so
that the relative errors in parallax are large, but they are present
(albeit at a smaller scale) even when the relative errors are small.

The plots in Fig. 4 correspond to a simple simulation with a
mild uncertainty σ$ = 0.3 mas. Figure 5 shows the same plots
for a realistic simulation of the Gaia DR2 data set. The simula-
tion is described in Appendix A; in this case the errors in paral-
lax follow a realistic model of the Gaia DR2 errors, depicted in
Fig. A.2.

As a summary, we have seen in previous paragraphs that
the naive approach of inverting the observed parallax has sig-
nificant drawbacks: we are forced to dispose of valuable data
(non-positive parallaxes), and as an estimator ρ = 1/$ is biased
and has a very high variance.

3.3. Sample truncation

In addition to the potential sources of trouble described in the
previous sections, the traditional use of samples of parallaxes in-
cludes a practice that tends to aggravate these effects: truncation
of the used samples.

As discussed in Sect. 3.1, negative parallaxes are a natural
result of the Gaia measurement process (and of astrometry in
general). Since inverting negative parallaxes leads to physically
meaningless negative distances we are tempted to just get rid of
these values and form a ‘clean’ sample. This results in a biased
sample, however.

On the one hand, removing the negative parallaxes biases the
distribution of this parameter. Consider for instance the case il-
lustrated in Fig. 1 for the quasars from the AllWISE catalogue.
These objects have a near zero true parallax, and the distribu-
tion of its observed values shown in the figure corresponds to
this, with a mean of −10 µas, close to zero. However, if we re-
move the negative parallaxes from this sample, deeming them
‘unphysical’, the mean of the observed values would be signif-
icantly positive, about 0.8 mas. This is completely unrealistic
for quasars; in removing the negative parallaxes we have signif-
icantly biased the observed parallax set for these objects. With
samples of other types of objects with non-zero parallaxes the
effect can be smaller, but it will be present.

On the other hand, when by removing negative parallaxes
the contents of the sample are no longer representative of the
base population from which it has been extracted since stars with
large parallaxes are over-represented and stars with small paral-
laxes are under-represented. This can be clearly illustrated us-
ing a simulation. We have generated a sample of simulated stars
mimicking the contents of the full Gaia DR2 (see Appendix A)
and truncated it by removing the negative parallaxes. In Fig. 6
we can compare the distribution of the true distances of the orig-
inal (non-truncated) sample and the resulting (truncated) sam-
ple; it is clear that after the removal of negative parallaxes we
have favoured the stars at short distances (large parallaxes) with
respect to the stars at large distances (small parallaxes). The spa-
tial distribution of the sample has thus been altered, and may
therefore bias any analysis based on it.

A stronger version of truncation that has traditionally been
applied is to remove not only negative parallaxes, but also all the
parallaxes with a relative error above a given threshold k, select-
ing σ$

$
< k. This selection tends to favour the removal of stars

with small parallaxes. The effect is similar to the previous case,
but more accentuated as can be seen in Fig. 7. Again, stars at
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Fig. 4. Behaviour of PDF of ρ = 1/$ as estimator of the true distance. Left: Histogram of differences between true parallaxes and observed
parallaxes. Centre: Histogram of differences between true distances and their estimation using ρ. Right: Comparison of the true distances and their
estimations using ρ. The observed parallaxes $ have been simulated using an uncertainty of σ$ = 0.3 mas.

Fig. 5. Behaviour of PDF of ρ = 1/$ as estimator of the true distance for a simulation of the full Gaia DR2 data set. Left: Histogram of differences
between true parallaxes and observed parallaxes. Centre: Histogram of differences between true distances and their estimation using ρ. Right:
Comparison of the true distances and their estimations using ρ. The observed parallaxes $ have been simulated using a realistic Gaia DR2 error
model described in the Appendix. The contour lines correspond to the distribution percentiles of 35%, 55%, 90%, and 98%.

Fig. 6. Effect of removing the negative and zero parallaxes from a sim-
ulation of Gaia DR2 . Distribution of true distances: histogram of dis-
tances for the complete sample (thick line), histogram of distances for
the sample truncated by removing $ ≤ 0 (thin line).

short distances are favoured in the sample with respect to distant
stars.

Even worse, as in the previous case the truncation not only
makes the distribution of true distances unrepresentative, but it
also biases the distribution of observed parallaxes: stars with
positive errors (making the observed parallax larger than the

Fig. 7. Effect of removing the positive parallaxes with a relative error
above 50% as well as negative parallaxes. Thick line: histogram of dis-
tances for the complete sample. Thin line: histogram of distances for
the sample truncated by removing objects with (|σ$

$
| > 0.5).

true one) tend to be less removed than stars with negative er-
rors (making the observed parallax smaller than the true one).
By favouring positive errors with respect to negative errors, we
are also biasing the overall distribution of parallaxes. Figure 8
depicts this effect. The plots show the difference $ −$True as a
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function of $True. We can see in the middle and bottom figures
how the removal of objects is non-symmetrical around the zero
line, so that the overall distribution of$−$True becomes biased.
From an almost zero bias for the full sample (as expected from
Gaia in absence of systematics) we go to significant biases once
we introduce the truncation, and the bias is dependent of the cut
value we introduce.

Fig. 8. Differences between true and observed parallax: effect of remov-
ing observed negative parallaxes and those above a given relative error.
We start with a representative subsample of 1 million stars (top figure)
and truncateit according to the apparent relative parallax precision. Top:
Complete sample. Mean difference $ −$True is 1.55 × 10−5 mas. Mid-
dle: Retaining only objects with positive parallaxes and (|σ$

$
| < 0.5).

The mean difference $−$True is 0.164 mas . Bottom: Retaining only
objects with positive parallaxes and (|σ$

$
| < 0.2). The mean difference

$ −$True is 0.026 mas.

Furthermore, in Gaia the parallax uncertainties vary with
the object magnitude, being larger for faint stars (see Fig. A.2).
Therefore, a threshold on the relative error will favour bright
stars over the faint ones, adding to the above described biases.

Another type of truncation that has been traditionally applied
is to introduce limits in the observed parallax. The effects of such
a limit are closely related to the Lutz–Kelker bias discussed in
Sect. 3.4.2. Suffice it here to illustrate the effect with a specific
example on a Gaia DR2 -like sample. If we take the full sample
and remove stars with $ < 0.2 mas we could imagine that we
are roughly removing objects further away than 5 kpc. However,
the net result is depicted in Fig. 9 where we can see that instead
of the distribution of true distances of the complete sample up to
5 kpc (solid line) we get a distribution with a lack of closer stars
and a long tail of stars with greater distances. A larger limit in
parallax (shorter limiting distance) will produce a less prominent
effect since the relative errors in the parallax will be smaller, but
the bias will be nonetheless present.

Fig. 9. Effect of introducing a limit on the observed parallax. Thick line:
histogram of distances up to 5 kpc for the complete sample. Thin line:
histogram of distances for the sample truncated by removing objects
with ($ < 0.2 mas (distance estimated as 1/$ up to 5 kpc).

In conclusion, our advice to readers is to avoid introducing
truncations when using Gaia data since, as illustrated above, they
can strongly affect the properties of the sample and therefore
affect the data analysis. If truncation is unavoidable it should be
included in the Bayesian modelling of the overall problem (see
Sect. 4.3).

3.4. Corrections and transformations

In this section, we review proposals in the literature for the use
of parallaxes to estimate distances. In general they take the form
of ‘remedies’ to correct one or another problem on this use. Here
we explain why these remedies cannot be recommended.

3.4.1. The Smith–Eichhorn correction

Smith & Eichhorn (1996) attempt to compensate for the bias in-
troduced by the naive inversion of the observed parallax (and
the associated variance problem) in two different ways. The first
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involves transforming the measured parallaxes into a pseudo-
parallax $∗ according to

$∗ ≡ β · σ$

 1
exp(φ) + exp(−1.6$

σ$
)

+ φ

 , (10)

where φ ≡ ln(1 + exp( 2$
σ$

))/2 and β is an adjustable constant.
The qualitative effect of the transformation is to map negative
parallaxes into the positive semi-axis R+ and to increase the
value of small parallaxes until it asymptotically converges to the
measured value for large $. For $ = 0, φ = ln(2)/2 and the
pseudo-parallax value $∗ = β · σ$

(
1

1+exp(ln(2)/2) +
ln(2)

2

)
has the

undesirable property of depending on the choice of β and on the
parallax uncertainty. Thus, even in the case of a small parallax
measurement $ → 0 with a relatively small fractional parallax
uncertainty (e.g. f = 0.1), we substitute a perfectly useful and
valuable measurement by an arbitrary value of $∗.

The Smith–Eichhorn transformation is an arbitrary (and
rather convolved) choice amongst many such transformations
that can reduce the bias for certain particular situations. Both the
analytical expression and the choice of constants and β are the
result of an unspecified trial-and-error procedure, the applicabil-
ity of which is unclear. Furthermore, as stated by the authors,
they introduced a new bias because the transformed parallax is
always larger than the measured parallax. This new bias has no
physical interpretation because it is the result of an ad hoc choice
for the analytical expression in Eq. (10). It is designed to reduce
the bias, but it does so by substituting perfectly reasonable direct
measurements (negative and small parallaxes) that we can inter-
pret and use for inference, by constructed values arising from the
choice.

3.4.2. The Lutz–Kelker correction

Lutz & Kelker (1973) realised that the spatial distribution of
sources around the observer together with the unavoidable ob-
servational errors and a truncation of the sample on the value
of the observed parallax result in systematic biases in the av-
erage parallax of certain stellar samples. The bias described by
Lutz & Kelker (1973) is a manifestation of the truncation bi-
ases described above and can be understood if we look at a few
very simple examples. First, let us imagine a density of sources
around the observer such that the distribution of true parallaxes
p($True) is constant in a given interval and zero outside. Let us
also imagine that the observation uncertainty σ$ is constant and
equal to 0.3 mas. The left panel of Fig. 10 shows the distribution
of true and observed parallaxes for a simulation of such a situ-
ation and 106 sources. We see that the observed parallaxes are
also approximately uniform and the departures from uniformity
appear near the edges. For a given bin of intermediate parallax
we have as many sources contaminating from neighbouring bins
as we have sources lost to other bins due to the observational
uncertainties, and the result is a negligible net flux.

In the middle panel we show the same histograms except
that instead of a constant parallax uncertainty, we use a constant
value of the fractional parallax uncertainty f . This is still an un-
realistic situation because the distribution of true parallaxes is
not uniform and also because a constant f implies that larger
parallaxes are characterised by larger uncertainties. However, it
helps us to illustrate that even in the case of uniform true par-
allaxes we may have a non-zero net flux of sources between
different parallax bins depending on the distribution of parallax

uncertainties. In this case, noise shifts the value of large paral-
laxes more than that of smaller parallaxes (because of the con-
stant value of f ), so larger parallaxes get more scattered, thus
suppressing the distribution more at large parallaxes.

Finally, the right panel shows the same plot for a realistic
distribution of distances from a Gaia Universe Model Snapshot
(GUMS) sample (see Appendix A for a full description). We see
that the effect of a realistic non-uniform distribution of parallaxes
and parallax uncertainties results in a net flux in the opposite
direction (smaller true parallaxes become more suppressed and
larger parallax bins are enhanced; in both cases, the bins of neg-
ative parallaxes become populated). This is the root of the Lutz–
Kelker bias. It is important to distinguish between the Lutz–
Kelker bias and the Lutz–Kelker correction. The Lutz–Kelker
bias is the negative difference for any realistic sample between
the average true parallax and the average measured parallax (i.e.
the average true parallax is smaller than the average measured
parallax). This bias has been known at least since the work of
Trumpler & Weaver (1953), although it was already discussed in
a context different from parallaxes as early as Eddington (1913).
The Lutz–Kelker correction presented in Lutz & Kelker (1973)
and discussed below is an attempt to remedy this bias based on
a series of assumptions.

In the case of Gaussian uncertainties such as those described
in Eq. (6) it is evident that the probability of measuring a value of
the parallax greater than the true parallax p($ > $True|$True) =
0.5. The same value holds for the probability that $ < $True
because the Gaussian distribution is symmetrical with respect
to the true value of the parallax. This is also true for the joint
probability of $ and $True,

p($ > $True) =

"
S

p($,$True) · d$ · d$True = 0.5, (11)

where S is the region of the ($,$True) plane where $ > $True.
However, the probability distribution of the true parallax

given the observed parallax p($True|$) does not fulfil this seem-
ingly desirable property of probability mass equipartition at the
$ = $True point. We can write the latter probability as

p($True|$) =
p($,$True)

p($)
=

p($|$True) · p($True)
p($)

(12)

using the product rule of probability. In the context of inferring
the true parallax from the observed one, Eq. (12) is the well-
known Bayes’ theorem, where the left-hand side is the posterior
probability, p($ | $True) is the likelihood, p($True) is the prior,
and p($) is the evidence. For most realistic prior distributions
p($True), neither the median nor the mode or the mean of the
posterior in Eq. (12) is at $ = $True. Let us take for example
a uniform volume density of sources out to a certain distance
limit. In such a distribution the number of sources in a spherical
shell of infinitesimal width at a distance r scales as r2, as does
the probability distribution of the distances. Since

p(r) · dr = p($True) · d$True, (13)

the probability distribution for the true parallax in such a trun-
cated constant volume density scenario is proportional to

p($True) ∝ $−4
True (14)
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Fig. 10. Histograms of true (grey) and observed (blue) parallaxes for three simulations: uniform distribution of parallaxes and constant σ$ = 0.3
mas (left); uniform distribution of parallaxes and constant f = 0.5 (centre); and the GUMS simulation described in Appendix A (right).

out to the truncation radius. Hence, for Gaussian distributed un-
certainties we can write p($True|$) as

p($True|$) ∝
1
σ$
· exp(

−($ −$True)2

2σ$
) ·$−4

True. (15)

The joint distribution p($,$True) (i.e. the non-normalised
posterior, plotted as a 2D function of data parallax and param-
eter $True) for this particular case of truncated uniform stellar
volume densities is depicted in Fig. 11 together with the con-
ditional distributions for particular values of $ and $True. It
shows graphically the symmetry of the probability distribution
p($|$True) (with respect to $True) and the bias and asymmetry
of p($True|$).

Lutz & Kelker (1973) obtain Eq. (15) in their Sect. ii under
the assumption of uniform stellar volume densities and constant
fractional parallax uncertainties (constant f ). They discuss sev-
eral distributions for different values of the ratio σ$/$True. In
their Sect. iii they use the expected value of the true parallax
given by the distribution p($True|$) in Eq. (15) to infer the ex-
pected value of the difference between the true absolute magni-
tude MTrue and the value obtained with the naive inversion of the
observed parallax. The expected value of this absolute magni-
tude error is derived and tabulated for the distribution p($True|$)
as a function of the fractional parallax uncertainty f . This so-
called Lutz–Kelker correction is often applied to stellar samples
that do not fulfil the assumptions under which it was derived be-
cause the stellar volume density is far from uniform at scales
larger than a few tens of parsecs and the samples to which the
correction is applied are never characterised by a unique value
of f .

3.5. Astrometry-based luminosity

An obvious way to avoid the problems associated with the naive
inversion of observed parallaxes (see Sect. 3.4.1) is to remain
in the space of parallaxes (as opposed to that of distances) in-
sofar as this is possible. One example of this approach is the
astrometry-based luminosity (ABL) method (Arenou & Luri
1999) originating from Malmquist (1920). The ABL method
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Fig. 11. (Lower left) Joint probability distribution (in logarithmic scale
to improve visibility) for the random variables $ and $True in the sce-
nario of a truncated uniform volume density. The colour code is shown
to the right of the lower right panel, and white marks the region where
the probability is zero. (Lower right) Conditional probability distribu-
tion of the observed parallax for $True=0.5. (Upper left) Conditional
probability distribution for $True given an observed parallax $. The
fractional parallax uncertainty assumed for the computation of all prob-
abilities is f = 0.2.

consists in substituting the absolute magnitudes by a proxy that
is linearly dependent on the parallax. The original proposal was

aV ≡ 100.2MV = $10
mV +5

5 , (16)
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and has been recently used to obtain maximum likelihood esti-
mates of the period-luminosity relation coefficients for Cepheids
and RR Lyrae stars (Gaia Collaboration et al. 2017a), and to im-
prove the Gaia parallax uncertainties using deconvolved colour-
magnitude diagrams as prior (Anderson et al. 2017). The new
astrometry-based luminosity depends linearly on the parallax,
and thus its uncertainty can be expected to have an approxi-
mately Gaussian distribution if the fractional uncertainty of the
apparent magnitude is negligible. This is more often the case
than for fractional parallax uncertainties and is in general a good
approximation.

Unfortunately, the astrometry-based luminosity can only be
applied to the study of the luminosity and can do nothing for
the analysis of spatial distributions where distances or tangential
velocities are inevitable ingredients.

4. Recommendations for using astrometric data

In this section we provide specific advice on the use of astro-
metric data in astronomical data analysis. Although the focus is
on the use of Gaia data, many of the recommendations hold for
the analysis of astrometric data in general. To illustrate the rec-
ommendations we also provide a small number of worked ex-
amples, ranging from very basic demonstrations of the issues
mentioned in Sect. 3 to full Bayesian analyses. Some of these
examples are available in the Gaia archive tutorial described in
Sect. 5.

4.1. Using Gaia astrometric data: how to proceed?

The fundamental quantity sought when measuring a stellar par-
allax is the distance to the star in question. However, as discussed
in the previous sections the quantity of interest has a non-linear
relation to the measurement, r = 1/$True, and is constrained
to be positive, while the measured parallax can be zero or even
negative. Starting from a measured parallax which is normally
distributed about the true parallax, this leads to a probability den-
sity for the simple distance estimator ρ = 1/$ (see Sect. 3) for
which the moments are defined in terms of unknown quantities.
This means we cannot calculate the variance of the estimator or
the size of a possible bias, which renders the estimator useless
from the statistical point of view.

Our first and main recommendation is thus to always
treat the derivation of (astro-)physical parameters from as-
trometric data, in particular when parallaxes are involved,
as an inference problem which should preferably be handled
with a full Bayesian approach.

4.1.1. Bayesian inference of distances from parallaxes

The Bayesian approach to inference involves estimating a PDF
over the quantity of interest given the observables. In this case
we want to estimate the distance, r, given the parallax, $. A
fuller treatment of this problem has been given in Bailer-Jones
(2015), so only a brief summary will be given here. Using Bayes’
theorem we can write the posterior as

P(r | $) =
1
Z

P($ | r)P(r) . (17)

Formally, everything is also conditioned on the parallax uncer-
tainty, σ$, and any relevant constraints or assumptions, but sym-
bols for these are omitted for brevity. The quantity P($ | r) is

the likelihood from Eq. (12). The prior, P(r), incorporates our
assumptions and Z is a normalisation constant.

In addition to the likelihood, there are two important choices
which must be made to estimate a distance: the choice of prior
and the choice of estimator. We will first focus on the former,
and start discussing the simplest prior: the uniform unbounded
prior. With a uniform boundless (and thus improper) prior on
distances the posterior is proportional to the likelihood, and if
we choose the mode of the posterior as our estimator, then the
solution is mathematically equivalent to maximising the likeli-
hood. However, a boundless uniform prior permits negative dis-
tances, which are non-physical, so we should at least truncate it
to exclude these values.

The more measurements we have, or the more precise the
measurements are, the narrower the likelihood and the lower the
impact of the prior should be on the posterior. It turns out, how-
ever, that with the unbounded uniform prior the posterior is im-
proper, i.e. it is not normalisable. Consequently, the mean and
median are not defined. The only point estimator is the mode,
i.e. rest = 1/$ (the standard deviation and the other quantiles
are likewise undefined), which is rather restrictive. Finally, this
Bayesian distance estimate defined for an unbounded uniform
prior reduces to the maximum likelihood estimate and coincides
with the naive inversion discussed in Sect. 3.2. The posterior
is ill-defined for the unbounded uniform prior for parallaxes.
This prior describes an unrealistic situation where the observer is
placed at the centre of a distribution of sources that is spherically
symmetric and the volume density of which decreases sharply
with distance.

The solution to these problems (non-physical distances, im-
proper posterior) is to use a more appropriate prior. The proper-
ties of various priors and estimators have been studied by Bailer-
Jones (2015) and Astraatmadja & Bailer-Jones (2016b). The lat-
ter makes a detailed study using a Milky Way model for a prior,
and also investigates how the estimates change when the Gaia
photometric measurements are used in addition to the parallax.
One of the least informative priors we can use is the exponen-
tially decreasing space density prior:

P(r) =


1

2L3 r2e−r/L if r > 0

0 otherwise .
(18)

For distances r � L this corresponds to a constant space density
of stars, with the probability dropping exponentially at distances
much larger than the mode (which is at 2L). Examples of the
shape of the posterior for parallaxes of different precisions are
shown in Bailer-Jones (2015) and Astraatmadja & Bailer-Jones
(2016b).

The posterior obtained for the prior defined in Eq. (18) is nor-
malised and thus, we have a choice of point estimators (mean,
median, or mode). Also, the distribution is asymmetric, and
two quantiles (5% and 95%) rather than the standard deviation
are recommended to summarise the uncertainty in the point es-
timate. The median, as a point estimate, is guaranteed to lie
between these quantiles. Astraatmadja & Bailer-Jones (2016b)
used this prior, as well as a Milky Way prior, to infer distances
for the two million TGAS stars in the first Gaia data release.
The behaviour of the estimates derived from the exponentially
decreasing space density prior can be explored using the interac-
tive tool available in the tutorial described in Sect. 5.1.

In general, the introduction of reasonable prior probabilities
accounts for the Lutz–Kelker bias, although the inevitable mis-
match between the true distribution of parallaxes and the prior
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used will result in less accurate inferences. In any case, the ad-
vantage with respect to the methods discussed in Sect. 3 is clear:
i) we do not need to tabulate corrections for each prior assuming
constant f ; ii) we do not need to dispose of non-positive par-
allaxes; iii) we obtain a proper full posterior distribution with
well-defined moments and credible intervals; iv) even simple
priors such as the exponential decreasing volume density will
improve our estimates with respect to the unrealistic prior un-
derlying the maximum likelihood solution rest = 1/$; and fi-
nally, v) we obtain estimators that degrade gracefully as the data
quality degrades, and with credible intervals that grow with the
observational uncertainties until they reach the typical scales of
the prior when the observations are non-informative. These ad-
vantages come at the expense of an inference that is more com-
putationally demanding in general (as it requires obtaining the
posterior and its summary statistics if needed), the need for a
thoughtful choice of a prior distribution, and the analysis of the
influence of the prior on the inference results.

Figure 12 shows the distribution of means (left), modes (cen-
tre), and medians (right) of the posteriors inferred for a simu-
lation of 105 sources drawn from an exponentially decreasing
space density distribution. This simulation represents the un-
likely case where the prior is a perfect representation of the true
distribution.

From a Bayesian perspective the full posterior PDF is the
final result of our inference if we only use parallax measure-
ments to infer the distance (see below), and further analyses
should make use of it as a whole. This is our recommendation
in general: avoid expectations and summaries of the posterior.
However, it is often useful to compute summary statistics such
as the mean (expectation), median, mode, quantiles, etc., to have
an approximate idea of the distribution, but we should not use
these summaries for further inference, for example to estimate
absolute magnitudes, Cartesian velocities, etc. We recommend
inferring the full posterior distributions for these derived quanti-
ties using the posterior of the true parallax or of the distance, or
using the same Bayesian scheme as for the true parallax as ex-
plained in Sect. 4.2. In Fig. 13 we show the values of the mean
(left), mode (centre), and median (right) that we would obtain
from a set of 104 simulated observations of a star at 100 parsecs
with f = 0.2. We assume a Gaussian distribution of the obser-
vations around the true parallax. The posterior distribution is in-
ferred using Eq. (17) and two priors: a uniform volume density
of sources truncated at 1 kpc (results in grey) and a uniform den-
sity of sources multiplied by an exponential decay of length scale
200 pc as defined in Eq. (18) (in blue). The expectation values
of the histograms are shown as dashed lines of the same colour,
with the true value (100 pc) shown as a red dashed line. We see
in general that i) the truncation has the effect of increasing the
number of overestimated distances; ii) the three estimators are
biased towards larger distances (smaller parallaxes), but the ex-
pectation of the mode is significantly closer to the true value;
and iii) the abrupt truncation of the mode results in a spurious
peak of modes at the truncation distance as already discussed in
Bailer-Jones (2015).

Figure 14 and Table 1 show a comparison of the absolute
value of the empirical bias and standard deviation associated
with some distance estimators discussed in this paper as a func-
tion of the measured fractional uncertainty in the parallax. We
chose the measured value even though it is a very poor and non-
robust estimator because, as stated in Sect. 3.2, we never have ac-
cess to the true fractional parallax uncertainty. This figure shows
the results obtained for 107 sources in the Gaia DR2 simulation
described in Appendix A for the maximum likelihood estimate

ρ = 1
$

with and without the Smith–Eichhorn correction, and for
the mode estimates based on the posterior distribution for two
priors (a uniform distance prior, UD, with maximum distance
rlim = 100 kpc, and an exponentially decreasing space density
prior, EDSD, with L = 1.35 kpc), neither of which matches the
true distribution of sources in the simulation. Only the mode of
the posteriors is plotted (but not the mean or the median) for the
sake of clarity. The conclusions described next are only valid un-
der the conditions of the exercise and are provided as a demon-
stration of the caveats and problems described in previous sec-
tions, not as a recommendation of the mode of the posterior in-
ferred under the EDSD prior as an estimator. At the risk of re-
peating ourselves, we emphasise the need to adopt priors adapted
to the inference problem at hand. Also, the conclusions only hold
for the used simulation (where we generate the true distances and
hence can calculate the bias and standard deviation) and need not
be representative of the true performance for the real Gaia data
set. They can be summarised as follows:

– the mode of the EDSD prior shows the smallest bias and
standard deviation in practically the entire range of estimated
fractional parallax uncertainties (in particular, everywhere
beyond the range of fapp represented in the plot);

– the Smith–Eichhorn estimate shows pathological biases and
standard deviations in the vicinity of the supposedly best-
quality measurements at fapp = 0. Away from this region, it
provides the next less biased estimates (averaged over bins
of fapp) after the mode of the ESDS posterior;

4.1.2. Bayesian inference of distances from parallaxes and
complementary information

The methodology recommended in the previous paragraphs is
useful when we only have observed parallaxes to infer distances.
There are, however, common situations in astronomy where the
parallaxes are only one of many observables, and distances are
not the final goal of the inference problem but a means to achieve
it. In this context, we recommend an extension of the classical
Bayesian inference methods described in the previous section.
These problems are characterised by a set of observables and
associated uncertainties (that include but are not restricted to
parallaxes) and a series of parameters (the values of which are
unknown a priori) with complex interdependence relationships
amongst them. Some of these parameters will be the ultimate
goal of the inference process. Other parameters do play an im-
portant role, but we are not interested in their particular values,
and we call them nuisance parameters, following the literature.
For example, in determining the shape of a stellar association,
the individual stellar distances are not relevant by themselves,
but only insomuch as we need them to achieve our objective.
We show below how we deal with the nuisance parameters. The
interested reader can find applications of the methodology de-
scribed in this section to inferring the coefficients of period-
luminosity relations in Gaia Collaboration et al. (2017a) and
Sesar et al. (2017). Also, the same methodology (a hierarchical
Bayesian model) is applied in Hawkins et al. (2017) where the
constraint on the distances comes not from a period-luminosity
relation, but from the relatively small dispersion of the abso-
lute magnitudes and colour indices of red clump stars. A last
example of this methodology can be found in Leistedt & Hogg
(2017b) where the constraint comes from modelling the colour-
magnitude diagram.

Just as in the previous section where we aimed at estimat-
ing distances from parallaxes alone, the two key elements in this
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Fig. 12. Probability distribution of the residuals of the Bayesian estimate of the true distance in parsecs for 100000 simulated stars drawn from a
uniform density plus exponential decay distribution, and σ$ = 3 · 10−1 mas (orange), 3 mas (blue), and 30 mas (grey).

Mean

C
ou

nt
s

0 200 400 600 800 1000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Mode

C
ou

nt
s

0 200 400 600 800 1000

Median

C
ou

nt
s

0 200 400 600 800 1000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Fig. 13. Distributions of means (left), modes (centre), and medians (right) for a series of 104 posteriors calculated for a star at a true distance of
100 pc and f = 0.2, and observed parallaxes drawn at random from the corresponding Gaussian distribution. Posteriors are inferred with a uniform
density prior truncated at 1 kpc (grey) or with a uniform density with exponential decay prior and length scale 1.35 kpc (blue). The red vertical line
marks the true parallax; the grey and blue lines correspond to the expected value (mean) of each distribution (same colours as for the histograms).

case are the definitions of a likelihood and a prior. The likeli-
hood represents the probability distribution of the observables
given the model parameters. Typically, the likelihood is based
on a generative or forward model for the data. Such models
predict the data from our assumptions about the physical pro-
cess that generates the true values (i.e. the distribution of stars in
space) and our knowledge of the measurement process (e.g. jus-
tifying the assumption of a normal distribution of the observed
parallax around its true value). Forward models can be used to
generate arbitrarily large synthetic data sets for a given set of
the parameters. In this case, however, where we are concerned
with several types of measurements that depend on parameters
other than the distance, the likelihood term will be in general
more complex than in Sect. 4.1.1 and may include probabilistic

dependencies between the parameters. The term hierarchical or
multi-level model is often used to refer to this kind of model.

Let us illustrate the concept of hierarchical models with a
simple extension of the Bayesian model described in Sect. 4.1.1,
where instead of assuming a fixed value of the prior length scale
L in Eq. (18), we make it another parameter of the model and try
to infer it. Let us further assume that we have a set of N parallax
measurements {$k}, one for each of a sample of N stars. In this
case, the likelihood can be written as

p({$k}|{rk}, L) = p({$k} | {rk}) · p({rk} | L)

= p({$k} | {rk}) ·
N∏

k=1

p(rk | L), (19)
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Table 1. Average bias and standard deviation in three regimes of fapp for four distance estimators discussed in this paper: (from left to right) the
mode of the posterior based on the exponentially decreasing space density (EDSD) prior; the mode of the posterior of the uniform distance (UD)
distribution; the maximum likelihood estimate corrected according to Smith & Eichhorn (1996) abbreviated as SE; and the maximum likelihood
(ML) estimate. The wider ranges of fapp exclude narrower ranges shown in previous rows of the table.

Summary fapp Range EDSD UD SE ML

Bias
(-1,1) -0.2 9.7 34.2 -0.95
(-5,5) -0.3 10.7 -0.34 -1.2
(-50,50) -0.3 16.2 -0.4 -3.8

Std. Deviation
(-1,1) 0.4 8.0 685.8 0.5
(-5,5) 0.4 8.4 0.5 1.95
(-50,50) 0.4 10.6 0.4 17.1
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Fig. 14. Bias (top) and standard deviation (bottom) averaged over bins
of the estimated fractional parallax uncertainty fapp for four estimators
of the distance: the maximum likelihood (ML) estimator rest = 1

$
(or-

ange), the ML estimator corrected as described in Smith & Eichhorn
(1996) (light blue), the mode of the posterior obtained with an expo-
nentially decreasing space density (EDSD) prior and L = 1.35 kpc (dark
green), and the mode of the posterior obtained with a uniform distance
(UD) prior truncated at 100 kpc (red).

where rk is the true unknown distance to the kth star. We note that
very often the measured parallaxes are assumed independent,
and thus p({$k} | {rk}) is written as the product

∏N
k=1 p($k | rk).

This is incorrect in general for Gaia parallaxes because the par-
allax measurements are not independent. As described in Lin-
degren et al. (2018) and Sect. 2 of this paper, there are regional
correlations amongst them (see Sect. 4.3), but for the sake of
simplicity let us assume the sample of N measurements is spread

L

rk

$ σ$

µL

σL

k = 1, 2, ...,N

Fig. 15. Directed acyclic graph that represents a hierarchical Bayesian
model of a set of N parallax measurements characterised by uncertain-
ties σ$ and true distances drawn from an exponentially decreasing den-
sity distribution of distances (see Eq. (18)). The scale length of the ex-
ponential decrease, L, is itself a model parameter that we can infer from
the sample. Its prior is defined in this case for the sake of simplicity as
a Gaussian distribution of mean µL and standard deviation σL.

all over the celestial sphere such that the correlations average out
and can be neglected. Hence, we write

p({$k}|{rk}, L) =

N∏
k=1

p($k | rk) · p(rk | L). (20)

Under the assumption of Gaussian uncertainties, the first term
in the product is given by Eq. (6), while the second is given by
Eq. (18).

This likelihood can be represented by a simple directed graph
(see Fig. 15) that provides information about the conditional de-
pendencies amongst the parameters. The shaded nodes represent
the observations, the open circles represent model parameters,
and the small black circles at the origin of the arrows represent
model constants. The arrows denote conditional dependence re-
lations, and the plate notation indicates repetition over the mea-
surements k.
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The next key element is, as in Sect. 4.1.1, the prior. Accord-
ing to Fig. 15, the only parameter that needs a prior specification
is the one without a parent node: L. The rest of the arcs in the
graph are defined in the likelihood term (Eq. (20)). If the sample
of N stars were representative of the inner Galactic halo for ex-
ample, we could use a Gaussian prior centred at ≈ 30 kpc (see
e.g. Iorio et al. 2018, and references therein). Such a hierarchical
model can potentially shrink the individual parallax uncertainties
by incorporating the constraint on the distribution of distances.

If we are only interested in the individual distances rk, we
can consider L as a nuisance parameter:

p($True;k | {$k}) =

∫
p($True;k, L | {$k}) · dL (21)

=

∫
p($True;k | {$k}, L) · p(L | {$k}) · dL.

This integral (known as the marginalisation integral) allows us to
write the posterior we are interested in without having to fix the
value of L to any particular value. Depending on the objective of
the inference, we could have alternatively determined the poste-
rior distribution of L by marginalising the individual distances
with an N-dimensional integral over the {rk} parameters.

In parameter spaces of dimensionality greater than 3–4 the
computation of the possibly marginalised posteriors and/or ev-
idence requires efficient sampling schemes like those inspired
in Markov chain Monte Carlo (MCMC) methods to avoid large
numbers of calculations in regions of parameter space with neg-
ligible contributions to the posterior. This adds to the aforemen-
tioned higher computational burden of the Bayesian inference
method mentioned in the previous section.

The previous simple example can be extended to include
more levels in the hierarchy and, more importantly, more pa-
rameters and measurement types. Section 5.5 and 5.6 develop
in greater detail two examples of hierarchical models of direct
applicability in the Gaia context.

4.2. Absolute magnitudes, tangential velocities, and other
derived quantities.

The approaches described in the previous sections can be applied
to any quantity we want to estimate using the parallax. For exam-
ple, if we want to infer the absolute magnitude MG, then given
the measured apparent magnitude G and line-of-sight extinction
AG, the true parallax $True is related to MG via the conservation
of flux

5 log$True = MG + AG −G − 5 . (22)

Assuming for simplicity that G and AG are known, Bayes’
theorem gives the posterior on MG as

P(MG | $,G, AG) =
1
Z

P($ | MG, AG,G)P(MG), (23)

where the likelihood is still the usual Gaussian distribution for
the parallax (Eq. (6)) in which the true parallax is given by
Eq. (22). As this expression is non-linear, we again obtain an
asymmetric posterior PDF over MG, the exact shape of which
also depends on the prior.

The inference of other quantities can be approached in the
same way. In general we need to consider a multi-dimensional

likelihood to accommodate the measurement uncertainties (and
correlations) in all observed quantities. For instance, the set of
parameters θ = {r, v, φ} (distance, tangential speed, and direc-
tion measured anticlockwise from north) can be inferred from
the Gaia astrometric measurements o = {$, µα∗ , µδ} (where µα∗
and µδ are the measured proper motions) using the likelihood

p(o | θ) = N(θ,Σ) =
1

(2π)3/2|Σ|1/2
exp

(
−

1
2

(o − x)T Σ−1(o − x)
)
,

(24)

where N denotes the Gaussian distribution, Σ is the full (non-
diagonal) covariance matrix provided as part of the Gaia Data
Release, and

x =

(
1
r
,

v sin(φ)
r

,
v cos(φ)

r

)
(25)

is the vector of model parameters geometrically transformed into
the space of observables in noise-free conditions. Equation (24)
assumes correlated Gaussian uncertainties in the measurements
.

The posterior distribution can then be obtained by multiply-
ing the likelihood by a suitable prior. The simplest assumption
would be a separable prior such that p(θ) = p(r) · p(v) · p(φ),
where p(v) and p(φ) should reflect our knowledge about the
dynamical properties of the population from where the source
or sources were drawn (e.g. thin disk, thick disk, bulge, halo).
Again, hierarchical models can be used in the analysis of sam-
ples in order to infer the population properties (prior hyper-
parameters) themselves.

Similar procedures can be followed to infer kinematic ener-
gies or full 3D velocities when the forward model is extended
with radial velocity measurements.

4.3. Further recommendations

In this subsection we provide some further recommendations
and guidance in the context of the Bayesian approach outlined
above. Although powerful, inference with Bayesian methods
usually comes at a large computational cost. Some of the rec-
ommendations below can also be seen in the light of taking data
analysis approaches that approximate the Bayesian methodology
and can be much faster.

Where possible, formulate the problem in the data space
The problems caused by the ill-defined uncertainties on quan-
tities derived from parallaxes can be avoided by carrying out
the analysis in the data space where the behaviour of the un-
certainties is well understood. This means that the quantities to
be inferred are treated as parameters in a forward or generative
model that is used to predict the data. Some adjustment process
then leads to estimates of the parameters. A very simple forward
modelling example can be found in Schröder et al. (2004) who
studied the luminosity calibrations of O-stars by predicting the
expected Hipparcos parallaxes from the assumed luminosity cal-
ibration and comparing those to the measured parallaxes. A more
complex example can be found in Lindegren et al. (2000) who
present a kinematic model for clusters which describes the ve-
locity field of the cluster members and predicts the proper mo-
tions, accounting for the astrometric uncertainties and covari-
ances. As shown in previous sections, the Bayesian approach
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naturally lends itself to (and in fact requires) forward modelling
of the data.

Forward modelling has the added advantage that it forces us
to consider the proper formulation of the questions asked from
the astrometric data. This naturally leads to the insight that often
the explicit knowledge of the distances to sources is not of inter-
est. For example, in the Schröder et al. (2004) case an assumed
luminosity of the O-stars and their known apparent magnitude
is sufficient to predict the observed parallaxes. In more complex
analyses the distances to sources can often be treated as nuisance
parameters, which in a Bayesian setting can be marginalised out
of the posterior.

Use all relevant information Although the parallax has a di-
rect relation to the distance of a star, it is not the only measure-
ment that contains distance information. The apparent magni-
tude and the colour of a star carry significant information on the
plausible distances at which it can be located as the colour pro-
vides information on plausible absolute magnitude values for the
star. This is used in two papers (Leistedt & Hogg 2017a; An-
derson et al. 2017) in which the information contained in the
photometry of stars is combined with Gaia DR1 parallax in-
formation to arrive at more precise representations of the colour-
magnitude diagram than can be obtained through the parallaxes
alone. Similarly, proper motions contain distance information
which can be used to good effect to derive more precise distances
or luminosities for open cluster members (e.g. de Bruijne et al.
2001; Gaia Collaboration et al. 2017b). The Bayesian approach
naturally allows for the combination of different types of data in
the modelling of the problem at hand. It should be emphasised,
however, that adding additional data necessitates increasing the
model complexity (e.g. to include the relation among apparent
magnitude, absolute magnitude, extinction, and parallax) which
leads to the need to make more assumptions.

Incorporate a proper prior Bailer-Jones (2015) discussed the
simplest case of inferring the distance to a source from a sin-
gle observed parallax. He showed that if the minimal prior that
r should be positive is used, the resulting posterior is not nor-
malisable and hence has no mean, variance, other moments,
or percentiles. This behaviour of the posterior is not limited
to inference of distance. Examples of other quantities that are
non-linearly related to parallax are absolute magnitude (M ∝

log10 $), tangential velocity (vT ∝ 1/$), kinetic energy, and an-
gular momentum (both proportional to 1/$2 when determined
relative to the observer). In all these cases it can be shown that
the posterior for an improper uniform prior is not normalisable
and has no moments. The conclusion is that a proper prior on
the parameters to be estimated should be included to ensure that
the posterior represents a normalised probability distribution. In
general using unconstrained non-informative priors in Bayesian
data analysis (such as the one on r above) is bad practice. In-
evitably, there is always a mismatch between the prior and the
true distribution (if there were not, there would be no need to
do the inference). This will unavoidably lead to some biases, al-
though the better the data, the smaller these will be. We cannot
expect to do much better than our prior knowledge in case we
only have access to poor data. The Bayesian approach guaran-
tees a graceful transition of the posterior into the prior as the
data quality degrades.

The above discussion raises the question of what priors to in-
clude for a specific inference problem. Simple recipes cannot be
given as the prior to be used depends on the problem at hand and

the information already available. When deciding on a prior we
should keep in mind that some information is always available.
Even if a parallax is only available for a single star, we know
that it cannot be located at arbitrary distances. It is unlikely to
be much closer that 1 pc (although we cannot fully exclude the
presence of faint stars closer than Proxima Centauri) and it must
be located at a finite distance (we can observe the star). This
would suggest a non-informative uniform prior on r with lib-
eral lower and upper bounds (such that the prior is normalised).
However, as pointed out in Bailer-Jones (2015) a uniform distri-
bution in r implies a space density of stars that falls of as 1/r2

from the position of the Sun, which is of course physically im-
plausible. Hence one should assume a reasonable distribution of
stars in space and construct the prior on r accordingly. Bailer-
Jones (2015) presents a prior derived from a uniform space den-
sity with an exponential cut-off which was used in Astraatmadja
& Bailer-Jones (2016b) to derive distances to stars for which par-
allaxes are listed in Gaia DR1 . This prior should not be used
indiscriminately, at the very least we should carefully consider
the choice of the scale length L (or leave that as a parameter to
be estimated, as described in Sect. 4.1.2) and in most cases a
more tailored prior based on our broad knowledge of the distri-
bution of a given stellar population in the Milky Way would be
better. The tutorial cases introduced in the next section contain
some more examples of priors on distance and other astrophysi-
cal parameters.

The next two items discuss simplifications to the Bayesian
approach that nevertheless need to be justified carefully.

Maximum likelihood modelling We have seen that priors are
the bridges that allow us to go from the probability of the obser-
vations given the unknown parameters to the desired probabil-
ity of the parameters given the observations. It is only based on
this probability distribution that we can make statements about
credible intervals (uncertainties) for the inferred quantities, or
select amongst competing models (a topic that is beyond the
scope of this paper). However, if making prior-free inferences is
preferred, then maximising the likelihood is the only alternative.
The kinematic modelling presented in Lindegren et al. (2000)
is a non-trivial example of this. A more complex example can
be found in Palmer et al. (2014). The ML approach, just as the
Bayesian framework described above, allows the combination
of different types of data, and accounts for selection functions
or missing data. We have seen in Sect. 4.1.1 that the maximum
likelihood estimate of the distance given a single parallax mea-
surement is ρ = 1

$
and this is a poor estimator of the distance

except for subsets of very accurate measurements. In general,
the Bayesian and the maximum likelihood estimates coincide in
the limit of very small uncertainties or infinite numbers of mea-
surements. In such limits, the maximum likelihood estimate is
simpler to obtain, although its computational cost may still be
large as the ML method is often equivalent to a complex optimi-
sation problem involving a multi-dimensional function of many
parameters.

Selecting the ‘best’ data Analyses that use parallax data are
often restricted to positive parallaxes with relative uncertainties
below some limit (typically 20 %). This allows working in a
regime where the uncertainties of derived quantities such as dis-
tance, tangential velocities, luminosity, etc., are thought to be
manageable, which allows working in the space of astrophysi-
cal variables rather than the data. Truncation on relative parallax
error might be justified in an exploratory phase of the data anal-

Article number, page 15 of 20



A&A proofs: manuscript no. 32964_corr

ysis; however, there are a number of reasons why this approach
is almost never advisable. Even at relative uncertainties below
0.2 the quantities calculated from the parallax can be biased and
suffer from a large variance (see Bailer-Jones 2015). More im-
portantly, however, the selection of ‘good’ parallaxes will bias
the sample studied to nearby and/or bright representatives of any
stellar population, and the selection may lead to discarding a
very large fraction of the potential sample. Hence any inferences
based on such data will be severely biased. This is clearly illus-
trated in Fig. 7 where for an even less strict truncation of stars
with a relative uncertainties below 50% the distribution of dis-
tances of the resulting sample is clearly biased with respect the
original sample.

Accounting for data selection and incompleteness Although
the Gaia survey is designed such that the only selection of
sources is that they are brighter than the survey limit at G = 20.7,
the combination of the onboard detection algorithm, the Gaia
scanning law, and the filtering of results of insufficient quality
prior to a data release, lead to a complex selection function, espe-
cially in the early data releases. This selection function should be
taken into account in any data analysis and this is most naturally
done as part of a Bayesian analysis where the selection func-
tion is part of the forward model that predicts the data given the
model parameters. Precise prescriptions of the selection func-
tions are not foreseen to be part of the data release documenta-
tion. Hence, selection function parameters need to be included
as part of the parameters inferred by the Bayesian analysis or, if
this is not possible, the selection functions have to be borne in
mind when interpreting the results.

Covariances in the uncertainties All the uncertainties on the
astrometric data quoted in the Gaia catalogue are presented as
full covariance matrices, where the diagonal elements represent
the standard uncertainties on the astrometric parameters, and the
off-diagonal elements the covariances or correlations between
the uncertainties. This amounts to treating the astrometric data
vector as having been drawn from a multivariate normal distri-
bution with a covariance matrix as given in the Gaia catalogue.
The covariances are most easily handled in the data space as part
of the likelihood (see Lindegren et al. 2000, for an example in
the context of kinematic modelling). If the covariances in the
astrometric uncertainties are not accounted for, we can easily be
misled, for example, by spurious features in the inferred velocity
field of an open cluster (Brown et al. 1997).

The uncertainties are also correlated from one source to
the next, especially over small distances on the sky. A study
of the star-to-star correlations in the parallax uncertainties in
Gaia DR1 was done for the Kepler field (Zinn et al. 2017)
where independent and precise asteroseismic distances to the
stars are available, enabling the authors to derive an expression
for the correlation strength and spatial scale. This expression
can be used for studies of the Kepler field, but care should be
taken when extrapolating to other fields on the sky. The func-
tional form for the star-to-star correlations used by Zinn et al.
(2017) could be introduced as part of the forward model, with
the Zinn et al. (2017) parameters as a good first guess.

For Gaia DR1 the length scale for the star-to-star corre-
lations was estimated to vary from subdegree scales to tens of
degrees on the sky, where Zinn et al. (2017) derived the corre-
lation function over length scales of ∼ 0.2 to ∼ 10 degrees. For
Gaia DR2 Lindegren et al. (2018) estimate that the spatial cor-
relations extend over scales of below 1 degree to 10–20 degrees.

Accounting for non-Gaussian and/or systematic uncertain-
ties Although the bulk of the sources in the Gaia catalogue have
normally distributed uncertainties, there is a significant fraction
for which the uncertainties exhibit non-Gaussian behaviour (e.g.
when uncertainties are over- or underestimated). This can be ac-
counted for in the data analysis by including the uncertainties as
part of the forward model (e.g. Sesar et al. 2017) or by explicitly
modelling an outlier population. Similarly, systematic uncertain-
ties can be included as part of the forward model. For example,
Sesar et al. (2017) include a global parallax zero-point as part of
their probabilistic model used to analyse the period-luminosity
relation of RR Lyrae stars with Gaia DR1 data. An alterna-
tive approach to the investigation of systematics in the par-
allaxes (or distance estimates obtained from photometry or
spectroscopy, for example) is presented in Schönrich et al.
(2012) and is applied to Gaia DR1 in Schönrich & Aumer
(2017). In this case we can consider that for samples cover-
ing a significant fraction of the sky, any systematic error in
the estimated distances to the stars will show up as correla-
tions in their 3D velocity components. The presence of such
correlations can be used to make inferences about systematic
errors, for example, in the parallaxes.

Systematic uncertainties are more difficult to handle as they
may show variations as a function of source brightness or ce-
lestial position, they may be correlated across neighbouring
sources, and they may not be well understood for a given early
Gaia data release. In general the information needed to accu-
rately model systematic uncertainties or uncertainty correlations
between sources may not be readily available. This informa-
tion can be obtained from a comparison between Gaia and
other high-precision data (e.g. Zinn et al. 2017; Arenou et al.
2017, 2018) or by examining, for example, plots of the parallax
or proper motion averaged over sky regions for samples where
the true parallax or proper motion values can be assumed to be
known, such as zero parallax and proper motion for quasars (see
Lindegren et al. 2018 for examples).

Two special cases should be mentioned: when the sample
is well distributed over the sky, we can safely assume that the
local systematics vanish and that only the global parallax zero-
point need to be subtracted; locally, we may be interested not by
the absolute value of the parallaxes, but by the relative ones, in
which case the difference between parallaxes and their average
removes part of the systematics.

There is no general recipe for dealing with non-Gaussian un-
certainties or correlated systematic uncertainties. The main ad-
vice we can give here is to proceed with the analysis of the astro-
metric data as they are, but to keep in mind the systematics and
correlations discussed in Sect. 2 when interpreting the results.
Alternatively, the forward model can be extended to include sys-
tematic and correlation terms for which parameters are also to
be estimated. Such models can be guided by the studies of sys-
tematic uncertainties mentioned above.

Testing with simulations Finally, we strongly advise that the
inference problem at hand should be investigated through simu-
lated data, and that the simulations performed should be as close
as possible to the real data (in particular correctly modelling the
uncertainties and selection effects). The simulations allow the
analysis method to be developed and tested for accuracy. How-
ever, the performance of the analysis method should be inter-
preted strictly in terms of how well the assumed model explains
the simulated observed data. That is, we should not fall into the
trap of trying to tune the analysis method to get an answer that is
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as close to the ‘truth’ as possible. In real problems we can only
judge the adequacy of a model and its parameter values by how
well they predict the observed data (to within the observational
uncertainties, it should be stressed, as we should avoid ‘over-
fitting’ the data).

5. Using astrometric data: practical examples

We introduce here a few worked examples to illustrate the
points that were made in the previous section. These examples
are available in full detail as online tutorials in the form of
source code, accompanied by much more extensive explanation
than can be provided here. The source code and correspond-
ing Python and R Notebooks can be found at the following
URL: https://repos.cosmos.esa.int/socci/projects/
GAIA/repos/astrometry-inference-tutorials/browse.
In all cases the reader is strongly encouraged to download the
source code and experiment with modifications of the simu-
lated input data and/or the parameter choices in the inference
methods.

5.1. Comparison of distance and distance modulus
estimators

The use of the Bayesian inference with non-
informative priors described in Sect. 4.1.1 is illus-
trated and implemented in the following tutorial
https://repos.cosmos.esa.int/socci/projects/
GAIA/repos/astrometry-inference-tutorials/
browse/single-source/GraphicalUserInterface/.
The tutorial compares the performance of Bayesian distance
estimation methods with the Smith–Eichhorn transformation
(Smith & Eichhorn 1996) (Sect. 3.4.1) and the naive parallax
inversion.

The tutorial contains a Graphical User Interface that easily
visualises and compares the behaviour of all these estimators for
a given parallax and uncertainty. For the Bayesian inference, es-
timations using the mode and the median are provided together
with a 90% confidence interval. The tutorial also provides a li-
brary, pyrallaxes, with the implementation of all these estima-
tors. The library can easily be customised to implement other
priors for the Bayesian inference.

Additionally, an implementation of the Bayesian distance
estimator using the Exponentially Decreasing Space Density
prior introduced in Bailer-Jones (2015) will be available in
TopCat (http://www.starlink.ac.uk/topcat/) and Stilts
(http://www.starlink.ac.uk/stilts/) from respectively
versions 4.6 and 3.1-3 onwards.

5.2. Inferring the distance to a single source using just the
parallax

The issues surrounding the use of a parallax to infer a dis-
tance were explored in Bailer-Jones (2015) and applied
to simulated Gaia data in Astraatmadja & Bailer-Jones
(2016a) and to TGAS (Gaia DR1 ) in Astraatmadja &
Bailer-Jones (2016b). A tutorial exploring this is provided at
https://repos.cosmos.esa.int/socci/projects/
GAIA/repos/astrometry-inference-tutorials/
browse/single-source/tutorial. This can be used to
investigate how the posterior depends on the prior and the data.
It also includes a simple example of a hierarchical model to
avoid specifying the exact length scale of a distance prior.

5.3. Inferring the distance to and size of a cluster using just
the parallaxes

In many applications we are more interested in the average
distance to a cluster (or a group of stars) rather than to the
individual stars. In this case a basic mistake to be avoided is esti-
mating the individual distances (whatever the method) and then
averaging these individual values. A more correct approach is to
average the individual parallaxes and then to obtain a distance
from this average value. However, a much better solution is to
set up a model for the cluster, which would use as parameters the
distance to its centre, for example, and some measure of its size,
and to infer its parameters. This is explored in the tutorial at
https://repos.cosmos.esa.int/socci/projects/
GAIA/repos/astrometry-inference-tutorials/
browse/multiple-source/tutorial. This introduces
the overall problem and derives a general solution. Code is
implemented for the specific case of a model which assumes a
random isotropic distribution of the true stars from the centre
of the cluster. This model has two parameters, the cluster
distance and the cluster size. The solution uses a small angle
approximation to make the problem simpler, although it is easily
extended to the case of clusters with a significant angular extent.
It is applied to the Pleiades selection from the Gaia DR1 main
release paper (Gaia Collaboration et al. 2016). The tutorial also
considers the problem of how to accommodate correlations in
the measured parallaxes of different stars. Finally, it also shows
the results from a classical and a naive combination of stellar
parallaxes to estimate the cluster distance. The combination
of parallaxes and proper motions of individual stars in a
cluster into a single solution for the mean parallax and proper
motion is treated as an iterative least squares problem in Gaia
Collaboration et al. (2017b) (see their Appendix A for details).

5.4. Inferring the distance and velocity of a source using the
parallax and proper motions

The velocity (speed and direction) of a source in the plane of the
sky can be inferred from measurements of its parallax and two
proper motions. The uncertainties in all three affect the inferred
velocity and its uncertainty. Moreover, as the Gaia parallaxes
and proper motions generally have non-zero correlations, these
must also be taken into account. This can be done in a straightfor-
ward manner in the Bayesian approach, as is shown in the tuto-
rial at https://repos.cosmos.esa.int/socci/projects/
GAIA/repos/astrometry-inference-tutorials/
browse/3d-distance. This sets up a three-parameter
model (distance, speed, angle) for a source. Using the three
measurements (parallax, two proper motions) in a multivariate
Gaussian likelihood, and suitable priors on the parameters, we
can compute the trivariate posterior. This is sampled in the
posterior using an MCMC algorithm for a set of stars.

5.5. Luminosity calibration

In this tutorial (https://repos.cosmos.
esa.int/socci/projects/GAIA/repos/
astrometry-inference-tutorials/browse/
luminosity-calibration) the problem of inferring (or
calibrating) the mean absolute magnitude of a specific class
of stars is treated. The measurements at hand are the parallax
and apparent magnitude for each of the stars in the sample
and the task is to infer their mean absolute magnitude µM and
the spread σM around this mean. This is very similar to the
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problem that Lutz & Kelker (1973) and Turon Lacarrieu &
Crézé (1977) treated, and a Bayesian approach to solving this
problem was presented by Brown (2012) (albeit with the use of
improper priors, which we again note is bad practice). A more
complex version of this problem (accounting for extinction and
a contaminating population of stars) and its Bayesian solution
was presented in Hawkins et al. (2017). In this tutorial three
important points are illustrated:

– Often the explicit computation of the distances to stars is not
of interest. In this example only the mean absolute magni-
tude of the stars is to be estimated, and the forward mod-
elling approach as part of the Bayesian inference avoids the
need to calculate or estimate distances.

– The data for all the stars carry information on the mean ab-
solute magnitude, including the negative parallaxes or par-
allaxes with large relative errors. This information can nat-
urally be incorporated in a forward modelling approach (in
this example as part of a Bayesian inference method), thus
avoiding the introduction of truncation biases caused by the
selection of stars with ‘good’ parallaxes.

– If the selection function is known (in this example the survey
is magnitude limited), it can and should be included in the
forward modelling. This accounts for sample selection biases
that would otherwise occur.

5.6. Period-luminosity relation

In this tutorial (https://repos.cosmos.
esa.int/socci/projects/GAIA/repos/
astrometry-inference-tutorials/browse/
period-luminosity-relation) we include a hierarchi-
cal model to infer period-luminosity-metallicity relations for
classical pulsating stars. The full model can be applied to
fundamental mode RR Lyrae stars and the abridged version
(without the metallicity dependence) is suitable for samples of
classical Cepheids. We include the data set for the RR Lyrae
stars described and used for inference in Gaia Collaboration
et al. (2017a) and Delgado et al. (2018). It contains a sample
of 200 stars (including fundamental radial pulsators but also
fundamentalised first overtone pulsators) with measured pe-
riods, apparent magnitudes in the K-band, metallicities, and
parallaxes from the TGAS catalogue. In the tutorial, we describe
the hierarchical model and discuss potential biases in the data
set. Finally, we analyse the sensitivity of the results to different
choices of the priors and related parameters.

6. Conclusions

Gaia data releases will provide a huge increase of astrometric
data available for the scientific community. More than a billion
parallaxes and proper motions allow new openings into many as-
tronomical topics. In most cases astronomers are exploiting the
Gaia catalogues to obtain physical quantities such as distance
and velocity. Although it is easy to extract from the Gaia data, it
is well known that direct inversion of parallax will lead to biases,
which become more and more significant the larger the relative
parallax uncertainty. While Gaia will provide high-quality astro-
metric measurements, hundreds of millions of stars have preci-
sions which require proper statistical treatment in order to avoid
biased conclusions. The aim of this paper is to guide the users of
Gaia data to handle astrometric data correctly.

In this study we summarise methods used to avoid bi-
ases when converting astrometric data into physical quantities.

Starting from simple, non-recommended, sample truncation to
more complex methods, the biases associated with the meth-
ods are presented. The basic recommendation is to treat deriva-
tion of physical quantities from astrometric measurements as
an inference problem, which should be preferably handled with
Bayesian approach. The recommended methods are described in
Sect. 4 with a summary in Sect. 4.3. To aid the users further,
Sect. 5 contains practical examples with links to Python and R
code.

Gaia will provide fundamental data for many fields of as-
tronomy. Further data releases will provide more data, and more
precise data. Nevertheless, for full use of the potential it will al-
ways be necessary to pay careful attention to the statistical treat-
ment of parallaxes and proper motions. The purpose of this paper
is to help astronomers find the correct approach.
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Appendix A: Description of the simulated samples
used in this paper

The data used in this paper is from a Gaia Universe Model Snap-
shot (GUMS) simulation (Robin, C. et al. 2012), together with
the Gaia-like uncertainties and an estimation of the observable
data. The uncertainties were computed from an implementation
of the recipes described in the Gaia Science performance web
page4, provided by the python PyGaia toolkit5, which then have
to be re-scaled to fit the Gaia DR2 expectations.

The simulation contains around 109 sources including only
single stars, i.e. stars not belonging to multiple systems, up to
G < 20 magnitude, distributed as shown in Fig. A.1.
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Fig. A.1. Histogram of the stars’ G magnitude. The total number of
sources is 1 069 138 714, which are distributed in bins of size ∆G = 0.2;
the sample is limited to G < 20.

To compute the Gaia potential observables, standard uncer-
tainties must be added to the simulation. Because astrometric
quantities (positions, parallaxes, and proper motions) are related,
a single formalism to derive its standard errors is needed. PyGaia
implements a simple performance model depending on the V–IC
colour term and the G magnitude to estimate the end-of-mission
errors for the parallax uncertainty:

σ$[µas] =
√
−1.631 + 680.766 z + 32.732 z2 [0.986+(1 − 0.986) (V-IC)],

(A.1)

with

z = max(100.4(12.09−15),100.4(G−15)) (A.2)

(see the Gaia science performance web for more details). It also
takes into account the variation of the uncertainties over the sky
because of the scanning law, tabulated as a function of the eclip-
tic latitude6 β.

However, these are end-of-mission uncertainties, so they
have to be scaled by the fraction of mission time completed in or-
der to get an estimation of them for Gaia DR2 . In the case of the

parallax, only the factor
√

5
L , being L the mission time (years)

included in Gaia DR2 , need to be applied; this error model is

4 https://www.cosmos.esa.int/web/gaia/science-performance
5 https://pypi.python.org/pypi/PyGaia/
6 https://www.cosmos.esa.int/web/gaia/table-2-with-ascii

further described in Arenou et al. (2017). In our case we have
also updated the calibration floor to take into account the prop-
erties of the Gaia DR2 formal errors, as shown in Fig. A.2. This
calibration floor introduces a minimum formal error stemming
from the fact that the calibrations used in the data processing
(models and parameters) are at this stage still being refined. This
floor affects mainly bright stars, while for faint stars the photon
noise dominates. Fig. A.2 shows the model used in the simula-
tion for the Gaia DR2 parallax uncertainties as a function of the
G magnitude.

Fig. A.2. Average estimated errors as function of G. The dash-dotted
line represents the uncertainty at Gaia DR2 , while the dashed line
represents the end-of-mission uncertainties. The solid line represents
Gaia DR2 errors, including systematics.
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