

First detection of cyanamide (NH2CN) towards solar-type protostars

Coutens, A.; Willis, E.R.; Garrod, R.T.; Müller, H.S.P.; Bourke, T.L.; Calcutt, H.; ... ; Wampfler, S.F.

Citation

Coutens, A., Willis, E. R., Garrod, R. T., Müller, H. S. P., Bourke, T. L., Calcutt, H., … Wampfler, S. F. (2018). First detection of cyanamide (NH2CN) towards solar-type protostars. *Astronomy And Astrophysics*, *612*, A107. doi:10.1051/0004-6361/201732346

Version: Not Applicable (or Unknown) License: [Leiden University Non-exclusive license](https://hdl.handle.net/1887/license:3) Downloaded from: <https://hdl.handle.net/1887/69922>

Note: To cite this publication please use the final published version (if applicable).

First detection of cyanamide (NH2**CN) towards solar-type protostars**

A. Coutens¹, E. R. Willis², R. T. Garrod², H. S. P. Müller³, T. L. Bourke⁴, H. Calcutt⁵, M. N. Drozdovskaya⁶, J. K. Jørgensen⁵, N. F. W. Ligterink⁷, M. V. Persson⁸, G. Stéphan², M. H. D. van der Wiel⁹, E. F. van Dishoeck^{7, 10}, and S. F. Wampfler⁶

¹ Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France e-mail: audrey.coutens@u-bordeaux.fr

- ² Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904, USA
³ L Physikalisches Institut Universität zu Käln, Zülnicher Str. 77, 50037 Käln, Germany
- 3 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
- ⁴ SKA Organization, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL, UK
- ⁵ Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark
- ⁶ Center for Space and Habitability, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
- ⁷ Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
- ⁸ Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92, Onsala, Sweden
- ⁹ ASTRON Netherlands Institute for Radio Astronomy, PO Box 2, 7990 AA Dwingeloo, The Netherlands
- ¹⁰ Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748 Garching, Germany

Received xxx; accepted xxx

ABSTRACT

Searches for the prebiotically-relevant cyanamide (NH₂CN) towards solar-type protostars have not been reported in the literature. We here present the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PILS) of IRAS 16293–2422 B and observations from the IRAM Plateau de Bure Interferometer of NGC1333 IRAS2A. We furthermore detect the deuterated and ¹³C isotopologues of NH2CN towards IRAS 16293–2422 B. This is the first detection of NHDCN in the interstellar medium. Based on a local thermodynamic equilibrium analysis, we find that the deuteration of cyanamide (∼ 1.7%) is similar to that of formamide (NH2CHO), which may suggest that these two molecules share NH_2 as a common precursor. The NH_2CN/NH_2CHO abundance ratio is about 0.2 for IRAS 16293–2422 B and 0.02 for IRAS2A, which is comparable to the range of values found for Sgr B2. We explored the possible formation of NH₂CN on grains through the NH₂ + CN reaction using the chemical model MAGICKAL. Grain-surface chemistry appears capable of reproducing the gas-phase abundance of $NH₂CN$ with the correct choice of physical parameters.

Key words. astrochemistry – astrobiology – stars: formation – stars: protostars – ISM: molecules – ISM: individual object (IRAS 16293-2422 and NGC1333 IRAS2A)

1. Introduction

Cyanamide (NH_2CN) is one of the rare interstellar molecules that contain two atoms of nitrogen. This species is thought to be relevant for prebiotic chemistry, since, in liquid water, it may convert into urea, an important molecule in biological processes [\(Kilpatrick 1947\)](#page-5-0). Its isomer carbodiimide (HNCNH) can be formed from $NH₂CN$ in photochemically and thermally induced reactions in interstellar ice analogues [\(Duvernay et al.](#page-5-1) [2005\)](#page-5-1). Molecules with the carbodiimide moiety (–NCN–) find use in various biological processes, among which the assembly of amino acids into peptides (see [Williams & Ibrahim 1981](#page-5-2) for an overview). Although this molecule is detected in other galaxies, such as NGC 253 and M82 [\(Martín et al. 2006;](#page-5-3) [Aladro et al.](#page-5-4) [2011\)](#page-5-4), only two detections are mentioned in our Galaxy: the massive star-forming regions Sgr B2 [\(Turner et al. 1975\)](#page-5-5) and Orion KL [\(White et al. 2003\)](#page-5-6).

Molecules formed early during the star formation process may be incorporated into comets or asteroids and delivered to planets during heavy bombardment periods, similar to that experienced by the young Earth [\(Raymond et al. 2004\)](#page-5-7). Here, we

report the detection of cyanamide towards two solar-type protostars, IRAS 16293–2422 (hereafter IRAS16293) and NGC1333 IRAS2A (hereafter IRAS2A). These two low-mass protostars are known to harbor a very rich chemistry in their inner regions (e.g., [Bottinelli et al. 2004;](#page-5-8) [Jørgensen et al. 2005\)](#page-5-9). This can be explained by the thermal desorption of the numerous and complex species formed in the icy mantles of the grains. The detection presented in this work complements the list of molecules of prebiotic interest such as glycolaldehyde, formamide and methyl isocyanate discovered in low-mass protostars [\(Jørgensen et al.](#page-5-10) [2012;](#page-5-10) [Kahane et al. 2013;](#page-5-11) [Maury et al. 2014;](#page-5-12) [Coutens et al. 2015;](#page-5-13) [Ligterink et al. 2017;](#page-5-14) [Martín-Doménech et al. 2017\)](#page-5-15). We also detect the deuterated form of cyanamide, NHDCN, for the first time in the interstellar medium.

2. Observations

To search for cyanamide, we used data obtained with the Atacama Large Millimeter/Submillimeter Array (ALMA) for IRAS16293 and with the IRAM Plateau de Bure Interferometer (PdBI) for IRAS2A.

The ALMA data are part of the PILS ("Protostellar Inter-ferometric Line Survey") program^{[1](#page-2-0)}, a large spectral survey of IRAS16293 observed in Cycle 2 between 329.1 and 362.9 GHz at a spatial resolution of about 0.5 " and a spectral resolution of ∼0.2 km s−¹ . The observations and their reduction are presented in [Jørgensen et al.](#page-5-16) [\(2016\)](#page-5-16). The data reach a sensitivity of about $4-5$ mJy beam⁻¹ km s⁻¹.

The PdBI data of the low-mass protostar IRAS2A were obtained with the WIDEX correlator in the framework of several programs (V010, V05B, W00A, and X060). The data reduction of each dataset is described in [Coutens et al.](#page-5-17) [\(2014,](#page-5-17) [2015\)](#page-5-13) and [Persson et al.](#page-5-18) [\(2014\)](#page-5-18). They cover the spectral ranges 223.5– 227.1, 240.2–243.8, and 315.5–319.1 GHz with a spectral resolution of 1.95 MHz (~1.8–2.6 km s⁻¹). The angular resolution is about $1.2'' \times 1.0''$ at 225 GHz, $1.4'' \times 1.0''$ at 242 GHz, and $0.9'' \times 0.8''$ at 317 GHz. The rms are ~5–6 mJy beam⁻¹ km s⁻¹ or lower.

The spectroscopic data used here for cyanamide and its ${}^{13}C$ isotopologue come from the spectroscopic catalogs Jet Propulsion Laboratory (JPL, [Pickett et al. 1998;](#page-5-19) [Read et al. 1986\)](#page-5-20) and Cologne Database for Molecular Spectroscopy (CDMS, [Müller](#page-5-21) [et al. 2001,](#page-5-21) [2005;](#page-5-22) Kraśnicki et al. 2011). The spectroscopy of NHDCN was studied by [Kisiel et al.](#page-5-24) [\(2013\)](#page-5-24). Carbodiimide spectroscopic information comes from the CDMS [\(Birk et al. 1989;](#page-5-25) [Jabs et al. 1997\)](#page-5-26).

3. Results

The CASSIS^{[2](#page-2-1)} software was used to search for and identify the lines of NH2CN and its isotopologues towards IRAS16293 and IRAS2A. Synthetic spectra were produced and compared with the observations to identify the lines. Potential blending with other species from the CDMS or JPL catalogs was checked. Column densities were determined assuming local thermodynamic equilibrium (LTE), which is reasonable for the inner regions of low-mass protostellar envelopes owing to their very high densities ($\gtrsim 10^{10}$ cm⁻³, [Jørgensen et al. 2016\)](#page-5-16).

3.1. Analyses of cyanamide and carbodiimide

For the binary IRAS16293, eleven unblended lines of the main cyanamide isotopologue are detected towards source B (see Figure [2\)](#page-3-0) at the full-beam offset position analyzed in previous studies [\(Coutens et al. 2016;](#page-5-27) [Lykke et al. 2017;](#page-5-28) [Ligterink et al. 2017\)](#page-5-14). No clear detection could be obtained towards IRAS16293 A, where the lines are broader ($\geq 2 \text{ km s}^{-1}$). Maps (see Figure [1\)](#page-2-2) indicate that the emission of this species arises from the warm inner regions around the B component, similarly to other complex organic molecules [\(Baryshev et al. 2015;](#page-5-29) [Jørgensen et al. 2016\)](#page-5-16). This species also appears to be strongly affected by absorption against the strong continuum similarly to formamide [\(Coutens](#page-5-27) [et al. 2016,](#page-5-27) see their Figure 1). The deep absorptions at the continuum peak and half-beam offset positions are clearly seen for all the lines (see Figure [B.1\)](#page-7-0). Although a LTE model with a lower excitation temperature of 100 K is in relatively good agreement with the observations (see Figure [2\)](#page-3-0), a temperature of 300 K is a more appropriate fit. This is consistent with the temperature derived for other species with high binding energies such as glycolaldehyde, ethylene glycol, and formamide (see discussion in [Jørgensen et al. submitted\)](#page-5-30). At the full-beam offset position, a

Fig. 1: Integrated intensity maps of two transitions of $NH₂CN$ detected towards IRAS16293 B (left panel, from 3 to 5σ by step of 1σ) and IRAS2A (right panel, from 5 to 25σ by step of 5σ). The position of the continuum peak position is indicated with a red triangle, while the position analyzed for IRAS16293 B (full-beam offset) is indicated with a red circle. The beam size is shown in grey in the right hand lower corner.

column density of $\geq 7 \times 10^{13}$ cm⁻² is derived for an excitation temperature of 300 K ($\geq 5 \times 10^{13}$ cm⁻² for 100 K) and a source size of 0.5 ". It should be noted that this column density can only be considered as a lower limit, because of the absorption components that could lower the emission contribution of the line profile. The higher value of the column density of $NH₂CN$ is confirmed by the analysis of the 13 C isotopologue (see Section [3.2\)](#page-2-3).

Three bright and unblended lines of cyanamide are also detected towards NGC1333 IRAS2A (see Figure [3\)](#page-3-1). An excitation temperature of ∼130 K and a source size of ∼0.5" were derived from the analysis of other complex organics towards this source by [Coutens et al.](#page-5-13) [\(2015\)](#page-5-13). Based on these parameters, a LTE model with a column density of 2.5×10^{14} cm⁻² is in very good agreement with the observations. An excitation temperature of 300 K does not properly reproduce the lines. No other line is missing in the spectral range covered by our data. Based on this model, we can confirm the detection of this molecule by comparing our predictions with the list of lines observed in the spectral range 216.8–220.4 GHz covered by the CALYPSO program [\(Maury et al. 2014\)](#page-5-12). Among the six brightest lines, five of them are in agreement with the presence of unidentified lines detected by [Maury et al.](#page-5-12) [\(2014\)](#page-5-12) (see Table [A.5\)](#page-6-0). The last one is blended with a $NH₂CHO$ line. Maps confirm that the molecule is emitting within the warm inner regions of the source (see Figure [1\)](#page-2-2).

We also searched for carbodiimide, HNCNH, which is not detected with an upper limit of 3×10^{15} cm⁻² towards IRAS16293 B. Based on the non-detection of the HNCNH line at 223.7918 GHz, we derived a similar upper limit for IRAS2A. The non-detection of carbodiimide is not really surprising since the upper limits are high and this isomer is known to be less stable than cyanamide.

3.2. Analyses of the deuterated and 13 C isotopologues of cyanamide

The 13 C and deuterated isotopologues of NH₂CN were searched for towards both sources. Eight unblended lines of NHDCN are identified towards the full-beam offset position of IRAS16293 B (see Figure [4\)](#page-4-0). This marks the first detection of this isotopologue in the interstellar medium. Although the lines are faint, we can confirm that all the features are real after checking the spectra

¹ <http://youngstars.nbi.dk/PILS/>

² CASSIS has been developed by IRAP-UPS/CNRS ([http://](http://cassis.irap.omp.eu/) cassis.irap.omp.eu/).

Fig. 2: Unblended lines of NH2CN detected with ALMA towards IRAS16293 B at the full-beam offset position. The best-fit model for *T*ex = 300 K and 100 K are in red and blue respectively. The *E*up values are indicated in green in the bottom right corner of each panel.

Fig. 3: Unblended lines of NH2CN detected with PdBI towards IRAS2A. The best-fit model is shown in red. The *E*up values are indicated in green in the upper left corner of each panel.

at the half-beam position (position where the lines are brighter). Additional lines are present but not included here, as they are blended with other species. A few other lines do not appear as bright as expected, due to the presence of absorptions produced by other species at the same frequency. A column density of 7×10^{13} cm⁻² is obtained for an excitation temperature of 300 K. The detection of NH_2 ¹³CN is less straightforward. Three lines can be attributed to this isotopologue (see Figure [5\)](#page-4-1). One of them (361.997 GHz) may be blended with an unknown species since its flux is higher than predicted by the LTE model. Based on these lines, a column density of 3×10^{13} cm⁻² is derived showing that the $NH₂CN$ column density is underestimated due to the contribution of the absorptions. The D/H ratio of $NH₂CN$ (corrected for statistics, i.e. divided by 2) is 1.7%, assuming a standard ${}^{12}C/{}^{13}C$ ratio of 68 [\(Milam et al. 2005\)](#page-5-31). This value is very similar to the deuteration of formamide (∼2%; [Coutens et al.](#page-5-27) [2016\)](#page-5-27) and also within the range of the D/H ratios of other COMs (∼1–8%, [Jørgensen et al. submitted;](#page-5-30) [Persson et al. 2018\)](#page-5-32). In case of a lower ${}^{12}C/{}^{13}C$ ratio of 30, which was found for a few COMs in this source [\(Jørgensen et al. 2016;](#page-5-16) [Jørgensen et al. submitted\)](#page-5-30), the D/H ratio of $NH₂CN$ would be about 4%.

For IRAS2A, an upper limit of 5×10^{13} cm⁻² is derived for NHDCN, leading to a $\overline{D/H}$ ratio of $\leq 10\%$. The ¹³C isotopologue also presents an upper limit of 5×10^{13} cm⁻², which is equivalent to a ¹²C/¹³C ratio of \geq 5.

3.3. Abundances of cyanamide

Based on the analysis of the $NH₂$ ¹³CN isotopologue and the lower limit of the H_2 column density derived by [Jørgensen et al.](#page-5-16) [\(2016\)](#page-5-16), we get, for IRAS16293 B, an abundance of $NH₂CN$ with respect to H₂ of $\leq 2 \times 10^{-10}$ at 60 AU from source B. The $NH₂CN/MH₂CHO$ abundance ratio is about 0.2.

Using the H_2 column density derived by [Taquet et al.](#page-5-33) [\(2015,](#page-5-33) 5×10^{24} cm⁻²) for IRAS2A, the abundance with respect to H₂ is about 5×10^{-11} . A simple analysis of the most optically thin NH2CHO lines covered by our data suggests a column density of about 1.2×10^{16} cm⁻² assuming a similar excitation temperature of 130 K. This is in agreement with the value deter-mined by [Taquet et al.](#page-5-33) [\(2015\)](#page-5-33). The $NH₂CN/NH₂CHO$ ratio is consequently about 0.02, an order of magnitude lower than for IRAS16293 B.

The $NH₂CN/MH₂CHO$ ratios derived for the low-mass protostars are similar to the range of values found in Sgr B2 [\(Bel](#page-5-34)[loche et al. 2013,](#page-5-34) see Table [1\)](#page-4-2). The $NH₂CN/MH₂CHO$ ratio in Orion KL seems to be higher (∼0.4–1.5, [White et al. 2003\)](#page-5-6). This value is, however, more uncertain since it was obtained using only one line of $NH₂CHO$ and assuming different excitation temperatures for the two molecules.

4. Discussion

The formation routes of $NH₂CN$ have only been marginally ex-plored. According to the Kinetic Database for Astrochemistry^{[3](#page-3-2)} (KIDA, [Wakelam et al. 2012\)](#page-5-35), there are no known gas-phase mechanisms capable of its production. While the reaction CN $+ NH_3 \rightarrow NH_2CN + H$ has been proposed [\(Smith et al. 2004\)](#page-5-36), the theoretical study of [Talbi & Smith](#page-5-37) [\(2009\)](#page-5-37) suggests that the production of $NH₂CN$ involves large internal barriers, with HCN and $NH₂$ being the likely products. An experimental study by [Blitz et al.](#page-5-38) [\(2009\)](#page-5-38) confirms that this reaction proceeds exclusively to $HCN + NH_2$. Electronic recombination of NH_2CNH^+ may produce $NH₂CN$, but the only apparent way to form this ion is through protonation of $NH₂CN$ itself. An alternative source of $NH₂CN$ is thus required to explain our observations. Cyanamide could be formed on grain surfaces through the addition of $NH₂$ and CN radicals. The possible formation of formamide from

 $\frac{3 \text{ http://kida.obs.u-bordeaux1.fr}}{}$ $\frac{3 \text{ http://kida.obs.u-bordeaux1.fr}}{}$ $\frac{3 \text{ http://kida.obs.u-bordeaux1.fr}}{}$

Fig. 4: Unblended lines of NHDCN detected with ALMA towards IRAS16293 B at the full-beam offset position. The best-fit model for $T_{\rm ex}$ = 300 K is in red. The $E_{\rm up}$ values are indicated in green in the bottom right corner of each panel.

(a) Based on the lower limit of 1.2×10^{25} cm⁻² for the H₂ abundance derived by [Jørgensen et al.](#page-5-16) [\(2016\)](#page-5-16).

Fig. 5: Lines of $NH₂^{13}CN$ detected with ALMA towards IRAS16293 B at the full-beam offset position. The best-fit model for $T_{\text{ex}} = 300 \text{ K}$ is in red. The E_{up} values are indicated in green in the bottom right corner of each panel.

the same precursor $NH₂$ [\(Fedoseev et al. 2016\)](#page-5-39) could explain the similarity of these two species in terms of deep absorption against the strong continuum and the similar deuteration of the two species towards IRAS16293 B.

To test this hypothesis, we ran a three-phase chemical kinetics model MAGICKAL [\(Garrod 2013\)](#page-5-40), modified with the grainsurface back-diffusion correction of [Willis & Garrod](#page-5-41) [\(2017\)](#page-5-41). The model uses a network based on that of [Belloche et al.](#page-5-42) [\(2017\)](#page-5-42), in which dissociative recombination of $NH₂CNH⁺$ was assumed to produce NH₂CN in 5% of cases. The reaction NH₂ + CN \rightarrow NH2CN was added to the grain/ice chemical network, and the gas-phase reaction between CN and NH³ was adjusted per [Talbi](#page-5-37) [& Smith](#page-5-37) [\(2009\)](#page-5-37) and [Blitz et al.](#page-5-38) [\(2009\)](#page-5-38). The physical model used here is very similar to that described by [Belloche et al.](#page-5-42) [\(2017\)](#page-5-42), in which a cold collapse to high density is followed by warm up to 400 K; here, a final density $n_{\rm H} = 6 \times 10^{10}$ cm⁻³ was as-

sumed to better represent the density structure of IRAS 16293 B [\(Jørgensen et al. 2016\)](#page-5-16).

The model results (for an intermediate warm-up timescale) are shown in Figure [6](#page-5-43) for both $NH₂CN$ and $NH₂CHO$. $NH₂CN$ is seen to be produced at a temperature of ∼30 K on the grain surfaces, desorbing into the gas at higher temperatures. The model underproduces the amount of gas-phase $NH₂CN$, showing a peak fractional abundance with respect to H₂ of ~6.7 × 10⁻¹² that is nevertheless well maintained to a temperature of 300 K and beyond. The low $NH₂CN$ abundance in the gas-phase is caused primarily by underproduction on the dust grains; at the high density used in the model, the rapid accretion of H and H_2 onto grain surfaces makes hydrogenation of the $NH₂$ and CN radicals much more competitive with the reaction that produces $NH₂CN$. This competition becomes important for gas densities greater than \sim 10⁹ cm⁻³. We therefore also present a model with a lower final density of $n_H = 1.6 \times 10^7$ cm⁻³ (corresponding to the density of the envelope between the two protostars in IRAS 16293, [Jacob](#page-5-44)[sen et al. 2018\)](#page-5-44), intended to represent the approximate conditions of the gas while at a temperature of 30 K (see Figure [6\)](#page-5-43). This model produces an NH₂CN fractional abundance of 3.7×10^{-10} , a value very close to the detected value. However, the resulting $NH₂CN:NH₂CHO$ peak abundance ratio of 0.0011 is still lower than the observed values in both IRAS2A (∼0.02), and IRAS 16293 (∼0.2). This may be due to the possible overproduction of NH₂CHO, related to uncertainties in the efficiency of formation of that molecule, which is still a matter of debate, particularly for the gas-phase mechanism (e.g., [Barone et al. 2015;](#page-5-45) [Song &](#page-5-46) [Kästner 2016\)](#page-5-46); our model assumes only a grain-surface/ice formation route. The difficulty in reproducing the observed $NH₂CN$ abundance at the high densities determined for the source high-

Fig. 6: Chemical model abundances for the warm-up stage of a hot-core type model with a final collapse density of $n_{\text{H}} = 6 \times 10^{10} \text{ cm}^{-3}$ (high density model, black lines for NH₂CN and green lines for NH2CHO). Solid lines denote gas-phase molecules; dotted lines indicate the same species on the grains. The red lines correspond to the abundance profiles of gas-phase and grain-surface $NH₂CN$ for the lower density model, run at $n_{\text{H}} = 1.6 \times 10^7 \text{ cm}^{-3}$.

lights the necessity for future models of hot-core/corino chemistry to treat the rising density and temperature in such cores concurrently, rather than as a two-stage process, so that the gas densities are appropriate at the key temperatures at which many molecules are formed.

In conclusion, the detection of cyanamide towards IRAS16293 B and IRAS2A indicates that this species can be formed early in solar-type protostars. If it survives during the star formation process until its incorporation into comets or asteroids, these objects could then deliver it to planets, which may enable the development of life. Search for this species in the coma of comets could shed further light on this possibility. Theoretical and experimental studies as well as more detailed chemical models are needed to confirm the formation of $NH₂CN$ through the grain-surface pathway $NH₂ + CN$. It would also be interesting to investigate if this mechanism is sufficient to explain the large-scale emission of $NH₂CN$ in galaxies.

References

- Aladro, R., Martín, S., Martín-Pintado, J., et al. 2011, A&A, 535, A84
- Barone, V., Latouche, C., Skouteris, D., et al. 2015, MNRAS, 453, L31
- Baryshev, A. M., Hesper, R., Mena, F. P., et al. 2015, A&A, 577, A129
- Belloche, A., Meshcheryakov, A. A., Garrod, R. T., et al. 2017, A&A, 601, A49 Belloche, A., Müller, H. S., Menten, K. M., Schilke, P., & Comito, C. 2013, A&A, 559, A47
- Birk, M., Winnewisser, M., & Cohen, E. A. 1989, J. Mol. Spectrosc., 136, 402 Blitz, M. A., Seakins, P. W., & Smith, I. W. M. 2009, Physical Chemistry Chem-
- ical Physics (Incorporating Faraday Transactions), 11, 10824
- Bottinelli, S., Ceccarelli, C., Neri, R., et al. 2004, ApJ, 617, L69
- Coutens, A., Jørgensen, J. K., Persson, M. V., et al. 2014, ApJ, 792, L5
- Coutens, A., Jørgensen, J. K., van der Wiel, M. H. D., et al. 2016, A&A, 590, L6 Coutens, A., Persson, M. V., Jørgensen, J. K., Wampfler, S. F., & Lykke, J. M.
- 2015, A&A, 576, A5 Duvernay, F., Chiavassa, T., Borget, F., & Aycard, J.-P. 2005, J. Phys. Chem. A, 109, 603
- Fedoseev, G., Chuang, K.-J., van Dishoeck, E. F., Ioppolo, S., & Linnartz, H. 2016, MNRAS, 460, 4297

Garrod, R. T. 2013, The Astrophysical Journal, 765, 60

- Jabs, W., Winnewisser, M., Belov, S. P., Klaus, T., & Winnewisser, G. 1997, Chemical Physics, 225, 77
- Jacobsen, S. K., Jørgensen, J. K., van der Wiel, M. H. D., et al. 2018, A&A in press [arXiv:1712.06984]
- Jørgensen, J. K., Bourke, T. L., Myers, P. C., et al. 2005, ApJ, 632, 973
- Jørgensen, J. K., Favre, C., Bisschop, S. E., et al. 2012, ApJ, 757, L4
- Jørgensen, J. K., Müller, H. S. P., Calcutt, H., et al. submitted, A&A
- Jørgensen, J. K., van der Wiel, M. H. D., Coutens, A., et al. 2016, A&A, 595, A117
- Kahane, C., Ceccarelli, C., Faure, A., & Caux, E. 2013, ApJ, 763, L38
- Kilpatrick, M. L. 1947, J. Am. Chem. Soc., 69, 40
- Kisiel, Z., Krasnicki, A., Jabs, W., et al. 2013, J. Phys. Chem. A, 117, 9889 ´
- Krasnicki, A., Kisiel, Z., Jabs, W., Winnewisser, B. P., & Winnewisser, M. 2011, ´ J. Mol. Spectrosc., 267, 144
- Ligterink, N. F. W., Coutens, A., Kofman, V., et al. 2017, MNRAS, 469, 2219
- Lykke, J. M., Coutens, A., Jørgensen, J. K., et al. 2017, A&A, 597, A53
- Martín, S., Mauersberger, R., Martín-Pintado, J., Henkel, C., & García-Burillo, S. 2006, ApJS, 164, 450
- Martín-Doménech, R., Rivilla, V. M., Jiménez-Serra, I., et al. 2017, MNRAS, 469, 2230
- Maury, A. J., Belloche, A., André, P., et al. 2014, A&A, 563, L2
- Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M., & Wyckoff, S. 2005, ApJ, 634, 1126
- Müller, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, G. 2005, J. Mol. Struct., 742, 215
- Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370, L49
- Persson, M. V., Jørgensen, J. K., Müller, H. S. P., et al. 2018, A&A in press [arXiv:1711.05736]
- Persson, M. V., Jørgensen, J. K., van Dishoeck, E. F., & Harsono, D. 2014, A&A, 563, A74
Pickett, H.
- M., Poynter, R. L., Cohen, E. A., et al. 1998, J. Quant. Spectr. Rad. Transf., 60, 883
- Raymond, S. N., Quinn, T., & Lunine, J. I. 2004, Icarus, 168, 1
- Read, W. G., Cohen, E. A., & Pickett, H. M. 1986, J. Mol. Spectrosc., 115, 316
- Smith, I. W. M., Herbst, E., & Chang, Q. 2004, MNRAS, 350, 323
- Song, L. & Kästner, J. 2016, Phys. Chem. Chem. Phys., 18, 29278
- Talbi, D. & Smith, I. W. M. 2009, Phys. Chem. Chem. Phys., 11, 8477
- Taquet, V., López-Sepulcre, A., Ceccarelli, C., et al. 2015, ApJ, 804, 81
- Turner, B. E., Liszt, H. S., Kaifu, N., & Kisliakov, A. G. 1975, ApJ, 201, L149
- Wakelam, V., Herbst, E., Loison, J.-C., et al. 2012, ApJS, 199, 21
- White, G. J., Araki, M., Greaves, J. S., Ohishi, M., & Higginbottom, N. S. 2003, A&A, 407, 589
- Williams, A. & Ibrahim, I. T. 1981, Chem. Rev., 81, 589
- Willis, E. R. & Garrod, R. T. 2017, ApJ, 840, 61

Acknowledgements. This paper makes use of the ALMA data ADS/JAO.ALMA#2013.1.00278.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This work is based on observations carried out under project numbers V010, V05B, W00A, and X060 with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement No. 283393 (RadioNet3). A.C. postdoctoral grant is funded by the ERC Starting Grant 3DICE (grant agreement 336474). The group of J.K.J. acknowledges support from ERC Consolidator Grant "S4F" (grant agreement 646908). Research at the Centre for Star and Planet Formation is funded by the Danish National Research Foundation. The group of E.v.D. acknowledges ERC Advanced Grant "CHEMPLAN" (grant agreement 291141). MVP postdoctoral position is funded by the ERC consolidator grant 614264. MND acknowledges the financial support of the Center for Space and Habitability (CSH) Fellowship and the IAU Gruber Foundation Fellowship.

Appendix A: Tables with detected lines of NH2**CN and its isotopologues**

Table A.4: Detected lines of $NH_2^{13}CN$ towards IRAS16293 B with ALMA

Table A.1: Detected lines of NH₂CN towards IRAS16293 B with ALMA

Transition	Frequency	$E_{\rm up}$	A_{ij}	$g_{\rm up}$
(N, K_a, K_c, v)	(MHz)	(K)	(s^{-1})	
$172151 - 162141$	339238.0	274.3	3.9×10^{-3}	105
$170171 - 160161$	339450.6	218.0	4.04×10^{-3}	105
$170170 - 160160$	339710.9	146.8	4.15×10^{-3}	35
$172150 - 162140$	339892.9	204.8	4.10×10^{-3}	35
$181180 - 171170$	357404.4	177.5	4.82×10^{-3}	111
$182161 - 172151$	359203.0	291.6	4.65×10^{-3}	111
$182160 - 172150$	359892.2	222.0	4.88×10^{-3}	37
$183160 - 173150$	360114.0	294.5	4.87×10^{-3}	111
$183150 - 173140$	360127.4	294.6	4.87×10^{-3}	111
18 1 17 1 - 17 1 16 1	361717.6	250.4	4.88×10^{-3}	37
$181170 - 171160$	362143.5	179.6	5.02×10^{-3}	111

Transition	Frequency	$E_{\rm up}$	A_{ij}	$g_{\rm up}$
(N, K_a, K_c, v)	(MHz)	(K)	(s^{-1})	
$181180 - 171170$	357261.4	177.4	4.82×10^{-3}	111
$184151 - 174141$	359154.9	460.9	4.55×10^{-3}	111
$184141 - 174131$	359154.9	460.9	4.55×10^{-3}	111
$181170 - 171160$	361997.1	179.6	5.01×10^{-3}	111

Table A.5: Unidentified lines from [Maury et al.](#page-5-12) [\(2014\)](#page-5-12) (their Table 1) that can be assigned to $NH₂CN$. These data have a spectral resolution of 3.9 MHz (\sim 5.3 km s⁻¹).

Rest frequency	Frequency of the \overline{U} -line		
(MHz)	(MHz)		
218461.8	No U-line but blending		
	with $NH2CHO$ at 218459 MHz		
219441.6	219441		
219474.0	219474		
219719.7	219719		
219893.8	219892		
220126.6	220126		
220127.9	220126		

Table A.2: Detected lines of NH2CN towards IRAS2A with PdBI

Transition	Frequency	$E_{\rm up}$	A_{ij}	$g_{\rm up}$
(N, K_a, K_c, v)	(MHz)	(K)	(s^{-1})	
$121110 - 111100$	241478.6	89.8	1.46×10^{-3}	75
$161161 - 151151$	317620.4	215.0	3.29×10^{-3}	33
$161160 - 151150$	317716.1	144.1	3.37×10^{-3}	99

Table A.3: Detected lines of NHDCN towards IRAS16293 B with ALMA

Fig. B.1: Spectra of the unblended lines of NH₂CN detected with ALMA towards IRAS16293 B at the full-beam offset position (left), at the half-beam offset position (middle) and at the peak continuum position (right). The best-fit model for $T_{ex} = 300$ K at the full-beam offset position is shown in red on the left panels. The identification of the other lines is indicated in blue. The dashed line on the middle and right panels indicates the average velocity of the absorptions, 3.8 km s[−]¹ .The dotted line shows the level 0.

Fig. B.1: Spectra of the unblended lines of NH₂CN detected with ALMA towards IRAS16293 B at the full-beam offset position (left), at the half-beam offset position (middle) and at the peak continuum position (right). The best-fit model for $T_{ex} = 300$ K at the full-beam offset position is shown in red on the left panels. The identification of the other lines is indicated in blue. The dashed line on the middle and right panels indicates the average velocity of the absorptions, 3.8 km s[−]¹ .The dotted line shows the level 0.