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ABSTRACT

Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below
its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls
the transition from solid state to gas-phase methanol in cold environments is not understood.
Aims. The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb
at low temperatures.
Methods. Mixed CH3OH:CO/CH4 ices were heated under UHV (ultra-high vacuum) conditions and ice contents are traced using
RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain
chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya,
a protoplanetary disk in which cold gas-phase methanol has recently been detected.
Results. Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting
in an upper limit of ≤ 7.3 × 10−7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based
on the upper limits shows that co-desorption rates as low as 10−6 CH3OH molecules per CO molecule are high enough to release
substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary
disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced
photodesorption and chemisorption.
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1. Introduction

Methanol is one of the smallest complex organic molecules
(COMs, Herbst & van Dishoeck 2009) observed in the inter-
stellar medium (ISM). It has been identified in both the gas-
phase and solid-state towards many types of sources, among
which are dark clouds, hot cores, protostellar envelopes, proto-
planetary disks and comets (Ball et al. 1970; Grim et al. 1991;
Bockelée-Morvan et al. 1991; Bisschop et al. 2007; Bottinelli
et al. 2010; Taquet et al. 2015; Boogert et al. 2015; Walsh et al.
2016). Gas-phase reactions account only for a small fraction of
methanol production (Geppert et al. 2005; Garrod et al. 2006).
It has been demonstrated that methanol ice efficiently forms by
sequential hydrogenation of CO on interstellar dust grain ana-
logues (Watanabe & Kouchi 2002; Fuchs et al. 2009; Linnartz
et al. 2015, and references therein). Evidence for this forma-
tion pathway in the ISM is supported by infrared (IR) observa-
tions of interstellar ices, which show that CO and methanol are
both abundant ice species that are intimately mixed (Pontoppi-
dan et al. 2003; Cuppen et al. 2011; Penteado et al. 2015).

The release of methanol from ice mantles on dust grains to
the gas-phase is generally thought to occur either via thermal

desorption or photodesorption, depending on the physical condi-
tions governing the local environment. For example, young stel-
lar objects (YSOs) enrich the gas-phase with warm methanol re-
leased by thermal desorption in their hot core or corino phase
(e.g. Turner 1991; van Dishoeck et al. 1995; Bisschop et al.
2007; Taquet et al. 2015). Photodesorption of methanol ice has
been invoked to explain gas-phase abundances of rotationally
cold methanol in cold (� 100 K) environments such as dark
clouds (Friberg et al. 1988).

The photodesorption mechanism, whereby a VUV (vacuum-
ultraviolet) photon impinges on solid-state molecules and in-
duces a release to the gas-phase, is well established for CO ice.
Quantification of this process has been realised mainly in the
laboratory (Öberg et al. 2007; Muñoz Caro et al. 2010; Fay-
olle et al. 2011; Chen et al. 2014; Paardekooper et al. 2016)
and is also theoretically supported (van Hemert et al. 2015). It
has been used to interpret recent observations of a disk showing
a double snowline (Öberg et al. 2015). Experimental and the-
oretical evidence of intact water photodesorption is also avail-
able (Westley et al. 1995; Andersson et al. 2005; Andersson
& van Dishoeck 2008; Öberg et al. 2009b; Arasa et al. 2015).
Methanol photodesorption has not been as rigorously studied.
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Öberg et al. (2009a) indirectly inferred a photodesorption rate for
pure methanol ice of 2.1 × 10−3 molecules photon−1 from fitting
multiple components to the rate of methanol ice loss. Cruz-Diaz
et al. (2016) recently revisited the broad-band VUV irradiation
of pure methanol ice including direct detection of the photodes-
orption products via mass spectrometry. Only products of VUV
ice processing were directly detected (H2, CO, and CH4) leading
to an upper limit of < 3 × 10−5 molecules photon−1 photodes-
orption of intact methanol. At the same time Bertin et al. (2016)
performed wavelength dependent experiments on methanol and
methanol:CO mixed ice. In both the pure and mixed ice the role
of dissociative photodesorption was studied and the photodes-
orption rate of intact methanol was found to be low (in agree-
ment with Cruz-Diaz et al. 2016). For a pure methanol ice this
is in the order of 1-2×10−5 molecules photon−1, whereas for the
mixed ice an upper limit of ≤3×10−6 molecules photon−1 was
found. The resulting methanol photodesorption rates are several
orders of magnitude lower than the typical yields of 10−2-10−3

molecules photon−1 for CO and H2O photodesorption and are
too low to explain gas-phase abundances of methanol in cold re-
gions of the ISM. Also, the result of the mixed ice is interesting
because it shows that indirect photodesorption, known to be ef-
ficient for the N2:CO case (Bertin et al. 2013), is an inefficient
process in the case of methanol:CO mixtures. Therefore to ex-
plain the presence of rotationally cold methanol other transfer
mechanisms from the solid-state to the gas-phase need to be in-
vestigated.

One such option is chemical or reactive desorption. In this
mechanism two fragments, usually radicals or ions, react with
each other to form the product species and the excess energy
from the reaction is available to release the product from the
solid-state to the gas-phase. This mechanism was investigated by
Martín-Doménech et al. (2016) for methanol. In VUV irradiated
H2O:CH4 ices they concluded on the chemi-desorption of photo-
produced formaldehyde at ≈ 4.4 × 10−5 molecules photon−1;
chemi-desorption of methanol ice was not found, even though
the experiments showed CH3OH formation.

Another possible transfer mechanism is thermal co-
desorption (Sandford et al. 1988; Öberg et al. 2005; Fuchs et al.
2006; Brown & Bolina 2007; Martín-Doménech et al. 2014;
Burke et al. 2015; Burke & Brown 2015; Urso et al. 2017). This
term is applied to any thermal release of a molecule to the gas-
phase induced by a second matrix ice species. Most cases involve
species that are trapped above their respective desorption tem-
perature in a matrix with a higher desorption temperature than
said species. These species release partially to the gas-phase at
their regular desorption temperature and co-desorp when the ma-
trix undergoes a phase change (for example the change of amor-
phous solid water to crystalline water) or when the matrix itself
begins to thermally desorb (e.g. Bar-Nun et al. 1985). In both
cases, co-desorption is driven by the fact that the molecule is
initially hindered to thermally desorb because of its matrix envi-
ronment. The opposite of the previous case is co-desorption of
a molecule below its desorption temperature, that is, when the
matrix has a lower desorption temperature than the molecule,
and the matrix carries the less volatile species with it when
desorbing. This specific kind of co-desorption is the subject of
the present study and further mention of the term co-desorption
refers to desorption of a molecule below its desorption tempera-
ture induced by the thermal release of matrix species.

It is well established that methanol ice forms in situ on ice
mantles on cold dust grains via the sequentional hydrogenation
of CO ice (Watanabe & Kouchi 2002; Fuchs et al. 2009). We

therefore investigate the potential release of methanol to the gas-
phase with a thermally desorbing CO matrix at low tempera-
tures. As noted above, recent photodesorption and reactive des-
orption experiments suggest that methanol does not come off
intact in either case (Bertin et al. 2016; Cruz-Diaz et al. 2016;
Martín-Doménech et al. 2016). The aim here is to test if the pro-
posed co-desorption mechanism can explain the presence of ro-
tationally cold gas-phase methanol in the ISM. Laboratory ex-
periments are discussed that study the thermal desorption dy-
namics of CO:CH3OH ice mixtures and the results are tested
in astrochemical models. The models adopted are representa-
tive of the physical conditions in the protoplanetary disk around
TW Hya in which cold gas-phase methanol was recently de-
tected with ALMA (Walsh et al. 2016). This was the first de-
tection of methanol in a protoplanetary disk and is a particularly
interesting test case for thermal co-desorption given the range of
temperatures in this or similar objects.

This paper is organised in the following way. The experi-
mental set-up and procedure are described in Sect. 2, that also
summarises the experimental results. In Sect. 3 the astrochem-
ical model is described and used to interpret the experimental
findings. The conclusions are presented in Sect. 4.

2. Experimental setup and results

2.1. Laboratory set-up and protocols

2.1.1. CryoPAD2

All laboratory measurements in this paper were carried out on
the Cryogenic Photoproduct Analysis Device 2 (CryoPAD2), a
recently upgraded setup to study VUV induced processes in in-
terstellar ice analogues. In short, this setup consists of a main
chamber at oil-free, ultra high vacuum (UHV, <1× 10−10 mbar).
At its centre a cryogenically cooled gold coated reflective sur-
face was mounted, which can be cooled to a lowest temperature
of 12 K. Gasses were prepared in a gas mixing line and deposited
on the cryogenically cooled surface to form an ice layer, using a
leak valve connected to a nozzle positioned in front of deposition
zone. A Lakeshore Model 350 temperature controller controlled
the feedback loop between a thermocouple and heating wire to
set the base temperature and temperature ramp on the substrate
with a relative accuracy better than ±1 K, and absolute accu-
racy not exceeding ±2 K. The composition of the deposited ices
were analysed in situ by Reflection Absorption InfraRed Spec-
troscopy (RAIRS), by impinging an IR beam on the substrate
at an angle of 83° with respect to the normal. A resolution of
2 cm−1 was used in all measurements. Gas-phase species were
analysed with a Hiden 3F RGA quadrupole mass spectrometer
(QMS), which was connected to the temperature controller and
recorded the temperature at the same time. This QMS faced the
gold surface directly. Mass fragmentation patterns of desorbing
species can be linked to characteristic temperatures in order to
record temperature programmed desorption (TPD) mass signals.

2.1.2. Experimental protocol

Mixtures of carbon monoxide (Linde Gas, 99.997%) or methane
(Linde Gas, 99.995%) and 13C-methanol (Sigma-Aldrich, 99%)
were prepared in the mixing line. 13CH3OH has a unique mass
at m/z 33, which does not overlap with the masses of the 12/13C
and/or 16/18O carbon monoxide isotopologues, nor with potential
contaminants like molecular oxygen (16O2 at m/z 32, 16O18O at
m/z 34). Methanol was purified in a number of freeze-pump-
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Table 1. IR positions and transmission band strengths of CO, methanol,
methane and isotopologues

Molecule Mode Position Transmission band strength
cm−1 ×10−17 cm molecule−1

CO CO str. 2138 1.12a

13CO CO str. 2092 1.32a

13CH3OH CO str. 1020 1.07a

CH4 deform. 1302 0.97b

Notes. aBouilloud et al. (2015), bGerakines & Hudson (2015)

thaw cycles before use. The mixing ratio was determined with a
gas-independent gauge.

Deposition on the substrate occurs at 15 K, after which an
IR spectrum was taken to verify and characterise the composi-
tion of the ice. The system is given time to pump any residual
gasses of the deposition until a pressure of 1×10−10 mbar or bet-
ter is reached, in order to have good baseline conditions. Next,
a temperature ramp, typically 10 K min−1, was set to heat the
deposited sample. The high heating ramp was chosen in order to
give the ice less time to undergo structural changes and make it
more likely that methanol will co-desorb with CO. IR spectra are
continuously recorded in order to trace ice changes due to ther-
mal processing. In parallel, the QMS records the (co-)desorption
of molecules from the sample, focusing mainly on m/z 16 and
33.

Recorded mass spectra were corrected for the QMS response
function. Since the QMS detector can saturate at high signal in-
tensities, a good alternative approach is to trace desorption of
a certain molecule at a minor fragmentation channel instead of
its main channel. Particularly for CO, of which large amounts
desorb in the experiments, it is better to trace this molecule at
m/z = 16, because the O+ fragment signal is ∼60 times less in-
tense in the signal than that of the main CO+ fragment channel
at m/z = 28.

Column densities (Nspecies) were determined from the IR
spectra by the equation:

Nspecies =
1.1
3.4

ln(10)

∫
band log10

(
I0(ν̃)
I(ν̃)

)
dν̃

A′
, (1)

where
∫

band log10

(
I0(ν̃)
I(ν̃)

)
dν̃ is the absorbance band area, with

I0(ν̃) and I(ν̃) respectively being the flux received and transmit-
ted by the sample. A′band is the apparent band strength and 1.1

3.4
a RAIRS scaling factor explained below. Band strengths can be
different in a RAIRS set-up with respect to transmission spec-
troscopy, due to the difference in path length. Therefore, addi-
tional band strength determinations have been performed. In our
experiments, for CO the equivalent of one monolayer (ML) was
determined mass spectrometrically from TPD experiments and
correlated to the CO stretch absorption signal in the IR. By as-
suming a column density of 1015 molecules cm−2, the set-up spe-
cific RAIRS band strength for CO was found to be 3.4+0.5

−0.5×10−17

cm molecule−1. Under the assumption that other set-up specific
band strengths scale in the same way as CO, a factor of 1.1

3.4 is
used to adapt transmission band strengths taken from literature
(Bouilloud et al. 2015). The bands used for analysis and their
apparent band strengths in transmission are listed in Table 1.
The total 12+13CO column density is determined by multiplying
N(13CO) by (90+1), where 90 is the 12CO/13CO isotope ratio.

Table 2. Fragmentation patterns of CO and 13CH3OH upon 70 eV elec-
tron impact ionisation.

Mass CO 13CH3OH CH4
(amu)

12 0.04268 - 0.01686
13 - 0.00081 0.0474
14 - 0.00245 0.09062
15 - 0.00690 0.39404
16 0.01580 0.05059 0.44375
28 0.92936 - -
29 0.01115 0.01874 -
30 - 0.18205 -
31 - 0.02650 -
32 - 0.40824 -
33 - 0.30372 -

Notes. Fragmentation pattern and intensities based on NIST
data. The most commonly used channels are highlighted in red.

The 12CO band is deemed less reliable for column density deter-
mination because high intensity effects make a baseline fit more
difficult and because it is susceptible to non-linear RAIRS effects
(Teolis et al. 2007).

2.1.3. Methanol co-desorption rate determination

The co-desorption rate of methanol released in tandem with the
thermal release of CO (or CH4), Rmethanol, is calculated from the
TPD spectrum using the following relation,

Rmethanol =
φm/z,CO

φm/z,methanol

σCO

σmethanol

Amethanol

ACO
, (2)

where φ is the fragmentation fraction of CO and methanol
at a specific mass, σ the total electron impact ionisation cross
section of CO (or methane) and methanol at 70 eV and A the in-
tegrated QMS signal of CO or methanol. σCO is given as 2.44Å2

(Hudson et al. 2004) andσmethanol is 4.44Å2 (Hudson et al. 2003).
For methane it is 3.93Å2 (Nishimura & Tawara 1994). The mass
fragmentation patterns of CO, CH4, and 13CH3OH are given in
Table 2.

2.2. Experimental results

Most co-desorption experiments conducted in this work have
been performed with 13CH3OH:CO mixed ices, but layered ices
(13CH3OH deposited on top of a layer of CO) have been inves-
tigated as well. A variety of thicknesses and mixing ratios have
been used. A full list of the performed experiments is given in
Table 3.

A typical IR spectrum taken after deposition is shown in
Fig. 1 for the 1:24 mixed 13CH3OH:CO experiment. At 1015
cm−1 the CO stretch mode of methanol is visible. We note that
this mode has two components. The strong component is asso-
ciated with monomeric methanol, methanol that is largely iso-
lated in the CO matrix. The smaller, blue-shifted component is
mainly caused by methanol clusters, but minor contributions of
12CH3OH impurities in the sample cannot be excluded. Depend-
ing on the mixing ratio, ice thickness and temperature, the pro-
file of this band can change from fully monomeric to clustered
methanol. At 2092 cm−1 the 13CO peak is visible and next to
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Table 3. Upper limit co-desorption rates (R) for a systematic set of different experiments.

Methanol COa CH4 Ratio Type Heating ramp Tpeak(CO) Rmethanol
(ML) (ML) (ML) (K min−1) (K) (MeOH CO−1)

5.7 137.4 - ∼1:24 mixed 1 32.3 ≤ 3.3 × 10−6

2.9 52.2 - ∼1:18 mixed 10 33.5 ≤ 2.6 × 10−6

8.7 119.7 - ∼1:14 mixed 10 35.1 ≤ 1.1 × 10−6

11.4 123.3 - ∼1:11 mixed 10 34.9 ≤ 1.9 × 10−6

24.6 126.9 - ∼1:5 mixed 10 35.4 ≤ 7.3 × 10−7

31.2 30.5 - ∼1:1 layered 10 32.5 ≤ 3.2 × 10−5

13.1 21.0 - ∼3:5 mixed on CO 10 32.8 ≤ 6.8 × 10−6

3.9 - 31.9 ∼1:8 mixed 10 41.2b ≤ 3.2 × 10−5,b

Notes. aDetermined by the 13CO band multiplied by 91 to retrieve the total 12+13C column density. bIn the experiment making use
of methane, Tpeak is given for CH4 and Rmethanol is units of MeOH CH−1

4 .
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Fig. 1. Representative IR spectrum taken after deposition at 15 K (blue)
of the 1:24 13CH3OH:CO mixture and during the TPD at 100 K (red),
showing the main IR features of CO and 13CH3OH. For the methanol
CO stretch mode, the 13CO and CO peak (cut-off due to its high peak
intensity) are visible. Between the two CO peaks an artefact, labelled
int., is visible caused by the high intensity of the CO peak.

it the intense CO stretching mode at 2143 cm−1. Between the
two CO isotope peaks an artefact is visible that is caused by the
high intensity of the CO peak. The same figure also shows the
IR spectrum at 100 K during the TPD. CO has desorbed at this
point, but methanol is still present. Its peak shape has changed,
however, due to the removal of the CO matrix. Table 3 lists the
ice column densities of all experiments.

From the same experiment, a typical desorption pattern is
shown in Fig. 2. CO is traced at m/z 16, while 13CH3OH is traced
by m/z 33. CO desorbs around 30 K (e.g. Acharyya et al. 2007),
while bulk methanol desorption occurs around 130 K. The m/z
16 signal around 130 K is the 13CH3 fragment of the methanol
fragmentation pattern, but can partially also be caused by trace
amounts of CO trapped in the methanol ice and releasing upon
methanol desorption. No release of m/z 33 is seen around 30 K.

Figure 3 shows a close-up of the CO desorption peak, traced
at m/z 16, for the 1:5 13CH3OH:CO mixed ice experiment. The
C18O and 13C18O isotopes are shown as well at m/z 30 and 31,
respectively. At the CO desorption peak no increase of m/z 33 is
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1
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1 3 C H 3 O H  
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T e m p e r a t u r e  ( K )
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 m / z  3 3

C O

Fig. 2. Desorption profile of the 1:24 13CH3OH:CO mixture, heated at
1 K min−1. CO is traced by m/z 16 (black) and desorbs just above 30 K,
while 13C-methanol is traced by m/z 33 (red) and desorbs around 130 K.
The presence of m/z 16 at the methanol desorption peak is due to the
13CH3 (= 16 amu) fragment.

seen. An increase in signal of m/z 32 is seen, but at a ratio of m/z
(32/33) > 10, much larger than the same fragment ratio of ∼1.3 in
the 13CH3OH fragmentation pattern (see Table 2). Therefore, it
is unlikely that 13CH3OH is co-desorbing. m/z 32 is likely trac-
ing small quantities of O2 contamination. Using the formalism
described in Sect. 2.1.3, an upper limit co-desorption rate can be
determined from the CO peak and 13CH3OH m/z 33 baseline; the
inferred limit in this specific experiment is Rmethanol ≤ 7.3× 10−7

CH3OH CO−1.
In none of the experiments, including the layered ones, did

we find m/z 33 desorbing simultaneously with CO. This leads
to a series of upper limit co-desorption rates listed in Table 3.
The above mentioned upper limit is the most constraining, but
generally the upper limits are found to be in the order of a few
×10−6 CH3OH CO−1.

To test whether other low volatility molecules can induce
co-desorption of methanol, a TPD experiment was run with a
13CH3OH:CH4 mixture. Methane has a comparable desorption
temperature to CO of roughly 40 K (Collings et al. 2004). Fig-
ure 4 shows a close-up of the methane desorption peak around
41 K, traced by m/z 13. The methanol, traced by m/z 33, is again
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Fig. 3. Close-up of the CO desorption peak (shaded blue) for the 1:5
13CH3OH:CO mixed ice. m/z 16 (black) traces CO, while m/z 30 (dark
grey) and 31 (light grey) trace C18O and 13C18O, respectively. The signal
in m/z 32 (green) is caused by minor traces of 16O2. m/z 33 (red) is
associated with 13CH3OH. We note the logarithmic scale.
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Fig. 4. Close-up of the CH4 desorption peak (shaded blue) for the 1:8
13CH3OH:CH4 mixed ice. m/z 13 (black) traces methane, while m/z 33
(red) is associated with 13CH3OH. We note the logarithmic scale.

not co-desorbing. In a similar way as described before, for this
experiment an upper limit Rmethanol ≤ 3.2 × 10−5 CH3OH CH4

−1

is determined.
The fact that methanol does not co-desorb with either

molecule sets an upper limit on low temperature methanol: CO
or CH4 co-desorption. Also, the fact that most of these experi-
ments make use of a heating rate of 10 K min−1 should be con-
sidered as an extra constraint. At lower heating ramps the volatile
molecules have more time to diffuse out of the ice, whereas
(monomeric) methanol is able to form clusters and remain on
the surface. If there is any interaction between CO-CH3OH when
CO desorbs to the gas-phase, it must be weak, resulting in low
quantities of desorbing methanol that are below our detection
limit.

The weak interaction between CO and methanol is also seen
in small quantities (a few ML) of CO trapped in methanol ice
after CO desorption. Depending on the amount of methanol that

was used in a specific experiment, CO signals are found in IR
spectra of the ice to temperatures as high as 90 K. However,
the outgassing of CO does not release methanol with it. Perhaps
the hydrogen bonding network that methanol forms with itself
is too strong to be broken by the desorption of low volatility
molecules. For the case of monomeric methanol it is possible
that time scales, even at a heating rate of 10 K min−1, are suf-
ficiently long for methanol to form hydrogen bonds and not to
co-desorb.

3. Modelling

3.1. Astrochemical model description

The upper limits derived from the CO co-desorption experiments
for CH3OH:CO ice mixtures are implemented in an astrochem-
ical model. Our aims are to explore whether this process, al-
though found to be inefficient in the laboratory, is able to release
a small amount of methanol into the gas-phase under astrophys-
ical conditions.

At the low temperatures found in dark clouds (∼10 K),
gas-phase methanol is routinely detected with an abundance
∼ 10−10 − 10−8 relative to molecular hydrogen (e.g. Bacmann
& Faure 2016). Cold methanol has also been detected towards
so-called photon-dominated regions (PDRs) with an apprecia-
ble abundance (∼ 10−10 − 10−9 with respect to H2, Guzmán
et al. 2013; Cuadrado et al. 2017). The presence of gas-phase
methanol in a PDR appeared to support the theory that intact
methanol could be released via the process of photodesorption
(Öberg et al. 2009a; Guzmán et al. 2014). As discussed here,
this is now contradicted by recent laboratory work (Bertin et al.
2016; Cruz-Diaz et al. 2016).

The recent detection of cold gas-phase methanol in a pro-
toplanetary disk provides new impetus to consider alternative
desorption mechnisms (Walsh et al. 2016). Modelling of the
CH3OH gas-phase line profile suggests that the methanol resides
in a ring with the emission peaking at ≈ 30 au. This radius is
within 10 au of the position of the CO snow line in this source
(Qi et al. 2013; Schwarz et al. 2016; Öberg et al. 2017; Zhang
et al. 2017; van ’t Hoff et al. 2017, subm.). The derived abun-
dance is low, ranging from ∼ 10−12 − 10−11 relative to H2, de-
pending on the assumed vertical location of the molecule. The
detected methanol transitions have upper energy levels ranging
from 22 to 38 K consistent with the gas-phase methanol arising
in a relatively cold region of the disk. At this radius (≈ 30 au)
these temperatures are only reached in TW Hya below z/r ≈ 0.1,
that is, the disk midplane. Here z is the disk height and r the disk
radius. The spatial coincidence of H2CO and CH3OH emission
in TW Hya (Walsh et al. 2016; Öberg et al. 2017) supports the
hypothesis of a CO-ice-mediated chemistry in the vicinity of the
CO snow line (and snow surface) in protoplanetary disks. Hence,
protoplanetary disks offer a good test case for the proposed co-
desorption route to gas-phase methanol.

Here, we have explored the relative efficiencies of the various
non-thermal desorption mechanisms proposed for non-volatile
molecules like methanol at low temperatures: photodesorption,
reactive desorption, and the process discussed here; thermally
induced co-desorption. The chemical model used includes gas-
phase chemistry and gas-grain interactions (i.e. adsorption and
desorption), as well as grain-surface chemistry. The base net-
work has been used in numerous studies of protoplanetary disk
evolution and formation (Walsh et al. 2014, 2015; Drozdovskaya
et al. 2016, and references therein for full details). The network
used here has been updated to account for new grain-surface
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formation pathways to glycolaldehyde and ethylene glycol (Fe-
doseev et al. 2015; Chuang et al. 2016). The photodesorption
pathways for methanol fragmentation and desorption upon UV
irradiation are included (Bertin et al. 2016). In addition, bind-
ing (desorption) energies of all ice species in the network have
been reviewed and updated according to the literature compi-
lation presented in Cuppen et al. (2017). However, in order to
better explore the effects of the different non-thermal desorption
mechanisms and simplify the grain-surface chemistry, we did not
include ice photodissociation throughout the bulk ice mantle ex-
cept for the case of fragmentation upon photodesorption which is
restricted to the top two monolayers (see e.g. Walsh et al. 2014,
for details). We allowed quantum tunnelling for surface reactions
involving atomic and molecular hydrogen (assuming a barrier
width of 1Å), and allowed efficient diffusion of surface species
at low temperature (Ediff/Edes=0.3). However, we did not con-
sider reaction-diffusion competition; hence, the surface reaction
rates are dictated by the rates of thermal and quantum hopping
and the barrier height for reaction. We also only allowed surface
chemistry to happen in the top two monolayers of the ice mantle.

We modelled the chemical evolution in time across vertical
slices of a protoplanetary disk using a physical model represen-
tative of the disk around TW Hya (from Kama et al. 2016). The
initial abundances of primary C-, O-, and N-containing volatiles
are the same as the ‘molecular’ set used by Eistrup et al. (2016)
which are representative of ice abundances in the ISM (Öberg
et al. 2011; Boogert et al. 2015). However, we used a depleted
value for sulphur (S/H = 8.0× 10−8), initially in the form of H2S
ice, because Eistrup et al. (2016, 2017) find that a high abun-
dance of volatile sulphur (S/H ∼ 10−5) can influence the oxygen
chemistry in the ice mantle. This value is more in line with obser-
vations of S-bearing species in molecular clouds and protoplan-
etary disks that suggest that > 99% of sulphur is locked up in re-
fractory form and thus depleted from the gas and the ice phases
(see e.g. Neufeld et al. 2015; Guilloteau et al. 2016, for recent
work on this.). The high value used in Eistrup et al. (2016, 2017)
was to ensure that the chemical models in that work used the
same initial chemical conditions as in the planet population syn-
thesis models with which that work was comparing: the depleted
value is thus more realistic. We have also included additional ele-
ments (with initial abundances from McElroy et al. 2013) which
are important for the ionisation balance in the disk atmosphere:
Si, Fe, Na, and Mg. The chemistry is then evolved at each grid
point for ≈ 107 yr to allow extraction of abundances as a function
of time up to the estimated age of TW Hya (∼ 10 Myr).

3.2. Astrochemical model results

Figure 5 shows the physical structure of three vertical slices in
the disk at 10, 20, and 30 au, chosen to probe the region in the
vicinity of the CO snowline in TW Hya. The gas density ranges
from ∼ 1011 − 1012 cm−3 in the disk midplane (z/r = 0) to ∼
106−107 cm−3 in the disk atmosphere. The gas temperature also
spans several orders of magnitude across the vertical extent of
the disk, from ≈ 20 − 30 K in the midplane to & 1000 K in the
upper surface layers of the disk. Because of the diffuse nature
of the gas which decreases the efficiency of gas cooling via gas-
grain collisions, the gas and dust temperatures decouple such
that the dust temperature remains . 100 K at 10 and 20 au, but
the gas temperature is very high (see e.g. Bruderer et al. 2012;
Kama et al. 2016). As the primary source of heating, the far-UV
flux closely follows the gas temperature: the disk midplane is
significantly shielded from the stellar radiation. At all three radii

considered here, the UV flux is less than the average interstellar
radiation field (far-UV flux equals 1.0 G0) below z/r ≈ 0.15. In
the disk surface layers, due to the proximity to the central star,
the far-UV flux reaches values & a few times 103 ×G0.

Figure 6 shows the fractional abundance of CH3OH gas, and
Fig. 7 shows the ice as a function of z/r for the explored non-
thermal desorption scenarios at 10 (left), 20 (middle), and 30
(right) au. In all plots, increasing time steps from 0.5, 1.0, 5.0,
and 10.0 Myr are shown. The top panels show the results from
a model with photodesorption only (PD model). Results assum-
ing that CH3OH does not fragment upon photodesorption (i.e.
assuming the rate determined by Öberg et al. 2009a) are plotted,
as are the results for a model with fragmentation upon photodes-
orption. The middle row shows results from a model with re-
active desorption only (RD model) at an efficiency of 1% and
at an efficiency of 10%. This range is chosen to explore that
constrained by recent analyses of reactive desorption efficiencies
for a range of reactions (e.g. Minissale et al. 2016). The bottom
panels show the results when including only the proposed co-
desorption mechanism (CD model) assuming the upper limit co-
desorption rate of 10−6 CH3OH molecules per CO molecule in-
dicated by the experiments. That is, only one CH3OH molecule
co-desorbs intact for every 106 CO molecules which are ther-
mally desorbed from the ice mantle.

We make several general observations. First, in the models
with photodesorption only (PD model), the methanol snow sur-
face lies deeper in the disk than for the model with reactive des-
orption only (RD model; z/r < 0.2 versus z/r & 0.2). The posi-
tion of the snow surface for the co-desorption only results (CD
model) is intermediate between the PD and RD results. This il-
lustrates the importance of photodesorption is setting the loca-
tion of the snow surface in the disk atmosphere for non-volatile
ice species such as CH3OH and H2O even at radii as close in
as 10 − 30 au. For the PD model, the position of the snow sur-
face also becomes deeper with time. Including the fragmentation
of methanol upon photodesorption has two effects: (i) the peak
abundance of gas-phase methanol has decreased by two to three
orders of magnitude in line with the magnitude of the decrease in
the CH3OH photodesorption rate, and (ii) the shift in the location
of methanol snow surface is larger (by a factor of two or more).
This latter effect is due to the necessity for methanol ice to re-
form from its fragments upon photodesorption. In the original
treatment, photodesorption mainly competes with re-adsorption
of intact methanol.

We now turn to the gas-phase methanol abundance and dis-
tribution, the peak in the absolute abundance coincides with the
position of the methanol snow surface for both the PD and RD
models. Furthermore, in both of these models the peak abun-
dance lies always below 10−12 with respect to molecular hydro-
gen. For the RD model, an optimistic reactive desorption proba-
bility of 10% is necessary to reach these values. The results for
1% lie an order of magnitude below this. In the model with the
original (and incorrect) treatment for methanol photodesorption,
the abundance does reach that derived from the ALMA observa-
tions. Hence, these results show that, with a realistic treatment
of methanol ice photodesorption and an optimistic reactive des-
orption probability, neither of these processes alone can explain
the observed abundance in TW Hya.

On the other hand, the co-desorption results using the labora-
tory upper limit reveal an interesting distribution and abundance
for gas-phase methanol. As expected from the hypothesis of a
CO-mediated ice chemistry, the gas-phase methanol peaks be-
tween the CO and CH3OH snow surfaces covering a larger ver-
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Fig. 5. Physical structure of the TW Hya disk slices at 10 au (red lines), 20 au (green lines) and 30 au (blue lines) as a function of disk height,
z, scaled by the radius, r. From the top-left panel and moving clockwise: gas number density (cm−3), gas (solid lines) and dust (dashed lines)
temperaure (K), ionisation rate (s−1) due to X-rays and cosmic rays (solid lines) and x-rays only (dashed lines), and far-UV flux (in units of G0,
where G0 = 1.3 × 10−3 erg cm−2 s−1 is the average interstellar radiation field).

tical extent than the other models. At early times (up to 1 Myr)
the peak fractional abundance is ≈ 10−11 with respect to H2 and
remains fairly constant between the two snow surfaces. How-
ever, the distribution does change with time, leading to a distri-
bution which again peaks at around the location of the CH3OH
snow surface. The reason for this change in gas-phase methanol
distribution over time is related to the concurrent chemical pro-
cessing and loss of CO ice (and gas). Figure 8 shows the results
for CO gas and ice for the same models as shown in Figs. 6 and
7 for methanol. Despite this model not including the radiation
processing of the bulk ice mantle except for fragmentation upon
photodesorption, (i.e. only gas-phase processing is included), be-
yond 1 Myr, CO ice and gas are significantly depleted within and
around the location of the methanol snow surface. This chemical
processing is one explanation for the low disk masses derived
from CO observations as the canonical gas-phase ratio CO/H2
∼ 10−4 no longer holds (e.g. Walsh et al. 2015; Reboussin et al.
2015; Yu et al. 2016; Eistrup et al. 2017). Hence, co-desorption
appears to only work up to 1 Myr which is the timescale within
which CO is not significantly depleted. This timescale conflicts
with (i) the estimated age of TW Hya (up to 10 Myr), and (ii)
observational evidence for CO depletion in TW Hya (e.g. Favre
et al. 2015; Schwarz et al. 2016; Zhang et al. 2017)

These model runs were performed assuming the canonical
cosmic-ray ionisation rate of 10−17 s−1: this is the main source of
processing in the disk midplane and is what drives the chemical

conversion of CO, whether in the gas, or in the ice. Figure 5
shows how the X-ray ionisation level drops below the canoncial
cosmic-ray ionisation rate below z/r . 0.2 − 0.3, depending on
radius. There has been recent arguments that T Tauri stars have
sufficiently strong stellar winds to deflect galactic cosmic rays
(evidenced by modelling of the cation abundance and emission
from TW Hya; Cleeves et al. 2015). Hence, if X-rays and short-
lived radionuclides are the only sources of ionisation in the TW
Hya disk midplane, this may (i) increase the longevity of the
co-desorption effect, and (ii) delay the onset of CO depletion to
better match the magnitude seen in TW Hya (around a factor of
100).

4. Conclusions

This work presents an experimental and modelling investigation
of the low temperature methanol co-desorption mechanism. Lab-
oratory experiments put upper limits on the thermal methanol
co-desorption with CO. Modelling based on upper limits of these
experiments shows however that low temperature methanol co-
desorption can still be a significant mechanism, even at this low
limit. The main conclusions of this work are summarised as fol-
lows:

1. Methanol is not seen co-desorbing with CO at a labora-
tory temperature of 30 K giving a general upper limit of
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Fig. 6. Fractional abundance of methanol gas as a function of z/r for radii of 10 (left), 20 (middle), and 30 (right) au. Results are shown for
three different non-thermal desorption mechanism: photodesorption only (top), reactive desorption only (middle), and codesorption with CO only
(bottom). The colour gradient from light to dark represents four different time steps: 0.5, 1.0, 5.0, and 10 Myr. The grey lines in the top and middle
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Rmethanol < a few ×10−6, with the lowest limit found at
Rmethanol < 7.3 × 10−7 CH3OH CO−1 .

2. Co-desorption of methanol with methane is not seen down to
a level of Rmethanol < 3.2 × 10−5 CH3OH CH4

−1

3. Results presented in this paper suggest that the interaction
between desorbing CO/CH4 and solid methanol is weak and
can not (easily) overcome the hydrogen bonded network of
methanol.

4. Astrochemical models employing a co-desorption upper
limit of 10−6 CH3OH CO−1 are able to reproduce the ob-
served abundance and distribution of gas-phase methanol
between 10-30 au in the TW Hya protoplanetary disk. The
models employing a more realistic treatment of methanol
photodesorption only or an optimistic treatment of reactive
desorption only, do not reproduce the observed abundance.
We note, though, that the actual thermal co-desorption may
be less efficient, as the experiments discussed here only pro-
vide upper limits.

5. The gas-phase methanol peaks between the CO and CH3OH
snow surfaces; yet, a moderate abundance (∼10−11) is re-
tained only up to ∼1 Myr, beyond which chemical processing
of CO impedes the co-desorption effect.

6. The chemical processing of CO in the disk midplane is
driven primarily by cosmic rays: it remains to be tested

whether processing by X-rays and/or short-lived radionu-
clides can help the co-desorption effect persist to the esti-
mated age of TW Hya (∼10 Myr).

7. Although the models suggest that thermal co-desorption
could contribute to the production of gas-phase methanol at
and around the CO snowline in protoplanetary disks, the lack
of a confirmed signal in the laboratory experiments means
that the impact of the actual thermal co-desorption may be
less, as the experiment only provides an upper limit. As
a consequence, other non-thermal desorption mechanisms
cannot be ruled out at this time.
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Fig. 8. As Fig. 6, but for CO gas (dashed lines) and ice (solid lines).
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