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Abstract
Motivation: The Tundra Trait Team (TTT) database includes field‐based measure‐
ments of key traits related to plant form and function at multiple sites across the 
tundra biome. This dataset can be used to address theoretical questions about plant 
strategy and trade‐offs, trait–environment relationships and environmental filtering, 
and trait variation across spatial scales, to validate satellite data, and to inform Earth 
system model parameters.
Main types of variable contained: The database contains 91,970 measurements of 
18 plant traits. The most frequently measured traits (> 1,000 observations each) 

[Correction added on 22 November 2018, after first online publication: The affiliation of Sonja Wipf should be 57WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland 
and has been updated in this current version.] 
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1  | INTRODUC TION

Plant traits reflect species’ ecological strategies and life histories, 
and underlie differences in the way plants acquire and use re‐
sources. Traits related to plant size and the leaf economics spec‐
trum, for example, represent fundamental trade‐offs between the 
capture and conservation of resources (Díaz et al., 2016; Wright 
et al., 2004). Because plant traits reflect the direct interaction be‐
tween a plant and its habitat, variation in plant traits is often closely 
linked to environmental (including climatic) variation (Moles et al., 
2006, 2009; Sandel et al., 2010). As such, plant traits can be used 
to predict species’ responses to environmental and climate change 
(Fridley, Lynn, Grime, & Askew, 2016; Soudzilovskaia et al., 2013). 
Furthermore, many plant functional traits are directly related to 
key community and ecosystem processes (Díaz et al., 2009; Lavorel 
& Garnier, 2002; Reichstein, Bahn, Mahecha, Kattge, & Baldocchi, 
2014), and are thus considered essential biodiversity variables nec‐
essary for assessing biodiversity and ecosystem change globally 
(Pereira et al., 2013).

Global trait databases (Kattge et al., 2011) have dramatically in‐
creased the accessibility of plant trait data over the past decade, but 
these databases are heavily geographically biased towards temper‐
ate regions (e.g. 98% of observations in the TRY trait database were 
measured south of 60°N). In contrast, the tundra is the most rapidly 
warming biome on the planet (IPCC, 2013), but until now has been 
underrepresented in global trait databases, which limits our ability 
to predict the functional consequences of climate change. This poor 
geographical coverage of tundra species is especially pronounced 

in the most remote (e.g. high Arctic, upper alpine) regions. Because 
intraspecific trait variation is thought to be particularly important in 
ecosystems such as the tundra where diversity is low and species’ 
ranges are large (Siefert et al., 2015), multi‐site trait observations 
on many individuals are needed to capture the full extent of tundra 
plant trait variation.

Here, we present the Tundra Trait Team (TTT) database, which 
contains more than 90,000 unique observations of 18 plant traits 
on 978 tundra species (Figures 1 and 2, Table 1). The TTT data‐
base is unique in its depth and spread. Trait data were collected at 
207 unique tundra locations ranging from 47°S (the sub‐Antarctic 
Marion Island) to 79.1°N (Sverdrup Pass, Ellesmere Island, Canada), 
and include multiple observations on individuals at the same loca‐
tion as well as of the same species at different locations. In addition, 
99.8% of the observations in the database are georeferenced, thus 
allowing trait observations to be linked with environmental data 
such as gridded climate datasets (e.g. WorldClim, www.worldclim.
org, CHELSA, chelsa‐climate.org, CRU, crudata.uea.ac.uk, etc.). The 
TTT database fills a major geographical gap; it contains nearly twice 
as many high‐latitude (≥55°N) observations as the TRY trait database 
for many key traits (Figure 3). Trait values in TTT are skewed towards 
individuals of smaller stature (height and leaf area) relative to values 
in TRY, likely reflecting improved sampling of the tundra’s coldest 
extremes (Figure 4).

The TTT database can be used to address wide‐ranging theo‐
retical and practical ecological questions. Multiple trait observa‐
tions on individuals and species at numerous sites across the tundra 
biome enables the quantification of inter‐ and intraspecific trait 

include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry mat‐
ter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed 
mass, and stem specific density.
Spatial location and grain: Measurements were collected in tundra habitats in both 
the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, 
Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado 
Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago 
Mountains (New Zealand), and sub‐Antarctic Marion Island. More than 99% of obser‐
vations are georeferenced.
Time period and grain: All data were collected between 1964 and 2018. A small num‐
ber of sites have repeated trait measurements at two or more time periods.
Major taxa and level of measurement: Trait measurements were made on 978 terrestrial 
vascular plant species growing in tundra habitats. Most observations are on individuals 
(86%), while the remainder represent plot or site means or maximums per species.
Software format: csv file and GitHub repository with data cleaning scripts in R; con‐
tribution to TRY plant trait database (www.try‐db.org) to be included in the next ver‐
sion release.

K E Y W O R D S

alpine, Arctic, plant functional traits, tundra
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F I G U R E  1   Trait observations span the Arctic, sub‐Antarctic and alpine tundra. The size of the circle corresponds to the number of trait 
observations at a given location (minimum < 150, maximum > 2,500), while the colour of each circle indicates the measured trait. LDMC = 
leaf dry matter content; SLA = specific leaf area [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  2   Frequency of observations 
across latitudes for the most commonly 
measured traits. More than 99% of the 
observations are georeferenced. The 
dashed line separates Southern and 
Northern Hemisphere observations. 
LDMC = leaf dry matter content [Colour 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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variation across scales. Linking trait observations with environ‐
mental data can facilitate our understanding of trait–environment 
relationships (Bjorkman et al. in press) and the role of environmen‐
tal filtering in shaping plant communities (Asner, Knapp, Anderson, 
Martin, & Vaughn, 2016; Bernard‐Verdier et al., 2012). Identifying 
trait–environment relationships can in turn inform predictions of 
plant and ecosystem responses to global change and help to estab‐
lish Earth system model parameters in dynamic vegetation models 
(Wullschleger et al., 2014). We expect that making this dataset pub‐
licly available will contribute to future research in these and other 
unforeseen ways.

2  | METHODS

2.1 | Data acquisition and compilation

Data were submitted directly by the tundra researchers that col‐
lected them (see author list and Acknowledgments). These data 
represent a mix of previously collected data as well as new data col‐
lected as part of a multi‐site field campaign. In some cases, the sub‐
mitted trait data have contributed to publications (see Supporting 
Information Appendix S1 for reference list) but all values in the data‐
base are from primary sources (i.e. not extracted from publications). 
None of the data contained in the TTT database currently occur 

in other trait databases (e.g. TRY). All trait data in this version (v. 
1.0) of the database are collected on plants growing in situ under 
natural conditions (i.e. data from experimental treatments were re‐
moved). Future updates to the database will also include trait data 
from experimental treatments (warming, grazing, nutrient addition, 
snow manipulation, etc.). This will be indicated accordingly in the 
‘Treatment’ column.

2.2 | Data curation and quality control

All observations were checked to ensure logical latitude and longi‐
tude information and converted to standardized units of measure‐
ment. We also removed obviously erroneous or impossible values 
(e.g. leaf dry matter content values greater than 1 g/g). When pos‐
sible, suspected errors were checked with the initial data provid‐
ers and corrected. Species names were standardized to match the 
accepted names in The Plant List using the R package Taxonstand 
v. 2.0 (Cayuela, Granzow‐de la Cerda, Albuquerque, & Golicher, 
2012; column ‘AccSpeciesName’), but the original names provided 
by data contributors are also included in the database (column 
‘OriginalName’). The original name may contain additional informa‐
tion about subspecies designations.

For those species with at least 10 observations of the same trait 
type, we additionally report an ‘error risk’ for each observation (see 
TRY database protocols for more information on the term ‘error 

TA B L E  1    All traits contained in the Tundra Trait Team (TTT) database, including the number of total observations of each trait, the 
number of unique locations (rounded to the nearest tenth of a decimal degree) at which each trait was measured, and the total number of 
species for which each trait was measured. The mean, SD, median, and 95% quantiles for each trait are also provided. Leaf d13C and leaf 
d15N correspond to the leaf carbon isotope signature and the leaf nitrogen isotope signature, respectively

Trait Units # obs # locs # spp. Mean SD q2.5 Median q97.5

Height, repro. m 5,981 27 122 0.14 0.12 0.02 0.11 0.43

Height, veg. m 25,453 146 643 0.21 0.38 0.01 0.09 1.39

Leaf dry matter 
content (LDMC)

g/g 7,981 55 755 0.33 0.15 0.10 0.32 0.66

Leaf area mm2 11,498 55 688 696.4 4,048.2 4.4 163.0 3,975.2

Leaf carbon mg/g 2,338 30 302 465.2 32.5 412.8 458.5 539.6

Leaf C:N ratio ratio 1,026 13 182 26.1 13.9 11.8 22.0 66.5

Leaf d13C ppt 342 4 18 −28.8 1.95 −32.6 −29.08 −24.7

Leaf d15N ppt 274 3 18 −3.24 3.74 −9.48 −3.89 4.88

Leaf dry mass mg 8,489 52 569 29.14 74.65 0.02 8.00 200.00

Leaf fresh mass g 6,859 32 511 0.134 0.393 7 e−5 0.030 0.897

Leaf nitrogen mg/g 3,153 45 399 23.23 9.33 7.87 22.73 44.61

Leaf N:P ratio ratio 1,880 34 347 11.55 3.60 5.60 11.21 19.74

Leaf phosphorus mg/g 1,881 34 346 2.360 1.055 0.761 2.166 4.807

Rooting depth cm 62 1 9 36.81 17.75 9.05 36.50 70.80

Seed mass mg 1,341 23 194 1.81 3.70 0.03 0.58 14.85

Specific leaf area 
(SLA)

mm2/mg 12,078 87 900 14.56 8.38 3.64 12.92 35.41

Stem specific density 
(SSD)

mg/mm3 926 18 39 0.62 0.16 0.31 0.61 0.92

Stem diameter cm 408 10 13 0.36 0.92 0.01 0.01 3.14
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risk’ in this context, https://www.try‐db.org/TryWeb/TRY_Data_
Release_Notes.pdf). The error risk was calculated as the number of 
standard deviations that a given value lies from the overall species 
mean for that trait. We also provide the script used to create the 
‘cleaned’ version of the dataset as a GitHub repository (https://
github.com/TundraTraitTeam/TraitHub), along with both the raw 
(uncleaned) and cleaned versions of the dataset. The cleaning script 
can be adapted to vary in its sensitivity to outliers. This script also 
includes code to output histograms that visually identify removed 
values per species for any traits of interest. It should be noted that 
this cleaning protocol is primarily useful for species with large num‐
bers of observations of a given trait, and that much of the variation 
within a species may be due to environmental or other differences 
among sites (not error).

2.3 | Data availability and access

The TTT database will be maintained at the GitHub repository 
(https://github.com/TundraTraitTeam/TraitHub). Trait data collec‐
tion is ongoing; thus, we will periodically release updated versions 

of the database. A new version number will be assigned every time 
there is a database update, and old database versions will be ar‐
chived for reference. A static version of the cleaned database (v. 1.0) 
will also be available at the Polar Data Catalogue (www.polardata.
ca; CCI # 12,949) and additionally submitted to the TRY plant trait 
database (www.try‐db.org) for inclusion in the next TRY version re‐
lease. Data retrieved through TRY are fully public but are subject to 
the usage guidelines outlined in TRY. When using TTT data obtained 
through the Polar Data Catalogue or TRY, please cite this data paper 
as the original source.

2.4 | Data use guidelines

Data are governed by a Creative Commons Attribution 4.0 
International copyright (CC BY 4.0). Data are fully public but should 
be appropriately referenced by citing this data paper. Although 
not mandatory, we additionally suggest that data users contact 
and collaborate with data contributors (names provided in the 
‘DataContributor’ column, contact information available through 
the TTT website: https://tundratraitteam.github.io/) whose datasets 

F I G U R E  3   Histogram of all observations above 55°N contained in the Tundra Trait Team (TTT; coloured bars) and TRY (grey bars; try‐
db.org) databases. Bars are stacked, such that the height of the bar corresponds to the total number of observations (TRY + TTT) for that 
latitude. The first panel (‘All Obs’) contains all observations for height, specific leaf area (SLA), leaf N, leaf C, leaf P, leaf dry matter content 
(LDMC), seed mass, leaf area and stem specific density, while subsequent panels show observations for key individual traits. The TTT 
database more than doubles the number of high‐latitude observations available for most traits; this is especially true in Arctic (i.e. above 
65 °N) locations. The total number of georeferenced observations for these nine traits (‘All Obs’) is 27,802 and 52,179 for TRY and TTT, 
respectively. Coordinates for individual TRY trait observations are freely available on the TRY Data Portal (https://www.try‐db.org/TryWeb/
dp.php; ‘Data Explorer’ → ‘Detailed information for 1 trait’ → Choose trait and query ‘Measurement table sorted by species’). TRY trait 
observations correspond to trait ID numbers 3106 and 3107 (height), 11, 3115, 3116, and 3117 (SLA), 1, 3108, 3110 and 3112 (leaf area), 13 
(leaf C), 14 (leaf N), 15 (leaf P), 47 (LDMC), 4 (stem specific density) and 26 (seed mass) [Colour figure can be viewed at wileyonlinelibrary.
com]
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have contributed a substantial proportion (e.g. 5% or greater) of trait 
observations used in a particular paper or analysis.

3  | DESCRIPTION OF DATA

The TTT database contains 91,970 observations on 18 plant traits 
measured in 207 locations across the tundra biome (Figures 1 and 2, 
Table 1). A ‘location’ is defined as a unique latitude‐longitude combi‐
nation, when both are rounded to the nearest tenth of a degree. The 
most frequently measured traits (>1,000 observations each) include 
plant height (both vegetative and reproductive), leaf area, specific 
leaf area, leaf fresh and dry mass, leaf dry matter content, leaf ni‐
trogen content, leaf carbon content, leaf phosphorus content, leaf 
C:N, leaf N:P, seed mass, and stem specific density. In most cases, 
traits were measured on adult individuals at peak growing season, 
but some exceptions exist [e.g. Rhododendron caucasicum contains 
values of leaf dry matter content (LDMC) for both young and old 
leaves]. Most observations represent trait measurements at a single 
point in time, but several sites (e.g. Daring Lake, Alexandra Fiord and 
Qikiqtaruk‐Herschel Island, Canada, and several sites in Sweden) 
have measurements at the same site or on the same individual 
(Daring Lake) over time. Most observations (86%) represent a meas‐
urement on a single individual, while the rest represent plot or site 
means or maximums per species. This information is included in the 

‘ValueKindName’ column (see Table 2). We have also retained infor‐
mation about the identity of each individual plant (‘IndividualID’) to 
facilitate analyses of within‐individual trait–trait correlations.

In addition to the trait values themselves, nearly all observa‐
tions (99.8%) contain information about latitude and longitude of 
the location where the measurement was taken (Figures 2 and 3). 
Elevation was also provided for most observations (70%). The high 
degree of georeferencing in the dataset enables the extraction of 
climate and other environmental data corresponding with each trait 
measurement. In addition, many data contributors provided infor‐
mation about the habitat type (‘SubsiteName’) in which each indi‐
vidual occurred. The full structure of the database is described in 
Table 2.
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TA B L E  2   Dataset structure. The cleaned Tundra Trait Team (TTT) dataset is provided as a csv file and consists of a single data table. The 
table structure is as follows

Column name Description of variable

AccSpeciesName Accepted species name as given by The Plant List (theplantlist.org)

OriginalName Original species name provided by the data contributor

IndividualID ID number associated with each individual measured (as multiple traits were sometimes measured on the same individual)

Latitude Latitude of the observation location in decimal degrees

Longitude Longitude of the observation location in decimal degrees

Elevation Elevation of the observation location in metres

SiteName Name of the site where the observation was collected (as provided by the data contributor)

SubsiteName Name of the subsite (nested within the SiteName) where the observation was collected (as provided by the data contribu‐
tor). This frequently corresponds to a brief description of the habitat type

Treatment Experimental treatment to which individuals were subjected. The current (v. 1.0) database contains only observations on 
naturally growing individuals (Treatment = ‘none’)

DayOfYear Day of the year on which the measurement was made

Year Year in which the measurement was made

DataContributor Name of the original contributor of the data

ValueKindName Specificity of the measurement; Single = single observation on an individual, Individual Mean = mean of multiple observa‐
tions taken on a single individual, Plot mean = mean of multiple observations taken on individuals of the same species in a 
plot, Site specific mean = mean of multiple individuals of a species at the same site, Maximum in plot = maximum of all 
individuals of a species in a plot

Trait Name of the trait measured using the TRY trait name convention, or the name reported by the data contributor when a trait 
is not included in TRY

Value Value of the trait measured using the reported significant digits

Units Unit of measurement for each trait (see also Table 1)

ErrorRisk See description of the error risk variable in Data curation and quality control section, and https://www.try‐db.org/TryWeb/
TRY_Data_Release_Notes.pdf

Comments Additional comments provided by the data contributor or collator, usually related to how the measurements were 
conducted
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BIOSKE TCHE S

The Tundra Trait Team (https://tundratraitteam.github.io/) is an 
inclusive group of tundra ecologists involved in ongoing efforts 
to understand patterns of functional trait variation across scales, 
identify changes in functional traits in response to climate warm‐
ing, and better understand the consequences of these changes 
for tundra ecosystem functioning. The TTT was founded by ADB 
and IHMS in association with members of the sTundra working 
group (German Centre for Integrative Biodiversity Research; 
iDiv) in an effort to increase the depth and breadth of trait data 
available for tundra plant species. The only requirement for 
membership of the TTT is the contribution of trait data; all are 
welcome to join. Please visit the website or contact one of the 
lead authors for more information.
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