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ABSTRACT

This paper introduces a modular processing chain to derive global high-resolution maps of leaf traits. In par-
ticular, we present global maps at 500 m resolution of specific leaf area, leaf dry matter content, leaf nitrogen
and phosphorus content per dry mass, and leaf nitrogen/phosphorus ratio. The processing chain exploits ma-
chine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data for gap
filling and up-scaling of in-situ measured leaf traits. The chain first uses random forests regression with surro-
gates to fill gaps in the database (> 45% of missing entries) and maximizes the global representativeness of the
trait dataset. Plant species are then aggregated to Plant Functional Types (PFTs). Next, the spatial abundance of
PFTs at MODIS resolution (500 m) is calculated using Landsat data (30 m). Based on these PFT abundances,
representative trait values are calculated for MODIS pixels with nearby trait data. Finally, different regression
algorithms are applied to globally predict trait estimates from these MODIS pixels using remote sensing and
climate data. The methods were compared in terms of precision, robustness and efficiency. The best model
(random forests regression) shows good precision (normalized RMSE< 20%) and goodness of fit (averaged
Pearson's correlation R = 0.78) in any considered trait. Along with the estimated global maps of leaf traits, we
provide associated uncertainty estimates derived from the regression models. The process chain is modular, and
can easily accommodate new traits, data streams (traits databases and remote sensing data), and methods. The
machine learning techniques applied allow attribution of information gain to data input and thus provide the
opportunity to understand trait-environment relationships at the plant and ecosystem scales. The new data
products — the gap-filled trait matrix, a global map of PFT abundance per MODIS gridcells and the high-re-
solution global leaf trait maps — are complementary to existing large-scale observations of the land surface and
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we therefore anticipate substantial contributions to advances in quantifying, understanding and prediction of the

Earth system.

1. Introduction

In terrestrial ecosystems, environmental conditions and biogeo-
chemical processes both influence and are influenced by plant com-
munities. Historical processes such as evolution, migration and dis-
turbance shape plants from the organismal to community level (Musavi
et al., 2015). At the organismal level, plant traits, which are measurable
morphological, anatomical, physiological and phenological character-
istics, can influence the establishment, fitness, and survival of in-
dividuals (Westoby, 1998; Reich et al., 2007; Violle et al., 2007;
Homolova et al., 2013). This definition has been recently updated to
encompass also responses and effects attributes at broader scales such
as population, community, and ecosystem (Reich, 2014). These traits
vary widely across the ~400,000 vascular plant species (http://www.
theplantlist.org//), and due to acclimation and adaptation processes
vary within individual species (Turner et al., 2006; Reich et al., 2007).
Standard modeling and remote sensing approaches to estimate photo-
synthesis, evapotranspiration and biophysical parameters such as the
fraction of absorbed photosynthetically active radiation (fAPAR) and
leaf area index (LAI) use plant functional types (PFTs) to include plant
traits within the model (Chen et al., 1999; Myneni et al., 2002; Zhao
et al., 2005; Krinner et al., 2005; Mu et al., 2011; Jiang and Ryu, 2016).
In so doing however, the diversity of plant communities is simplified
into a relatively few categories and key variability within individual
PFTs is lost (Running et al., 1994; Wullschleger et al., 2014). Subse-
quently, model parameters based on plant trait properties are limited by
the PFT groupings, resulting in an important source of uncertainty in
many biosphere models (van Bodegom et al., 2014; Reich, 2014;
Reichstein et al., 2014).

In Earth system modeling, methods are being developed to improve
PFT approaches, such as refining PFT categories and/or making the
PFTs more spatiotemporally dynamic (Poulter et al., 2011). An alter-
native approach is to model the continuous spatial variability of plant
traits themselves (Yang et al., 2015; Musavi et al., 2016; van Bodegom
et al., 2014; Diaz et al., 2016; Madani et al., 2014). This can be done
with the use of plant trait databases through establishing empirical
trait-environment relationships and trait covariation (Wullschleger
et al., 2014; Verheijen et al., 2015). There are a number of global traits
databases containing in-situ trait observations of a comprehensive suite
of plant traits for numerous species around the globe (Kattge et al.,
2011; Reichstein et al., 2014; Diaz et al., 2016). These extensive data-
bases are continually evolving and growing and provide the foundation
for making broader and spatially explicit inferences of plant traits.
Spatializing plant traits however, is not without substantial challenges.
First, despite the large number of species included in trait databases,
they are sparse compared to the overall richness and diversity of species
globally (Jetz et al., 2016). Second, the large trait databases are
amalgamations of many individual datasets, and contain numerous
gaps. Third, the in-situ trait observations are temporally disjointed,
meaning they come from a wide range of years depending on when
measurements were made. Finally, these observations are made at the
individual plant scale, and not necessarily representative of the varia-
bility at coarser scales.

Attempts to spatialize plant traits fall into two general categories:
biogeographical and remote sensing based approaches. Biogeographical
approaches attempt to extrapolate local trait measurements across
different spatial scales by relating traits to abiotic factors, assuming that
these factors (i.e., climate and soils) constrain the structure and func-
tion of natural ecosystems (Niinemets, 2001; Kattge et al., 2011;
Reichstein et al., 2014; Diaz et al., 2016; Madani et al., 2018). For
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example, van Bodegom et al. (2014) generated global trait maps by
relating traits to gridded soil and climate data. Using only these en-
vironmental drivers, they were able to explain up to 50% of the global
variation of plant traits. These approaches, however, do not take into
account actual measured vegetation dynamics and are limited by the
coarser resolution of the input data. Remote sensing approaches, on the
other hand, can capitalize on higher resolution observations of actual
vegetation dynamics. The estimation of plant traits from optical remote
sensing is often done through physical radiative transfer models (RTMs)
or empirical approaches (Haboudane et al., 2004; Mulla, 2013). RTMs
attempt to explicitly define the complex interactions between the ra-
diation and the vegetation canopy properties, these models could be
inverted to retrieve biophysical variables from leaf/canopy reflectances
(Jacquemoud and Baret, 1990; Dawson et al., 1998; Jacquemoud et al.,
2000; Houborg et al., 2007; Stuckens et al., 2009). The combined use of
RTMs with satellite data from airborne and satellite-based platforms
(Liang, 2005; Baret and Buis, 2008; Berger et al., 2018) has allowed the
successful retrieval of vegetation traits at different spatial and temporal
scales (e.g. chlorophyll content, (Houborg et al., 2007; Zhang et al.,
2005), water content, (Houborg et al., 2007; Zarco-Tejada et al., 2003),
and others like leaf dry matter content and specific leaf area, (Ali et al.,
2016; Feret et al., 2008)). However, applying RTMs across broad spa-
tiotemporal extents is challenging as parameterizing RTMs across a
wide range of growth forms, biomes and ecosystems is challenging
(Berger et al., 2018). Furthermore, RTMs are generally based on single
scene reflectance values and do not consider climatic variables that are
valuable proxies for various plant traits. Alternatively, empirical ap-
proaches relating in-situ observations of plant traits to remote sensing
data have been successful at mapping localized gradients of plant traits.
These approaches have limited broader applications as in-situ data are
often scarce or incomplete. Recent studies have combined remote sen-
sing and biogeographical approaches (Butler et al., 2017) to obtain
global maps of leaf traits at a very low spatial resolution (0.5°x 0.5°
grid). The main limitation of these approaches is that, until now, they
have utilized static remote sensing PFT maps for the spatialization of
traits, being restricted to the simplicity of the PFTs, and not fully ex-
ploiting the full potential of optical remote sensing data (spatial and
temporal variability of spectral responses), responses that can be in-
valuable in the estimation of key plant traits.

In this manuscript, we present and validate a combined remote
sensing and biogeographic approach to spatializing estimates of key
leaf traits. We integrate plant traits databases, remotely sensed data,
and climatological data resulting in spatialized global maps of leaf traits
at an unprecedented spatial resolution (500m), that can be in-
corporated into other Earth system's models. We capitalize on the ex-
tensiveness of traits databases, the growing archive of satellite remote
sensing data at multiple resolutions through time, global climatological
data, and the advent of high-performance cloud computing technolo-
gies specifically designed for remote sensing applications (e.g. Google
Earth Engine), combined with machine learning models for gap filling,
classification and spatializing. We develop these methods for a selected
set of 5 key leaf traits: Specific Leaf Area (SLA; ratio of leaf area per unit
dry mass), Leaf Dry Matter Content (LDMC), Leaf Nitrogen Content per
leaf dry mass (Leaf Nitrogen Concentration, LNC), Leaf Phosphorus
Content per leaf dry mass (Leaf Phosphorus Concentration, LPC), and
Leaf Nitrogen to Phosphorus ratio (LNPR). SLA is a key trait of the leaf
economics spectrum reflecting the trade-off between leaf longevity and
carbon gain (Wright et al., 2004; Diaz et al., 2016). SLA is thus in-
dicative for different plant life strategies with respect to fast versus slow
return of carbon investments (Reich, 2014). Some authors have
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indicated that LNC and LPC correlate with SLA and could be therefore
part of the leaf economics spectrum (Wright et al., 2004), but these
relationships are still not fully understood and are not exempt of con-
troversy (Osnas et al., 2013,2018). In addition, leaves with high LDMC
tend to be relatively tough, and are thus assumed to be more resistant to
physical hazards (e.g. herbivory, wind, hail) than are leaves with low
LDMC (Peirez-Harguindeguy et al., 2013). LNC relates to the amount of
the proteins involved in the photosynthetic machinery and phosphorus
is a key constituent of nucleic acids, lipid membranes and some bioe-
nergetic molecules (e.g. ATP) directly related in cell metabolism. In
contrast, LNPR, is commonly used to indicate whether a vegetation is
limited by either the availability of N or P (Bedford et al., 1999;
Penuelas et al., 2013). All together these traits influence photosynthetic
capacity and plant growth rate (Anten, 2004; Oliva et al., 2015). Be-
cause of their importance in these processes, these leaf traits are key
components of many biophysical models and have been collected
globally at an unprecedented coverage filling both, the geographic and
climate space well (Reichstein et al., 2014).

Our methods first involve using a random forest with surrogates
technique to gap fill the largest global plant trait database available
(TRY, (https://www.try-db.org//)), producing a more complete trait
database. The TRY initiative, started in 2007, is a growing database,
currently integrating over 300 datasets. Second, we scale-up plant trait
observations, by weighting species observations from the TRY database,
to the community/pixel level (community weighted mean, CWM),
matching the spatial scales of the local trait observations and remote
sensing data. To do so, we classify plant species into functional types
and estimate the abundance of functional types within a 500 m MODIS
pixel using 30 m Landsat data. Finally, we generate and validate re-
gression models, based on the weighted abundance leaf trait estimates,
to calculate global trait maps using remote sensing and ancillary cli-
mate data at a 500 m spatial resolution.

2. Materials and methods
We develop methods to calculate global maps of leaf traits derived

from in-situ trait measurements, remote sensing data, and climatic data
(see Fig. 1). The trait data was obtained from the TRY database (http://
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www.try-db.org, accession date: 2016-08-09). We integrated an as-
sortment of remote sensing and climatic data at multiple resolutions
(Table 1), to spatialize the in-situ trait estimates. These included the full
archive of the Landsat 5 top of atmosphere product (Woodcock et al.,
2008), the MODIS land cover product, MOD12Q1 (Friedl et al., 2010),
the MODIS BRDF-adjusted reflectance product, MCD43A4, the MODIS
BRDF-adjusted albedo quality product, MCD43A2 (Strahler et al.,
1999), the Shuttle Radar Topography Mission (SRTM) DEM (Farr et al.,
2007), and the WorldClim climatic data (Hijmans et al., 2005). Due to
the global nature of this work along with the computational and storage
needs associated with these datasets, we relied on the Google Earth
Engine (GEE) platform for much of the remote sensing processing and
analysis (Gorelick et al., 2017).

2.1. Gap filling of the TRY database

The TRY database is a compilation of global plant trait data, sourced
from thousands of disparate research activities (Kattge et al., 2011).
Despite the unprecedented coverage of the TRY database, there is a
number of key limitations due to the variety of underlying sources.
First, only 40% of the trait entries are georeferenced with unknown
precision. Second, the database includes measurements for a limited set
(5-10 %) of known species, although the ones included are likely the
most abundant species. Third, data were not necessarily collected with
standardized protocols, introducing additional noise due to different
measurement techniques. Finally, traits can be highly variable within
canopies and across sites. For example, plant trait values can vary at a
single location, even for leaves sampled from one part of a canopy,
introducing additional uncertainty in trait estimations. To overcome
some of these limitations, we first removed outliers, defined by ob-
servations exceeding 1.5 standard deviations of the mean trait value for
a given species (Kattge et al., 2011). Second, we discarded fern and crop
species as they were scarce (less than 1% of the total data). This also
served to minimize the impact of highly managed vegetation (e.g.
agriculture) in our training dataset.

Depending on the trait considered, the number of available samples
and species are highly variable. For example, for SLA there are around
90,000 measurements from more than 7000 species, while for LNPR

Fig. 1. Flowchart of the proposed metho-
dology for upscaling traits. The numbered
boxes indicate the three main components
of the methods: (1) gap filling the traits
database; (2) calculating the community
weighted mean (CWM) trait values at the
canopy level for MODIS pixels with nearby
trait observations; and (3) spatialization of
CWMs to global trait maps at 500 m re-
solution.

Spatialization algorithm
Global trait maps (500m)
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Table 1
General description of the data products used in this work.

Remote Sensing of Environment 218 (2018) 69-88

Product Description Period Temporal/spatial resolutions
Landsat 5 TOA Landsat 5 calibrated and orthorectified top-of-atmosphere reflectance with a quality band. 2000-2010 16 days/30m

MOD12Q1 MODIS Land Cover Type product and land cover type assessment. 2001-2010 Yearly/500 m

MCD43A2 BRDF-Albedo Quality 2012-2015 16 days/500 m

MCDA43A4 BRDF-Adjusted Reflectance 2012-2015 16 days/500 m

STRM DEM Elevation from The Shuttle Radar Topography Mission - -/30m

WorldClim WorldClim climatic data 1960-1990 Monthly climatology/1000 m

there are 21,000 measurements from approximately 2000 species, re-
sulting in abundant gaps throughout the database because not all traits
are measured simultaneously at each location. Gap filling methods,
based on similar phylogenetic traits within taxonomic hierarchies,
structural trade-offs between traits, or the relationships between traits
and their environment are well established (Schrodt et al., 2015; Shan
et al., 2012; Wright et al., 2004; Taugourdeau et al., 2014). To gap fill
the trait database we capitalize on these approaches, and also include
trait-trait correlations. We use an ensemble of boosted random forest
(RF) models with surrogates (Breiman, 2001). A random forest method
is chosen for the gap filling (see Appendix B, for more detailed de-
scriptions of the methods) due to three main characteristics. First, the
ability of RF models to generalize is often superior to that by other
machine learning algorithms due to the effect of bagging and feature
selection (Breiman, 2001). Second, RF models are perfectly suited to
dealing with mixed (categorical and continuous) data. Third, they are
known to perform well with challenging data structures like high di-
mensionality, complex interactions and nonlinearities (Stekhoven and
Bithlmann, 2012). Finally, surrogates allow for the use of alternative
decision splits at given nodes where there is missing input data through
exploiting correlations between predictors (Feelders, 1999; Friedman
et al., 2009). Gap filling allows us to increase the overall representa-
tiveness of the TRY database.

2.2. Community weighted mean trait values for MODIS pixels with nearby
trait observations

Estimates of global species abundances are necessary in order to
spatialize in-situ leaf measured traits to community (canopy) level and
account for the species level sampling bias in the TRY (Lavorel and
Garnier, 2002; Lavorel et al., 2008; Homolova et al., 2013; van
Bodegom et al., 2014; Musavi et al., 2015; Butler et al., 2017), but those
abundances are not available globally and at required spatial resolu-
tion. We spatialize in-situ leaf level measurements to the community
(canopy) level estimates by calculating a weighted mean using the re-
lative abundances of the most dominant plants. This corresponds to the
second key task indicated in the flow chart scheme (Fig. 1). To ac-
complish this, we utilize a lookup table of categorical traits provided
through the TRY initiative that relates species name with conventional
plant functional type definitions (https://www.try-db.org/TryWeb/
Data.php#3). These include plant growth form (tree, shrub, grass,
etc.), leaf type (needleleaf or broadleaf), and leaf phenology (evergreen
or deciduous). These definitions correspond to established PFT classi-
fications schemes such as the MODIS Land Cover Type product
(MOD12Q1). This is an annually produced, 500 m land cover product
that divides the terrestrial vegetated surface into seven categories:
evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF),
deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF),
shrub lands (SHL), grasslands (GRL), and barren or sparsely vegetated
(Friedl et al., 2010). Thus, we associate each species in the TRY also
with the corresponding PFT from the MOD12Q1 scheme. As an ex-
ample, the categorical trait information that the TRY database provides
for a plant species named ¢ Acer negundo’ is: tree (plant growth form),
broadleaved (leaf type), and deciduous (leaf phenology). Using this
information, we were able to associate the PFT deciduous broadleaf
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type forest (DBF) to this species' name.

As we wanted to find community composition at a MODIS pixel
resolution (500 m) to spatialize our leaf trait measurements, we de-
veloped a high resolution land cover map (30 m) based on the opera-
tional MODIS land cover. The high resolution land cover map allowed
us to estimate the abundances of PFTs within the MODIS pixel. To
calculate our land cover map, we followed a similar approach to the one
proposed by Friedl et al. (2010) for the operational MODIS land cover
product and we considered similar input variables but for a higher
spatial resolution satellite. The chosen input features include spectral
and temporal information from Landsat 5 bands 1-7, the enhanced
vegetation index (EVI) (Huete et al., 2002), the normalized difference
vegetation index (NDVI) (Tucker, 1979), the normalized difference
water index (NDWI) (Gao, 1996), Land Surface Temperature (LST)
(Wan and Dozier, 1996), and digital elevation from the Shuttle Radar
Topography Mission (SRTM).

Landsat satellites have a revisit time of 16 days and on average 35%
of the images are plagued by cloud cover (Roy et al., 2008). In order to
obtain gap-free time series of Landsat 5, we computed a typical year
combining 10 years of data (2000-2010). Landsat 5 was the preferred
choice among other Landsat satellites due to its longer time series
(1984-2012) and the absence of striped data gaps present in Landsat 7
(caused by the scan line corrector malfunctioning). Median monthly
spectra were calculated using only cloud-free high quality data ac-
cording to the quality assessment (QA) information available for each
remote sensing scene. By taking the median value for each month in the
considered period we were able to produce a more globally consistent
input (Potapov et al., 2012; Hansen et al., 2013). Utilizing the monthly
composited spectral data, we computed temporal profiles of the vege-
tation indices aforementioned as well as land surface temperatures.
Following the approach proposed by Friedl et al. (2010), we used
summary variables derived from these annual time series (maximum
and minimum values, annually integrated values, etc.), which allowed
us to work with a reduced number of input variables (see Table 2).

Table 2

Input variables considered for the downscaling of the MODIS Land Cover Type
product (MCD12Q1).*VI makes reference to a generic vegetation index. The
spectral indices NDVI, EVI and NDWI have been considered in this work.

Input variables Description

Blmed Median value of the reflectance band 1 (0.45-0.52 um)
B2med Median value of the reflectance band 2 (0.52-0.60 ym)
B3med Median value of the reflectance band 3 (0.63-0.69 ym)
B4med Median value of the reflectance band 4 (0.76-0.90 um)
B5med Median value of the reflectance band 5 (1.55-1.75 ym)
B7med Median value of the reflectance band 7 (2.08-2.35 um)
LSTmed Median value of the land surface temperature (10.40-12.50 pum)
VI*max Maximum value of the vegetation index during the year
VI*min Minimum value of the vegetation index during the year
VI*std Standard deviation of the vegetation index during the year
VI*sum Accumulation of the vegetation index during the year
LSTmax Maximum value of the LST during the year

LSTmin Minimum value of the LST during the year

LSTstd Standard deviation of the LST during the year

LSTsum Accumulation of the LST during the year

Elevation Elevation from The Shuttle Radar Topography Mission
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The calculated input variables were used to train and test an RF
classifier using the MODIS land cover product as reference data. The
validation of the developed high resolution land cover map was carried
out by comparing a spatially degraded version (500 m) with the original
MODIS Land Cover Type product (MCD12Q1) over an independent test
data set. Although PFTs remain fairly steady in natural areas, we re-
duced land cover related errors by estimating the mode land cover class
(the class that appears most often) in the same time period as was
considered for the Landsat data (2000-2010). All artificial or crop areas
have been masked since most of the TRY database content is focused on
natural vegetation (less than 1% of the data are crop measurements).

To calculate community weighted mean (CWM) trait estimates, we
used the developed high resolution land cover map by extracting the
PFT abundances around a 500 m area for each geographical coordinate
of the respective in-situ trait measurement. As a preliminary step, for
each provided location, trait data which do not correspond to any PFT
composing the considered pixel were automatically discarded. This step
assumes that these PFT do not largely contribute to the CWM as their
abundance is too small. With the rest of the data, the procedure to
assign the value for each pixel was carried out employing the following
three steps: First, all TRY data were sorted by distance to the selected
pixel for each PFT. Secondly, the mean value for each pixel-specific PFT
trait estimate was calculated from the selected closest nearby leaf trait
observations corresponding with that PFT. This approach maximizes
local species representativeness for each pixel while capturing spatial
heterogeneities by weighting in-situ measurements according to their
relative abundances. Thirdly, the assigned trait value for the considered
MODIS pixel was calculated as the weighted mean (according to the
community abundance) of the pixel-specific PFT trait estimate.

The calculation of CWM trait estimates using only in-situ mea-
surements within a MODIS pixel (500 m) is often difficult because the
representation of trait observations in spatial context is limited, but this
can be addressed to attain a minimum representation. The number of
available measurements is heterogeneous at a global scale and could
potentially not be representative of the dominant PFTs ‘compositing’
the pixel or correspond with very different environmental conditions.
So, in order to deal with that problem, for each location, a maximum
distance threshold (100 km) and a limited number of neighbors (ten
closest in spatial distance) were used to compute the community
weighted means. These values are the result of a heuristic approach, we
tried out different values and selected a sensible value that provided the
most stable and reasonable results for all considered leaf traits. Of
course, one could further optimize, but results were not much affected
when increasing the threshold beyond a maximum distance of 100 km,
so we fixed it to derive all our results. Recent studies have demonstrated
that these thresholds are adequate for the spatialization global plant
trait databases (Datta et al., 2016; Butler et al., 2017). In addition, we
computed the percentage of trait measurements which match the PFTs
present within a MODIS pixel. Pixels with trait measurements which
were not representative of more than 50% of the estimated PFTs
composition were discarded.

2.3. Spatializing community weighted mean trait values to global trait maps

Spatializing the CWM trait estimates was based on remote sensing
and climatological data. Remote sensing provides great sensitivity to
canopy phenology, structure, and chemical components while clima-
tological data allow the models to capture how climatic constraints
shape the structure and function of natural ecosystems. More precisely,
we used the MODIS Reflectance product MCD43A4 (Strahler et al.,
1999) and the WorldClim climatic data (described in more detail in
Appendix A). The MODIS reflectance product has global coverage, a
temporal resolution of 16 days, and a spatial resolution of 500 m. It
combines the MODIS sensor in TERRA and AQUA platforms, providing
the highest probability for quality input data and designating it as an
MCD (meaning combined) product. Nadir equivalent reflectance is
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derived by using a bidirectional reflectance function and multiple ob-
servations. Reflectance data acquired between 2012 and 2015 was used
to obtain monthly gap free reflectance estimates by means of the QA
information stored as a separate product (MCD43A2). The higher revisit
times of the MODIS satellites, in addition to the use of a combined
reflectance product (MCD), allowed us to obtain gap free monthly re-
flectance measurements with a shorter compositing period than
Landsat.

Leaf trait values vary with many factors but they are clearly stra-
tified by plant functional types (Abelleira Martinez et al., 2016) which
can be discriminated using multitemporal remote sensing. To address
this, we considered input variables potentially sensitive to PFT strati-
fication and chemical components of vegetation and therefore we re-
peated the Landsat processing scheme with MODIS observations. As
above-mentioned, the approach consisted of extracting a reduced set of
input variables (summary variables) derived from annual time series of
vegetation indices and the median spectrum (Table 2).

In order to extrapolate the trait measurements, we compared dif-
ferent machine learning algorithms: neural networks, kernel methods
and decision trees. We observed a high consistency of RF predictions
across all leaf traits and precision measures. For this reason, we selected
random forests as the preferred default option for approximating the
five different leaf traits considered, while also capitalizing on the speed
and parallelization at the test phase. The detailed description and
precision comparison of regression methods tested is provided in
Appendix B.

3. Results

This section presents the three main results obtained in the different
steps of the processing chain (see Fig. 1). Results are evaluated both
quantitatively and qualitatively; studying bias and accuracy of perfor-
mance, and comparing the maps to expected values according to recent
studies. More experimental results and comparisons are given in the
corresponding appendices for the interested reader.

3.1. Gap filling of the TRY database

For each trait, the parameters of the RF (number of trees, learning
rate, and maximum number of splits) were optimized following a cross-
validation methodology. The optimization process involved a 10-fold
cross-validation for the estimation of the errors. In Table 3, we show the
error estimates in the gap filling process for each trait considered.

The accuracy of the gap-filling algorithm was very high for all five
traits considered in this work. These results match those recently
published in the literature (Schrodt et al., 2015; Shan et al., 2012;
Taugourdeau et al., 2014), and in some cases ours are superior. In
contrast to the method developed by Shan et al. (2012), who facilitate
close to normal trait distribution of transformed traits, trait-trait cov-
ariances, and taxonomic hierarchy, our method is able to easily make
use of additional explanatory variables. We additionally introduced
climate and plant growth form. These two types of explanatory vari-
ables were among the five most relevant variables for gap-filling, as can

Table 3

Statistics of the gap filling approach per trait. The mean error (ME) accounts for
the bias of the estimates, the root mean square error (RMSE) for the accuracy,
and the Pearson's correlation coefficient R for the goodness-of-fit.

SLA LDMC LNC LPC LNPR
ME 0.01 0.00 0.07 0.00 0.12
RMSE 3.13 0.02 3.28 0.27 1.97
R 0.96 0.96 0.90 0.86 0.95
Samples 89,355 73,958 54,036 32,290 21,407
Missing data [%] 47 45 68 74 84
Mean value 16.87 0.27 20.38 1.16 13.55
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be seen in the results from the sensitivity analysis shown in Appendix C.
3.2. Abundance of PFTs at a MODIS pixel level

We calculated the abundance of PFTs at a MODIS pixel level
(500 m) using Landsat spectral information (30 m) as input and the
operational MODIS PFTs map as a reference. The MODIS land cover
product provides a land-cover type assessment that was used for an
optimal selection of training samples (more than 85% reliable ac-
cording to the MODIS quality band). Taking into account this quality
band, we sampled the globe randomly to build up the training and
validation datasets (around 2000 pixels for each considered PFT). The
considered inputs include Landsat median monthly TOA reflectances
and LST values which were resampled to match MODIS (500 m) pixel
size. The classification algorithm was carried out by a calibrated RF
model on a global dataset in the GEE platform. The RF was trained and
optimized with 50% of the dataset and its accuracy was tested with the
remaining data.

The achieved overall accuracy and Cohen's Kappa coefficient of
agreement were 96% and 0.85, respectively. Those results indicate the
suitability of the model and its capability to generalize on unseen test
data. Table 4 shows the confusion matrix for each PFT over the test data
set. The confusion matrix indicates that the most confounded PFTs are
shrubs and grasses but still the corresponding accuracy is high.

As an example, Fig. 2 shows the original MODIS land cover and our
estimate from RF in a selected heterogeneous mountain region in the
northern part of the Iberian peninsula. The visual comparison of both
images confirms the ability of the developed classifier to reproduce the
original MODIS data. More importantly, the developed classification
map allows us to extract the proportions of the different PFTs com-
posing the 500 m MODIS pixel by exploiting the finer spatial resolution
of Landsat imagery.

3.3. Precision of the trait prediction models

All the input features (remote sensing, elevation and climatic pre-
dictors) detailed previously were standardized (Friedman et al., 2009)
before model training. RF model parameters were optimized to mini-
mize cross-validation error following the above-mentioned approach
(Section 3.1). We split the data into a cross-validation set containing
80% of the data to select model parameters, and the remaining 20%
acted as an independent, out-of-sample test set where we evaluate
model's performance. Appendix B includes a comparison and analysis of
robustness among different regression models also considered in the
present paper.

RF results for all plant traits are given in Table 5. Results show an
overall low bias for the RF method. We also tested the model's perfor-
mance in Appendix B with more difficult scenarios in which a reduced
number of training samples were used. RF performed similarly and
reported higher accuracies across all the reduced-sized training data
rates. These results are in agreement with recent literature which re-
veals random forests to be highly efficient in other remote sensing and
geosciences problems (Tramontana et al., 2015, 2016). RF also have
additional advantages over competing methods: they are fast to train
and test, they can be easily implemented in parallel, and can work with
missing data and features naturally.

Fig. 3 shows the predicted-versus-observed scatter plots obtained by
the RF model in the cross-validation sets. Good correlations and vir-
tually no bias is observed for all trait models. It should be noted that the
best linear fit (red) and the one-to-one line (black) are almost coin-
cident for all traits. Our tests also revealed little variation per realiza-
tion and a low standard deviation of the correlation coefficient over the
different realizations, corroborating a great consistency in the chosen
modeling approach.

In Fig. 4 we present the error estimates for the dominant PFT over
the training dataset computed by means of the above-mentioned cross-
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validation process. The median values of the boxplots of the residuals
are distributed around zero indicating that the regression algorithm is
performing adequately. Evergreen PFTs present the lowest errors in SLA
estimates while deciduous needle-leaf forest has the highest bias and
RMSE for that trait. LNC and LPC errors tend to be low for forest PFTs.
In contrast, the corresponding shrub-land error estimates are higher
according to the statistics shown. LDMC residuals have the largest un-
certainties in evergreen needle-leaf forests and grasslands while LNPR
errors show the opposite behavior over the same PFTs. The small range
of residuals, about 10% on average (Fig. 4 right side), and the lack of a
consistent pattern of the residuals among the different PFTs for the
considered traits (Fig. 4 left side) suggest that the proposed metho-
dology overall produces good estimates independently of the vegetation
types present. However, we note that for some PFTs the non-symmetric
distribution of residuals around zero indicates that the link between
PFT, spectra and climatic variables may introduce potentially sig-
nificant biases. This is an expected limitation of the proposed modeling
approach, which was designed to be global and not PFT-specific. Apart
from uncertainties in the data, the PFT attribution may also contribute
to this error.

3.4. Global trait maps visualization

In Fig. 5 we show the global trait maps resulting from applying the
trained models. In addition to the trait estimates, we also include in the
same figure the estimated predictive standard error maps obtained from
the RF models. We computed this ancillary information layer for model
evaluation.

According to our maps, tree species cover a range of SLA values
between 7 and 16 mm?® mg~'. Grasslands and savannas present the
highest values (16-20). Evergreen broadleaved forests in the tropical
rainforests present intermediate to low values (9-13) in our images.
These forests occur in a belt around the Equator, with the largest areas
in the Amazon basin of South America, the Congo basin of central
Africa, and parts of the Malay Archipelago. On the other hand, the
lowest values were found in the needle leaf evergreen trees (7-9) lo-
cated in boreal forests. They occur in the more southern parts of the
Taiga ecoregion that spreads across the northern parts of the world.
Finally, note that shrub-lands present the largest variability and ex-
treme values (9-20). The lowest values occur in Australia, South Africa
and Mexico (9-13) and the highest are in the tundra region (16-20).
Tundra vegetation is mainly composed of herbaceous plants, mosses,
lichens, and broadleaved deciduous shrubs. We hypothesize that values
for shrublands in tundra are higher because shrubs are mostly decid-
uous and because of the pervasive presence of grasses. SLA is inversely
related with the dry mass cost to deploy new leaf area which intercepts
light. Leaf longevity could be understood as the duration over which
photosynthetic investment is returned. From a leaf economics per-
spective, our results corroborate the fact that SLA and leaf longevity are

Table 4

Confusion matrix obtained when upscaling the global PFT map to a 30m
Landsat spatial resolution. The considered land cover types are: evergreen
needle leaf forests (ENF), evergreen broad leaf forests (EBF), deciduous needle
leaf forests (DNF), deciduous broad leaf forests (DBF), shrub lands (SHL), grass
lands (GRL), and barren or sparsely vegetated (BARREN). Results correspond to
an out-of-sample test set.

ENF EBF DNF DBF SHL GRL BARREN

ENF 870 5 7 4 3 2 0

EBF 3 971 0 2 0 0 0

DNF 15 1 406 0 0 2 0

DBF 3 2 1 992 0 2 0

SHL 4 4 10 4 737 78 15

GRL 1 1 4 4 30 934 20
BARREN 0 0 0 0 4 17 965
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Fig. 2. Comparison of the original MODIS PFT Type 5 classification scheme (a) and the RF-generated map using high-resolution landsat spectral information (b).

Table 5

Results in the cross-validation set, scores, and plant traits. 80% of the data were
used to select model parameters, and the remaining 20% acted as an in-
dependent, out-of-sample test set to evaluate model's performance.

ME RMSE R
Specific Leaf Area (SLA), n = 4407

—0.031 3.185 0.763
Leaf Nitrogen Concentration (LNC), n = 4422

—0.029 2.298 0.734
Leaf Phosphorus Concentration (LPC), n = 3851

0.001 0.132 0.778
Leaf Nitrogen-Phosphorus ratio (LNPR), n = 2074

0.016 1.806 0.781
Leaf Dry Matter Content (LDMC), n = 1842

0.000 0.038 0.718

inversely related (Reich and Oleksyn, 2004). Thus, in the calculated
maps, evergreen vegetation (long leaf longevity) shows the lowest SLA
values (highest investment) while areas with annual grasses and de-
ciduous vegetation (low leaf longevity) present the highest SLA (lowest
investment). The obtained value ranges for the different PFTs are in
good agreement with published results of other authors at leaf level
(Poorter et al., 2009; Wright et al., 2004; Kattge et al., 2011; Wright
et al., 2005).

LDMC maps show a high correlation with tree cover maps as ex-
pected. Note that leaves with high LDMC tend to be relatively tough,
and are thus assumed to be more resistant to mechanical impacts (e.g.
herbivores and wind). The estimated LPC map shows lower phosphorus
concentration in vegetation closer to the Equator. In fact, broadleaved
evergreen forests and non-deciduous shrub-lands are mainly located in
those areas. In contrast, boreal and tundra areas present the highest
values, which are mostly populated with high LPC concentration PFTs.
Leaf P is the lowest at warmer temperatures (> 15°C mean annual
temperature) and increases with increasing absolute latitudes (Reich
and Oleksyn, 2004). The LPC increase poleward is possibly related with
the effect of glaciations which deliver rocks rich in P and other mineral
nutrients to the soil profile (Walker and Syers, 1976). The LNC map is
more homogeneous, but the coniferous forests clearly stand out (boreal
area). Our map also shows the highest values for grasslands (24 mg g~ D)
in the northern hemisphere (central America and Kazakhstan more
precisely) and the lowest (around 16 mg g~ ') in Africa close to the
Sahara desert. The significant variability is in agreement with recent
studies and has been reported in global studies with field data (Kattge
et al.,, 2011; Wright et al., 2005). Leaf Nitrogen to Phosphorus ratio
(LNPR) has been used widely in the ecological stoichiometry literature
to understand nutrient limitation in plants. Thus, for example, warm
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(i.e., tropical) habitats are more P- than N-limited (Reich and Oleksyn,
2004). This is likely because of substrate age and higher rates of
leaching associated with higher rainfall; whereas plants in temperate
soils, which are typically younger and less leached, are mostly N-lim-
ited. Walker and Syers (1976) predicted also that P limitation should be
stronger than N limitation in equatorial regions, due to effect of soil age
and climate. Our LNPR map is capturing adequately this documented
result with the highest values of LNPR (P limited) occurring in the
Equator area and low to medium LNPR (N limited) values found in
temperate and dry areas.

Random forests are also a popular and straightforward method for
ranking the importance of a set of predictors. Using this feature, we
ranked the importance of the input variables of the RF model for the
calculation of the mapped canopy traits Appendix D. The results show
that remote sensing data play a crucial role explaining the spatial
variability of all traits. Among them, EVIstd and EVImax are the most
influential ones (see Table 2 for the definition of the variables). EVIstd
reflects leaf longevity while EVImax is sensitive to maximum present
vegetation during the year and green biomass. The median albedo for
MODIS bands 2(0.84-0.88 um), 5 (1.23-1.25 ym) and 6 (1.63-1.65 um)
also have a very significant explanatory power in SLA, LDMC and LNC.
Ollinger et al. (2008) used remote sensing data to spatialize LNC in
temperate and boreal forests in north America and they also found a
strong and consistent response of increasing reflectance with increasing
LNC in similar spectral bands. In addition, as expected, climatological
data also exhibited a great importance in the specialization of all traits.
Among them, bioclimatic variables related with water availability are
the most influential ones (BIO12-17). Some temperature related bio-
climatic variables are also included in the ranking and those are mostly
related with the maximum annual temperatures and isothermality
(BIO5 and BIO 3). Although these variables are generally in the lower
part of the ranking of all traits, they are still significantly influential and
explicative of all considered traits' spatial variability. Recent papers
have also highlighted the importance of environmental factors like
elevation in the total variance explained for SLA and LNC with airborne
imaging spectroscopy at the Peru scale (Asner et al., 2017). Our find-
ings are in concordance with that, and show that elevation (and thus
temperature) plays a key role in the specialization of certain traits like
SLA and LDMC (both traits closely related to each other).

4. Discussion

Due to a lack of availability of global maps of this kind, there is little
opportunity to compare to independent maps. For this reason, in this
section we make a qualitative assessment of plausibility against other
available data such as typical values from look up tables and other
approaches for some traits when available.
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Fig. 3. Scatter plots of the predicted versus observed pixel trait values obtained by the RF regression models. The best linear fit (red) and the one-to-one line (black)
are shown for reference. We also give the average and standard deviation Pearson's correlation coefficient R over 20 realizations in the test set.

4.1. Comparison based on in-situ leaf level measurements

In order to provide an effective way to display if our global trait
estimates capture trait variability among the different PFTs, we ana-
lyzed our maps by means of box plots. To calculate the boxplots, we
have stratified our global trait maps for each PFT using the operational
MODIS land cover (MOD12). Fig. 6 shows box plots diagrams for all
considered traits and the different PFTs. The observed variability within
PFTs is not surprising and can be attributed to three main factors: First,
the above-mentioned intrinsic variability of traits within individual
PFT. Secondly, discrepancies between the discrete categorical MODIS
land cover classes and our mixture of PFTs approach which provides the
abundance weighted mean trait value of vegetation types per pixel.
Thirdly, uncertainties in the MODIS land cover map and our trait es-
timates.

We compared between and within PFT trait variances in our esti-
mates (Fig. 6) with leaf level measurements shown in Appendix E. In
the majority of cases, the calculated trait maps respect reasonably well
the expected means and ranges when they are compared with look up
table values found in the literature and with the mean values per PFT
measured at leaf level. Obviously, as we have used the TRY database to
compute our maps, we expected to obtain similar variability between
and within PFTs trait estimates when we compare with in-situ leaf
measurements. Nevertheless, this comparison is helpful to check if our
processing chain is capable to spatialize efficiently leaf level trait
measurements to a pixel level and capturing at a global scale PFTs trait
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typical values and variances. However, it should be noted that some
discrepancies are noticeable and, as in the previous comparison, they
can be attributed to the different scales between in-situ leaf level trait
measurements and our CWM trait estimates at a pixel level.

In Fig. 7 mean latitudinal trait values are shown and compared with
the leaf measurements used. The number of available observations is
also shown and clearly indicates a very significant bias towards the
Northern Hemisphere, despite the much larger land area in the
Northern Hemisphere. Europe has the highest density of measurements.
However, there are obvious gaps in boreal regions, the tropics, northern
and central Africa, parts of South America, and southern and western
Asia. In tropical South America, the sites fall in relatively few grid cells,
but there are high numbers of entries per cell (Kattge et al., 2011).

Although a comparison of both distributions gives an idea about the
variability of the considered traits (and similar patterns are observed
between our maps and in-situ measurements), distributions need not to
be coincident because trait entries in the database are not abundance-
weighted with respect to natural occurrence. In-situ data represent the
variation of single measurements, while our maps produce pixel re-
presentative estimates (Kattge et al., 2011). It is recognized that all
major biome types occur in both hemispheres except the boreal forests
and analogous coniferous forests of the northern hemisphere. The main
climatic variables which correlate with, and appear to limit, the ana-
logous biome types and vegetation regions, also appear to be similar in
the two hemispheres and thus of global validity (Box, 2002). This im-
plies that although the TRY database is sampled spatially in an
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Fig. 6. Box plots of trait values per PFT in the training dataset for the different traits considered in this work.

unbalanced way, our maps could potentially extrapolate effectively;
given that the most important biomes are sampled and the developed
models are generic.

Besides, comparing the trait mean values in latitudinal data, along
with the differences between the TRY leaf measurements and our cal-
culated trait maps, interesting areas of discrepancy can be identified.
These discrepancies could be used as an indicator to discover areas
where the most abundant species are not being adequately sampled,
allowing resources to be optimized by only collecting in-situ data where
it is really needed.

4.2. Qualitative comparison with previous works

van Bodegom et al. (2014) calculated global maps of the inverse of
SLA (Leaf Mass Area, LMA) using a combination of soil and climate
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variables. The qualitative comparison of their maps and the followed
approach in the present work indicated that there is a general agree-
ment in the global distribution of the estimated values. However, sig-
nificant differences are still noticeable, particularly in areas where van
Bodegom et al. (2014) reported that their uncertainties were larger (wet
tropical and boreal forests). At the spatial resolution considered in this
study (500 m), climatic drivers can only provide partial and broad in-
formation about global vegetation distribution and they are insensitive
to disturbances which are an important driver of many traits (Van
Bodegom et al., 2012). For example, the occurrence of different PFTs
could be equally probable under similar environmental conditions and
although environmental gradients tend to be gradual and smooth, it is
known that the spatial distribution of PFTs is usually patchy. van
Bodegom et al. (2014) pointed out that problem when they evaluated
the robustness of their approach predicting vegetation distribution
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Fig. 7. Comparison of latitudinal mean values between the TRY leaf measurements (light gray) and the calculated trait maps (dark gray).

using trait estimates. Swenson and Weiser (2010) combined a con-
tinental-scale forest inventory data set (18,000 plots) with trait data to
generate a community trait distributions for LNC and other traits in
eastern North American tree communities. In their study, they com-
puted mean LNC values for each grid cell using abundance weighting
estimates. The results presented show a similar spatial variability to
ours. Ollinger et al. (2008) estimated LNC maps using MODIS data in
North American temperate and boreal forests with a reduced in-situ
training dataset consisting of 181 field plot observations. The qualita-
tive comparison of their estimates and ours for the coincident study
area shows a very good agreement between both approaches. More-
over, Ollinger et al. (2008) also observed similar spatial patterns related
to dominant PFTs (higher values in the eastern deciduous forests and
lower values in northern evergreen forests).

5. Summary and conclusions

This paper introduced a processing chain to derive spatially explicit
global maps of plant traits from in-situ measurements using remote
sensing and climatological side information. We focused on well re-
presented leaf traits: SLA, LDMC, leaf nitrogen and phosphorus con-
centrations, as well as nitrogen-phosphorus ratios. The generated global
maps are at 500 m spatial resolution. The proposed methodology first
considers filling the gaps of the TRY database. While many methods are
available for matrix completion, in either statistics and machine
learning communities, we proposed here a simple yet very powerful
approach: we used random forests regression with surrogates for com-
pleting the missing entries via prediction. The second step of the pro-
cess provides abundance estimation of PFTs at the MODIS pixel re-
solution. For this we developed a classifier of PFTs at the Landsat pixel

resolution. This map at a finer resolution allowed us to adequately re-
sample in-situ observations. Finally, we developed one model for each
considered trait using remote sensing, canopy level trait values, and
ancillary climate data. The final models were implemented using
random forests and showed good precision and robustness in all traits.
Models were run globally and provided not only estimated traits per
pixel but also associated uncertainty maps.

The proposed chain is modular, flexible, and allows for improve-
ments and updates in almost all steps. This is an important feature of
our approach as the maps can be both improved and updated as more
data are available. The remote sensing and climatic data used could be
also replaced with new datasets. For example, the European Space
Agency (ESA) is developing a new family of missions called Sentinels
(Aschbacher and Milagro-Pérez, 2012). These missions provide new
satellites and sensors with better specifications than the ones used in
the present work. This new Sentinel data could replace the Landsat and
MODIS data and potentially lead to significant improvements in our
estimates through better temporal, spectral, and spatial resolutions.

Even though the TRY database provides an unprecedented number
of in-situ measurements of plant traits, at a global scale this kind of data
is inherently sparse and irregular spatiotemporally, especially when
considering species richness and intra-specific variability. In this work,
we estimated community composition at a MODIS pixel resolution
(500 m) to spatialize local trait measurements from leaf to canopy level.
Although the followed approach is not the definitive solution to address
species level sampling bias of global plant trait databases, it mitigates
the PFT level bias at each training location due to the lack of in-
formation about local species assemblages at the required spatial re-
solution (Butler et al., 2017). Further work is needed to assess the
quality of the computed community weighted mean trait values,
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including improvements related to the proposed heuristic approach to of in-situ information at plant organ level for canopy level and MODIS
select nearby leaf trait observations. The Global Biodiversity Informa- pixel scale. The plausibility checks against independent data presented
tion Facility (GBIF) database (Telenius, 2011), which includes hundreds above indicate that this approach seems promising.
of millions of species occurrence records, could be a promising com- Different authors have highlighted the importance, utility, and po-
plementary source of information to compare and validate our esti- tential of using trait information to explain long-term (e.g. annual)
mates in the future. patterns underlying carbon, water, energy fluxes, and biodiversity
The use of in-situ measurements to provide global trait maps entails globally (Musavi et al., 2016; Maron et al., 2015). The provided maps
transforming the information from plant organ to canopy level and could replace the current static PFT maps while eventually improving
regional scales. Remote sensing provides continuous global coverage, in models of maximum photosynthetic capacity and fluorescence. As some
space and time, to evaluate and assess how plants diversify and function continuous leaf traits (LNPR) might be better predictors of vegetation
while facilitating an enticing way to scale up from leaves to landscapes responses to nutrient availability (Ordofiez et al., 2009), they could also
(Asner and Martin, 2016; Homolova et al., 2013; Ollinger et al., 2008). be an alternative way to infer soil fertility in natural vegetation. In-
New space-based observations including hyperspectal observations itiatives such as the Group on Earth Observations Biodiversity Ob-
could complement in-situ measurements, providing required quantita- servation Network (GEOBON) (Scholes et al., 2008) work in the se-
tive ecosystem information to track changes in plant functional di- lection and implementation of essential variables required to study
versity around the globe (Jetz et al., 2016; Schimel et al., 2015). biodiversity worldwide. In this context, the produced trait estimates
However, hyperspectral data for plant traits are not (yet) available reflect functional properties of vegetation globally that could be a va-
globally, restricting its applicability to local scales. Future missions like luable addition for the understanding and monitoring of the biosphere.

the Environmental Mapping and Analysis Program (EnMAP) German
imaging spectroscopy mission (Guanter et al., 2015) or the NASA Hy-
perspectral InfraRed Imager (HyspIRI) mission (Lee et al., 2015) could Acknowledgments
overcome some of the limitations of sensors with coarse spectral re-

solution like MODIS and Landsat used in this work (Jetz et al., 2016). This research was financially supported by the NASA Earth
These missions will use high fidelity imaging spectroscopy sensors and Observing System MODIS project (grant NNX08AG87A). This work was
they will provide a more direct path for the estimation of plant func- also supported by the European Research Council (ERC) funding under
tional biodiversity. Yet, not all plant traits can be observed from space. the ERC Consolidator Grant 2014 SEDAL (Statistical Learning for Earth
For these traits, e.g. wood density, upscaling of in-situ measurements Observation Data Analysis) project under Grant Agreement 647423. We
(as presented here) will probably be the method of choice for some also want to gratefully acknowledge the efforts of all researchers in-
time. It summarizes the knowledge presently available from in-situ volved at the TRY initiative on plant traits (http://www.try-db.org),
measured plant traits and combines it with remote sensing and climate hosted at the Max Planck Institute for Biogeochemistry, Jena, Germany.
information using advanced machine learning. In addition, almost all The authors would also like to thank the anonymous reviewers for their
steps of the modular workflow aim at improving the representativeness constructive comments on an earlier version of this manuscript.

Appendix A. Climate data

The included climatological data in the TRY database have a lack of a consistent structure. In the present study, climatological data have been
used in two key steps: the gap filling of the database and the spatialization of pixel representative trait estimates. For these purposes, we have used
the WorldClim database (Table A.1) which includes interpolated bioclimatic variables for current conditions (Hijmans et al., 2005). The WorldClim
interpolated climate data are composed of major climate databases including the Global Historical Climatology Network (GHCN), the FAO, the
WMO, the International Center for Tropical Agriculture (CIAT), RHYdronet, and other minor more local databases. WorldClim data were restricted to
records comprising the 1950-2000 period to be representative of the recent climate at a 1 km spatial resolution.

In the present paper, we resampled them to a 500 m spatial resolution by means of a bilinear interpolation to solve the inconsistency in spatial
resolution with the rest of products considered and to avoid steep gradients in WorldClim coarser pixels. The WorldClim bioclimatic variables
represent annual trends, seasonality, and extreme or limiting environmental factors. Examples of each include: mean annual temperature and
precipitation, annual range in temperature and precipitation, and the temperature of the coldest and warmest months as well as the precipitation of
the wettest and driest quarters (Hijmans et al., 2005).

Table A.1
Bioclimatic variables considered in this work. A quarter corresponds with a period of three months.

Variable Description

BIO1 Annual mean temperature

BIO2 Mean diurnal range

BIO3 Isothermality (BIO2/BIO7) (*100)
BIO4 Temperature seasonality (standard deviation *100)
BIOS Max temperature of warmest month
BIO6 Min temperature of coldest month
BIO7 Temperature annual range (BIO5,BIO6)
BIO8 Mean temperature of wettest quarter
BIO9 Mean temperature of driest quarter
BIO10 Mean temperature of warmest quarter
BIO11 Mean temperature of coldest quarter
BIO12 Annual precipitation

BIO13 Precipitation of wettest month

(continued on next page)
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Table A.1 (continued)

Variable Description

BIO14 Precipitation of driest month

BIO15 Precipitation seasonality (coefficient of variation)
BIO16 Precipitation of wettest quarter

BIO17 Precipitation of driest quarter

BIO18 Precipitation of warmest quarter

BIO19 Precipitation of coldest quarter

Appendix B. Description and comparison of machine learning regression methods

This section summarizes the theory underlying the machine learning methods used, and their numerical comparison in terms of precision, fit and
bias, as well as robustness to the number of training data.

B.1. Machine learning methods

B.1.1. Regularized linear regression

In multivariate (or multiple) linear regression (LR) the output variable y (plant trait) is assumed to be a weighted sum of F input variables (or
features), X := [xy,...,xs] ', that is § = xX'w. Maximizing the likelihood is equivalent to minimizing the sum of squared errors, and hence one can
estimate the weights w = [wy,...,wz]" by least squares minimization. Very often one imposes some smoothness constraints to the model and also
minimizes the weights energy, ||w| thus leading to the regularized linear regression (RLR) method that we used in this work.

B.1.2. Random forest

A RF model is an ensemble learning method for regression that operates by constructing a multitude of decision trees at training time and
outputting the mean prediction of the individual trees (Breiman and Friedman, 1985). They combine many decision trees working with different
subsets of features. The RF strategy is very beneficial by alleviating the often reported overfitting problem of simple decision trees. In addition, RFs
are quite robust; handling a large number of input variables, excelling in the presence of missing entries, dealing with heterogeneous variables, and
can be easily parallelized to tackle large scale problems. RF classification and regression have been applied in different areas of concern within forest
ecology: modeling the gradient of coniferous species (Evans and Cushman, 2009), the occurrence of fire in Mediterranean regions (Oliveira et al.,
2012), the classification of species or land cover type (Gislason et al., 2006; Cutler et al., 2007), and the analysis of the relative importance of the
proposed drivers (Cutler et al., 2007) or the selection of drivers (Genuer et al., 2010; Gislason et al., 2006; Jung and Zscheischler, 2013).

B.1.3. Neural networks

Neural networks are nonlinear, nonparametric regression methods. Their base operational unit is the neuron, where nonlinear regression
functions are applied. The neurons are interconnected and organized in layers. The outputs of all neurons in a given layer are the inputs for neurons
of the next layer. In a network, each neuron performs a linear regression followed by a nonlinear (sigmoid-like) function. Neurons of different layers
are interconnected by weights that are adjusted during the training (Haykin, 1999). In the standard neural network, the weights are typically
adjusted using a backpropagation algorithm of the error. This requires tuning several hyperparameters, such as the learning rate, number of epochs,
network structure, momentum and dropout terms, which makes training computationally demanding. As an alternative we used a fast version of
neural network known as Extreme Learning Machine (ELM) (Huang et al., 2006): here the network structure is fixed, the weights connecting the
input to the hidden layer are randomly selected, and one only optimizes the weights from the hidden to the output layer via least squares. The cost is
then drastically reduced at the expense of loss in precision over standard neural nets.

B.1.4. Kernel methods

Kernel methods constitute a family of successful methods for regression (Camps-Valls and Bruzzone, 2009). We aim to incorporate two in-
stantiations: (1) the KRR (Kernel Ridge Regression) is considered as the (non-linear) version of the LR (Shawe-Taylor and Cristianini, 2004); and (2)
GPR (Gaussian Process Regression) is a probabilistic approximation to nonparametric kernel-based regression, where both a predictive mean and
predictive variance can be derived (Camps-Valls et al., 2016). Kernel methods offer the same explicit form of the predictive model, which establishes
a relation between the input (i.e., computed explanatory variables) x €R® and the output variable (i.e. the particular plant trait) is denoted as y €R.
The prediction for a new radiance vector x- can be obtained as:

N

y = = iK i» Xx) + o,
y=f® ;06 6 (Xis X4) + @, (B.1)

where {x;}}Y, are the spectra used in the training phase, q; is the weight assigned to each one of them, a, is the bias in the regression function, and Ky
is a kernel or covariance function (parametrized by a set of hyperparameters 0) that evaluates the similarity between the test spectrum x- and all N
training spectra. We used the automatic relevance determination (ARD) kernel function:

F
K(x, x') = vexp(— Z Gy — x})z/(Zcf)] + 0765

= (B.2)

and we learned the hyperparameters 6 = [v,0,...,0r,0,] by marginal likelihood maximization.
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B.2. Accuracy and robustness of all considered regression models

All input features were standardized before model training. We followed a standard cross-validation approach for all the methods: we split the
data into a cross-validation set containing 80% of the data to select the hyperparameters, and the remaining 20% acted as an independent, out-of-
sample test set where we evaluate model's performance. In addition, in order to assess model's robustness we trained models with a varying number
of cross-validation data between 10% and 80%. The whole procedure was repeated for 20 realizations and the average results are reported.

B.2.1. Model evaluation: measuring precision and bias

Models parameters were optimized to minimize cross-validation error. In particular several scores were used to evaluate model's performance:
the mean error (ME) as a measure of bias of the estimations, the root-mean-square-error as a measure of precision, and the Pearson's correlation
coefficient (R) as a measure of goodness-of-fit of the models.

B.2.2. Numerical comparison: precision, bias and goodness-of-fit

The best average results for all the regression method and leaf traits are given in Table B.1. Results reveal that both random forests and kernel
methods are the most precise and less biased methods, outperforming the regularized linear regression and the extreme learning machine in all cases.
RF outperforms the rest for prediction of SLA, LPC and LNPR, while kernel machines (either KRR or GPR) excel in predicting LNC, and LDMC. It is
worth noting, however, that numerical differences in R and RMSE were not significant between RF and kernel machines.

Table B.1
Results in the cross-validation set for all methods, scores, and leaf traits. We highlight the best results in bold faced font.

METHOD ME RMSE R

Specific Leaf Area (SLA), n = 4407

RLR 0.064 3.819 0.629
RF —0.031 3.185 0.763
ELM 0.022 3.583 0.696
KRR 0.158 3.365 0.741
GPR 0.200 3.215 0.753
Leaf Nitrogen Concentration (LNC), n = 4422

RLR 0.049 2.642 0.621
RF — 0.029 2.298 0.734
ELM 0.032 2.537 0.674
KRR 0.040 2.249 0.742
GPR 0.037 2.269 0.734
Leaf Phosphorus Concentration (LPC), n = 3851

RLR 0.001 0.158 0.639
RF 0.001 0.132 0.778
ELM 0.001 0.150 0.694
KRR 0.001 0.135 0.742
GPR 0.001 0.133 0.763
Leaf Nitrogen-Phosphorus Ratio (LNPR), n = 2074

RLR —-0.014 2.087 0.706
RF 0.016 1.806 0.781
ELM — 0.012 1.933 0.754
KRR —0.022 1.832 0.772
GPR —0.039 1.890 0.767
Leaf Dry Matter Content (LDMC), n = 1842

RLR 0.001 0.048 0.528
RF 0.000 0.038 0.718
ELM 0.000 0.043 0.661
KRR —0.001 0.038 0.728
GPR —0.001 0.038 0.731

B.2.3. Models' robustness to number of training samples

We also tested model performance in more difficult scenarios in which a reduced number of training samples was used. Results in both R and
RMSE are given in Fig. B.1 for all methods and leaf traits. It is worth noting that two groups of curves (methods) can be easily identified for all traits
and scores: on the one hand, RLR and ELM perform poorly, and on the other hand RF and kernel machines perform similarly and report higher
precisions across all the reduced-sized training data rates. We observed a high consistency of RF predictions across all plant traits and precision
measures, which makes random forests the preferred default option.
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Fig. B.1. Results in the test set for all methods and leaf traits as a function of the rate of training data used.
Appendix C. Sensitivity analysis in the gap filling of the TRY database
Table C.1 shows the relative importance of the predictors considered for each gap filled trait. The predictor importance has been computed for

every tree composing the random forests by summing changes in MSE due to splits on every predictor and dividing the sum by the number of branch
nodes. As our trees are grown with surrogate splits, this sum is taken over all splits at each branch node including surrogate splits.
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Table C.1
Ranking of the five most relevant variables for the gap-filling. Biol to Bioll are temperature related climatological variables while Bio 12 to Bio19
are precipitation related climatological variables. For a more detailed climatic variables description see Appendix A.

Ranking SLA LDMC LNC LPC LNPR

1 Species Species Genus LNPR Genus
2 Genus Genus LPC Species Family
3 LDMC Family Species BIO16 Species
4 BIO14 Growth form LNPR BIO3 BIO16
5 BIO19 BIO11 Family BIO1 BIO3

Results show that the taxonomy (categorical information) plays a crucial role in the gap filling of all traits, being species names and the genus the
most influential ones. Those results match conclusions of previous works and confirm the effectiveness of the taxonomic hierarchy information in
order to predict trait values (Cordlandwehr et al., 2013). Results also confirm previous studies that showed close relationships between vegetation
composition and environmental conditions. For example, SLA predictions are firstly controlled by climatological information related with avail-
ability of water for the vegetation. Marron et al. (2003) pointed out that species with typically low SLA values are more conservative with the
acquired resources, due to their LDMC, high concentrations of cell walls and secondary metabolites, and high leaf and root longevity. For the case of
LDMG, a variable strongly related to SLA, only mean temperature information is included among the most 5 significant variables. This observation is
also in agreement with results in Albert et al. (2010), Schrodt et al. (2015), which showed that temperature-related climatological variables are an
important source of information to describe functional variation within species along environmental gradients. Leaf N and P concentrations are
controlled by mean temperature in different ways. On the one hand, concentrations of N and P in plant tissues increase to offset the decreases in plant
metabolic rate as the ambient temperature decreases (Reich and Oleksyn, 2004). On the other hand, leaf N concentrations may increase in arid
regions because plants may contain higher N concentrations to better adapt to more limited environments (Wright et al., 2003). Lastly, leaf P
concentrations are influenced by precipitation because an increase in soil water availability facilitates decomposition processes of litter and amplify
P availability especially in arid regions (Yang et al., 2016).

Appendix D. Sensitivity analysis in the trait prediction models

We assessed the relative importance of the climatic and remote sensing data that contributed to the globally mapped canopy traits. Table D.1
shows the relative importance of the seven most important predictors considered by the RF model. The predictor importance has been computed for
every tree composing the random forests by summing changes in MSE due to splits on every predictor and dividing the sum by the number of branch
nodes. As our trees are grown with surrogate splits, this sum is taken over all splits at each branch node including surrogate splits.

Table D.1

Ranking of the seven most relevant variables for the mapping of the considered traits. Biol to Bioll are temperature related climatological variables
while Bio 12 to Bio19 are precipitation related climatological variables, Blmed to B7med are the yearly median values of the different MODIS bands
and VI*max, VI*min, VI*sum, VI*std are maximum, minimum, annual sum and standard deviation of considered vegetation index (VI*). For a more
detailed climatic and remote sensing variables description see Appendix A and Section 2.2.

Ranking SLA LDMC LNC LPC LNPR

1 EVImax BIO14 B5med BIO14 EVIsum
2 B6émed BIO5 EVImax BIO16 BIO16
3 EVIstd Elevation B6med EVistd EVImin
4 B5med EVIsum B2med BIO3 BIO1

5 BIO15 B6bmed EVistd BIO10 BIO14
6 B2med BIO17 BIO3 BIO17 BIO3

5 Elevation BIO12 NDWImax NDWImax BIOS

Appendix E. Traits values and variation between and within PFTs

We have computed mean values and the standard deviation of in-situ leaf level trait measurements for the different PFTs. In order to associate
leaf level measurements with PFTs we have used the ancillary data provided by the TRY database which relates species names of each trait
measurement with information describing the conventional PFTs definitions. Table E.1 shows the computed statistics.

Table E.1
In-situ trait leaf level mean values and standard deviation for each considered PFT.

PFT Mean Std

Specific Leaf Area (SLA)

ENF 4.82 2.67
EBF 12.07 5.15
DNF 9.19 2.85

(continued on next page)
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PFT Mean Std
DBF 18.57 8.38
SHL 14.54 7.46
GRL 20.97 8.58
Leaf Nitrogen Concentration (LNC)

ENF 12.18 2.47
EBF 18.82 5.85
DNF 20.01 3.24
DBF 22.78 4.82
SHL 17.56 7.15
GRL 20.52 7.81
Leaf Phosphorus Concentration (LPC)

ENF 1.15 0.36
EBF 0.70 0.30
DNF 1.86 0.40
DBF 1.40 0.52
SHL 1.11 0.53
GRL 1.28 0.58
Leaf Nitrogen-Phosphorus Ratio (LNPR)

ENF 9.48 2.03
EBF 19.10 4.48
DNF 10.18 2.77
DBF 14.20 4.34
SHL 15.29 5.30
GRL 11.88 5.60
Leaf Dry Matter Content (LDMC)

ENF 0.31 0.10
EBF 0.34 0.06
DNF 0.28 0.06
DBF 0.33 0.06
SHL 0.29 0.06
GRL 0.26 0.07
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