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How climate drives the functional characteristics of veg-
etation across the globe has been a key question in eco-
logical research for more than a century1. While functional 

information is available for a large portion of the global pool of 
plant species, we do not know how functional traits of the different 
species that co-occur in a community are combined, which is what  
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determines their joint effect on ecosystems2–4. At the species level, 
Díaz et al.5 demonstrated that 74% of the global spectrum of six key 
plant traits determining plant fitness in terms of survival, growth 
and reproduction can be accounted for by two principal compo-
nents. They showed that the functional space occupied by vascular 
plant species is strongly constrained by trade-offs between traits and 
converges on a small set of successful trait combinations, confirm-
ing previous findings6–9. While these constraints describe evolution-
arily viable ecological strategies for vascular plant species globally, 
they provide only limited insight into trait composition within 
communities. There are many reasons why trait composition within 
communities would produce very different patterns, and indeed 
much theory predicts this10,11. However, it is still unknown to what 
extent community-level trait composition depends on local factors 
(microclimate, fine-scale soil properties, disturbance regime10, suc-
cessional dynamics2) and regional to global environmental drivers 
(macroclimate6,12,13, coarse-scale soil properties3,14). As ecosystem 
functions and services are ultimately dependent on the traits of the 
species composing ecological communities, exploring community 
trait composition at the global scale can advance our understand-
ing of how climate change and other anthropogenic drivers affect 
ecosystem functioning.

So far, studies relating trait composition to the environment at 
continental to global extents have been restricted to coarse-grained 
species occurrence data (for example, presence in 1° grid cells15–17). 
Such data capture neither biotic interactions (co-occurrence in large 
grid cells does not indicate local co-existence), nor local variation in 
environmental filters (for example, variation in soil, topography or 
disturbance regime within grid cells). In contrast, functional com-
position of ecological communities sampled at fine-grained vegeta-
tion plots—with areas of a few to a few hundred square metres—is 
the direct outcome of the interaction between both local and large-
scale factors. Here, we present a global analysis of plot-level trait 
composition. We combined the ‘sPlot’ database, a new global initia-
tive incorporating more than 1.1 million vegetation plots from over 

100 databases (mainly forests and grasslands; see Methods), with 
30 large-scale environmental variables and 18 key plant functional 
traits derived from TRY, a global plant-trait database (see Methods 
and Table 2). We selected these 18 traits because they affect different 
key ecosystem processes and are expected to respond to macrocli-
matic drivers (Table 1). In addition, they were sufficiently measured 
across all species globally to allow for imputation of missing values 
(see Methods). All analyses were confined to vascular plant species 
and included all vegetation layers in a community, from the canopy 
to the herb layer (see Methods).

We used this unprecedented fine-resolution dataset to test the 
hypothesis (Hypothesis 1) that plant communities show evidence 
of environmental or biotic filtering at the global scale, making use 
of the observed variation of plot-level trait means and means of 
within-plot trait variation across communities. Ecological theory 
suggests that community-level convergence could be interpreted 
as the result of filtering processes, including environmental fil-
tering and biotic interactions. Globally, temperature and pre-
cipitation drive the differences in vegetation between biomes, 
suggesting strong environmental filtering3,11 that constrains the 
number of successful trait combinations and leads to community-
level trait convergence. Similarly, biotic interactions may eliminate 
excessively divergent trait combinations18,19. However, alternative 
functional trait combinations may confer equal fitness in the 
same environment10. If plant communities show a global variation 
of plot-level trait means higher than expected by chance, and a 
lower than expected within-plot trait variation (see Fig. 1), this 
would support the view that environmental or biotic filtering are 
dominant structuring processes of community trait composition 
at the global scale. A consequence of strong community-level trait 
convergence, and thus low variation within plots with species trait 
values centred around the mean, would be that plot-level means 
will be similar to the trait values of the species in that plot. Hence, 
community mean trait values should mirror the trait values of 
individual species5.

Table 1 | Traits used in this study and their function in the community

Trait Description Function Expected correlation with 
macroclimate

Specific leaf area, Leaf area, 

Leaf fresh mass, Leaf N, Leaf P

Leaf economics spectrum7,8,17: Thin, N-rich 

leaves with high turnover and high mass-based 

assimilation rates

Productivity, competitive ability Very high12,13,17,21,23

↑ ↓ ⇕ 

Leaf dry matter content, Leaf N 

per area, Leaf C

Thick, N-conservative, long-lived leaves with low 

mass-based assimilation rates

Stem specific density Fast growth⇔ Mechanical support, Longevity Productivity, drought tolerance Very high12,22

Conduit element length Efficient water transport Water use efficiency High

↑ ↓ ⇕ 

Stem conduit density Safe water transport

Plant height Mean individual height of adult plants Competitive ability High6,12

Seed number per reproductive 

unit

Seed economics spectrum23: Small, well-dispersed 

seeds

Dispersal, regeneration Moderate23,24

↑ ↓ ⇕ 

Seed mass, Seed length, 

Dispersal unit length

Seeds with storage reserve to facilitate 

establishment and increase survival

Leaf N/P ratio P limitation (N/P�> �15) Nutrient supply Moderate30

N limitation (N/P�< �10)29

Leaf nitrogen isotope ratio (leaf 

δ 15N)

Access to N derived from N2 fixation⇔ N supply via 

mycorrhiza

Nitrogen source, soil depth Moderate28

Traits are arranged according to the degree to which they should respond to macroclimatic drivers. ↑ ↓  in the trait column denotes opposing relationships, ⇕  in the description column denotes trade-offs. 

For trait units, plot-level trait means and within-plot trait variance see Table 2.
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While Hypothesis 1 addresses the degree of filtering, it does not 
make a statement on the attribution of driving factors. The main 
drivers should correlate strongly (though not necessarily linearly20) 
with plot-level trait means and within-plot trait variance. Identifying 
these drivers has the potential to fundamentally improve our under-
standing of global trait–environment relationships. We tested the 
hypothesis (Hypothesis 2) that there are strong correlations between 
global environmental drivers such as macroclimate and coarse-
scale soil properties and both plot-level trait means and within-plot 
trait variances3,6,12–17,20–24 (see Table 1 for expected relationships and 
Supplementary Table 2 for variables used). Such evidence, although 
correlative, may contribute to the formulation of novel hypotheses 
to explain global plant trait patterns.

Results and discussion
Consistent with Hypothesis 1 and as illustrated in Fig. 1, 
global variation in plot-level trait means was much higher 
than expected by chance; all traits had positive standard-
ized effect sizes (SESs), which were significantly > 0 for 17 out 
of 18 traits based on gap-filled data (mean SES =  8.06 stan-
dard deviations (s.d.), Table 2). This suggests that environ-
mental or biotic filtering is a dominant force of community 
trait composition globally. Also as predicted by Hypothesis 1,  
within-plot trait variance was typically lower than expected by 
chance (mean SES =  − 1.76 s.d., significantly < 0 for ten traits but 
significantly > 0 for three traits; Table 2). Thus, trait variation 
within communities may also be constrained by filtering.

Table 2 | Traits, abbreviation of trait names, identifier in the Thesaurus Of Plant characteristics (TOP; www.top-thesaurus.org,  
ref. 55), units of measurement, observed values (obs.) SESs and significance (P) of SES for means and variances of both plot-level 
trait means (CWMs) and within-plot trait variances (CWVs)

CWM CWV

Mean Variance Mean Variance

Trait Abbreviation TOP Unit Obs. SES P Obs. SES P Obs. SES P Obs. SES P

Leaf area LA 25 mm2 6.130 − 9.75 * 1.691 12.53 * 1.565 − 2.59 * 2.448 − 0.27 n.s.

Specific leaf 

area

SLA 50 m2 kg−1 2.850 9.89 * 0.172 12.88 * 0.150 − 1.33 n.s. 0.023 1.10 n.s.

Leaf fresh 

mass

Leaf.fresh.mass 35 g − 2.125 − 13.28 * 1.395 10.83 * 1.520 − 2.05 * 2.311 0.01 n.s.

Leaf dry 

matter 

content

LDMC 45 g g−1 − 1.294 − 5.67 * 0.101 11.52 * 0.130 0.95 n.s. 0.017 6.73 *

Leaf C LeafC 452 mg g−1 6.116 − 3.77 * 0.003 8.80 * 0.002 − 1.78 * 0.000 − 0.38 n.s.

Leaf N LeafN 462 mg g−1 3.038 4.22 * 0.055 6.29 * 0.063 − 3.19 * 0.004 − 0.13 n.s.

Leaf P LeafP 463 mg g−1 0.535 9.57 * 0.097 2.81 * 0.117 − 5.17 * 0.014 − 2.11 *

Leaf N per 

area

LeafN.per.area 481 g m−2 0.251 − 9.06 * 0.075 8.18 * 0.099 − 0.28 n.s. 0.010 1.54 n.s.

Leaf N/P ratio Leaf.N/P.ratio – g g−1 2.444 − 11.95 * 0.040 0.40 n.s. 0.081 − 2.74 * 0.007 − 0.39 n.s.

Leaf δ 15N Leaf.delta15N – ppm 0.521 − 3.58 * 0.254 6.68 * 0.455 2.82 * 0.207 2.44 *

Seed mass Seed.mass 103 mg 0.407 − 11.19 * 2.987 3.69 * 2.784 − 9.06 * 7.750 − 2.81 *

Seed length Seed.length 91 mm 1.069 − 4.51 * 0.294 5.50 * 0.365 − 4.67 * 0.134 − 3.07 *

Seed 

number per 

reproductive 

unit

Seed.num.rep.unit – 6.179 7.67 * 2.783 4.40 * 5.156 1.44 n.s. 26.588 2.25 *

Dispersal unit 

length

Disp.unit.length 90 mm 1.225 − 2.51 * 0.343 6.50 * 0.451 − 3.21 * 0.203 − 1.39 n.s.

Plant height Plant.height 68 m − 0.315 − 12.15 * 1.532 13.34 * 1.259 − 9.01 * 1.585 9.68 *

Stem specific 

density

SSD 286 g cm−3 − 0.869 − 14.93 * 0.041 13.15 * 0.058 2.09 * 0.003 2.99 *

Stem conduit 

density

Stem.cond.dens – mm−2 4.407 15.08 * 0.656 8.45 * 0.975 − 0.95 n.s. 0.951 1.10 n.s.

Conduit 

element 

length

Cond.elem.length – μ m 5.946 − 7.09 * 0.182 9.14 * 0.367 7.12 * 0.135 5.29 *

Mean SES − 3.50 8.06 − 1.76 1.25

Mean absolute 

SES

8.66 8.06 3.36 2.43

CWMs and CWVs were based on gap-filled traits for 1,115,785 and 1,099,463 plots, respectively. All trait values were loge-transformed prior to analysis and observed values are on the loge scale. SESs 

are also based on loge-transformed values. Stem specific density is stem dry mass per stem fresh volume, specific leaf area is leaf area per leaf dry mass, leaf C, N and P are leaf carbon, nitrogen and 

phosphorus content, respectively, per leaf dry mass, leaf dry matter content is leaf dry mass per leaf fresh mass, leaf delta 15N is the leaf nitrogen isotope ratio, stem conduit density is the number of 

vessels and tracheids per unit area in a cross section, conduit element length refers to both vessels and tracheids. SESs were calculated by randomizing trait values across all species globally 100 times and 

calculating CWM and CWV with random trait values, but keeping all species abundances in plots (see Fig. 1). Tests for significance of SESs were obtained by fitting generalized Pareto-distribution of the 

most extreme random values and then estimating P values from this fitted distribution50. * indicates significance at P�< �0.05.
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Trait correlations at the community level were relatively well cap-
tured by the first two axes of a principal component analysis (PCA) 
for both plot-level trait means and within-plot trait variances (Figs. 2  
and 3). The dominant axes were determined by those traits with the 
highest absolute SESs of plot-level trait mean trait values (Table 2, 
mean of community-weighted means (CWMs)). The PCA of plot-
level trait means (Fig. 2) reflects two main functional continua on 
which community trait values converge: one from short-stature, 
small-seeded communities such as grasslands or herbaceous veg-
etation to tall-stature communities with large, heavy diaspores 
such as forests (the size spectrum), and the other from communi-
ties with resource-acquisitive to those with resource-conservative 
leaves (that is the leaf economics spectrum)7. The high similarity 
between this PCA and the one at the species level by Díaz et al.5 is 
striking. Here, at the community level, based on 1.1 million plots, 
the same functional continua emerged as at the species level, based 
on 2,214 species. While the trade-offs between different traits at the 
species level can be understood from a physiological and evolution-
ary perspective, finding similar trade-offs between traits at the com-
munity level was unexpected, as species with opposing trait values 
can co-exist in the same community. In combination with our find-
ing of strong trait convergence, these results reveal a strong parallel  
of present-day community assembly with individual species’  
evolutionary histories.

Surprisingly, we found only limited support for Hypothesis 2. 
Community-level trait composition was poorly captured by global 
climate and soil variables. None of the 30 environmental variables 
accounted individually for more than 10% of the variance in the 
traits defining the main dimensions in Fig. 2 (Supplementary Fig. 2).  
The coefficients of determination were not improved when testing 
for non-linear relationships (see Methods). Using all 30 environ-
mental variables simultaneously as predictors only accounted for 
10.8% or 14.0% of the overall variation in plot-level trait means 
(cumulative variance, respectively, of the first two or all 18 con-
strained axes in a redundancy analysis (RDA)). Overall, our results 
show that similar global-scale climate and soil conditions can  
support communities that differ markedly in mean trait values and 
that different climates can support communities with quite similar 
mean trait values.

The ordination of within-plot variance of the different traits 
(Fig. 3) revealed two main continua. Variances of plant height 
and diaspore mass varied largely independently of variances of 
traits representing the leaf economics spectrum. This suggests that 
short and tall species can be assembled together in the same com-
munity independently from combining species with acquisitive 
leaves with species with conservative leaves. Global climate and 
soil variables accounted for even less variation on the first two PCA 
axes in within-plot trait variances than on the first two PCA axes 
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Fig. 1 | Conceptual figure to illustrate Hypothesis 1.  a,b, Environmental or biotic filtering of community trait values result in higher than expected variation 

of community-weighted means (a) and lower than expected community-weighted variances of trait values (b). Both a and b give an example for a single 

trait and show the relative abundance of trait values of all species in a plot. Black curves refer to observed plot-level trait values in two exemplary plots, 

while blue curves show plot-level trait values obtained from randomizing trait values across all species globally (see Methods). Randomization was done 

100 times, but only one randomization event is shown. Deviation from random expectation was assessed with SESs for the variance in CWMs (a) and for 

the mean in CWVs (b). Evidence for filtering is given in a if the variance in plot-level trait means was higher than expected by chance (SES significantly 

positive) or in b if within-plot trait variance was typically lower than expected by chance (SES significantly negative, see Methods).
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in plot-level trait means. Only two environmental variables had 
r2 >  3% (Supplementary Fig. 3), whether allowing for non-linear 
relationships (see Methods) or not, and, overall, macro-environ-
ment accounted for only 3.6% or 5.0% of the variation (cumulative 
variance, respectively, of the first two or all 18 constrained axes). 
Removing species richness effects from within-plot trait variances 
did not increase the amount of variation explained by the environ-
ment (see Methods).

The findings of our study contrast strongly with studies where 
the variation in traits between species was calculated at the level 
of the species pool in large grid cells15,16, suggesting that plot-level 
and grid cell-level trait composition are driven by different fac-
tors21. Plot-level trait means and variances may both be predomi-
nantly driven by local environmental factors, such as topography 
(for example north-facing versus south-facing slopes), local soil 
characteristics (for example soil depth and nutrient supply)3,14,24,25, 
disturbance regime (including land use26 and successional status2,27) 
and biotic interactions18,19,28, while broad-scale climate and soil con-
ditions may only become relevant for the whole species pool in large 
grid cells. Such differences emphasize the importance of the effect 
of local environment on communities’ trait composition, which 

should be taken into account when interpreting the effect of envi-
ronmental drivers on functional trait diversity, using data on either 
floristic pools or ecological communities.

We note that the strongest community-level correlations with 
environment were found for traits not linked to the leaf econom-
ics spectrum. Mean stem specific density increased with potential 
evapotranspiration (PET, r2 =  15.6%; Fig. 4a,b), reflecting the need 
to produce denser wood with increasing evaporative demand. Leaf 
N/P ratio increased with growing-season warmth (growing degree 
days above 5 °C, GDD5, r2 =  11.5%; Fig. 4d), indicating strong 
phosphorus limitation29 in most plots in the tropics and subtropics  
(Fig. 4c,d). This pattern was not brought about by a parallel increase 
in the presence of legumes, which tend to have relatively high N/P 
ratios; excluding all species of Fabaceae resulted in a very similar 
relationship with GDD5 (r2 =  10.0%). The global N/P pattern is 
consistent with results based on traits of single species related to 
mean annual temperature30. We assume that the main underlying 
mechanism is the high soil weathering rate at high temperatures 
and humidity, which in the tropics and subtropics was not reset by 
Pleistocene glaciation. Thus, phosphorus limitation may weaken the 
relationships between productivity-related traits and macroclimate 
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axes was 29.7% and 20.1%, respectively. The vegetation sketches schematically illustrate the size continuum (short versus tall) and the leaf economics 
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Supplementary Table 2 for the description of traits and environmental variables.
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(Supplementary Fig. 2). For example, specific leaf area (SLA) may 
be low as a consequence of low nutrient availability3,14,24,25 in favour-
able climates as well as being low as a consequence of low tempera-
ture and precipitation with favourable nutrient supply. Overall, 
our findings are relevant for improving dynamic global vegetation 
models (DGVMs), which so far have used trait information only 
from a few calibration plots22. The sPlot database provides much-
needed empirical data on the community trait pool in DGVMs31 
and identifies traits that should be considered when predicting eco-
system functions from vegetation, such as stem specific density and  
leaf N/P ratio.

Our results were surprisingly robust with respect to the selec-
tion of trait data, when comparing different plant formations, 
and when explicitly accounting for the uneven distribution of 
plots. Using the original trait values measured for the species 
from the TRY database for the six traits used by Díaz et al.5 (see 
Methods), resulted in the same two main functional continua 
and overall a highly similar ordination pattern (Supplementary 
Fig. 4) compared with using gap-filled data for 18 traits (Fig. 2). 
Community-level trait composition was also similarly poorly 
captured by global climate and soil variables. Single regres-
sions of CWMs with all environmental variables revealed very  

similar patterns to those based on the full set of 18 gap-filled 
traits (Supplementary Fig. 5). Similarly, subjecting the CWMs 
based on six original traits to an RDA with all 30 environmental 
variables accounted for only 20.6% or 21.8% of the overall varia-
tion in CWMs (cumulative variance of the first two or all six con-
strained axes, respectively, Supplementary Fig. 4). These results 
clearly demonstrate that the imputation of missing trait values 
did not result in spurious artefacts that may have obscured com-
munity trait–environment relationships.

We also assessed whether the observed trait–environment rela-
tionships hold for forest and non-forest vegetation independently 
(see Methods). Both subsets confirmed the overall patterns in trait 
means (Supplementary Figs. 3‒6). The variance in plot-level trait 
means explained by large-scale climate and soil variables was higher 
for forest than non-forest plots, probably because forests belong to 
a well-defined and rather resource-conservative formation, whereas 
non-forest plots encompass a heterogeneous mixture of different 
vegetation types, ranging from alpine meadows to semi-deserts, and 
tend to depend more on disturbance and management, which can 
strongly affect trait–environment relationships of communities21. 
Finally, to test whether our findings depended on the uneven dis-
tribution of plots among the world’s different climates and soils, we 
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repeated the analyses in 100 subsets of ~ 100,000 plots resampled in 
the global climate space (Supplementary Figs. 7 and 8). The analysis 
of the resampled datasets revealed the same patterns and confirmed 
the impact of PET and GDD5 on stem specific density and leaf 
N/P ratio, respectively. The correlations between trait means and 
environmental variables were, however, stronger in the resampled 
subsets, possibly because the resampling procedure reduced the 
overrepresentation of the temperate-zone areas with intermediate 
climatic values.

Our findings have important implications for understanding 
and predicting plant community trait assembly. First, worldwide 
trait variation of plant communities is captured by a few main 
dimensions of variation, which are surprisingly similar to those 
reported by species-level studies5,7–9, suggesting that the drivers of 
past trait evolution, which resulted in the present-day species-level 
trait spectra5, are also reflected in the composition of today’s plant 
communities. If species-level trade-offs indeed constrain commu-
nity assembly, then the present-day contrasts in trait composition 
of terrestrial plant communities should also have existed in the past 
and will probably remain, even for novel communities, in the future. 
Most species in our present-day communities evolved under very 

variable filtering conditions across the globe, with respect to tem-
perature and precipitation regimes. Therefore, it can be assumed 
that future filtering conditions will result in novel communities 
that follow the same functional continua from short-stature, small-
seeded communities to tall-stature communities with large, heavy 
diaspores and from communities with resource-acquisitive leaves 
to those with resource-conservative leaves. Second, the main plot-
level vegetation trait continua cannot easily be captured by coarse-
resolution environmental variables21. This brings into question both 
the use of simple large-scale climate relationships to predict the 
global spectra of plant assemblages13,15,16,22 and attempts to derive 
net primary productivity and global carbon and water budgets 
from global climate, even when employing powerful trait-based 
vegetation models31. The finding that within-plot trait variance is 
only very weakly related to global climate or soil variables points 
to the importance of i) local-scale climate or soil variables, ii) dis-
turbance regimes and iii) biotic interactions for the degree of local 
trait dispersion11. Finally, our findings on the limited role of large-
scale climate in explaining trait patterns and on the prevalence of 
phosphorus limitation in most plots in the tropics and subtropics 
call for including local variables when predicting community trait  
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patterns. Even under similar macro-environmental conditions, com-
munities can vary greatly in trait means and variances, consistent 
with high local variation in species’ trait values3,6,7. Future research 
on the functional response of communities to changing climate 
should incorporate the effect of local environmental conditions24–26  
and biotic interactions18,19 in building reliable predictions of  
vegetation dynamics.

Methods
Vegetation data. The sPlot 2.1 vegetation database contains 1,121,244 plots 
with 23,586,216 species ×  plot observations, that is, records of a species in a plot 
(https://www.idiv.de/en/sdiv/working_groups/wg_pool/splot.html). This database 
aims to compile plot-based vegetation data from all vegetation types worldwide, 
but with a particular focus on forest and grassland vegetation. Although the initial 
aim of sPlot was to achieve global coverage, the plots are very unevenly distributed, 
with most data coming from Europe, North America and Australia and an 
overrepresentation of temperate vegetation types (Supplementary Fig. 1).

For most plots (97.2%), information on the single species’ relative contribution 
to the sum of plants in the plot was available, expressed as cover, basal area, 
individual count, importance value or percentage frequency in subplots. For the 
other 2.8% (31,461 plots), for which only presence/absence (p/a) was available, 
we assigned equal relative abundance to the species (1/species richness). For plots 
with a mix of cover and p/a information (mostly forest plots, where herb layer 
information had been added on a p/a basis; 8,524 plots), relative abundance was 
calculated by assigning the smallest cover value that occurred in a particular plot 
to all species with only p/a information in that plot. In most cases (98.4%), plot 
records in sPlot include full species lists of vascular plants. Bryophytes and lichens 
were additionally identified in 14% and 7% of plots, respectively. After removing 
plots without geographic coordinates and all observations on bryophytes and 
lichens, the database contained 22,195,966 observations on the relative abundance 
of vascular plant species in a total of 1,117,369 plots. The temporal extent of the 
data spans from 1885 to 2015, but > 95% of vegetation plots were recorded later 
than 1980. Plot size was reported in 65.4% of plots. While forest plots had plot  
sizes ≥ 100 m2, and in most cases ≤ 1,000 m2, non-forest plots typically ranged from 
5 to 100 m2.

Taxonomy. To standardize the nomenclature of species within and between 
sPlot and TRY (see below), we constructed a taxonomic backbone of the 121,861 
names contained in the two databases. Prior to name matching, we ran a series 
of string manipulation routines in R, to remove special characters and numbers, 
as well as standardized abbreviations in names. Taxon names were parsed and 
resolved using Taxonomic Name Resolution Service version 4.0 (TNRS32; http://
tnrs.iplantcollaborative.org; accessed 20 September 2015), selecting the best 
match across the five following sources: i) The Plant List (version 1.1; http://www.
theplantlist.org/; accessed 19 August 2015), ii) Global Compositae Checklist (GCC, 
http://compositae.landcareresearch.co.nz/Default.aspx; accessed 21 August 2015), 
iii) International Legume Database and Information Service (ILDIS, http://www.
ildis.org/LegumeWeb; accessed 21 August 2015), iv) Tropicos (http://www.tropicos.
org/; accessed 19 December 2014), and v) USDA Plants Database (http://usda.gov/
wps/portal/usda/usdahome; accessed 17 January 2015). We allowed for partial 
matching to the next highest taxonomic rank (genus or family) in cases where full 
taxon names could not be found. All names matched or converted from a synonym 
by TNRS were considered accepted taxon names. In cases where no exact match 
was found (for example when alternative spelling corrections were reported), 
names with probabilities of ≥  95% or higher were accepted and those with  
< 95% were examined individually. Remaining non-matching names were resolved 
using the National Center for Biotechnology Information’s Taxonomy database 
(NCBI, http://www.ncbi.nlm.nih.gov/; accessed 25 October 2011) within TNRS, 
or sequentially compared directly against The Plant List and Tropicos (accessed 
September 2015). Names that could not be resolved against any of these lists were 
left as blanks in the final standardized name field. This resulted in a total of 86,760 
resolved names, corresponding to 664 families, occurring in sPlot or TRY or both. 
Classification into families was carried out according to APGIII33, and was used 
to identify non-vascular plant species (~ 5.1% of the taxon names), which were 
excluded from the subsequent statistical analysis.

Trait data. Data for 18 traits that are ecologically relevant (Table 1) and sufficiently 
covered across species34 were requested from TRY35 (version 3.0) on 10 August 
2016. We applied gap-filling with Bayesian Hierarchical Probabilistic Matrix 
Factorization (BHPMF34,36,37). We used the prediction uncertainties provided by 
BHPMF for each imputation to assess the quality of gap-filling, and removed all 
imputations with a coefficient of variation > 137. We obtained 18 gap-filled traits 
for 26,632 out of 58,065 taxa in sPlot, which corresponds to 45.9% of all species 
but 88.7% of all species ×  plot combinations. Trait coverage of the most frequent 
species was 77.2% and 96.2% for taxa that occurred in more than 100 or 1,000 
plots, respectively. The gap-filled trait data comprised observed and imputed 
values on 632,938 individual plants, which we loge transformed and aggregated 

by taxon. For those taxa that were recorded at the genus level only, we calculated 
genus means. Of 22,195,966 records of vascular plant species with geographic 
reference, 21,172,989 (95.4%) refer to taxa for which we had gap-filled trait values. 
This resulted in 1,115,785 and 1,099,463 plots for which we had at least one taxon 
or two taxa with a trait value (99.5% and 98.1%, respectively, of all 1,121,244 plots), 
and for which trait means and variances could be calculated.

As some mean values of traits in TRY were based on a very small number 
of replicates per species, which results in uncertainty in trait mean and variance 
calculations38, we tested to what degree the trait patterns in the dataset might be 
caused by a potential removal of trait variation by imputation of trait values, and 
we additionally carried out all analyses using the original trait data on the same 
632,938 individual plants instead of gap-filled data (Supplementary Table 1). The 
degree of trait coverage of species ranged between 7.0% and 58.0% for leaf fresh 
mass and plant height, respectively. Across all species, mean coverage of species 
with original trait values was 21.8%, compared with 45.9% for gap-filled trait data. 
Linking these trait values to the species occurrence data resulted in a coverage of 
species ×  plot observations with trait values between 7.6% and 96.6% for conduit 
element length and plant height, respectively (Supplementary Table 1), with a mean 
of 60.7% compared with 88.7% for those based on gap-filled traits. Using these 
original trait values to calculate CWM trait values (see below) resulted in a plot 
coverage of trait values between 48.2% and 100% for conduit element length and 
SLA, respectively. Across all plots, mean coverage of plots with original trait values 
was 89.3%, compared with 100% for gap-filled trait data (Supplementary Table 1).

We are aware that using species mean values for traits excludes the possibility 
of accounting for intraspecific variance, which can also strongly respond to the 
environment39. Thus, using one single value for a species is a source of error in 
calculating trait means and variances.

Environmental data. We compiled 30 environmental variables (Supplementary 
Table 2). Macroclimate variables were extracted from CHELSA40,41, V1.1 
(Climatologies at High Resolution for the Earth’s Land Surface Areas, www.chelsa-
climate.org). CHELSA provides 19 bioclimatic variables equivalent to those used 
in WorldClim (www.worldclim.org) at a resolution of 30 arcsec (~ 1 km at the 
equator), averaging global climatic data from the period 1979–2013 and using a 
quasi-mechanistic statistical downscaling of the ERA-Interim reanalysis42.

Variables reflecting growing-season warmth were growing degree days above 1 °C  
(GDD1) and 5 °C (GDD5), calculated from CHELSA data43. We also compiled an 
index of aridity (AR) and a model for PET extracted from the Consortium  
of Spatial Information (CGIAR-CSI) website (www.cgiar-csi.org). In addition,  
7 soil variables were extracted from the SOILGRIDS project (https://soilgrids.org/, 
licensed by ISRIC—World Soil Information), downloaded at 250 m resolution and 
then resampled using the 30 arcsec grid of CHELSA (Supplementary Table 2). We 
refer to these climate and soil data as ‘environmental data’.

Community trait composition. For every trait j and plot k, we calculated the plot-
level trait means as community-weighted mean according to2,44:
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where nk is the number of species sampled in plot k, pi,k is the relative abundance of 
species i in plot k, referring to the sum of abundances for all species with traits in 
the plot, and ti,j is the mean value of species i for trait j. This computation was done 
for each of the 18 traits for 1,115,785 plots. The within-plot trait variance is given 
by community-weighted variance (CWV)44,45:
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We had CWV information for 18 traits for 1,099,463 plots, as at least two taxa 
were needed to calculate CWV. We performed the calculations using the ‘data.table’ 
package48 in R.

Assessing the degree of filtering. To analyse how plot-level trait means and 
within-plot trait variances (based on gap-filled trait data) depart from random 
expectation, for each trait we calculated SESs for the variance in CWMs and for the 
mean in CWVs. Significantly positive SESs in variance of CWM and significantly 
negative ones in the mean of CWV can be considered a global-level measure of 
environmental or biotic filtering. To provide an indication of the global direction of 
filtering, we also report SESs for the mean of CWM trait values. Similarly,  
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to measure how much within-community trait dispersion varied globally, we also 
calculated SESs for the variance in CWV.

We obtained SESs from 100 runs of randomizing trait values across all species 
globally. In every run we calculated CWM and CWV with random trait values, 
but keeping all species abundances in plots. Thus, the results of randomization are 
independent from species co-occurrences structure of plots49. For every trait, the 
SESs of the variance in CWM were calculated as the observed value of variance 
in CWM minus the mean variance in CWM of the random runs, divided by the 
standard deviation of the variance in CWM of the random runs (Fig. 1). The 
SESs for the mean in CWM, the mean in CWV and the variance in CWV were 
calculated accordingly. Tests for significance of SESs were obtained by fitting 
generalized Pareto-distribution of the most extreme random values and then 
estimating P values from this fitted distribution50.

Vegetation trait–environment relationships. Of the 1,115,785 plots with CWM 
values, 1,114,304 (99.9%) had complete environmental information and 
coordinates. This set of plots was used to calculate single linear regressions of each 
of the 18 traits on each of the 30 environmental variables. We used the ‘corrplot’ 
function51 in R to illustrate Pearson correlation coefficients (see Supplementary 
Figs. 1, 2, 4, 6 and 8) and, for the strongest relationships, produced bivariate graphs 
and mapped the global distribution of the CWM values using kriging interpolation 
in ArcGIS 10.2 (Fig. 4). We also tested for non-linear relationships with 
environment by including an additional quadratic term in the linear model and 
then reported coefficients of determination. As in the linear relationships of CWM 
with environment, the highest r2 values in models with an additional quadratic 
term were encountered between stem specific density and PET (r2 =  0.156) and leaf 
N/P ratio and growing degree days above 5 °C (GDD5, r2 =  0.118). These were not 
substantially different from the linear CWM‒environment relationships, which had 
r2 =  0.156 and r2 =  0.115, respectively (Fig. 4 and Supplementary Fig. 2).  
Similarly, including a quadratic term in the regressions did not increase the 
CWV‒environment correlations. Here, the strongest correlations were encountered 
between plant height and soil pH (r2 =  0.044) and between SLA and the volumetric 
content of coarse fragments in the soil (CoarseFrags, r2 =  0.037), which were 
similar to those in the linear regressions (r2 =  0.029 and r2 =  0.036, respectively, 
Supplementary Fig. 3).

To account for a possible confounding effect of species richness on CWV, 
which may cause low CWV through competitive exclusion of species, we regressed 
CWV on species richness and then calculated all Pearson correlation coefficients 
with the residuals of this relationship against all climatic variables. Here, the 
highest correlation coefficients were encountered between PET and CWV of 
conduit element length (r2 =  0.038), followed by the relationship of SLA and the 
volumetric content of coarse fragments in the soil (CoarseFrags, r2 =  0.034), which 
were very similar in magnitude to the CWV‒environment correlations (r2 =  0.035 
and r2 =  0.036, respectively; Supplementary Fig. 3).

The CWMs and CWVs were scaled to a mean of 0 and s.d. of 1 and then 
subjected to a PCA, calculated with the ‘rda’ function from the ‘vegan’ package52. 
Climate and soil variables were fitted post hoc to the ordination scores of plots 
of the first two axes, producing correlation vectors using the ‘envfit’ function. 
We refrain from presenting any inference statistics, as with > 1.1 million plots 
all environmental variables showed statistically significant correlations. Instead, 
we report coefficients of determination (r2), obtained from RDA, using all 30 
environmental variables as a constraining matrix, resulting in a maximum of 18 
constrained axes corresponding to the 18 traits. We report both r2 values of the first 
two axes explained by environment, which is the maximum correlation of the best 
linear combination of environmental variables to explain the CWM or CWV plot 
×  trait matrix and r2 values of all 18 constrained axes explained by environment. 
We plotted the PCA results using the ‘ordiplot’ function and coloured the points 
according to the logarithm of the number of plots that fell into grid cells of 0.002 
in PCA units (resulting in approximately 100,000 cells). For further details, see the 
captions of the figures.

Additionally, we carried out the PCA and RDA analyses using CWMs based 
on original trait values (see above). Because of a poor coverage of some traits we 
confined the analyses with original trait values to the 6 traits used by Díaz et al.5, 
which were leaf area, specific leaf area, leaf N, seed mass, plant height and stem 
specific density. Using these 6 traits resulted in 954,459 plots that had at least one 
species with a trait value for each of the 6 traits.

Testing for formation-specific patterns. We carried out separate analyses for two 
‘formations’: forest and non-forest plots. We defined as forest plots those that had 
> 25% cover of the tree layer. However, this information was available for only 25% 
of the plots in our sPlot database. Thus, we also assigned formation status based 
on growth form data from the TRY database. We defined plots as ‘forest’ if the 
sum of relative cover of all tree taxa was > 25%, but only if this did not contradict 
the requirement of > 25% cover of the tree layer (for those records for which this 
information was given in the header file). Similarly, we defined non-forest plots 
by calculating the cover of all taxa that were not defined as trees and shrubs (also 
taken from the TRY plant growth form information) and that were not taller than 
2 m, using the TRY data on mean plant height. We assigned the status ‘non-forest’ 
to all plots that had > 90% cover of these low-stature, non-tree and non-shrub taxa. 

In total, 21,888 taxa of the 52,032 in TRY that also occurred in sPlot belonged 
to this category, and 16,244 were classed as trees. The forest and non-forest 
plots comprised 330,873 (29.7%) and 513,035 (46.0%) of all plots, respectively. 
We subjected all CWM values for forest and non-forest plots to PCA, RDA and 
bivariate linear regressions to environmental variables as described above.

The forest plots, in particular, confirmed the overall patterns with respect 
to variation in CWM explained by the first two PCA axes (60.5%) and the two 
orthogonal continua from small to large size and the leaf economics spectrum 
(Supplementary Fig. 6). The variation explained by macroclimate and soil 
conditions was much larger for the forest subset than for the total data, with the 
best relationship (leaf N/P ratio and the mean temperature of the coldest quarter, 
bio11) having r2 =  0.369 and the next best ones (leaf N/P ratio and GDD1 and 
GDD5) close to this value with r2 =  0.357 (Supplementary Fig. 7) with an overall 
variation in CWM values explained by environment of 25.3% (cumulative variance 
of all 18 constrained axes in an RDA). The non-forest plots showed the same 
functional continua, but with a lower total amount of variation in CWM accounted 
for by the first two PCA axes (41.8%, Supplementary Fig. 8) and much lower 
overall variation explained by environment. For non-forests, the best correlation 
of any CWM trait with environment was that of volumetric content of coarse 
fragments in the soil (CoarseFrags) and leaf C content per dry mass with r2 =  0.042 
(Supplementary Fig. 9). Similarly, the cumulative variance of all 18 constrained 
axes according to RDA was only 4.6%. This shows, on the one hand, that forest 
and non-forest vegetation are characterized by the same interrelationships of 
CWM traits, and on the other hand, that the relationships of CWM values with the 
environment were much stronger for forests than for non-forest formations. The 
coefficients of determination were even higher than those previously reported for 
trait–environment relationships for North American forests (between CWM of 
seed mass and maximum temperature, r2 =  0.281)3.

Resampling procedure in environmental space. To achieve a more even 
representation of plots across the global climate space, we first subjected the same 
30 global climate and soil variables, as described above, to a PCA using the climate 
space of the whole globe, irrespective of the presence of plots in this space, and 
scaling each variable to a mean of zero and a standard deviation of one. We used a 
2.5 arcmin spatial grid, which comprised 8,384,404 terrestrial grid cells. We then 
counted the number of vegetation plots in the sPlot database that fell into each 
grid cell. For this analysis, we did not use the full set of 1,117,369 plots with trait 
information (see above), but only those plots that had a location inaccuracy of 
max. 3 km, resulting in a total of 799,400 plots. The resulting PCA scores based 
on the first two principal components (PC1–PC2) were rasterized to a 100 ×  100 
grid in PC1–PC2 environmental space, which was the most appropriate resolution 
according to a sensitivity analysis. This sensitivity analysis tested different grid 
resolutions, from a coarse-resolution bivariate space of 100 grid cells (10 ×  10) to 
a very fine-resolution space of 250,000 grid cells (500 ×  500), iteratively increasing 
the number of cells along each principal component by 10 cells. For each iteration, 
we computed the total number of plots from sPlot per environmental grid cell and 
plotted the median sampling effort (number of plots) across all grid cells versus the 
resolution of the PC1–PC2 space. We found that the curve flattens off at a bivariate 
environmental space of 100 ×  100 grid cells, which was the resolution for which 
the median sampling effort stabilized at around 50 plots per grid cell. As a result, 
we resampled plots only in environmental cells with more than 50 plots (858 cells 
in total).

To optimize our resampling procedure within each grid cell, we used the 
heterogeneity-constrained random (HCR) resampling approach53. The HCR 
approach selects the subset of vegetation plots for which those plots are the 
most dissimilar in their species composition while avoiding selection of plots 
representing peculiar and rare communities that differ markedly from the main 
set of plant communities (outliers), thus providing a representative subset of plots 
from the resampled grid cell. We used the turnover component of the Jaccard’s 
dissimilarity index (βjtu

54) as a measure of dissimilarity. The βjtu index accounts for 
species replacement without being influenced by differences in species richness. 
Thus, it reduces the effects of any imbalances that may exist between different plots 
due to species richness. We applied the HCR approach within a given grid cell by 
running 1,000 iterations, randomly selecting 50 plots out of the total number of 
plots available within that grid cell. Where the cell contained 50 or fewer plots, all 
were included and the resampling procedure was not run. This procedure thinned 
out over-sampled climate types, while retaining the full environmental gradient.

All 1,000 random draws of a given grid cell were subsequently sorted according 
to the decreasing mean of βjtu between pairs of vegetation plots and then sorted 
again according to the increasing variance in βjtu between pairs of vegetation plots. 
Ranks from both sortings were summed for each random draw, and the random 
draw with the lowest summed rank was considered as the most representative 
of the focal grid cell. Because of the randomized nature of the HCR approach, 
this resampling procedure was repeated 100 times for each of the 858 grid cells. 
This enabled us to produce 100 different subsamples out of the full sample of 
799,400 vegetation plots subjected to the resampling procedure. Each of these 100 
subsamples was finally subjected to ordinary linear regression, PCA and RDA as 
described above. We calculated the mean correlation coefficient across the 100 
resampled datasets for each environmental variable with each trait.
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To plot bivariate relationships, we used the mean intercept and slope of these 
relationships. PCA loadings of all 100 runs were stored and averaged. As different 
runs showed different orientation on the first PCA axes, we switched the signs 
of the axis loadings in some of the runs to make the 100 PCAs comparable to the 
reference PCA, based on the total dataset. Across the 100 resampled datasets, we 
then calculated the minimum and maximum loading for each of the two PCA 
axes and plotted the result as ellipsoid. We also collected the post hoc regression 
coefficients of PCA scores with the environmental variables in each of the 100 
runs, switched the signs accordingly and plotted the correlations to PC1 and PC2 
as ellipsoids. The result is a synthetic PCA of all 100 runs. To illustrate the coverage 
of plots in PCA space, we used plot scores of one of the 100 random runs. Similarly, 
the coefficients of determination obtained from the RDAs of these 100 resampled 
sets were averaged.

The mean PCA loadings across these 100 subsets (summarized in 
Supplementary Fig. 10) were fully consistent with those of the full dataset in Fig. 2,  
with the same two functional continua in plant size and diaspore mass (from 
bottom left to top right), and perpendicular to that, the leaf economics spectrum. 
The variation in CWM accounted for by the first two axes was on average 50.9% 
±  0.04 s.d., and thus virtually identical with that in the total dataset. In contrast, 
the variation explained on average by macroclimate and soil conditions (26.5% ±  
0.01 s.d. as the average cumulative variance of all 18 constrained axes in the RDAs 
across all 100 runs) was considerably larger than that for the total dataset, which is 
also reflected in consistently higher correlations between traits and environmental 
variables (Supplementary Fig. 11). The highest mean correlation was encountered 
for plant height and PET (mean r2 =  0.342 across 100 runs). PET was a better 
predictor for plant height than the precipitation of the wettest months (bio13, mean 
r2 =  0.231), as had been suggested previously6. The correlation of PET with stem 
specific density (mean r2 =  0.284) and warmth of the growing season (expressed as 
growing degree days above the threshold 5 °C, GDD5) with leaf N/P ratio (mean 
r2 =  0.250) ranked among the best 12 correlations encountered out of all 540 trait–
environment relationships, which confirms the patterns found in the whole dataset 
(compared with Fig. 4). Overall, the coefficients of determination were much closer 
to the ones reported from other studies with a global collection of a few hundred 
plots (r2 values ranging from 36% to 53% based on multiple regressions of single 
traits with 5 to 6 environmental drivers22).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The data contained in sPlot (the vegetation-plot data complemented by trait and 
environmental information) are available on request, by contacting any of the sPlot 
consortium members, for submission of a paper proposal. The proposals should 
follow the Governance and Data Property Rules of the sPlot Working Group, which 
are available on the sPlot website (www.idiv.de/sPlot).
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