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ABSTRACT
Building on the first paper in this series (Duncan et al. 2018), we present a study inves-
tigating the performance of Gaussian process photometric redshift (photo-z) estimates
for galaxies and active galactic nuclei detected in deep radio continuum surveys. A
Gaussian process redshift code is used to produce photo-z estimates targeting specific
subsets of both the AGN population - infrared, X-ray and optically selected AGN -
and the general galaxy population. The new estimates for the AGN population are
found to perform significantly better at z > 1 than the template-based photo-z esti-
mates presented in our previous study. Our new photo-z estimates are then combined
with template estimates through hierarchical Bayesian combination to produce a hy-
brid consensus estimate that outperforms either of the individual methods across all
source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR
AGN are signficantly improved in comparison to previous template-only estimates,
with outlier fractions and robust scatter reduced by up to a factor of ∼ 4. The ability
of our method to combine the strengths of the two input photo-z techniques and the
large improvements we observe illustrate its potential for enabling future exploita-
tion of deep radio continuum surveys for both the study of galaxy and black hole
co-evolution and for cosmological studies.

Key words: galaxies: distances and redshifts – galaxies: active – radio continuum:
galaxies

1 INTRODUCTION

Photometric redshifts (photo-zs hereafter) have become a
fundamental tool for both the study of galaxy evolution and
for modern cosmology experiments. The main driving force
behind recent developments in photometric redshift estima-
tion methodology has been the stringent requirements set
by the coming generation of weak-lensing cosmology exper-
iments (e.g. EUCLID; Laureijs et al. 2011). However, the
need for accurate and unbiased redshift estimates for large
samples of galaxies (≈ 106−109) represents a near universal
requirement for all future extra-galactic surveys.

Through either template based (e.g. Arnouts et al. 1999;

? E-mail: duncan@strw.leidenuniv.nl

Bolzonella et al. 2000; Beńıtez 2000; Brammer et al. 2008) or
empirical/‘machine learning’ (e.g. Collister & Lahav 2004;
Carrasco Kind & Brunner 2013, 2014a) estimation tech-
niques, it is now possible to produce the precise and re-
liable photometric redshifts required for optically selected
galaxy samples (Bordoloi et al. 2010; Sanchez et al. 2014;
Carrasco Kind & Brunner 2014b; Drlica-Wagner et al. 2017).
However, typically such methods are applied to, or optimised
for, the galaxy emission due to stellar populations, with
galaxies dominated by emission from active galactic nuclei
(AGN) either removed from the analysis (where possible) or
not explicitly accounted for. This therefore presents a prob-
lem in surveys where a larger fraction of the population is
composed of AGN, for example in radio-continuum selected
surveys (and for the ∼ 3 million X-ray selected AGN and
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QSOs observed by the eRosita mission Merloni et al. 2012).
The population of radio detected sources is extremely di-
verse - with radio emission tracing both black hole accretion
in AGN and star formation activity.

Probing to unprecedented depths, deep radio continuum
surveys from MeerKAT (Booth et al. 2009), the Australian
SKA Pathfinder (ASKAP; Johnston et al. 2007) and the Low
Frequency Array (LOFAR; van Haarlem et al. 2013) will
increase the detected population of radio sources by more
than an order of magnitude and probe deep into the earliest
epochs of galaxy formation and evolution (Rottgering 2010;
Norris et al. 2013; Jarvis et al. 2017). Accurate and unbi-
ased photometric redshift estimates for the full radio source
population will be essential for studying the faint radio pop-
ulation and achieving the scientific goals of these deep radio
continuum surveys - both for galaxy evolution and cosmo-
logical studies.

In Duncan et al. (2018, hereafter Paper I), we investi-
gated the performance of template-based photometric red-
shift estimates for the radio-continuum detected population
over a wide range of optical and radio properties. Specifi-
cally, three photometric redshift template sets, representa-
tive of those available in the literature, were applied to two
optical/IR datasets and their performance investigated as a
function of redshift, radio flux/luminosity and infrared/X-
ray properties.

Furthermore, by combining all three photo-z estimates
through hierarchical Bayesian combination (Dahlen et al.
2013; Carrasco Kind & Brunner 2014b) we were able to pro-
duce a new consensus estimate that outperforms any of the
individual estimates that went into it. Although the consen-
sus redshift estimates were found to offer some improvement,
the overall quality of template photo-z estimates for radio
sources that are X-ray sources or optical/IR AGN was still
relatively poor; with outlier fractions and scatter relative to
the spectroscopic training sample that are unacceptable for
many science goals. An alternative methodology is therefore
needed to either replace the template-based photo-z esti-
mates for these difficult populations or help to improve the
consensus estimate.

Thankfully, empirical (or machine learning) photo-z es-
timates have already been shown to offer a potential solu-
tion for improving photo-zs for the AGN population (e.g.
Richards et al. 2001; Brodwin et al. 2006; Bovy et al. 2012).
In this paper we investigate how such machine learning
photo-z techniques perform when applied to the same sam-
ples and data where template-based methods were found to
struggle the most in Paper I. Specifically, we explore the
use of Gaussian processes (GP) using the framework pre-
sented by Almosallam et al. (2016a,b, GPz). GPz offers sev-
eral key advantages that make it an ideal choice for tackling
the problems posed by large samples of radio selected galax-
ies. Firstly, it has been shown to outperform other empir-
ical photo-z tools in the literature when applied to sparse
datasets. Secondly, it incorporates cost-sensitive learning,
i.e. the ability to give more or less weight to certain sources
during the optimisation procedure. These additional weights
potentially allow for biases in the available training sample
to be accounted for. Finally, by modelling the non-uniform
noise intrinsic in photometric datasets it offers estimations
of the variance on the predicted photo-zs - meaning that its

outputs can also be easily incorporated into the hierarchical
Bayesian combination framework presented in Paper I.

This paper is organized as follows: Section 2 presents the
data used in this study along with details of how the Gaus-
sian process photometric redshift framework of Almosallam
et al. (2016a). Section 3 then outlines the application of the
GPz framework to photometric data from deep survey fields
such as those explored in Paper I and the improvements that
can be made in photometric redshift qualilty for the most
difficult radio source populations. In Section 4, we present
the results of incorporating the new GP photo-zs within the
Bayesian combination framework presented in Paper I. Fi-
nally, Section 5 presents a brief summary of the results in
this paper and the key conclusions that can be drawn.

Throughout this paper, all magnitudes are quoted in
the AB system (Oke & Gunn 1983) unless otherwise stated.
We also assume a Λ-CDM cosmology with H0 = 70
kms−1Mpc−1, Ωm = 0.3 and ΩΛ = 0.7.

2 PHOTOMETRIC REDSHIFT
METHODOLOGY

2.1 Data

In Paper I we made use of two samples of galaxies drawn
from both a wide area survey (NDWFS Boötes; Jannuzi &
Dey 1999) and a smaller but deeper survey field (COSMOS;
Laigle et al. 2016). In this paper we will make use of just
the ‘Wide’ field sample in our subsequent analysis. The rea-
sons for this are two-fold: Firstly, the optical filter coverage
and depth of the available photometry in the field is more
representative of the large survey fields that are being ob-
served with deep radio continuum surveys such as LOFAR.
The exceptional wavelength coverage and depth of the COS-
MOS field photometry could give misleading expectations of
the photo-z accuracy when the method is applied to other
fields. Secondly, the targeted selection criteria of the AGN
and Galaxy Evolution Survey (AGES; Kochanek et al. 2012)
spectroscopic survey in the field results in a larger sample of
AGN sources (see Fig.1 of Paper I) for training and testing
the GP redshift estimates.

We refer the reader to Paper I and references therein
for full details on the photometric catalog itself, along with
details on the spectroscopic redshift information available
in the field. As in Paper I, the radio continuum observa-
tions from this field are taken from the LOFAR observations
presented in Williams et al. (2016). Details of the cross-
matching procedure between the radio data and the optical
catalog used in this work can be found in Williams et al.
(2017).

Given its importance in the subsequent analysis it is
worth summarising the multi-wavelength AGN classifica-
tions applied to the data. We classify all sources in the spec-
troscopic comparison samples using the following additional
criteria:

• Infrared AGN are identified using the updated IR
colour criteria presented in Donley et al. (2012).
• X-ray AGN in the Boötes field were identified by

cross-matching the positions of sources in our catalog with
the X-Böotes Chandra survey of NDWFS (Kenter et al.
2005). We calculate the x-ray-to-optical flux ratio, X/O =

MNRAS 000, 1–13 (2017)
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Figure 1. Multi-wavelength classifications of the sources in the
full spectroscopic redshift sample for the Boötes dataset used in

this study. The ‘Radio’ and ‘X-ray/IR/Opt AGN’ subsets cor-

respond respectively to radio detected sources and identified X-
ray sources and optical/spectroscopic/infra-red selected AGN (see

Section 2.1). As illustrated in previous studies, the X-ray, IR AGN

and radio source population are largely distinct populations with
only partial overlap.

log10(fX/fopt), based on the I band magnitude following
Brand et al. (2006) and for a source to be selected as an X-
ray AGN, we require that an x-ray source have X/O > −1
or an x-ray hardness ratio > 0.8 (Bauer et al. 2004).
• Optical AGN were also identified through cross-

matching the optical catalog with the Million Quasar Cata-
log compilation of optical AGN, primarily based on SDSS
(Alam et al. 2015) and other literature catalogs (Flesch
2015).

Note however, these classifications are not expected to
be distinct physical classifications but rather selection meth-
ods through which a wide variety of the most luminous AGN
can be identified. Depending on data available in a given
field, further sub-classifications or alternative criteria might
be warranted. As shown in Fig. 1, there is significant over-
lap between different selection criteria with the majority of
radio sources selected as AGN belonging to at least two of
the subsets. Despite these overlaps, there is also potentially
a very wide variety intrinsic spectral energy distributions
within the full AGN sample, both between these subsets of
AGN and within the subsets themselves.

As in Paper I, spectroscopic redshifts for sources in
Boötes are taken from a compilation of observations within
the field comprising primarily of the results of AGN and
Galaxy Evolution Survey (AGES; Kochanek et al. 2012)
spectroscopic survey, with additional redshifts provided by
a large number of smaller surveys in the field including Lee
et al. (2012, 2013, 2014), Stanford et al. (2012), Zeimann
et al. (2012, 2013) and Dey et al. (2016).

In total, the combined sample consists of 22830 redshifts
over the range 0 < z < 6.12, with 88% of these at z < 1. Due
to the nature of the AGES target selection criteria, iden-
tified AGN sources have a higher degree of spectroscopic
completeness than the general galaxy population (≈ 11%
of AGN have spectroscopic redshifts available compared to
≈ 1% of the rest of the galaxy population). Nevertheless,
as is the case in most spectroscopic training samples the
available sources do not necessarily sample the full photo-
metric colour space. In the following section we present the
weighting strategy employed to minimise the potential ef-
fects caused by the biased training sample. The limitations
of the training sample and ways in which this can be miti-
gated in the future will also be revisited in Section 4.3.

3 GAUSSIAN PROCESS PHOTOMETRIC
REDSHIFTS FOR AGN IN DEEP FIELDS

3.1 GPz Method

Detailed descriptions of the theoretical background and
methodology of GPz are presented in Almosallam et al.
(2016a) and Almosallam et al. (2016b). In this section, we
therefore outline only the details of how GPz was applied
to our dataset.

Although the three different AGN selection criteria out-
lined in Section 2.1 contain significant overlap in their pop-
ulations, we choose to train and calibrate the GP estimates
of each subset seperately. Due to both inhomogeneity in
the coverage of different filters and the relatively shallow
depth of some of these observations, only a small fraction of
sources are detected in all of the filters available in the field.
For example, only ≈ 9% of the full photometric catalog has
magnitude values available in the 13-bands extending from
u-band to IRAC 8µm. The number and combination of mag-
nitudes input to GPz for each subset were therefore chosen
to cover as broad a wavelength as possible whilst trying to
ensure as many sources as possible were detected in the cor-
responding bands. Starting with the detection band of the
multi-wavelength catalog (I), additional filter choices were
added and the fraction of sources with magnitudes available
in those filters calculated until the fraction fell to ∼ 80%.
For cases where several different filter combinations offer a
similar number of available sources, the combination that
produces the best estimates in limited trials is chosen. We
note however that systematic searches for the best filter com-
binations have not been performed. We also note that an
extension to GPz is being developed to account for missing
data in a fully consistent way (Almosallam et al. in prep)
such that these issues will be further minimised in future.

The resulting filter selections and the sizes of the corre-
sponding training samples are as follows:

• Infrared AGN – For the subset of IR AGN, the input
dataset includes the optical R and I magnitudes in addi-
tion to the four IRAC magnitudes used in the colour selec-
tion of the subset. In the spectroscopic training set and full
photometric IR AGN subsets, 98.9% and 82.6% of sources
respectively have magnitudes in these bands. Of the 1751
spectroscopic sources classified as IR AGN, the final train-
ing, validation and test samples therefore consist of 1385,
173 and 173 sources respectively.

• X-ray AGN – The final filter choice for the X-ray AGN
sources is Bw, R, I, Ks and Spitzer/IRAC 3.6 and 4.5µm.
Detection fractions in the spectroscopic and full photometric
samples are almost identical to the IR AGN subset, with
fractions of 98.8% and 82.7% respectively. There are 1133
spectroscopic sources classified as X-ray AGN, resulting in
training, validation and test samples of 895, 112 and 112
respectively.

• Optical AGN – Although optically bright by definition,
the chosen filter selection for the optical AGN subset consists
of I in combination with the near and mid-infrared bands of
J , Ks, Spitzer/IRAC 3.6/4.5µm and Spitzer/MIPS 24µm.
In these filters, the available training and full sample frac-
tions are 96.6% and 84.2% respectively. For the 1382 optical
AGN sources in the spectroscopic training sample, this re-

MNRAS 000, 1–13 (2017)
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sults in 1067, 134 and 134 sources in the training, validation
and test samples.

In addition to the three GPz estimators targeted at
subsets of the AGN population, we also produce an addi-
tional estimator trained on optical sources that do not sat-
isfy any of the AGN selection criteria - corresponding to the
significant majority of both the training sample and photo-
metric catalog. As illustrated in the bottom panel of Fig. 2
(dashed blue line), the magnitude distribution for the full
‘galaxy’ sample extends to significantly fainter magnitudes
than those in the AGN subsets. To find the optimum com-
bination of optical bands we systematically calculated the
fraction of sources with measured magnitudes in every pos-
sible combination of five bands out of those available in the
field. The two sets of filters that would allow estimates for
the largest fraction of catalog sources are {u, Bw, R, I, z}
and {Bw, R, I, z, 3.6µm}, with 38.3% and 34.2% of the full
photometric catalog respectively (87.3% and 92.8% of the
training samples).

In all four cases, GPz was trained using 25 basis func-
tions and allowing variable covariances for each basis func-
tion (i.e. the ‘GPVC’ of Almosallam et al. 2016a). We choose
these parameters based on the tests of Almosallam et al.
(2016a) who found minimal performance gain above 25 ba-
sis functions and significant improvements when using fully
variable covariances compared to other assumptions. Finally,
we also follow the practices in outlined Section 6.2 of Al-
mosallam et al. (2016a) by pre-processing the input data to
normalise the data and de-correlate the features (also known
as ‘sphering’ or ‘whitening’).

3.2 Weighting scheme

One of the key advantages offered by GPz with respect to
some other empirical methods in the literature is its option
of using cost-sensitive learning; allowing for potential biases
in the training sample to be taken into account or certain
regions of parameter space to be prioritised if desired. In this
work we make use of two different weighting schemes. As a
reference we first employ a flat weighting scheme (i.e. the
‘Normal’ weighting of Almosallam et al. 2016a). Secondly,
we employ a weighting scheme that takes into account the
colour and magnitude distribution of the training sample
with respect to the full corresponding photometric sample.

Our colour based weighting scheme is based on the
method presented in Lima et al. (2008) and successfully em-
ployed elsewhere in the photoz literature (e.g. Sanchez et al.
2014). Firstly, for all galaxies in the spectroscopic training
set and the photometric sample we construct separate arrays
consisting of the normalised distribution of I-band magni-
tudes and two photometric colours. The colour and magni-
tude distributions are both normalised based on the 99th
percentile range observed in the full photometric sample.
This renormalisation ensures that each observable is given
equal importance in the subsequent weighting scheme and
that the distribution is not severely affected by outliers.

Next, for each galaxy, i, in the spectroscopic training
set, we compute the distance to the 9th nearest neighbour,
ri,9, in the colour-magnitude space of the training set1 We

1 The 9th nearest neighbour was chosen to provide marginally
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Figure 2. Illustration of the colour-magnitude based weighting

scheme applied to each the training subsets employed in this work.
In each plot, the dashed blue line shows the magnitude distribu-

tions for the full photometric sample while the thin black and

thick gold lines show the training sample before and after weight-
ing. The optical/infrared filter corresponding to each magnitude
distribution is labelled in the upper right corner of each plot -

‘ch1’ and ‘ch2’ correspond to the Spitzer/IRAC 3.6µm and 4.5µm
filters respectively.

then find the corresponding number of objects, NP(mi), in
the full photometric sample that fall within a volume with
radius equal to ri,9. The weight for a given training galaxy,

more localisation in the colour-magnitude space than the 16th
nearest neighbour chosen in Lima et al. (2008) while still minimis-

ing the effects of small-number statistics. However, as illustrated

by the minimal effect on results for 4 < n < 64 (Lima et al. 2008),
we do not expect this choice to have any significant effect on the

results presented.
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Wi, is then defined following Equation 24 of Lima et al.
(2008) such that

Wi =
1

NP,tot

NP(mi)

NT(mi)
, (1)

where NT(mi) is the number of objects in the training sam-
ple within the same volume (by definition 8 in this work)
and NP,tot the total number of objects in the photometric
training sample. Finally, any training-set object with zero
weight is removed from the sample and the weights renor-
malised such the

∑
iWi = 1 to meet the convention required

by GPz.
In Fig. 2 we illustrate the results of this weighting

scheme for each of the training sample subsets used in our
analysis. For the three magnitudes used in the weighting
scheme, Fig. 2 shows the magnitude distribution of the full
photometric sample compared to that of the training sample
before and after the weighting scheme has been applied.

The bias within the training sample is clearly strongest
for both the IR AGN and normal galaxy populations, with
the majority of training galaxies significantly brighter than
those in the full photometric samples. In both cases, the
weighting scheme does a good job of reproducing the dis-
tribution of the full photometric sample. However, as there
are very few spectroscopic redshifts available at the very
faintest optical magnitudes, the weighted training sample
becomes somewhat noisy due to the small number of faint
training objects being assigned high weights. Possible meth-
ods of minimising the effects of very small samples of faint
training objects will be discussed further in Section 4.3.

3.3 GPz photo-z Results

In Fig. 3 we present the results of our two GPz photo-z es-
timates in comparison to the consensus estimates produced
through template-fitting in Paper I. In each set of figures
we show the distribution of photo-z vs spectroscopic red-
shift for the consensus template estimates from Paper I,
left, the GPz estimate with no weighting included in the
cost-sensitive learning (centre) and the GPz estimate incor-
porating the colour and magnitude dependent weights as
presented in Section 3.2 (right). The sample plotted in each
row contains only the subset of test sources not included in
the training of the GPz classifiers. In Table 1 we also present
a subset the corresponding photo-z quality metrics (defined
in Table 2) for each of the AGN/galaxy subsamples.

Visually, the poor performance of the template esti-
mates for AGN populations between 1 . z . 3 is clear
in the left-hand column of Fig. 3. Within this spectroscopic
redshift range, many AGN sources are erroneously pushed
towards z ∼ 2, albeit with large uncertainties that keep the
photo-z estimate within error of the true estimate. Alterna-
tively, sources at 1 . z . 3 can have template estimates
that are catastrophic failures, leading to estimated redshifts
at z � 1.

Statistically, the overall improvement offered by the
GPz estimates is illustrated in the reduction in scatter for
the IR and optically selected AGN samples by a factor of
two. The improvement in scatter for the X-ray selected AGN
subset is less drastic but still very significant - again most
noticeably at z > 1. As noted by Salvato et al. (2008, 2011)
many X-ray selected AGN are more accurately described

Table 1. Photometric redshift quality statistics for the derived

combined consensus PDFs. The statistical metrics (see Table 2)

are shown for the full spectroscopic sample, the radio detected
sources and for various subsets of the radio population.

Estimate σNMAD Bias Of

IR AGN
Template consensus 0.2429 0.0159 0.4425

GPz - Unweighted 0.1431 -0.0187 0.2184

GPz - Weighted 0.1183 -0.0072 0.1494

X-ray AGN

Template consensus 0.1067 0.0185 0.3214
GPz - Unweighted 0.1241 0.0090 0.1339

GPz - Weighted 0.0882 0.0090 0.0893

Optical AGN

Template consensus 0.2351 0.0169 0.4552
GPz - Unweighted 0.1280 0.0195 0.1970

GPz - Weighted 0.1147 0.0084 0.2313

Galaxies

Template consensus 0.0287 -0.0037 0.0416

GPz - Unweighted 0.0323 0.0038 0.0220
GPz - Weighted 0.0343 0.0033 0.0265

by purely stellar SEDs - the template based photo-zs may
therefore be expected to perform better for this subset than
for the IR or optical AGN population. Improvement in the
measured outlier fractions is consistent across all three sub-
sets, with the outlier fraction, Of (Table 2), measured for
the GPz estimates typically a factor of two lower.

When applied to the remaining majority of galaxies that
do not satisfy any of our AGN selection criteria, GPz is not
able to significantly improve upon the estimates produced
through template fitting – at least not when restricted to
using a set of filters that maximises the number of sources
that can be fitted. The performance of GPz with respect
to the consensus template estimates is mixed, with ≈ 20%
worse scatter but ≈ 20−40% better outlier fractions for the
machine learning estimates.

3.3.1 Accuracy of the error estimates

Following Paper I, we quantify the accuracy of the redshift
PDFs by examining the cumulative distribution of threshold
credible intervals, c, in a q-q plot. In the case of GPz, which
provides only uni-modal Gaussian uncertainties with centre
zi,phot and width σi, c can be calculated for an individual
galaxy analytically following

ci = erf

(
|zi,spec − zi,phot|

σi

)
. (2)

For each GPz estimate we also implement the addi-
tional magnitude-dependent error calibration in a similar
fashion to Paper I, varying the width of the Gaussian errors
in order to minimise the Euclidean distance between the
calculated distribution and the optimum 1:1 relation (see
also Gomes et al. 2017, for a similar analysis on uncertainty
calibration for GPz estimates). During the error calibration
procedure, we make use of the training, validation and test
defined when training GPz. Although GPz includes the ac-
curacy of the uncertainties within the metric it aims to min-
imise, the redshift PDFs output still typically underestimate

MNRAS 000, 1–13 (2017)
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Figure 3. Comparison of photometric redshift estimates versus the spectroscopic redshifts for each of the three AGN population subsets.

The left column shows the consensus template-based photo-z as calculated in Paper I. The centre and right-hand columns shows the
results from the Gaussian process estimates when trained using the flat and colour-based weighting schemes respectively.

Table 2. Definitions of statistical metrics used to evaluate photometric redshift accuracy and quality along with notation used throughout
the text.

Metric Definition

σNMAD Normalised median absolute deviation 1.48×median(|∆z| /(1 + zspec))

Bias median(∆z)
Of Outlier fraction Outliers defined as |∆z| /(1 + zspec) > 0.2

CRPS Mean continuous ranked probability score CRPS = 1
N

∑N
i=1

∫ +∞
−∞ [CDFi(z)− CDFzs,i(z)]

2dz - ?

the photometric redshift uncertainty. This overconfidence is
consistent across all three AGN estimators but is noticeably
worse when using the colour-magnitude weights in the cost-
sensitive learning.

In Fig. 4, we present the q-q plots of the raw and cal-
ibrated error distributions for each of the three AGN es-
timators - plotting only the validation and test subsets not
included in the fitting of the magnitude dependent error cal-

ibration. After the error calibration procedure has been ap-
plied, we see significant improvement in the accuracy of the
redshift PDFs in almost all cases and errors that are close
to the ideal solution.
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Figure 4. Q-Q (F̂ (c)) plots for the redshift PDFs for the two Gaussian process photo-z estimates using unweighted (blue) and colour-
magnitude weighted (red) training samples. The dot-dash and continuous lines show the results for the raw (as estimated by GPz) and

calibrated distributions respectively.

3.4 ‘Features’ in the optical photometry

The strong performance of the Gaussian process redshift
estimates in the regime where those from template fitting
struggle raises the question of what features in the optical
photometry is GPz using to derive the redshift information?
And secondly, are those features missing from the template
sets employed in the previous photo-z estimates? Or is the
failure due to other factors such as variability in the pho-
tometry?

Investigating the cause of each template-based photo-
z failure individually is beyond the scope of this paper.
However, we can very easily verify the existence of redshift-
dependent colour or magnitude relations upon which the
empirical photo-zs might be deriving their results. To illus-
trate this, in Fig. 5 we show how two example colours and
corresponding apparent magnitudes evolve with redshift for
the IR selected AGN population. In the redshift regime of
1 < z < 2 where GPz performs exceedingly well, it is clear
that there is a strong evolution in the 3.6µm−4.5µm colour
(with a strong feature at z ∼ 1.7) while the typical I−3.6µm
also become increasingly blue over this range. Coupled with
the colour-redshift relations are complementary magnitude-
redshift relations for the optical and mid-IR bands - the
evolution of I-band magnitude for a fixed I − 3.6µm colour
with redshift at z & 1 remains relatively constant while the
apparent 3.6µm magnitude shows a much clearer trend of
fainter magnitudes at higher redshift. Altogether it is there-
fore clear that at least for the IR AGN population, there are
redshift dependent magnitude or colour features to which
we can anchor empirical photo-z estimates.

The follow-up question raised at the beginning of this
section was whether the features GPz is basing its redshift
predictions from are absent within the templates. Sticking
with the example of IR AGN, the bump in 3.6µm − 4.5µm
at z ∼ 1.7 is not well represented in the Brown et al. (2014)
library - which does not include powerful AGN. But as il-
lustrated by the colour tracks in Fig. 5, the Salvato et al.
(2011, see also Hsu et al. (2014)) template set does a good
of filling the broad colour region of interest.

There are areas within the colour inhabited by the IR-
selected AGN population that the template do not cover,

specifically they do not extend to blue enough I − 3.6µm
colours at z > 1 and at 3.6µm − 4.5µm the templates are
no longer representative for this population in this colour-
space. Nevertheless, these deficiencies alone are unlikely to
account for the very poor template performance at z < 2
and there may be an additional root causes for these fail-
ures. Examination of the average residuals measured for the
best-fit templates (both for the free redshift determination
and when the redshift is fixed to the known spectroscopic
redshift) find no clear indication that any one individual
band or colour is responsible for the causing incorrect fits.

Future extensions to the existing template libraries that
better sample the full AGN colour space (Brown et al. in
preparation) will still likely offer significant improvements in
this regime. Due to the focus of this study on the GPz esti-
mates, we defer any further investigation of the AGN tem-
plate properties to future studies and instead concentrate
the rest of our analysis on the machine learning estimates
and those derived from them.

4 ‘HYBRID’ PHOTO-ZS - COMBINING GP
REDSHIFT ESTIMATES WITH TEMPLATE
ESTIMATES

One of the key conclusions of Paper I and earlier studies
in the literature (e.g. Dahlen et al. 2013; Carrasco Kind &
Brunner 2014b) was that no single photometric estimate
can perform the best for all source types or in all met-
rics. Furthermore, the combination of multiple estimates
within a statistically motivated framework can yield consen-
sus estimates that perform better than any of the individual
inputs. Given the very different limitations and systemat-
ics observed in the template and GPz photoz estimates, a
consensus photo-z that compounds the advantages of both
methods is clearly desirable.

To incorporate the GPz predictions within the hierar-
chical Bayesian (HB) combination framework presented in
Paper I, normal distributions based on position and cor-
rected variance estimate for each source are evaluated onto
the same redshift grid as used during the template fitting
procedure. Any source in the full training sample that does
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Figure 5. Selected observed colours as a function of redshift for
the IR-selected AGN population. The upper panel shows the op-

tical to mid-IR colour between the I and IRAC 3.6µm bands

while the lower panel shows the mid-IR colour between the IRAC
3.6µm and 4.5µm bands. In each panel, the colour of the data-

points corresponds to the apparent magnitude in one of the ob-

served bands. Dashed red lines indicate the colour-tracks as a
function of redshift for the XMM-COSMOS (Salvato et al. 2011)

templates which satisfy the IR AGN selection criteria of Donley

et al. (2012) at any redshift up to z = 3.

not have a photo-z estimate for a given GPz estimator (ei-
ther through not satisfying the selection criteria for a given
subset or lack of observations in a required band) is assumed
to have a flat redshift PDF. These sources therefore con-
tribute no information in the HB combination procedure, so
in the cases where only one estimate exists the consensus
estimate is entirely based on that single prediction.

For comparison with the template-based consensus es-
timates from Paper I, we calculate two different HB esti-
mates from our GPz estimates. Firstly, we calculate the HB
consensus photo-z based only on the four separate GPz es-
timates. Secondly, we then calculate the HB consensus es-
timate incorporating all three of the template based esti-
mates calculated in Paper I and the four machine learning
estimates from this paper to produce a hybrid estimate. In
both cases we follow the practice of Paper I and adopt a
magnitude based prior when an observation is assumed to
be ‘bad’.

In Fig. 6 we present the photo-z vs spectroscopic red-
shift distribution of the three separate HB consensus esti-
mates. To better illustrate the overall uncertainty and scat-
ter given the large number of sources, we show the stacked
redshift probability distributions within a spectroscopic red-

shift bin rather than individual point estimates. The left
panel of Fig. 6 illustrates the previously known limitations
of template-based photoz estimates for most AGN sources.
At z < 1 the template estimates perform well, but between
1 < z < 3 the photo-z probability distributions are ex-
tremely broad; possibly due to the lack of strong photometric
features in the optical SEDs in this regime. Additionally, the
degradation of the template photo-z quality towards higher
redshift may be a result of differences in the source popu-
lation selected at higher redshift; the galaxy template work
well for the low-luminosity AGN but fail for higher lumi-
nosity AGN where the host galaxy no longer dominates the
optical emission. At z & 3, the template-based estimates
begin to perform well again due to the redshifted Lyman-
continuum break moving into the observed optical bands.

It is worth noting that the extent of the template photo-
z issues at 1 < z < 3 are partly field specific, in that the rel-
ative depths of the near-infrared data available in the Boötes
field are shallow with respect to the optical and mid-infrared
data at wavelengths either side. As such, sources which may
have high signal-to-noise (S/N) detections in the optical
regime may still have very low S/N in the near-IR bands
that probe the rest-frame optical features (both in spectral
breaks and emission lines) at z & 1). Figure 5 of Paper I
shows that in fields with deeper photometry and finer wave-
length coverage (e.g. the COSMOS field Laigle et al. 2016)
the trends are not as extreme, particularly at 1 < z < 2.
Nevertheless, the improvement seen here is particularly en-
couraging for photo-z estimates in surveys without the same
levels of exceptional filter coverage as available in COSMOS.

In contrast to the trends observed in our template es-
timates, and consistent with the trends seen in individual
AGN estimates shown in Fig. 6, the GPz-only consensus es-
timates perform best in the region of 1 . z . 2. At lower
(z . 0.5) and higher (z & 2.5) redshifts, the GPz consensus
estimate becomes increasingly biased. It is these wavelength
regimes in which the training samples for the AGN popu-
lation are most sparse, as can be seen visually in the right
hand column of Fig.3.

Most encouraging however is the HB consensus estimate
incorporating both the template and machine learning based
predictions (right panel of Fig. 6). Visually, it is immediately
clear that the total combined consensus estimate combines
the advantages of both of the input methods.

This improvement can also be seen more quantitatively
by looking at the measured photo-z scatter and outlier
fraction for the AGN population as a function of redshift
(Fig. 7). At z < 1, the hybrid estimates match or im-
prove upon the scatter from the template estimates. Then,
at 1 < z < 3, the hybrid estimates match the improved
scatter and outlier fractions of the GPz estimates while the
template-based estimates perform very poorly. Finally, at
z & 3 when strong continuum features result in improved
template estimates, the hybrid estimates are still able to
perform comparably.

Fig. 8 shows the measured scatter and outlier fraction as
a function of apparent I-band magnitude. At all magnitudes
brighter than I ≈ 23.5, the hybrid estimates perform better
than either the template or GPz only estimates. The ob-
served improvement in scatter for the GPz only estimates
at the very faintest magnitudes (as compared to the tem-
plate or hybrid method) likely results from the cost-sensitive
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Boötes field. Lines show the results for sources that pass any of
the X-ray/Optical/IR AGN criteria outlined in Section 2.1.

learning increasing the importance of these faint AGN dur-
ing the optimisation procedure. However, it is evident that
the hybrid estimates are most similar in performance to the
template-only estimates in this regime, with the rise in scat-
ter and outlier fraction at I > 23 closely mirroring the ob-
served rise. The apparent inability of the hybrid consensus
estimates to mirror the performance of the best perform-
ing estimate could be seen as a failure of the hierarchical
Bayesian combination method at faint magnitudes.

Without a detailed inspection of all individual estimates
before and after Bayesian combination, it is not immediately
obvious what is causing this behaviour. Nevertheless, there
are two possible explanations. Firstly, the statistics shown in
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Figure 8. Photometric redshift scatter (σNMAD) and outlier frac-
tion as a function of I magnitude for AGN sources in the Boötes

field. Lines show the results for sources that pass any of the X-

ray/Optical/IR AGN criteria outlined in Section 2.1. At almost
all redshift ranges, the hybrid photo-z performance is comparable
or better to the best input methodology.

Fig. 8 do not take into account the additional signal-to-noise
criteria that are implicit to the GPz estimates, i.e. the lack of
estimates for sources that do not have magnitude estimates
in all bands required for GPz. The metric may therefore not
be a fair comparison at faint magnitudes. However, given
that all three AGN-targeted GPz estimates have detections
in the required bands for > 95% of the training sample, this
effect should not be particularly large.

Alternatively, if the individual errors on the template
estimates are systematically smaller than those of the GPz
estimates for the same sources (i.e. the redshift PDFs are
narrower), then the consensus estimate itself will converge
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Figure 9. Median positive 80% highest probability density confi-

dence intervals, ∆z1 , above the primary redshift solution, z1, as a
function of I magnitude for the AGN sources in the Boötes field.

We illustrate only the upper error bounds to improve clarity by

allowing a logarithmic scale. Within the primary peak, positive
and negative errors are found to be very symmetrical; negative

errors for each estimate follow the same magnitude trends.

towards those estimates. Evidence for this can be seen in
Fig. 9, where we show the median positive error as a func-
tion of magnitude for the three consensus estimates. Despite
having a larger scatter and outlier fraction across almost
all magnitudes, the average quoted error on an individual
source is smaller for the template based estimates.

4.1 Comparison to Brodwin et al. (2006)

As mentioned in the introduction, this study is not the first
to attempt to combine the different strengths of template-
based and empirical photo-z estimates. In addition to the
comparison of different methods for Bayesian combination of
template and machine learning estimates presented in Car-
rasco Kind & Brunner (2014b), Brodwin et al. (2006) have
also previously explored a hybrid photo-z method aimed at
improving estimates for AGN within the Boötes field.

Based on predominantly the same underlying photome-
try as used in this analysis, Brodwin et al. (2006) estimated
photo-zs using two approaches - firstly using template fitting
and secondly employing an empirical method using neural
networks (Collister & Lahav 2004). The most direct com-
parison we are able to make between the results of Brodwin
et al. (2006) and those presented in this work is via their
quoted estimates of the 95%-clipped photo-z scatter.

For AGN between 0 < z < 3 in the AGES (Kochanek
et al. 2012) spectroscopic sample, Brodwin et al. (2006) find
a scatter of σ95%/(1+z) = 0.12 and for galaxies between 0 <
z < 1.5 a lower scatter of σ95%/(1 + z) = 0.047. Restricting
our spectroscopic sample to contain only those from AGES
and requiring a 4.5µm detection to best match the Brodwin
et al. selection criteria, our hybrid photo-z estimate have
comparable 95%-clipped scatters of σ95%/(1+z) = 0.11 and
σ95%/(1+z) = 0.045 for sources classified by AGES as AGN
and galaxies respectively.

When comparing the two results it is important to
recognise that the template-fitting and the GPz estimates
trained for the galaxy population make use of additional

photometry not available at the time of Brodwin et al. (2006,
e.g. u, z and y). Some small improvement is therefore to be
expected.

A key improvement offered by the Bayesian combina-
tion framework employed in this work is that it is able to
make maximal use of the redshift information available for
a given source. In Brodwin et al. (2006), the choice of tem-
plate or neural-network based estimates for a given source is
a binary based on where a source with respect to the Stern
et al. (2005) IRAC colour criteria (similar to the criteria
we have used for selecting IR AGN). As seen in Fig. 3 the
performance of machine learning estimates for these sources
is significantly better over the redshift range of interest, so
this choice is well motivated. However, at higher redshifts
the machine learning estimates become increasingly biased
due to the sparsity of the training samples in this regime.
This bias is clearly visible both in Fig. 5 of Brodwin et al.
(2006) and in the centre panel of Fig. 6 of this work. Al-
though still imperfect, the hierarchical Bayesian combina-
tion procedure is able to fall back on the more accurate and
reliable template-based estimates at z & 2.5.

4.2 Hybrid photo-z performance for the radio
source population

Given our motivation in producing the best possible photo-z
estimates for the diverse population selected objects in forth-
coming radio continuum surveys, it is interesting to see how
the improvement seen in the optical/IR/X-ray selected AGN
population propagates through into the hybrid photo-z per-
formance for radio selected objects. In Fig. 10 we illustrate
the σNMAD, Of and CRPS performance of the template, GPz
and hybrid consensus redshift estimates in each of the source
population subsets. Across all subsets of the radio detected
populations, the hybrid photo-z estimates either match or
significantly improve upon the scatter and outlier fraction
performance of the best single method.

Furthermore, across all subsets of the radio population
the scatter is now σNMAD . 0.1, an improvement of up to a
factor of four compared to the template estimates. Despite
them not performing significantly better than the template
estimates for sources not optically classified as AGN, the in-
clusion of GPz estimates in the hierarchical Bayesian photo-
zs results in a factor of ∼ 2 improvement in outlier fraction
for the radio-detected subset of these sources.

Exploring the key quality statistics as a function of ra-
dio luminosity (Fig. 11) and flux (Fig. 12) we can see more
clearly that the greatest gain in improvement is for the most
luminous radio sources. For a given apparent radio flux, the
GPz and hybrid estimates offer no clear improvement in
terms of scatter but do improve the outlier fraction. This
behaviour is something we would expect to see, bearing in
mind that lower luminosity sources at low redshift domi-
nate the spectroscopic sample we are comparing (≈ 90% of
the spectroscopic sample is at z < 1). The rarer high lumi-
nosity radio sources for which GPz produces more accurate
photo-z estimates have a broad range of apparent fluxes and
therefore the robust scatter is not strongly affected but the
outlier fraction is.

The performance of the GPz-only estimates compared
to the template-only estimates as a function of radio power
could shed further light on the discussion in Section 3.4 on
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Figure 10. Visualised photometric redshift performance in three
metrics (σNMAD, Of, CRPS; see Table 2) for the different Boötes

field radio source subsamples. For all subsets of the radio-detected

population, the hybrid method performs better than either tem-
plate or GPz alone.

the causes of failures in the template fitting. That GPz per-
forms best for the most luminous radio AGN could sup-
port the idea that our selected template fits struggle most
in the regime where the AGN dominates the optical emis-
sion. Although in the local Universe the most powerful radio
sources are typically host-dominated in their optical emis-
sion, at higher redshifts the population is dominated by
QSO/Seyfert-like sources (e.g. Heckman & Best 2014, and
references therein). Within a deep survey field such as that
used in this work, the larger volume probed at high redshift
means that z > 1 sources are the dominate the high lumi-
nosity end of our sample. Further exploration of the different
methods as a more detailed function of radio luminosity and
redshift would clearly be valuable in better understanding
our methods and their strengths and limitations, however
the currently limited training sample makes this impracti-
cal.

4.3 Prospects and strategies for further
improvements

Despite the substantial improvement in photo-z accuracy
and reliability for the GPz and hybrid estimates, the inho-

0.0

0.1

0.2

0.3

NM
AD

Template
GPz
Template + GPz

22 23 24 25 26 27 28
log10(L150MHz) [W/Hz]

0.0

0.2

0.4

0.6

O f

22 23 24 25 26 27 28
log10(L150MHz) [W/Hz]

Figure 11. Photometric redshift scatter (σNMAD; upper panel)

and outlier fraction (Of ; lower panel) as a function of 150MHz
radio luminosity for all radio detected sources within the spectro-

scopic redshift range 0 < z < 3. In each plot we show the val-

ues for the template-only (circles), GPz-only (upward triangles)
and combined (downward triangles) consensus estimates. Sym-
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for all estimates are identical. Error-bars plotted for the outlier
fractions illustrate the binomial uncertainties on each fraction.

The hybrid estimate performs significantly better than either the

template or GPz-only estimates across the full range of radio lumi-
nosities probed in this field, with particularly large improvement

at the greatest radio powers.
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timates is not significant. However, the number of catastrophic
outliers in the hybrid estimates is lower than the template-only

estimates at all fluxes.

MNRAS 000, 1–13 (2017)



12 K. J. Duncan et al.

mogenous photo-z quality across the sub-populations within
the radio detected subset indicate that there is still poten-
tial for further improvements to be gained. With regards to
the GPz and resulting hybrid estimates, such improvements
could potentially come from several different aspects of the
methodology.

Firstly, as is the case in all empirical photo-z estimates,
the accuracy of GPz is limited by the training sample be-
ing used. Key to the production of accurate photo-zs based
on training samples is not necessarily the sheer size of the
training sample, but rather its ability to fully represent the
parameter space probed by the catalogs to which the method
will be applied. The effect of limited training samples can be
seen in the performance of GPz at both the very lowest and
highest redshifts, the regimes in which the training sample is
particularly sparse. Although our implementation of colour
and magnitude based weights within the cost-sensitive learn-
ing is able to mitigate some effects of the biased training
sample, it will never be able to account for regions of pa-
rameter space which are entirely absent from the training
data.

In coming years, the problems caused by limited train-
ing samples will be solved by forthcoming large-scale spec-
troscopic surveys. In Paper I we discussed how for the radio-
continuum selected population the > 106 radio source spec-
tra provided WEAVE-LOFAR (Smith et al. 2016) will pro-
vide an ideal reference and training sample for photo-z esti-
mates in all-sky radio surveys. While helpful for improving
the template-based estimates, such a training sample will be
transformational for machine-learning photo-z estimates of
radio sources in future continuum surveys.

In the short term however, it should be possible to bet-
ter leverage the spectroscopic redshift samples already avail-
able in the literature. The Herschel Extragalactic Legacy
Project (HELP: Vaccari 2016) is bringing together all pub-
licly available multi-wavelength datasets within the regions
of the sky observed in extragalactic Herschel surveys. The
collation and homogenisation of these many datasets of-
fers the possibility to leverage the extensive spectroscopic
datasets in some survey fields to significantly improve esti-
mates in other fields where training samples are particularly
sparse.

Secondly, in deep fields such as Boötes, the heteroge-
nous nature of the optical data means that GPz in its cur-
rent form is not able to make full use of the available infor-
mation. This problem is illustrated in Section 3.1, with the
only 38.3% of sources having magnitude information avail-
able in five filters and significantly fewer when additional
available bands are included. In the cases where magnitude
information is missing as a result of non-detections in the
data, training and fitting the photo-zs on fluxes rather than
magnitudes would largely solve this problem provided the al-
gorithms being used still perform well in the linear regime. In
many other cases however, the missing data can be a result of
instrumental effects (e.g. masked regions due to bright stars
or diffraction spikes) or differences in the survey coverage.

The flexibility of the hierachical Bayesian combination
procedure outlined in this paper allows for the possibility of
training GPz on any/all combinations of the photometric
data and combining those estimates to produce a consensus
estimate given all the available information. However, such a
procedure would rapidly become impractical in some fields.

Recent developments of the GPz algorithm whereby missing
data can be jointly predicted with the redshift (Almosallam
et al. in prep) will be of great benefit in the future and could
result in significant improvements to the empirical photo-z
estimates in these heterogenous deep fields.

Finally, there is also potential for further improvements
which can be made to the Bayesian combination. With addi-
tional improvements to the input redshifts themselves, sub-
optimal combinations of the various estimates such as those
seen at z ∼ 3 in Fig. 7 will have less of an effect on the fi-
nal consensus redshifts. Nevertheless, more informative pri-
ors could be incorporate into the combination procedure
which gives more weight to individual estimates in regions
of parameter space in which they are known to perform bet-
ter. Such an improvement is illustrated in Carrasco Kind &
Brunner (2014b), with the performance of Bayesian Model
Averaging (BMA) and Bayesian Model Combination (BMC)
exceeding that of hierarchical Bayesian combination in their
implementation. However, in the context of photo-zs for
AGN, we believe these gains will be very small compared
to the other strategies outlined in this section.

5 SUMMARY

Building on the first paper in this series which explored
the performance of template-based estimates (Duncan et al.
2018, Paper I), we have presented a study exploring how new
estimates from machine learning can be used to significantly
improve photo-z estimates for both the radio continuum se-
lected population and the wider AGN population as a whole.
Using the Gaussian process redshift code, GPz, we have pro-
duced photo-z estimates targeted at different subsets of the
galaxy population - infrared, X-ray and optically selected
AGN - as well as the general galaxy population. The GPz
photo-z estimates for the AGN population perform signif-
icantly better at z > 1 than photo-z estimates produced
through template fitting presented in Paper I. Compared to
the template-based photo-zs, GPz estimates for the IR/X-
ray/Optical AGN population have lower scatter and outlier
fractions by up to a factor of four.

By combining these specialised GPz photo-z estimates
with the existing template estimates through hierarchical
Bayesian combination (Dahlen et al. 2013; Carrasco Kind
& Brunner 2014b) we are able to produce a new hybrid
consensus estimate that outperforms either of the individ-
ual methods across all source types. The overall quality of
photo-z estimates for radio sources that are X-ray sources or
optical/IR AGN are vastly improved with respect to Paper
I, with outlier fractions and scatter with respect to spectro-
scopic redshifts reduced by up to a factor of ∼ 4.

For both the radio detected population with no strong
optical signs of AGN (i.e. radio AGN hosted in quiescent
galaxies or star-forming sources) our new methodology also
provides significant improvement. Despite the template and
GPz estimates performing very comparably when treated
separately, the combination of the two sets of estimates
yields outlier fractions which are a factor of ≈ 2 lower. In-
vestigating the new photo-z estimates as a function of radio
property, we find that the improvement observed for the ra-
dio selected population can likely be attributed to the high-
est luminosity radio sources for which the GPz estimates
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(and hence the resulting hybrid estimates) offer huge im-
provements.

The success of the method despite the small training
samples and heterogeneous datasets available is encouraging
for future exploitation of deep radio continuum surveys for
both the study of galaxy and black hole co-evolution and for
cosmological studies.
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