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We study asymptotically AdS Brans-Dicke (BD) backgrounds, where the Ricci tensor R is coupled to
a scalar in the radial dimension, as effective models of metals with a varying coupling constant. We show
that, for translationally invariant backgrounds, the regular part of the dc conductivity σQ deviates from
the universal result of Einstein-Maxwell-dilaton (EMD) models. However, the shear viscosity to entropy
ratio saturates the Kovtun-Son-Starinets (KSS) bound. Similar results apply to more general f(R) gravity
models. In four bulk dimensions we study momentum relaxation induced by gravitational and
electromagnetic axion-dependent couplings. For sufficiently strong momentum dissipation induced
by the former, a recently proposed bound on the dc conductivity σ is violated for any finite
electromagnetic axion coupling. Interestingly, in more than four bulk dimensions, the dc conductivity
for strong momentum relaxation decreases with temperature in the low temperature limit. In line with
other gravity backgrounds with momentum relaxation, the shear viscosity to entropy ratio is always
lower than the KSS bound. The numerical computation of the optical conductivity reveals a linear growth
with the frequency in the limit of low temperature, low frequency and large momentum relaxation. We
have also shown that the module and argument of the optical conductivity for intermediate frequencies
are not consistent with cuprates’ experimental results, even assuming several channel of momentum
relaxation.
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I. INTRODUCTION

Einstein general relativity assumes that gravity is medi-
ated by a tensor-two particle. Despite its immense con-
ceptual and phenomenological success, generalizations [1]
of general relativity, where gravity is also mediated by a
scalar or a vector, have been intensively studied mostly for
the potential interest in cosmology but also simply as toy
models of new ideas in gravity. One of the most influential,
though not the earliest [1], is the so-called Brans-Dicke
gravity (BD) [2] that aimed to reconcile Mach’s principle
with general relativity. Gravity is also mediated by a scalar
coupled linearly to the Ricci tensor. The action also has a
kinetic term for the scalar so BD has two coupling
constants. Physically this scalar can be understood as a
gravitation constant G that varies in time and space.
General relativity is usually preferred as it predicts the
same physics with fewer free parameters. Interestingly,
after a conformal transformation, BD gravity maps onto
Einstein gravity with a dilaton field. As a result of this
mapping, explicit analytical solutions of the BD gravity
equations of motion are known not only for Einstein gravity
but also for asymptotically dS and AdS spaces even if the
theory also contains massless photons modeled by the
Maxwell tensor. For a certain region of parameters it is also
possible [3] to map onto BD more general f(R) models
where the action is not linear in the Ricci tensor R.
In light of this rich phenomenology, we study asymp-

totically AdS BD backgrounds as effective duals of

strongly coupled metals. Previous holographic studies
[4,5] involving BD backgrounds were restricted to thermo-
dynamic properties only. By contrast here we focus on
transport observables such as the optical, dc conductivity
and shear viscosity in asymptotically AdS Brans-Dicke
backgrounds. Our motivation is to explore the impact of the
BD scalar running in the radial dimension, which acts as an
effective gravitational constant, on the transport properties
of holographic metals [6,7].
More specifically we address whether the universality

of the shear viscosity [8] and the regular part of the dc
conductivity [9–12], reported in translationally invariant
Einstein-Maxwell-dilaton (EMD) [6,7] backgrounds
with massless photons and no dilaton coupling to the
Maxwell tensor, also holds in BD backgrounds. We
have found that, while the universal shear viscosity
ratio also holds in BD backgrounds, the finite part of
the dc conductivity deviates from the universal result of
EMD theories.
We also investigate momentum relaxation by gravi-

tational axions, namely, axions coupled to the Ricci
tensor, a simplified form of BD backgrounds where the
scalar has no dynamics. Axions [13] together with
massive gravitons, or simply a random chemical poten-
tial [14–19], break translational invariance which modi-
fies substantially the conductivity and other transport
properties. For weak momentum relaxation the conduc-
tivity is to a good extent described by Drude physics.
For low temperatures or frequencies the conductivity is
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large, the so-called Drude peak, and decreases monoto-
nously. It was observed, in all models studied, that no
matter the strength of the momentum relaxation the
conductivity of Einstein-Maxwell holographic metals
was always above a certain bound which precludes a
metal-insulator transition. In part based on this numeri-
cal evidence, the existence of a lower bound in the
conductivity of more complicated holographic models
was conjectured [20]. However, in two recent papers
[21,22] violations of this bound were reported in models
where the axion is coupled to the Maxwell tensor,
effectively screening charge. Here we show that gravi-
tational axions, which do not screen charge, also lead to
violations of the bound in the limit of strong, although
still parametrically small with respect to the rank of the
gauge group, axion gravitational coupling. For three
space dimensions the dc conductivity decreases with T
for low temperatures even without any other source of
momentum relaxation.
We also study the optical conductivity in BD back-

grounds. The optical conductivity in EMD models with
translational invariance in the limit of small frequencies
and temperatures is controlled by the infrared (IR)
geometry that for the Reissner-Nordström background
is AdS2 leading to σ ∼ ω2. The effect of momentum
relaxation in the optical conductivity of EMD theories
was investigated in [7] but it is not yet fully understood
whether, for low frequencies and strong momentum
relaxation, the conductivity scales as a power law faster
than linear as in Mott insulators and many-body localized
states [23].
By contrast, in a model in which momentum relaxation

occurs by an oscillatory chemical potential, it was
claimed [24] that the modulus of the optical conductivity
for intermediate frequencies decays as a power law with
an exponent equal to that observed in most cuprates.
Here we find that, even assuming several channels of
momentum dissipation, we cannot reproduce the modules
and argument observed in cuprates. However, we have
found that, for strong momentum dissipation and close to
zero temperature, the optical conductivity increases lin-
early, not quadratically with the frequency, for both
gravitational and electromagnetic axions. Finally, we
have computed the ratio of the shear viscosity and the
entropy density in BD holography with momentum
relaxation. We have observed that, unlike the translation-
ally invariant case, the ratio is temperature dependent. It
decreases as the strength of momentum relaxation
increases and it is always below the KSS bound. It
can be made arbitrarily small for a finite amount of
momentum relaxation.
The organization of the paper is as follows. In Sec. II we

compute analytically the regular part of the dc conductivity
and show that the shear viscosity to entropy ratio in
translationally invariant BD backgrounds and other

generalized theories of gravity is given by the KSS bound.
In Sec. III we study the dc conductivity in BD-like
backgrounds with momentum relaxation induced by cou-
pling the axion and the Ricci tensor in two boundary space
dimensions. In Sec. IV we address momentum relaxation
by gravitational axions in higher space dimensions. In
Sec. V we study the optical conductivity in BD back-
grounds. We also compute the module and argument of the
complex conductivity in order to compare with results in
cuprates. In Sec. VI we compute the shear viscosity to
entropy density ratio including different sources of momen-
tum relaxation. We conclude with a list of interesting
problems for further research and a short summary of the
main results.
Next we introduce the BD action, the equations of

motion and its analytical solution.

II. DC CONDUCTIVITY IN TRANSLATIONALLY
INVARIANT BD HOLOGRAPHY

We start our analysis by introducing the BD action and
the equations of motion (EOM). We then compute the
conductivity for a general background ansatz and show
how it is expressed in terms of thermodynamic quantities
and the value of the scalar at the horizon. This is different
from EMD models with no coupling between the dilaton
and the Maxwell field where it only depends on thermo-
dynamic quantities.
We then find that a calculation in the Einstein frame,

resulting from a conformal transformation, leads to the
same result. Finally, we discuss other modified gravity
models that fall within the BD universality class.

A. Brans-Dicke action and equations of motion

The Brans-Dicke-Maxwell action in a dþ 1-dimensional
manifold is given by

S¼
Z
M
d½dþ1� ffiffiffiffiffiffi

−g
p �

ϕR−
ξ

ϕ
ð∇ϕÞ2−VðϕÞ−Y

4
F2

�
: ð1Þ

Note that we are working in units where 2κ2 ¼ 16πGN ¼ 1
and we include a nontrivial coupling YðϕÞ between the
Brans-Dicke scalar ϕ and theMaxwell term, as well as a (for
now arbitrary) scalar potential VðϕÞ. In this model gravity is
not onlymediated by themassless symmetric rank two tensor
g but also by the real scalar field which has its own dynamics
and a kinetic term parametrized by ξ ≥ 0.1 Intuitively the
nonminimal couplingϕR can be interpreted as the running of
Newton’s constant “GðxÞ≡GN=ϕðxÞ” [3].

1The standard notation in the literature for the Brans-Dicke
coupling is ω. We refrain from this notation to avoid confusion
with the frequency ω in the optical conductivity σðωÞ.
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Variation of this action gives the following EOMs:

ϕ

�
Rab −

1

2
Rgab

�
¼ ξ

ϕ

�
∇aϕ∇bϕ −

1

2
ð∇ϕÞ2gab

�

−
1

2
VðϕÞ þ ð∇a∇bϕ −□ϕgabÞ

−
Y
2

�
FacFc

b þ
1

4
F2gab

�
;

∂að
ffiffiffiffiffiffi
−g

p
YðϕÞFabÞ ¼ 0;

□ϕ ¼ 1

2ðd − 1Þξþ 2d

×

�
ðd − 1ÞϕV0ðϕÞ − ðdþ 1ÞVðϕÞ

−
ðd − 3Þ

4
F2 −

Y 0ðϕÞ
4

ϕF2

�
:

First, note that there is an extra term ð∇a∇bϕ −□ϕgabÞ for
the scalar in Einstein’s equations. This term comes from
the Palatini identity δgR ¼ Rabδgab −∇cðδΓc

ab − gacδΓb
cbÞ

which in Einstein gravity can be integrated to give a
boundary term. Evaluating this term in normal coordi-
nates and using Stoke’s theorem yields the extra term
previously mentioned. Second, terms on the left-hand
side of the scalar equation come from the Ricci scalar
factor that is solved by taking the trace of Einstein’s
equations.
An important observation is that for Y ¼ 1 and d ¼ 3 the

Maxwell term in the scalar equation vanishes. This is a
consequence of the fact that in d ¼ 3 the electromagnetic
energy-momentum tensor is conformal and therefore trace-
less, and does not source the Ricci scalar. This invariance
will play a crucial role later in our analysis.

B. Regular part of the dc conductivity
for a general ansatz

We now present the computation of the conductivity
at zero frequency in a generic static and spherically
symmetric AdSdþ1 black brane. As usual in translationally
invariant theories, for vanishing frequency σðω → 0Þ →
σQ þ KδðωÞ, where we use the standard notation [11]: K
for the Drude weight and σQ for the regular part of the dc
conductivity. In this section we are only interested in the
latter. We derive a general expression for σQ that highlights
the universality of our results. An explicit solution is
worked out in Appendix A.

1. Background and conserved charges

Consider the following static and spherically symmetric
ansatz for the field equations,

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞδijdxidxj; ð2Þ

A ¼ atðrÞdt; ð3Þ

ϕ ¼ ϕðrÞ: ð4Þ

We assume that this chart is globally defined and
describes an asymptotically AdSdþ1 black hole. More
precisely, we require that AðrÞ ¼ BðrÞ−1 ¼ CðrÞ ¼ r2 as
r → ∞ (asymptotic boundary) and that AðrÞ ∼ BðrÞ−1 ∼
4πTðr − r0Þ for r0 > 0. Concerning the fields, we need to
require that Yð∞Þ ¼ 1, ϕð∞Þ ≠ 0 and VðϕÞ ∼ 2Λϕ close
to the boundary and that they are regular at the horizon
r ¼ r0. Moreover we impose atðr0Þ ¼ 0.
For this ansatz we use the existence of two radially

conserved charges in order to simplify the computation of
the conductivity. The simplest one is the charge density,
which can be obtained by looking at the (t) component of
Maxwell’s equations,

∂að
ffiffiffiffiffiffi
−g

p
YðϕÞFatÞ ¼ ∂rð

ffiffiffiffiffiffi
−g

p
YðϕÞgrrgtta0tÞ ¼ 0:

Therefore the charge density

ρ ¼ YC
d−1
2ffiffiffiffiffiffiffi

AB
p a0t ð5Þ

is radially conserved. The second conserved quantity is
related to the geometry. Consider the ðttÞ and the ðxxÞ
components of the Brans-Dicke equations with one raised
index:

ϕ

�
Rt
t −

1

2
Rgtt

�
¼ −

Y
2
FtrFtr þ

�
−
Y
8
F2 þ ξ

2ϕ
ð∇ϕÞ2

þ 1

2
V −□ϕ

�
gtt þ∇t∇tϕ;

ϕ

�
Rx
x −

1

2
Rgxx

�
¼

�
−
Y
8
F2 þ ξ

2ϕ
ð∇ϕÞ2 þ 1

2
V −□ϕ

�
gxx

þ∇x∇xϕ:

Note that the assumption ∂tϕ ¼ ∂xϕ ¼ 0 is crucial in this
analysis. For our ansatz, gtt ¼ gxx ¼ 1 and therefore we
subtract the above expression to give

ϕðRt
t − Rx

xÞ ¼ −
Y
2
FrtFrt þ∇t∇tϕ −∇x∇xϕ: ð6Þ

In order to write this as a total derivative, we will make use
of the following identities,

ffiffiffiffiffiffi
−g

p
Rt
t ¼ −

1

2
∂r

�
1ffiffiffiffiffiffiffi
AB

p C
d−1
2 A0

�
;

ffiffiffiffiffiffi
−g

p
Rx
x ¼ −

1

2
∂r

� ffiffiffiffi
A
B

r
C

d−3
2 C0

�
;
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which are subtracted to give

ffiffiffiffiffiffi
−g

p ðRt
t − Rx

xÞ ¼ −
1

2
∂r

�
1ffiffiffiffiffiffiffi
AB

p C
dþ1
2

�
A
C

�0�
:

Regarding the right-hand side, we have

∇t∇tϕ −∇x∇xϕ ¼ gtt∇t∇tϕ − gxx∇x∇xϕ

¼ −ðgttΓr
tt − gxxΓr

xxÞϕ0

¼ 1

2B

�
A0

A
−
C0

C

�
ϕ0;

and therefore

ffiffiffiffiffiffi
−g

p ð∇t∇tϕ −∇x∇xϕÞ ¼
C

dþ1
2

2
ffiffiffiffiffiffiffi
AB

p
�
A
C

�0
ϕ0:

Taking into account that
ffiffiffiffiffiffi−gp

YFrt ¼ ρ, we finally rewrite
Eq. (6) as

ϕ∂r

�
1ffiffiffiffiffiffiffi
AB

p C
dþ1
2

�
A
C

�0�
¼ ρa0t −

C
dþ1
2ffiffiffiffiffiffiffi
AB

p
�
A
C

�0
ϕ0; ð7Þ

which is expressed as a total derivative,

∂r

�
ϕffiffiffiffiffiffiffi
AB

p C
dþ1
2

�
A
C

�0
− ρat

�
¼ 0: ð8Þ

In previous works, this conserved charge was related to
thermodynamical quantities [9–11]. Indeed, by integrating
the conserved charge, evaluating it at the horizon and using
the boundary condition atðr0Þ ¼ 0 we get

ϕffiffiffiffiffiffiffi
AB

p C
dþ1
2

�
A
C

�0����
r¼r0

¼ ϕðr0Þffiffiffiffiffiffiffi
AB

p Cðr0Þd−12 A0ðr0Þ ¼ sT

which is exactly the same result obtained previously. Note
that we use the fact that the entropy in BD theory satisfies

S ¼ 1

4

Z
r¼r0

d½d�xϕ ffiffiffiffiffiffi
−g

p

instead of the standard area law. This is another simple
manifestation of the idea that the strength of gravity in BD
backgrounds is not constant, as in Einstein gravity, but
governed by the scalar “G=ϕ” [3].2 Surprisingly, the scalar
field fits nicely to produce the same thermodynamic result.

For a general r, we then have

sT ¼ ϕffiffiffiffiffiffiffi
AB

p C
dþ1
2

�
A
C

�0
− ρat: ð9Þ

Note that in particular atð∞Þ ¼ μ. Therefore using the
Smarr relation sT þ μρ ¼ ϵþ P and the above expression
evaluated at the boundary r → ∞ we get

ϵþ P ¼ ϕffiffiffiffiffiffiffi
AB

p C
dþ1
2

�
A
C

�0����
r¼∞

:

2. Fluctuations

In order to compute conductivities, we need to study
fluctuations around the background solutions. It is
sufficient to consider the following set of consistent
fluctuations:

ds2 → ds2 þ 2htxðt; rÞdtdx; A → Aþ axðt; rÞdx:

The EOM for ax is obtained by linearizing the (x)
component of Maxwell’s equations,

∂að
ffiffiffiffiffiffi
−g

p
YgacgxdFcdÞ

¼∂rð
ffiffiffiffiffiffi
−g

p
Ygrrgxx∂raxÞ−∂rð

ffiffiffiffiffiffi
−g

p
Ygrrgxta0tÞ

þ∂tð
ffiffiffiffiffiffi
−g

p
Ygttgxx∂taxÞ

¼∂r

� ffiffiffiffi
A
B

r
C

d−3
2 Y∂rax

�
−

ffiffiffiffi
B
A

r
C

d−3
2 Y∂2

t axþρ∂rðgxxhtxÞ¼0:

To eliminate the htx term in the above expression we look
at the constraint equation given by the linearized ðrxÞ
Brans-Dicke equation,

∂rðgxxhtxÞ ¼ −
gxx

ϕ
Ya0tax:

Inserting this in the above expression and solving for a0t in
the function of the charge density we get

ϕC
dþ1
2ffiffiffiffiffiffiffi

AB
p ∂r

� ffiffiffiffi
A
B

r
C

d−3
2 Y∂rax

�
−

ffiffiffiffi
B
A

r
C

d−3
2 Y∂2

t ax − ρ2ax ¼ 0:

We now use the conserved charge (8) to rewrite the above
equation as

∂r

�
Cd−1Yϕ

B

�
A
C

�0∂rax −
A
C
ρ2ax

�
−

ffiffiffiffi
B
A

r
C

d−3
2 Y∂2

t ax ¼ 0:

As long as we are only interested in the regular part of
the dc conductivity, we can set ∂2

t ax ¼ 0. The resulting
equation is easily integrated to give

2Note that in standard units the area law is
S ¼ 1

4G

R
r¼r0

d½d�x ffiffiffiffiffiffi−gp
.
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Cd−1Yϕ
B

�
A
C

�0∂rax −
A
C
ρ2ax ¼ constant:

Black brane boundary conditions set Aðr0Þ ∼ 1=Bðr0Þ ¼ 0.
Regularity of the fields at the horizon fixes the constant
above to zero. Moreover, without loss of generality we set
limr→∞ϕðrÞ≡ 1 at the boundary. With this information the
equation for the fluctuation is easily integrated:

að0Þx ðrÞ ¼ exp

�
−
Z

∞

r

ABρ2

YϕðA=CÞ0Cd−2 dr

	

¼ exp
�
−
Z

∞

r

Yða0tÞ2
ϕCðA=CÞ0 dr

	
;

where að0Þx ðrÞ is the independent solution of the equation
that tends to 1 at the boundary and determines the regular
part of the conductivity.3 We can use the charges (5) and (9)
to perform the integral explicitly:

Z
∞

r

Yða0tÞ2
ϕCðA=CÞ0 dr ¼

Z
∞

r

a0t
at þ sT=ρ

dr

¼ logðatðrÞρþ sTÞj∞r
¼ log

ϵþ P
atðrÞρþ sT

;

where we have used the Smarr relation. This implies that

að0Þx ðrÞ ¼ atðrÞρþ sT
ϵþ P

;

and in particular

að0Þx ðr0Þ ¼
sT

ϵþ P
;

where we use the boundary condition atðr0Þ ¼ 0. Finally,
the regular part of the dc conductivity is given by

σQ ¼ Yðr0ÞCðr0Þd−32 ðað0Þx ðr0ÞÞ2

¼ Yðr0ÞCðr0Þd−32
�

sT
ϵþ P

�
2

:

This result is the same as the one obtained in EMD models
[9–11]. It is interesting to observe that in these works
Tt
t ¼ Tx

x is given as a necessary condition for the univer-
sality of σQ. Here this condition is clearly violated, but we
can still write the equation for the fluctuation as a total
derivative. However, taking into account the modified area
law for the entropy density,

σQ ¼ Yðr0Þ
ϕðr0Þd−3d−1

�
s
4π

�d−3
d−1
�

sT
ϵþ P

�
2

; ð10Þ

we highlight the explicit dependence of σQ on the BD field
ϕ. For d > 3, we thus expect the scalar field to renormalize
the universal contribution to the conductivity. To under-
stand better the possible effects of ϕ, we need to evaluate its
behavior at the horizon, in particular, the low and high
temperature scaling of ϕðr0Þ.
In contrast with the previous discussion, those questions

do not have a universal answer. It depends on the particular
solution for the background. In the next section, we will see
that the BD model can be formally mapped onto an EMD
model by a conformal transformation. Explicit solutions for
the latter have been widely studied in both the context of
gravity [25,26] and of holography [6,27] (and references
therein). As an illustration of this method we study in
Appendix A a particular solution, and show explicitly how
it is mapped to BD.
A simple numeric fit for the solution (A1) suggests two

scaling regimes. For low temperature, ϕðTÞ ∼ a tends,
for a fixed charged density, to a temperature-independent
constant 0 < a < 1. This indicates that close to extremality
the temperature scaling of σQ coincides with the EMD
result, although up to a numerical prefactor a. For high
temperatures, we find that ϕðTÞ ∼ T−δ for δ ≥ 0, sug-
gesting that ϕ → 0 asymptotically at the horizon for
sufficiently high temperatures. Here δ is a function of both
the Brans-Dicke parameter ξ and the dimensionality d, and
monotonically decreases with ξ ≥ 0 for fixed d. For
example, for d ¼ 4 and ξ ¼ 0, we have δ ≈ 0.4, while
δ ≈ 0.22 for ξ ¼ 1. In particular we have δ → 0 as ξ → ∞
for any dimension d > 2.
One can interpret this behavior in a heuristic way. First

note that Newton’s constant G is related to the string
coupling constant gs ∼G. If we naively interpret the BD
coupling G=ϕ as a dynamical Newton’s constant, the flow
of ϕ can be interpreted as a flow from weaker (ϕ ≫ 1) to
stronger (ϕ ≪ 1) coupling. More specifically, for the
background solution of Appendix A ϕ ∈ ½0;ϕðr0Þ� with
0 < ϕðr0Þ ≤ 1. Therefore the running of ϕ from the
boundary to the horizon corresponds in the dual field
theory to a flow from weaker to stronger coupling. For the
purpose of the conductivity, this running has the effect of
increasing σQ by a factor ϕðr0Þ−d−3

d−1. Although tempting,
one needs to be cautious with this heuristic interpretation.
In the saddle point approximation, exact only in the
N → ∞ limit, we always have gs ≪ 1 and λ ¼ gsN ≫ 1.
Thus this interpretation should not be taken seriously in the
limit of fixed large N and ϕðr0Þ → 0, where the saddle
point is clearly not valid.4

3The second solution can be obtained using the Wronskian.
For further details see [11].

4For this reason we employ the term “weaker” instead of
“weak.”
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3. Conformal transformations and universality

The explicit result for the regular part of the dc
conductivity (10) is also expected from a well-known trick
broadly used in the Brans-Dicke literature that we now
discuss (see for example [28] and references within).
Consider the following conformal mapping of the

metric g,

ḡ ¼ ϕ
2

d−1g:

Taking into account the transformation in the volume
element and in the Ricci scalar, the action reads

S̄¼
Z
M
d½dþ1� ffiffiffiffiffiffi

−g
p �

R̄−
4

d−1
ð∇̄ϕ̄Þ2− V̄ðϕ̄Þ− Ȳðϕ̄Þ

4
F̄2

�
;

where we have defined

α ¼ d − 3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þξþ d

p ϕ̄ ¼ d − 3

4α
logϕ ð11Þ

V̄ðϕ̄Þ ¼ ϕ−dþ1
d−1VðϕÞ Ȳðϕ̄Þ ¼ Yðϕ̄Þe−4αϕ̄

d−1; ð12Þ

and all bar …̄ quantities are computed with respect to the
metric ḡ. Note that for d ¼ 3 the Maxwell coupling is not
affected by the conformal mapping. This is a consequence
of the fact that electromagnetism is conformal in d ¼ 3. It is
also useful to note that ϕ̄ is well defined for d ¼ 3 since α
has a factor d − 3 as well.
This is nothing but the well-known Einstein-Maxwell-

dilaton action. This action has been widely studied in the
context of string theory and effective holographic models
[5–7,29]. This map provides a useful way of constructing
solutions to BD gravity, since solutions of EMD theory
are well known. A particularly explicit solution that
illustrates this point is given in Appendix A. More
interestingly, it is known that the regular part of the
dc conductivity in such models takes the (almost)
universal form

σ̄Q ¼ Ȳðr0Þ
�

s̄
4π

�d−3
d−1
�

s̄ T̄
ϵ̄þ P̄

�
2

:

It is not hard to check that the thermodynamic quantities
ðs̄; T̄; ϵ̄; P̄Þ are invariant under the conformal mapping.5

The only part of σ̄Q that is not invariant is the
nonuniversal charge coupling Ȳ, which transforms as
Ȳðϕ̄Þ ¼ ϕ−d−3

d−1YðϕÞ and gives the explicit result computed
in the previous section.
This raises the interesting question of whether there are

other theories of modified gravity that can be cast as an

EMD theory in the Einstein frame, and if so, which those
theories are. Indeed, this question has been much discussed
in the gravity literature [30–32]. There has been a con-
troversial debate on whether theories that are related by
field redefinition or conformal transformation describe
gravitationally6 the same theory or not [33]. A full
discussion of those intricate questions is beyond the scope
of the paper. Here we limit our discussion to the fact that
conformal transformations are a convenient tool to study
dynamically equivalent theories.
A well-known class of theories that can be mapped

into BD are fðRÞ theories of gravity, defined through the
action

S ¼
Z
M

d½dþ 1�x ffiffiffiffiffiffi
−g

p
fðRÞ þ Smatter;

where fðRÞ is a generic function of the Ricci scalar R and
Smatter includes any other fields coupled to the metric, but
not to R. One can introduce an auxiliary field χ to rewrite
the above equation as

S ¼
Z
M

d½dþ 1�x ffiffiffiffiffiffi
−g

p ½fðχÞ þ f0ðχÞðR − χÞ� þ Smatter:

Variation with respect to χ gives f00ðχÞðR − χÞ ¼ 0, so as
long as f00ðχÞ ≠ 0 this constraint imposes χ ¼ R and we
recover the initial action. Note that this is also a sufficient
condition for fðRÞ to be invertible. Now defining ϕ¼f0ðχÞ
and VðϕÞ ¼ χðϕÞϕ − fðχðϕÞÞ we can write

S ¼
Z
M

d½dþ 1�x ffiffiffiffiffiffi
−g

p ðϕR − VðϕÞÞ þ Smatter;

which is precisely a BD action with ξ ¼ 0 and potential
VðϕÞ. This procedure is nothing but the Legendre trans-
form of the action with respect to the conjugate field ϕ.
Taking Smatter ¼ − 1

4

R
YðrÞF2, we proceed with the com-

putation of the regular part of the conductivity as before
to get

σQ ¼ Yðr0Þ
f0ðRðr0ÞÞd−3d−1

�
s
4π

�d−3
d−1
�

sT
ϵþ P

�
2

:

This illustrates how a combination of a conformal trans-
formation and a Legendre transform can be used to
considerably simplify calculations. Indeed, this procedure
is much more general, and can be applied to other theories
such as Palatini gravity or fðϕÞ couplings to the Ricci [33].
An interesting example of the latter is a conformal coupling
fðϕÞ ¼ 1þ 1

6
ϕ2 that appears naturally in one-loop dia-

grams of string theory [34].

5This is essentially a consequence of the regularity of ϕ at the
horizon.

6By gravitationally we mean the geodesics, conservation of the
energy-momentum tensor, energy conditions, etc.
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It is tempting to apply this construction to other theories
of gravity such as Gauss-Bonnet, which in holography
effectively correspond to leading 1=N corrections in the
dual field theory. However, Gauss-Bonnet theories contain
terms such as RabRab which introduce further nonlinearity
and thus make the Legendre transformation difficult [32].
Therefore Gauss-Bonnet gravity does not fall under BD
universality.
A natural question to ask is what happens with other

transport coefficients. For example, both the shear viscosity
and the entropy contain the same power of G, and therefore
η=s does not depend on G. As a consequence, we expect
η=s ¼ 1=4π in BD holography to saturate the KSS bound.
This is just a particular example of a general result that
any theory related to standard gravity via a conformal
transformation indeed saturates the KSS bound [35,36].
However, quantities such as the entanglement entropy
should be sensitive to ϕ in the expected way
(G → Gϕ−1). Indeed this was explicitly calculated in the
context of fðRÞ theories, and agrees with our discussion
since ϕ ¼ f0ðRÞ [37–39].
This discussion applies only to theories with no momen-

tum relaxation. In the rest of the paper we focus on the
description of transport in BD holography with momentum
dissipation.

III. MOMENTUM RELAXATION AND DC
CONDUCTIVITY IN BD HOLOGRAPHY

We now study the effect of momentum relaxation in the
transport properties of the field theory dual of BD gravity.
We consider the linear coupling to the Ricci scalar to be a
function of the gradient of axion fields that explicitly break
diffeomorphism invariance in the boundary spacelike
coordinates:

S ¼
Z

d½dþ 1�x ffiffiffiffiffiffi
−g

p �
ZðTrXÞR − 2Λ

− VðTrXÞ − YðTrXÞ
4

F2

�
; ð13Þ

where TrX ¼ 1
d−1

P
I∇μXI∇μXI and XI ¼ αxI . We use the

metric ansatz of Eq. (2) with A ¼ g, B ¼ 1=g and C ¼ r2c:

ds2 ¼ −gðrÞdt2 þ dr2

gðrÞ þ r2cðrÞδijdxidxj;

i ¼ 1;…; d − 1; r ∈ ½r0;∞Þ: ð14Þ

Assuming that g → r2 and c → 1 for large r and g has a
(double) single zero at (zero) finite temperature, which
defines the horizon, we follow the procedure devised by
Donos and Gauntlett [40] to compute the dc conductivity
from the solution of the EOMs at the horizon.

We add a perturbation in Ax linear in time, while the
axion and metric perturbations are independent of time,

A → Aþ ðaxðrÞ − EtÞdx; Xx → Xx þ χðrÞ;
ds2 → ds2 þ 2r2htxðrÞdtdxþ 2r2hrxðrÞdrdx:

Maxwell’s equation for ax is

∂r½Y
ffiffiffiffiffiffi
−g

p
grrðgtxFrt þ gxxFrxÞ� ¼ 0; ð15Þ

which leads to the radially conserved quantity:

J ¼ −Yrd−3cd−3
2 ga0x − htx

ρ

c
: ð16Þ

This conserved quantity is evaluated at the horizon where
htx and ax are obtained as we discuss below.
The perturbation on the gauge field close to the horizon

is obtained from Eq. (16) by choosing J such that ax is
ingoing in the horizon:

a0x ∼ −
E
g
⇒ ax ∼ −Ev; ð17Þ

where v is the ingoing Eddington-Finkelstein coordinate
v ¼ tþ r�, given in terms of the tortoise coordinate
dr� ¼ dr

g .
Equation (17) gives the first term inside the parentheses

of Eq. (16). To obtain the second term, we combine the ðxtÞ
and ðxxÞ Einstein’s equations. Since we will evaluate them
at the horizon, we will only write down explicitly the
nonzero terms after taking the limit r → r0.
For clarity we write down Einstein’s equations only for

d ¼ 3:

ZGab ¼
1

2
Tab þ

1

2
Zab;

Tab ¼ Y

�
Fc
aFbc −

1

4
gabF2

�
− ð2Λþ VÞgab

þ
X
I

∇aXI∇bXI

�
− _V −

_Y
4
F2 þ _ZR

�
;

Zab ¼ 2ð∇a∇b − gab∇c∇cÞZ; ð18Þ

where the dot derivative stands for derivativewith respect to
TrX ¼ 1

2
gab

P
I∂aXI∂bXI and R is the Ricci scalar.7

7The full dynamical stability of the model Eq. (13) is beyond
the scope of the paper. We thank Oriol Pujolàs and Matteo
Baggioli for pointing out the occurrence of third order time
derivatives. These occur beyond the linear analysis and have the
potential to further restrict the parameters for which the model is
stable.
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The ðtxÞ Einstein’s equation is

Oðhtx0; htx00Þ þ
r2

2
Zhtxr2

�
g00 þ g0

�
2

c
þ c0

c

�
þ � � �

�

¼ r2

4
htxð−4Λ − 2V þ Ya0t2Þ þ

1

2
gYata0x

þ 1

2
r2g _ZTrX0htx0 −

rhtx
2c

½2rcg0 _ZTrX0 þ � � ��; ð19Þ

where the dots and the terms Oðhtx0; htx00Þ are zero at the
horizon, the prime derivative is with respect to r and
TrX0 ¼ ∂rTrX. The first two terms on the right-hand side
come from Tab and the last term from Zab. In order
to simplify Eq. (19) we eliminate c00ðrÞ from the ðttÞ
Einstein’s equation and substitute it into the ðxxÞ Einstein’s
equation. The result is given in Eq. (20) by specifying Gxx,
Txx and Zxx separately,

ZGxx ¼
r2c
2

Zg00 þ r2Z
4

�
c0

c
þ 2

r

�
g0

þ r4Z
8

4Λþ 2V þ Ya0t2

k2 _Z − r2cZ
þ � � � ;

Zxx ¼
α2 _Zg0

2

�
c0

c
þ 2

r

�
þ α2r2c _Z

4

4Λþ 2V þ Ya0t2

α2 _Z − r2cZ
þ � � � ;

1

2
Txx ¼

α2 _Z
2

g00 þ α2 _Z
2

�
c0

c
þ 2

r

�
g0

þ r2Z
4

r2cð4Λþ 2V − Ya0t2Þ þ α2ð−2 _V þ _Ya0t2Þ
α2 _Z − r2cZ

þ
_Z
4

2α2 _V þ ð2α2r2cY − α4 _YÞa0t2
α2 _Z − r2cZ

þ � � � ; ð20Þ

where the dots vanish at the horizon. Combining Eqs. (20)
and (19) allows us to eliminate htx. Its value at the horizon
r ¼ r0 is used to calculate the dc conductivity from
ReðσdcÞ ¼ J=E. Before we do so, we define the expansions
of the metric functions g and c close to the horizon as

g ∼ g1

�
1 −

r0
r

�
þ � � � ;

c ∼ c0 þ c1

�
1 −

r0
r

�
þ � � � : ð21Þ

Restoring arbitrary bulk dimensionality dþ 1, the temper-
ature is

T ¼ 1

4π

c0r0
2c0 þ c1

4Λþ 2Vðr0Þ þ Yðr0Þa0tðr0Þ2
2α2 _Zðr0Þ
r2
0
c0

− ðd − 1ÞZðr0Þ
; ð22Þ

where we have used TrX ¼ α2

r2c to simplify the denominator.
The dc conductivity, obtained from Eqs. (16) and (17),

and the value of htx at the horizon (calculated as
indicated previously), is given by the following compact
expression,

ReðσdcÞ ¼ Y0rd−30 c
d−3
2

0 þ ρ2

m2
eff

;

m2
eff ¼ 2c

d−1
2

0 rd−10 ðTAþ Z2
0B þ _Z0CÞ ð23Þ

where T is the temperature from Eq. (22) and A, B and C
are given in Eq. (24). The term a0t ¼ ρ

YðrÞrd−1cðrÞd−12
is also

evaluated at the horizon. The subscripts 0 in Eqs. (23)
and (24) indicate that the variable is evaluated at the
horizon.
Equation (23) suggests that even at zero temperature the

conductivity receives a correction given by the _Z2
0C term.

We note that although this is a fully analytical expression
for the conductivity the metric at the horizon may only be
computed numerically:

A¼ 4πð2c0 þ c1Þ
r30c

3
0

×
ðd−1Þðd−2Þ

4
r40c

2
0Z

2
0 − ðd− 2Þα2r20c0Z0

_Z0 þ 2α4 _Z2
0

ðd− 1ÞZ0 −
2α2 _Z0

r2
0
c0

;

B ¼ ðd− 1Þc0
4½ðd− 1ÞZ0 −

2α2 _Z0

r2
0
c0
�2
½ðd− 2Þr20c0ð4Λþ 2V0 þ Y0a0t2Þ

þ 2α2ð2 _V0 − _Y0a0t2Þ�;

C ¼ α2

r20c
2
0½ðd− 1ÞZ0 −

2α2 _Z0

r2
0
c0
�2
�
α2 _Z0ð4Λþ 2V0 − Y0a0t2Þ

−Z0

�
d− 1

2
r20c0ð12Λþ 6V0 þ Y0a0t2Þ

þ α2ð2 _V0 − _Y0a0t2Þ
�	

: ð24Þ

A. Conductivity reduction induced by
charge screening

Our result for the dc conductivity generalizes those
obtained previously from the AdS RN þ axions background
(Z ¼ 1, Y ¼ 1 V ¼ TrX) [13], and from the backgrounds
studied in [21,22] with Z ¼ 1, Y ¼ e−κTrX V ¼ TrX, κ > 0.
In these models the Ricci scalar is not coupled directly to the
axion. However, the axion-dependent coupling Y has a
crucial role in the dc conductivity.
For sufficiently large κ and α, and for low temperature,

the dc conductivity increases with temperature, a behavior
previously referred to as “insulating” [21,22]. We note
that the physical reason for this behavior is not a smaller
scattering time but the simple fact that Y screens the charge
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at low temperature and consequently reduces the conduc-
tivity which is proportional to the charge. While the overall
temperature dependence is similar to that expected in a
system approaching an insulating state, it should be noted
that the conductivity is always finite, so the system is
metallic in all cases. Moreover, the scattering time, con-
trolled by the parameter α, in this model has the same
temperature dependence as in the RN+axions background
for which no insulating behavior was observed. Very likely,
a truly insulating behavior would lead to a qualitative
change in the background, something that is not observed
in [21,22].
In the following sections we identify a region of

parameters in BD holography where we have found similar
features which are not induced by charge screening.
However, we do not claim that our system is an insulator
because the conductivity is never zero, even at zero
temperature.

B. The dc conductivity in BD axion backgrounds

In this section we explore the effect of the BD-type
coupling Z on the background and on the dc conductivity
in d ¼ 3 boundary dimensions. More specifically, we
break translational invariance by using an axion-depen-
dent BD coupling ZðTrXÞ. First we consider the simpler
case V ¼ TrX ¼ 1

d−1
P

I∇μXI∇μXI ¼ 0 in Eq. (13) and
later study a more general BD-like model where V ¼
TrX ≠ 0 is also present. Initially we restrict our analysis
to two space dimensions. The dependence on dimension-
ality of our results is discussed in the last part of the
section.
We note that physically ZðTrXÞ is an axion-dependent

gravitational coupling constant that runs from the boundary
to the horizon. For that reason we will refer to these axions
coupled to the Ricci tensor as gravitational axions. The
qualitative effect of this running in the holographic dimen-
sion, from weak to strong coupling, is less obvious than for
Y ≠ 1 or in the translationally invariant case.

1. Momentum relaxation with Z ≠ 1,
Y = 1 and V = 0

We start our analysis with the simpler case of no axion
potential and trivial coupling to the Maxwell tensor,

Z ¼ eλTrX; _Z ¼ λZ; TrX ¼ α2

r2c
;

V ¼ 0; _V ¼ 0;

Y ¼ 1; _Y ¼ 0: ð25Þ

Although, a priori, λ and α are independent parameters,
it is easy to see from Eq. (25) that these parameters appear
only in Z as a single parameter λeff ¼ λα2. Translational
symmetry is broken for both λeff > 0 and λeff < 0. In the

first case cðr0Þ < 1 while in the second cðr0Þ > 1.
However, for λ < 0 the squared “effective mass” m2

eff in
Eq. (23) is negative. Therefore, λeff should be constrained to
positive values.8

At high temperature, the background tends to AdS
RN þ axions [13] (Z ¼ 1, Y ¼ 1, V ¼ TrX): it has a
similar blackening factor and c → 1 for all r. The effect
of the coupling Z in the background is more evident at low
temperatures where cðrÞ has a stronger dependence on the
radial dimension.
Regarding the dc conductivity, this model has qualita-

tively similar properties to that of RN þ axions. For
example, for the allowed range of parameters, the dc
conductivity increases as the temperature decreases and
ReðσdcÞ > Y0 ¼ 1. Moreover, it is known [13] that for
RN þ axions in four bulk dimensions, this condition is
ReðσdcÞ > rd−30 . In the model Eq. (25) the condition is
ReðσdcÞ > ðr20c0Þ

d−3
2 , where cðr0Þ ¼ c0.

It would be interesting to compare the dc conductivity
for a fixed scattering time in the model of Eq. (25) with
the well-studied AdS RN þ axions model. However, it is
clear that both models display similar features since the
respective actions are related by a conformal transforma-
tion. As was explained in detail in Sec. II B 3 for the
translationally invariant case, under a conformal trans-
formation, the action of Eq. (13) can be transformed into
an action with Z ¼ 1. The change of the Ricci scalar under
this transformation involves additional terms which depend
on TrX and contain the usual kinetic term proportional toP

I∇μXI∇μXI , XI ¼ αxI.
Moreover, as mentioned in Sec. II B 3, in d ¼ 3 dimen-

sions electromagnetism is conformal. Therefore, the con-
formal transformation does not change the coupling of the
F2 term in the action; see Eq. (11). This is consistent with
the fact that for the choice of couplings given in Eq. (25),
the zero-temperature dc conductivity is larger than 1, as
in the RN þ axions model [13]. In higher dimensions,
however, it is expected that the model specified by Eq. (25)
will yield ReðσdcÞ < 1 in some range of parameters. Indeed
we will see that this is the case in Sec. IV.
In the next section we study a more general model with a

finite potential (V) and nontrivial BD (Z) and Maxwell (Y)
couplings in four bulk dimensions.

2. Momentum relaxation with Z ≠ 1,
Y ≠ 1 and V ≠ 0

Before showing the results for the dc conductivity, it is
illuminating to comment on the general features of the
gravitational background given in Eq. (14) for the follow-
ing choice of couplings,

8As we will demonstrate later in a similar background we have
observed that λ < 0 also leads to the violation of the null energy
condition. Therefore, we restrict to positive λeff .
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Z ¼ eλTrX; _Z ¼ λZ;

V ¼ TrX ¼ α2

r2cðrÞ ;
_V ¼ 1;

Y ¼ e−κTrX; _Y ¼ −κY; ð26Þ

where α, κ > 0 and λ is real.
The extremal charge density is

ρe ¼ r20c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yð−2Λ − VÞ

p
: ð27Þ

It is clear that ρe decreases as Y decreases, which for the
choice of Eq. (26) corresponds to increasing α and κ.
Similarly, for smaller cðr0Þ ¼ c0 the extremal charge
density is smaller.
We now comment on the allowed range of the BD-

coupling parameter λ according to the properties of the
background. Similarly to Sec. III B 1, λ > 0 (Z > 1) is
allowed, in which case the g=r2 and cðrÞ increase mono-
tonically towards the boundary. Contrary to the model of
Sec. III B 1, λ ¼ 0 is also allowed due to the presence of V,
which breaks translational invariance. In this case the BD
coupling is trivial, Z ¼ 1, and has been studied previ-
ously [21,22].
Moreover, we also find backgrounds satisfying all

boundary conditions for λ < 0 (Z < 1). However, in this
case g=r2 does not increase monotonically towards the
boundary; there exists a point inside the bulk where the
derivative of g=r2 vanishes. This suggests the odd feature
that the background displays a repulsive behavior between
this point and the boundary, which may violate the energy
null condition.9 In [41] the energy conditions in theories of
gravity different from Einstein’s gravity have been reder-
ived from Raychaudhury’s equation and imposing gravity
to be attractive. For the action given in Eq. (13) the null
energy condition reduces to

1

Z
ðTab þ ZabÞnanb ≥ 0 ð28Þ

for all null vectors na and where Tab and Zab are defined in
Eq. (18). We have found that for λ < 0 the background
violates the null energy condition Eq. (28). This is easily
seen by expressing the background Eq. (14) in the variable
u ¼ r0=r and plugging in the null vector Nt ¼ 1=

ffiffiffi
g

p
,

Nr ¼ ffiffiffi
g

p
, Ni ¼ 0 in Eq. (28), which reduces to

ðTab þ ZabÞNaNb ∝ Z̈TrX02 þ _ZTrX00

∝ c0ðuÞ2 − 2cðuÞc00ðuÞ ≥ 0: ð29Þ

For λ ≥ 0, c00ðuÞ ≤ 0 and the null energy condition for this
null vector is satisfied; however we have observed that for
any λ < 0 this condition is violated.
Regarding the metric function cðrÞ, as the temperature

increases, it becomes almost independent of the holo-
graphic coordinate cðrÞ ≈ cðr0Þ ¼ c0 → 1. The black-
ening function is also modified in such a way that
the geometry approaches that of AdS RN þ axions. In
the allowed region, λ ≥ 0, the horizon value of c
satisfies c0 ≤ 1 and c0 decreases for larger λ. We
have already observed this behavior in the model of
Sec. III B 1 (Y ¼ 1 and V ¼ 0). On the other hand, in
the forbidden region λ < 0, cðr0Þ ¼ c0 > 1 and c0
increases for smaller λ. We note that at low temperatures
the spatial metric functions gii ¼ r2cðrÞ could, in prin-
ciple, be better understood in terms of Lifshitz and
hyperscaling violation anomalous exponents, similarly
to EMD theories [7]. While we do not rule out that the
behavior of gii close to the horizon may actually be cast
using various anomalous exponents, we have not been
able to reexpress the metric at low temperatures using a
single anomalous exponent.
Finally, in this model, contrary to that of Sec. III B 1, λ

and α are independent parameters. In the presence of
V ¼ TrX ¼ α2

r2
0
c0
, the parameter α appears independently

of the parameter λ in the action and the equations of motion.
Therefore, it is expected that these two cannot be relabeled
into a single parameter. For more explicit results regarding
the background for different choices of the parameters, see
Appendix B.

3. The dc conductivity

We depict in Figs. 1 and 2 the dc conductivity,
Eq. (23), in two space dimensions as a function of
temperature for a wide range of the BD parameter λ and
the charge screening parameter κ. The effect of λ and κ
is very similar: both control the strength of momentum
dissipation.
In Fig. 1 we observe that the increase of either the charge

screening or the effective gravitational coupling (Z > 1)
yields a lower dc conductivity, especially for low temper-
atures and sufficiently large values of λ > 0; κ. We note that
in this range of parameters the conductivity is below the
bound only because of charge screening.
However, in Fig. 2 we observe that, even though the BD

parameter does not appear explicitly in the Maxwell
coupling Y, its effect is to renormalize the charge screening
parameter κ through the change in the geometry—more
explicitly, through the value of the metric function cðrÞ at
the horizon, c0. This is possible even for small κ. As
mentioned before, increasing λ leads to a smaller c0 and
BD coupling which manifests as stronger momentum
dissipation. This is a quite interesting and unexpected
feature of the model. For instance, the bound in the

9We thank Roberto Emparan for discussion and suggestions on
this matter.
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conductivity of [20] is violated, even for very weak charge
screening κ ¼ 0.1, provided that the momentum dissipa-
tion by gravitational axions is strong enough λ ≥ 0.3. The
change in the temperature dependence of the dc conduc-
tivity at low temperature for different values of the
parameters is not caused by charge screening but by
the effective running of the gravitational coupling. As

anticipated in Sec. III A, a decrease in the conductivity for
low temperatures sometimes occurs in systems that
approach an insulating transition. However, in our case
the conductivity, though substantially suppressed, never
vanishes. Therefore the model we study is never an
insulator.
Notice that in the left plot of Fig. 1 we have included a

case in the forbidden range of the BD parameter, λ < 0,
which corresponds to a BD coupling satisfying Z < 1

and _Z ¼ ∂TrXZ < 0. We have included this value only to
tentatively suggest that the effect of a weaker gravitational
interaction could be to effectively reduce the strength of
momentum dissipation. Moreover, we have observed that
the effective mass in Eq. (23) becomes negative for some
λm < 0, which depends on the rest of the parameters. A
negative effective mass has been linked to instabilities of
the theory [21]. However, we emphasize that, even for our
choice of the BD coupling Z there is a region λm < λ < 0 in
which the effective mass is positive but the null energy
condition Eq. (29) is violated.

IV. BD HOLOGRAPHY IN
HIGHER DIMENSIONS

So far we have restricted our analysis to dþ 1 ¼ 4 bulk
dimensions. Here we briefly discuss the most salient
features of higher dimensional backgrounds. The motiva-
tion to study d > 3 is to observe the explicit effect of the
running of the gravitational constant associated to the extra

factor g
d−3
2
xx ¼ rd−30 c

d−3
2

0 in the first term of the conductivity
Eq. (23),

ReðσdcÞ ¼ Y0rd−30 c
d−3
2

0 þ � � � : ð30Þ

FIG. 2. Temperature dependence of the dc conductivity
Eq. (23) for fixed axion parameter α ¼ 1 and charge density
ρ ¼ 1. The charge screening parameter κ and the BD-coupling
parameter λ are indicated in the plot. The effect of the BD
parameter is similar to the charge screening parameter. Increasing
λ yields a smaller r20c0; as a consequence the first term in Eq. (23),
Y0 ¼ exp ½−κα2=ðr20c0Þ�, decreases. The bound of [20] is violated
for large λ even for weak charge screening.

FIG. 1. Temperature dependence of the dc conductivity Eq. (23) for fixed axion parameter α ¼ 1 and charge density ρ ¼ 1. The charge
screening parameter κ and the BD-coupling parameter λ are indicated in the plots. The effect of increasing λ for fixed κ is similar to
increasing κ for fixed λ. The case λ < 0 suggests that the effect of a weaker gravitational coupling Z < 1 on the dc conductivity is to
weaken momentum dissipation. However, we stress that this limit violates the null energy condition Eq. (29) and should be excluded.
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The presence of this term is not exclusive to the BD model.
Indeed, in EMD models where translational invariance
is broken by axion fields, the same factor is present [42].
We note however that, at least in EMD theories where the
axions and the dilaton are coupled minimally through a
dilaton-dependent coupling constant [7,12,42], the metric
function c is trivial, c ¼ 1.10 Therefore, in EMD-axion
theories, c0 ¼ 1.
We now discuss the two models of Secs. III B 1 and III B

2 for d ¼ 4, 5 boundary spacetime dimensions. In Fig. 3 we
plot the metric function cðrÞ used in the ansatz, Eq. (14), in
the model of Eq. (26). In the absence of VðTrXÞ, Eq. (25),
the background has similar features.
The results, depicted in Fig. 3, indicate that increasing

dimensionality decreases the curvature of the metric func-
tion c. This is more easily seen at low temperature (top
row), where c0 ¼ cðr ¼ r0Þ increases for λ > 0 and
decreases for λ < 0. Though not shown in the figure, a
similar effect is also observed in the blackening function.

This is a manifestation of the large-dimensionality limit,
[43,44] where the shape of g and c is such that the
gravitational effects are stronger closer to the horizon
but weaker far from it.
Dimensionality effects on the dc conductivity, Eq. (30),

are directly related to the dependence of c0 and r0 on the
dimension. The quantities with tildes are in ~d dimensions
and those without tildes in d dimensions. If ~d > d, we
observe that

(i) For λ > 0 and low (high) temperature, ~c0 > ð<Þc0
and ~r0 < ð>Þr0.

(ii) For λ < 0 (forbidden by the null energy condition) and
low (high) temperature, ~c0 < ð>Þc0 and ~r0 > ð<Þr0.

For the temperature range studied, ~r20 ~c0 < r20c0. Moreover,
for low temperature r20c0 < 1 but for large temperature
r20c0 > 1. Therefore, for low temperature one expects the
suppression of the dc conductivity to be smaller for larger
dimensionality.

We show in Fig. 4 that the term g
d−3
2
xx in Eq. (30) leads to a

suppression of ReðσdcÞ at low temperature in three space
(boundary) dimensions (d ¼ 4). In order to isolate the
effect of the background we couple the Maxwell field

FIG. 3. Metric function c, Eq. (14), in dþ 1 ¼ 5 (left column) and dþ 1 ¼ 6 (right column) bulk dimensions for the model given in
Eq. (26). The temperature is indicated in the plots and the charge density is ρ ¼ 1. The charge screening parameter κ ¼ 1 and the axion
parameter α ¼ 1. The BD-coupling parameter λ is indicated in the legend, which refers to all figures. While the boundary conditions for
λ < 0 are satisfied, this case leads to violation of the null energy condition.

10An additional difference in the background is that in the
metric ansatz given in Eq. (14), gtt ¼ −1=grr, which is not the
case in an EMD-plus-axion theory [7,12].
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minimally by setting Y ¼ 1; namely, the couplings used are
those given in Eq. (31):

Z ¼ eλTrX; _Z ¼ λZ;

V ¼ TrX ¼ α2

r2cðrÞ ;
_V ¼ 1;

Y ¼ 1; _Y ¼ 0: ð31Þ

A similar effect, depicted in Fig. (5), is observed even in
the absence of VðTrXÞ in the action (13); namely, we
choose the couplings of Eq. (25). As explained in Sec. III B
1, in the absence of V, there is a single parameter that
controls the momentum dissipation, λeff ¼ λα2 > 0. In
summary, our results suggest that higher dimension gravi-
tational effects, including those of the gravitational axions,
are suppressed except close to the horizon. As a conse-
quence, the conductivity is closer to the RN limit for high
temperature. However close to zero temperature, where
gravitational effects are still important, the dc conductivity
is heavily suppressed for strong momentum relaxation
induced by the gravitational axion only.11 Therefore, also
in this case, the background induces an important sup-
pression of the conductivity without the need for any
external source of charge screening. Obviously the system
studied in the paper is always a metal; however it would be
interesting to explore whether there are other backgrounds
within BD holography that reproduce genuine insulating
features in the dual field theory.

V. OPTICAL CONDUCTIVITY IN BD
HOLOGRAPHY WITH MOMENTUM

RELAXATION

We continue our analysis of transport properties of BD
holography by investigating the optical conductivity. We

FIG. 4. Zero-frequency conductivity Eq. (23) in dþ 1 ¼ 5 bulk dimensions in a model with a minimally coupled Maxwell field,
Eq. (31). When the BD coupling λ is larger than some positive value the dc conductivity at zero temperature is below 1. This effect is due
to the background rather than to an axion-dependent Maxwell coupling as in Fig. 1. The charge density is fixed ρ ¼ 1.

FIG. 5. Zero-frequency conductivity Eq. (23) in dþ 1 ¼ 5 bulk
dimensions in a model with a minimally coupled Maxwell field
and VðTrXÞ ¼ 0, Eq. (25). Similar behavior as in Fig. 4 is
observed despite the absence of the usual kinetic term in the
action (V ¼ 0). Again, the effective change in the gravitational
interaction, through the BD coupling ZR, parametrized by
λeff ¼ α2λ, allows us to decrease the dc conductivity despite
the absence of charge screening, Y ¼ 1. The charge density is
fixed, ρ ¼ 1.

11Although, as in the case with charge screening of Sec. III B 2,
the conductivity never vanishes.
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focus first on the low-frequency scaling of the real part of
the conductivity. We found that the conductivity grows
linearly with the frequency for low temperatures but strong
momentum relaxation. In the second part of the section we
show that BD holography, even if combined with other
sources of momentum relaxation, does not reproduce the
intermediate-frequency scaling of the absolute value and
argument of the optical conductivity observed in cuprates.

A. Low-frequency behavior of the conductivity

In the context of massive gravity the equation for the
perturbation leading to the optical conductivity at extrem-
ality has been solved analytically for low frequencies by
using the method of matched asymptotic expansions [45].
In [13] it was shown that, in the previous model, the dc
conductivity is equivalent to that obtained in the RN þ
axions model, upon a convenient identification of the
parameters. Using the method of matched asymptotic
expansions we have observed (not shown) that, as in
massive gravity, the low-frequency behavior of the optical
conductivity of the extremal RN þ axions model is also
linear in frequency with an always negative slope, which is
consistent with Drude physics.
Although we have not been able to obtain analytical

results of the low-frequency scaling for arbitrary couplings
Z and Y, we observe numerically (see Fig. 6) the same
linear scaling of the conductivity for small frequencies.
Interestingly, provided that momentum relaxation is strong
enough, the slope of this linear growth is positive; namely,
the conductivity increases with the frequency. This is not
exclusive to BD holography; it is also observed for λ ¼ 0 in
the limit of strong momentum relaxation induced by the

axion coupled to the Maxwell field. This is an interesting
feature and we are not aware that it has been reported
in holographic systems which do not include charge
screening.
At nonzero temperature, the numerical results of Fig. 7

show that the subleading term depends quadratically on the
frequency. We conclude therefore that for the general class
of models with action Eq. (13), and for low frequency, the
optical conductivity is

ReðσÞ − ReðσdcÞ ¼ aωþ bω2 þ � � � ð32Þ

where b → 0 for T → 0 and, for T ≫ 0, both constants tend
to zero, but a does it faster than b. In other words, at large
temperature we have observed a subleading contribution
dominated by ω2 while in the limit of zero temperature
it is proportional to ω1. As mentioned above, for Z ¼ 1
and a minimally a coupled Maxwell field (Y ¼ 1), the
constants a and b are always negative, describing the
broadening of the Drude peak. For Y ≠ 1 and both Z ≠ 1
and Z ¼ 1, a is negative when ReðσdcÞ > 1 and positive
when ReðσdcÞ < 1.
For Y ≠ 1 and both at zero (not shown) and nonzero

temperature (bottom left plot in Fig. 7), we have observed a
range of parameters for which the optical conductivity has a
local maximum for relatively small frequencies. In Fig. 7
we observe that in the high temperature limit the local peak
is smeared. A similar feature in the dc conductivity has
been recently reported in [21]. Similarly to the phenom-
enology observed in the temperature dependence of the dc
conductivity, we believe that, in the range of parameters
of Fig. 7, this intermediate peak is a consequence of

FIG. 6. Zero-temperature [extremal background of Eqs. (13) and (26)] optical conductivity for strong breaking of translational
symmetry. The charge screening parameter is κ ¼ 1 and the axion parameter is α ¼ 1 (blue lines), α ¼ 1.5 (red lines) and α ¼ 2 (black
continuous lines). The BD-coupling parameter λ, given in the legend, is fixed close to the maximum value allowed by the background
boundary conditions. The extremal charge density is ρ ¼ 1. The dashed black lines correspond to the linear scaling βω, where β is fixed
from the lowest frequency point of the numerical data.
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charge screening induced by a nontrivial axion-dependent
Maxwell coupling and therefore it is not a precursor of
insulating behavior. Indeed the conductivity is always
finite.
We have observed that a stronger gravitational inter-

action (larger BD coupling Z) has a similar impact on the
intermediate peak with increasing momentum dissipation.
As was mentioned in Sec. III B 2, in d ¼ 3 boundary
dimensions this is a nontrivial effect: a conformal trans-
formation of the action Eq. (13) with d > 3 renormalizes
the Maxwell coupling in an analogous way to the con-
formal transformation of the BD model; see Eq. (11).
However, for d ¼ 3 the Maxwell coupling is invariant
under such transformation and one could expect therefore
the Maxwell coupling to be unchanged by a change in the
BD coupling. Nonetheless, from a holographic point of
view, it is known that the observables in the boundary
theory are roughly determined by the gravitational back-
ground (plus boundary values of bulk fields). Therefore, at
intermediate energy scales, and despite the fact that the
Maxwell coupling is invariant under a conformal trans-
formation for d ¼ 3, one should expect the features of the
BD background at intermediate length scales to determine
the optical conductivity.

B. Argument and modulus of the optical
conductivity in BD gravity with

momentum relaxation

A well-known property of the optical conductivity in
most cuprates is that for intermediate frequencies the
module of the conductivity scales as ω−2=3. It has been
recently claimed [24] that a holographic setup where
momentum relaxation is introduced by a modulating
chemical potential shares similar properties. However,
we note that this holographic setup does not reproduce
another property of the optical conductivity in cuprates: the
argument of the conductivity is constant in the same range
of frequencies. In this section we study whether field theory
duals of gravity models with different channels of momen-
tum dissipation can reproduce these features of the optical
conductivity in cuprates.
Results for different values of the parameters are

depicted in Fig. 8.
Either the constant argument or the desired 2=3 power-

law decay can be observed for some values of the
parameters. However, it is clear from our results that even
by fine-tuning all the available parameters we could not
reproduce both features for a single set of parameters.

FIG. 7. Optical conductivity at finite temperature in the background given in Eqs. (13) and (26). Each line corresponds to a fixed
temperature, indicated in the legend of the right-hand plots. The dashed-dotted black lines correspond to the quadratic scaling and are
fixed in the same way as in Fig. 6. As temperature decreases (blue lines) a slight disagreement is observed. We expect that for near
extremal solutions the frequency scaling is given by Eq. (32). The charge density ρ ¼ 1, α ¼ 1, λ ¼ 0.15 and κ is indicated in the left-
hand plots.
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VI. RATIO OF SHEAR VISCOSITY AND
ENTROPY DENSITY IN BD WITH

MOMENTUM RELAXATION

In this section we study the ratio η=s between the
shear viscosity η and the density of entropy s for BD
holography with momentum relaxation. In a quantum
field theory the viscosity is defined through the Kubo
formula:

η ¼ −lim
ω→0

1

ω
ImGR

TxyTxyðω; q ¼ 0Þ; ð33Þ

where Txy is the xy component of the stress-energy
tensor. In order to compute the viscosity in the model of
Eq. (13) we use the membrane paradigm in a similar
way as in Sec. II B for the calculation of the regular part
of the dc conductivity. While we restrict ourselves to
numerical results we expect that, as shown in [46], it
should be possible to derive quasianalytical approxima-
tions at low and large temperatures.12

Previously it has been reported that in the presence of
momentum relaxation [46–50] or anisotropy [51–53]13 the
ratio is temperature dependent and in most cases below
the KSS bound. We find similar results in the case of BD
holography. For our analysis we use the couplings of
Eq. (26) with V ¼ TrX (Fig. 9) and V ¼ 0 (Fig. 10) which
include, as a particular case, some of the previously studied
cases of AdS RN þ axions [46,50]. In the full range of
parameters we have explored, the ratio decreases with
temperature and is always below the KSS bound. It also
decreases as the strength of momentum relaxation
increases, by any of the channels explored. It seems that
it can be made arbitrarily close to zero even for a finite
momentum relaxation. We do not have a clear under-
standing of the physical reasons behind this behavior;
however we note that similar results have been observed
[55] in the context of the quark-gluon plasma with

FIG. 8. Absolute value and argument of the optical conductivity for different values of the parameters. The temperature and charge
density are T ¼ 0.05 and ρ ¼ 1. The BD model with the couplings of Eq. (26) does not describe the experimental behavior for
intermediate frequencies observed for cuprates. The dashed lines are the exponent ξ, jσj ¼ ωa, a ¼ 1.35 − 2 ¼ −0.65, and argðσÞ ¼
π
2
ð2 − 1.35Þ ¼ 1.01 Rad, according to experiments.

12An analytical calculation in terms of the background
expansion close to the boundary is possible; however, the
background needs to be computed numerically.

13We note that in these models the effective mass of the
graviton is nonzero. As shown in [54] this is a necessary
condition to observe violation of the KSS bound. However, in
theories without translational invariance and massless gravitons
[54] the KSS bound remains valid. Our model falls in the first
class of theories.
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quenched impurities in the limit at which the phenomenon
of Anderson localization becomes important.

VII. OUTLOOK AND CONCLUSIONS

The potential interest of BD backgrounds in holography
is well beyond the problems discussed in the paper. For
instance, the entanglement entropy depends explicitly on
the gravity coupling constant and it is also very sensitive to
the strength of bulk interactions. Therefore we expect that

the holographic entanglement entropy in inhomogeneous
BD backgrounds may reveal interesting features not found
in previous holographic duals. These features would not
only be present to leading order (area of minimal surface)
but also in the quantum correction originated by the
entanglement between the bulk and the minimal surface
[56]. Another topic of potential interest is that of holo-
graphic superconductivity. It is well known that the width
of the coherence peak as well as the ratio of the zero-
temperature order parameter to the critical temperature are
useful indicators of the strength of the interactions binding
the condensate. For the former, values much larger than the
Bardeen-Cooper-Schrieffer prediction, suggesting strong
interactions, are expected. It would be interesting to
investigate whether it is possible to tune this ratio in BD
backgrounds. That would be a smoking gun that the scalar
in BD backgrounds effectively controls the interactions in
the bulk. Finally, we note that the introduction of random-
ness in the scalar is qualitatively different from other forms
of disorder used in holography. It amounts to a random
strength of the gravitational interaction. Mobile charge
introduced through the gauge field will feel these random
interactions not very differently from the way in which
electrons feel quench impurities. This is in stark contrast
with the effect of a random chemical potential, quite popular
in holography, where the mobile carriers are by construction
randomly but homogeneously distributed through the sam-
ple. Coherence phenomena like Mott-Anderson localization
could not be observed in this setting. We plan to address
some of these problems in the near future.
In summary, we have investigated the transport proper-

ties of strongly coupled field theories whose gravity dual is
a Brans-Dicke action where gravity is mediated by both a
tensor, the graviton, and a scalar that depends on the radial
dimension. In the translationally invariant limit we have
computed analytically several transport properties. The
finite part of the dc conductivity σQ, expressed in terms
of thermodynamic quantities, is different from the universal
prediction for EMD backgrounds [10]; however the shear
viscosity ratio is still given by the KSS bound. Similar
results apply to other generalized f(R) gravity backgrounds
that can be mapped onto BD. The difference with EMD
models is that the entropy does not hold an area law as it
also depends on the value of the scalar at the horizon.
Momentum relaxation is induced by a gravitational

axion, namely, the linear coupling of the Ricci tensor and
the axion. Following the procedure pioneered by Donos
and Gauntlett [40] we compute analytically the dc conduc-
tivity as a function of the metric at the horizon which is
evaluated numerically. In dþ 1 ¼ 4 bulk dimensions
momentum relaxation by BD axions is qualitatively similar
to the results obtained by other mechanisms of momentum
relaxation [13,21,22] in the limit of strong charge screening.
Interestingly for strongly coupled gravitational axions that
induce strong momentum relaxation, the conductivity bound

FIG. 9. Shear viscosity to entropy density ratio (η=s) for the
couplings of Eq. (26) in the model defined in Eqs. (13) and (26).
The axion parameter α ¼ 1 and the charge density ρ ¼ 1.

FIG. 10. Shear viscosity to entropy density ratio (η=s) for the
couplings of Eq. (26) in the model defined in Eqs. (13) and (26)
but taking V ¼ 0 and _V ¼ 0. The axion parameter α ¼ 1 and the
charge density ρ ¼ 1. As discussed in Sec. III B 1, for κ ¼ 0 ⇒
Y ¼ 1 (dots) the theory has a single parameter that controls
momentum dissipation, namely λeff ¼ λα2.
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[20] is violated for any finite charge screening induced by the
electromagnetic axion [21,22]. In higher spatial dimensions
the dc conductivity for sufficiently strong momentum
relaxation decreases in the low temperature limit. This
suggests that the analogous conductivity bound is violated
even if there is no coupling between the axion and the
Maxwell field. We have also computed numerically the
optical conductivity in BD backgrounds with momentum
relaxation. For sufficiently strong breaking of translational
invariance, the conductivity grows linearly with the fre-
quency in the limit of small frequencies and very low
temperatures though it remains finite for any temperature
and frequency. We have also evaluated numerically the
modulus and the argument of the optical conductivity for
different momentum relaxation channels in order to find out
whether the phenomenology of this model is similar to that
of the cuprates for intermediate frequencies. Our results are
not very encouraging. For any value of the parameters we
could not reproduce the experimental results for both
quantities simultaneously. Finally, we have shown that the
shear viscosity to entropy ratio decreases with temperature
and the KSS bound is violated by any strength of the
momentum relaxation.
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APPENDIX A: AN ASYMPTOTICALLY ADS
BRANS-DICKE BLACK HOLE

As we have previously discussed in Sec. II B 3, the
action (1) can be brought to the Einstein frame via a
conformal transformation. In this frame, the BD action
maps to an EMDmodel. Solutions for this action have been
widely studied for different choices of potentials [5–7,29].
For completeness, we give here a particular explicit black
brane solution with AdS asymptotics. In the language of
Ref. [7] this corresponds to a δ ¼ γ solution:

ds̄2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2RðrÞδijdxidxj ðA1Þ

fðrÞ ¼ 2Λðα2 þ 1Þ2b2γ
ðd − 1Þðα2 − dÞ r

2ð1−γÞ −
m

rðd−1Þð1−γÞ−1

þ 2q2ðα2 þ 1Þ2b−2ðd−2Þγ
ðd − 1Þðα2 þ d − 2Þ r2ðd−2Þðγ−1Þ ðA2Þ

RðrÞ ¼
�
b
r

�
2γ

ðA3Þ

ϕ̄ðrÞ ¼ ðd − 1Þα
2ð1þ α2Þ log

b
r

ðA4Þ

V̄ðϕ̄Þ ¼ 2Λe
4αϕ̄
d−1 ¼

�
b
r

�
2γ

ðA5Þ

āt0 ¼ −
qY
rd−1

�
b
r

�
−ðd−3Þγ

ðA6Þ

where we defined γ ¼ α2=ð1þ α2Þ, with α as in Eq. (11).
This solution has four free parameters (γ, b, q, m). γ is a
function of the Brans-Dicke parameter ξ:

γ ¼ α2

1þ α2

¼ 1

1þ α−2

¼ ðd − 3Þ2
ðd − 1Þ2 þ 8þ 4ðd − 1Þξ :

The black brane horizon radius is found by imposing
fðr0Þ ¼ 0. This allows us to solve for one of the parameters
as functions of r0 and the others, e.g. m ¼ mðr0; q; b; γÞ.
The parameter b sets the scale of the dilaton ϕ̄ and can be
set to unity by a coordinate rescaling.
An interesting case is given by d ¼ 3, where γ ¼ α ¼ 0

and the scalar field is constant. In this case the solution
above reduces to the well-known AdS Reissner-Nordström
solution. Note that γ ¼ α ¼ 0 also for ξ → ∞, which is the
well-known Einstein limit of Brans-Dicke theory. In this
limit, the solution also reduces to dþ 1 dimensional
Reissner-Nordström. q is the charge density of the back-
ground and m is related to the energy density [Arnowitt-
Deser-Misner (ADM) mass] as we will discuss below.
To construct an asymptotically AdS black hole solution

for our Brans-Dicke theory (1) we take the inverse
conformal mapping on the solution above. The Brans-
Dicke black hole is then given by

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2cðrÞδijdxidxj

AðrÞ ¼ ϕ− 2
d−1fðrÞBðrÞ ¼ ϕ− 2

d−1

fðrÞ ;

cðrÞ ¼ ϕ− 2
d−1RðrÞ ¼

�
b
r

�2ðd−5Þ
d−3 γ

VðϕÞ ¼ 2Λϕ2

a0t ¼ −
qY
rd−1

�
b
r

�
−ðd−3Þγ

ϕðrÞ ¼
�
b
r

�2ðd−1Þγ
d−3

:
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Note that in particular this transformation preserves the
position of the horizon r0. The temperature can then be
computed,

4πT ¼ jAðr0Þj

¼ ðd − α2Þm
α2 þ 1

rðd−1Þðγ−1Þ0

−
4q2ðα2 þ 1Þb−2ðd−2Þγ

α2 þ d − 2
rð2d−3Þðγ−1Þ−γ0 ;

which again reduces to the RN temperature for γ ¼ α ¼ 0.
The free energy density can be computed by the properly
renormalized Euclidean action. We refer the curious reader
to [57] for the details of the calculation and just quote the
answer here,

f ¼ β

�ðd − 1Þbðd−1Þγm
α2 þ 1

�
−
bðd−1Þγrðd−1Þð1−γÞ0

4π

− β
q2

2ððd − 3Þð1 − γÞ þ 1Þ
1

r1þðd−3Þð1−γÞ
0

¼ βϵ − s − βμq

for β ¼ T−1 and we defined

ϵ ¼ ðd − 1Þbðd−1Þγm
α2 þ 1

;

s ¼ bðd−1Þγrðd−1Þð1−γÞ0

4π
;

μ ¼ q2

2ððd − 3Þð1 − γÞ þ 1Þ
1

r1þðd−3Þð1−γÞ
0

;

which are the energy density (ADM mass), entropy density
and chemical potential, respectively. In particular note
that the above satisfy the first law dϵ ¼ Tdsþ μdρ for
4πρ ¼ R

M ⋆F ¼ q, the charge density.

APPENDIX B: GRAVITATIONAL BACKGROUND
WITH Z ≠ 1, Y = 1 AND V ≠ 1 IN FOUR

BULK DIMENSIONS

In Fig. 11 we show the metric functions, defined in
Eq. (14), at nonzero temperature for the model defined in
Eq. (13) and couplings given in Eq. (25).
The lines correspond to a fixed λeff ≡ λα2 but different λ

and α, defined in Eq. (26). Most notably, the function c at
the horizon shows a difference of about 20%, while the
blackening factor is very similar throughout the bulk.
Figure 11 shows that the model defined in Eqs. (13)
and (26) contains three independent parameters, κ, α and λ.

FIG. 11. Metric functions g (blackening factor) and c, Eq. (14), for two different temperatures: (top row) T ¼ 10−4 and (bottom row)
T ¼ 0.08. We fix the charge density ρ ¼ 1, κ ¼ 1 and λeff ¼ λα2 ¼ 0.15. Each line corresponds to α2 ¼ λeff=λ for the corresponding λ,
which is given in the legends. The legends also refer to the right-hand figures. Moreover, for a fixed temperature and λeff , the dc
conductivity is different for the two choices of λ and α. We conclude that, in the presence of V in the action, λ and α are two independent
parameters associated with the translational symmetry breaking.
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