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Abstract
Objectives: Dental calculus is among the richest known sources of ancient DNA in the archaeo-

logical record. Although most DNA within calculus is microbial, it has been shown to contain suf-

ficient human DNA for the targeted retrieval of whole mitochondrial genomes. Here, we explore

whether calculus is also a viable substrate for whole human genome recovery using targeted

enrichment techniques.

Materials and methods: Total DNA extracted from 24 paired archaeological human dentin and

calculus samples was subjected to whole human genome enrichment using in-solution hybridiza-

tion capture and high-throughput sequencing.

Results: Total DNA from calculus exceeded that of dentin in all cases, and although the propor-

tion of human DNA was generally lower in calculus, the absolute human DNA content of calcu-

lus and dentin was not significantly different. Whole genome enrichment resulted in up to four-

fold enrichment of the human endogenous DNA content for both dentin and dental calculus

libraries, albeit with some loss in complexity. Recovering more on-target reads for the same
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sequencing effort generally improved the quality of downstream analyses, such as sex and

ancestry estimation. For nonhuman DNA, comparison of phylum-level microbial community

structure revealed few differences between precapture and postcapture libraries, indicating that

off-target sequences in human genome-enriched calculus libraries may still be useful for oral

microbiome reconstruction.

Discussion: While ancient human dental calculus does contain endogenous human DNA

sequences, their relative proportion is low when compared with other skeletal tissues. Whole

genome enrichment can help increase the proportion of recovered human reads, but in this

instance enrichment efficiency was relatively low when compared with other forms of capture.

We conclude that further optimization is necessary before the method can be routinely applied

to archaeological samples.
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1 | INTRODUCTION

The development and application of sequence capture technology has

greatly increased the number of archaeological samples that are

accessible for genomic studies (e.g., Carpenter et al., 2013;

Fu, Mittnik, et al., 2013; Haak et al., 2015; Schroeder et al., 2015).

Typically, the majority of DNA in a given archaeological sample is

exogenous (i.e., postmortem environmental) in origin, making untar-

geted sequencing of these samples inefficient and expensive, with the

exception of extraordinarily well-preserved samples and bone ele-

ments, such as the petrous bone (Gamba et al., 2014). Targeted

sequence capture allows for the selective enrichment of endogenous

ancient DNA (aDNA) sequences prior to sequencing, thereby increas-

ing the proportion of desired, on-target molecules in the sequencing

run. Sequence capture additionally reduces the amount of material

required for destructive analyses, and decreases the experimental

workload and cost of aDNA analysis (�Avila-Arcos et al., 2011;

Carpenter et al., 2013). To date, targeted enrichment of archaeological

specimens has resulted in the successful retrieval of ancient mito-

chondrial genomes (e.g., Briggs et al., 2009; Llamas et al., 2016; Ozga

et al., 2016; Slon et al., 2016), ancient pathogen genomes (Bos et al.,

2014; Spyrou et al., 2016; Vågene et al., 2018), human genome-wide

SNPs (Haak et al., 2015), partial or whole exomes (Burbano et al.,

2010; Da Fonseca et al., 2015), entire chromosomes (Cruz-Dávalos

et al., 2017; Fu, Meyer, et al., 2013), and partial nuclear genomes

(Carpenter et al., 2013; Schroeder et al., 2015).

The majority of these aDNA capture studies have focused on

either archaeological bone or dentin as sample material. However,

host DNA preservation in these tissues is highly variable (Damgaard

et al., 2015; Gamba et al., 2014), and destructive analysis of skeletal

remains may be restricted or not permitted in some cases, making

archaeogenetic analysis of these populations challenging. Recent

research on ancient dental calculus (calcified dental plaque) has shown

that it is the richest known source of ancient DNA in the archaeologi-

cal record, exceeding the DNA content found in bone and dentin by

more than an order of magnitude (Mann et al., 2018; Ozga et al.,

2016; Warinner, Rodrigues, et al., 2014). Consequently, dental calcu-

lus is potentially valuable for studies of ancient and degraded samples,

where DNA preservation is limited. Moreover, as dental calculus is a

calcified bacterial biofilm, not a human tissue, it might be subject to

fewer restrictions with respect to destructive sampling (Ozga

et al., 2016).

The vast majority of DNA in ancient dental calculus is microbial in

origin, which explains why the majority of ancient DNA research on

dental calculus has focused primarily on this component (Adler et al.,

2013; Warinner, Rodrigues, et al., 2014; Warinner, Speller, & Collins,

2014; Warinner, Speller, Collins, & Lewis Jr, 2015; Weyrich et al.,

2017; Ziesemer et al., 2015). However, a small but consistent propor-

tion (around 0.1%) of DNA in ancient dental calculus comes from the

host (Mann et al., 2018; Ozga et al., 2016; Warinner, Rodrigues, et al.,

2014). The mechanisms of human DNA incorporation into dental cal-

culus are not well understood, but the primary source of host DNA is

likely saliva and gingival crevicular fluid (Jin & Yip, 2002). Potential cell

types contributing host DNA include white blood cells (e.g., neutro-

phils, basophils, eosinophils, monocytes, and lymphocytes) and oral

epithelial cells (Mann et al., 2018; Warinner, Rodrigues, et al., 2014).

Previous proteomic analysis of ancient and modern dental calculus

identified a high proportion of immune proteins, particularly from neu-

trophils, suggesting that human DNA may enter dental calculus as a

result of inflammation-related immunological activity, including

the release of neutrophil extracellular traps (NETosis) (Warinner,

Rodrigues, et al., 2014).

Archaeological dental calculus has been shown to contain suffi-

cient mitochondrial DNA for full mitogenome reconstruction (Ozga

et al., 2016); however, mitogenomes only provide maternal ancestry

information. In contrast, genome-wide sequence data provide signifi-

cantly more information that can be used to determine the sex of

individuals (Skoglund et al., 2013), infer genome-wide ancestry and

admixture patterns (e.g., Skoglund et al., 2014), establish kinship and

genetic relationships (Sikora et al., 2017), and provide evidence for

natural selection and human environment interactions (e.g., Jeong

et al., 2016). Establishing whether ancient dental calculus can serve as

a viable source of genome-wide nuclear human DNA is thus important
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in order to evaluate its potential for future population genetics

studies.

In this article, we perform whole genome enrichment (WGE) on

24 paired archaeological human dentin and dental calculus samples

(Figure 1) that had been previously shown to be well preserved (Mann

et al., 2018). In total, we generated approximately 600 million paired-

end reads and characterized the quantity and quality of the human

genetic data obtained. The samples were sourced from diverse con-

texts to assess if patterns of preservation in dental calculus vary

across time and space, and to evaluate the performance of WGE on

samples with varying levels of preservation. The enrichment was per-

formed using the MYbaits WGE kit (Arbor Biosciences, MI), which

uses biotinylated RNA “bait” to capture the human DNA molecules in

ancient DNA libraries (Enk et al., 2014).

We find that although dental calculus is an excellent source of

both microbial and human endogenous DNA, the relative proportion

of human DNA is consistently quite low, making efficient WGE chal-

lenging. In this study, we observed only modest enrichments of up to

four-fold, which is relatively low when compared with previously pub-

lished enrichment rates for mitochondrial genome capture (Ozga

et al., 2016) or selected SNPs (e.g., Mathieson et al., 2015). Addition-

ally, we find that capture enrichment of dental calculus results in the

biased recovery of human reads with significantly higher GC content.

Nevertheless, in the absence of other available skeletal tissues, or

when the endogenous content in other tissues is low, dental calculus

can serve as a viable source of nuclear human DNA. Surprisingly,

although the total number of microbial 16S rRNA gene reads did not

decrease after capture, the proportion of these reads clustering into

operational taxonomic units (OTUs) did. Comparison of the microbial

community structure in dental calculus samples at the phylum-level,

however, revealed few differences between precapture and postcap-

ture libraries, indicating that off-target sequences in human genome-

enriched dental calculus libraries may still be useful for ancient oral

microbiome reconstruction. Overall, we find that dental calculus is a

valuable source of human DNA; however, to unlock the full potential

of dental calculus for genome-wide analyses, current DNA enrichment

techniques require further optimization.

2 | MATERIALS AND METHODS

2.1 | Samples

We analyzed 24 paired human dental calculus and dentin samples

from six geographically and temporally diverse sites, with two individ-

uals analyzed per site (Figure 1; Supporting Information Table S1). The

samples and sites were selected to reflect broad geographic distribu-

tion and temporal coverage: (1) Camino del Molino, Spain (C53 and

C214, ca., 2,340–2,920 BCE; Ziesemer et al., 2015), (2) Arbulag Soum,

3000 BCE 2000 BCE 1000 BCE 0 1000 CE 2000 CE
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FIGURE 1 Location of archaeological sites. We selected 24 well-preserved paired dentin and dental calculus samples from six archaeological

sites spanning three continents. The sites include (1) Camino del Molino, Spain (C53 and C214); (2) Khövsgöl, Arbulag Soum, Mongolia (H10 and
H24); (3) Samdzong, Nepal (S40 and S41); (4) Anse à la gourde, Guadeloupe (F349A and F1948), (5) Norris Farms, Illinois, USA (NF47 and NF217);
and (6) Middenbeemster, the Netherlands (S108 and S454)
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Khövsgöl, Mongolia (H10 and H24, ca., 2,000 BCE; Littleton et al.,

2012), (3) Samdzong, Nepal (S40 and S41, ca., 400–650 CE; Ziesemer

et al., 2015; Jeong et al., 2016), (4) Anse à la Gourde, Guadeloupe

(F349A and F1948, ca., 975–1,395 CE; Ziesemer et al., 2015), (5) Nor-

ris Farms, Illinois, USA (NF47 and NF217, ca., 1,300 CE; Ozga et al.,

2016), (6) Middenbeemster, the Netherlands (S108 and S454,

1,611–1866 CE; Ziesemer et al., 2015). The same sample set was also

evaluated in a separate study on the differential preservation of

ancient DNA in dental calculus and dentine (Mann et al., 2018).

2.2 | DNA extraction

All samples were extracted in dedicated ancient DNA facilities at the

Laboratories of Molecular Anthropology and Microbiome Research

(LMAMR) in Norman, Oklahoma. The LMAMR lab operates in

accordance with established contamination control precautions and

workflows, as previously described (Ziesemer et al., 2015). Prior to

extraction, the surface of the tooth was washed with a 2% NaOCl solu-

tion, followed by molecular biology grade water. Dental calculus was

then removed from the tooth using a dental scaler, and the tooth root

was separated from the crown using a Dremel rotary tool. The tooth

root and calculus were further decontaminated by UV irradiation in a

Crosslinker for 1 min on each side. DNA extraction was performed as

described by Ziesemer et al. (2015). In brief, 10–20 mg of dental calcu-

lus and approximately 100 mg of dentin were crushed to a coarse pow-

der and washed in 1 ml 0.5 M EDTA under rotation for 15 minutes to

remove loosely-bound contaminants. Following centrifugation, the

supernatant was removed, and the decontaminated pellet was digested

in a solution of 0.45 M EDTA and 10% proteinase K with heating at

37–55�C for 8–12 hr, followed by room temperature incubation for

5 days until digestion was complete. For dentin samples, the digestion

buffer was refreshed after 2 days to avoid saturation of EDTA

chelation, and the two buffer fractions were combined after digestion

completion. For all samples, cell pellet debris was separated by centrifu-

gation and the DNA-containing supernatant was further extracted

using a phenol/chloroform approach (Warinner, et al., 2014), followed

by DNA purification and concentration using a modified Qiagen MinE-

lute silica spin column protocol (Dabney et al., 2013). Extracted DNA

was eluted twice into 30 μl of EB for a combined volume of 60 μl, and

immediately quantified after extraction using a Qubit fluorometer 2.0

High Sensitivity assay (Life Technologies). Subsequent DNA quantifica-

tion performed later in a separate study measured higher concentra-

tions, likely due to evaporation (Mann et al., 2018).

2.3 | Illumina library preparation

Approximately 100 ng of total DNA was built into each Illumina shot-

gun library at the LMAMR lab using the NEBNext DNA Library Prep

Master Set (E6070; New England Biolabs) following manufacturer's

instructions, with minor modifications. In brief, end-repair was per-

formed in 50 μl reactions with up to 30 μl of DNA extract for each

sample. The end-repair cocktail was incubated for 20 min at 12�C and

15 min at 37�C, purified using Qiagen MinElute silica spin columns,

and eluted in 30 μl. After end-repair, blunt-end Illumina-specific

adapters (Meyer & Kircher, 2010) were ligated to end-repaired DNA

in 50 μl reactions. The reaction was incubated for 15 min at 20�C and

purified using Qiagen QiaQuick columns before elution in 30 μl

EB. The adapter fill-in reaction was performed in a final volume of

50 μl and incubated for 20 min at 37�C followed by 20 min at 80�C.

Libraries were amplified and indexed at the Center for Geogenetics in

Copenhagen, Denmark, using a dual-indexing approach (Kircher, Saw-

yer, & Meyer, 2012) in a 50 μl PCR reaction, using 15 μl of library

template, 25 μl of a 2× KAPA HiFi Uracil+ Master Mix, 5.5 μl H2O,

1.5 μl DMSO, 1 μl BSA (20 mg/ml), and 1 μl each of a forward and

reverse indexing primer (10 μM). Thermocycling conditions were as

follows: 5 min at 98�C, followed by 10–12 cycles of 15 sec at 98�C,

20 sec at 60�C, 20 sec at 72�C, and a final 1 min elongation step at

72�C. Amplified libraries were purified using Agencourt AMPure XP

beads, and eluted in 30 μl EB. The concentration/molarity and size

distribution of the libraries was estimated using an Agilent

Bioanalyzer.

2.4 | MYBait human whole genome enrichment

Whole genome capture was performed at the Center for Geogenetics

using the MYbaits Whole Genome Enrichment kit, following manufac-

turer's instructions (MYbaits protocol version 2.3.1 May 2014). In brief,

6 μl of the adapter-ligated genomic DNA library, 2.5 μl of 1 μg/μl

Human Cot-1 DNA, 2.5 μl of 1 μg/μl Salmon Sperm DNA and 0.6 μl of

proprietary Blocking Agent were combined and incubated for 5 min at

95�C to denature the DNA. The hybridization master mix consisting of

20 μl of 20× SSPE, 0.8 μl 500 mM EDTA, 8 μl of 50× Denhardt's Solu-

tion and 0.8 μl of 10% SDS was preheated for 3 min at 65�C, and 5 μl

of SUPERase-In (20 U/μl) and 1 μl of biotinylated RNA baits were also

preheated for 2 min at 65�C. While keeping the tubes at 65�C, the

denatured DNA mix was added to the preheated biotinylated RNA

baits mixture. Then, the hybridization mix was added to the biotinylated

RNA baits/denatured DNA mixture. This mixture was hybridized at

65�C for 16 hr. The hybridized RNA baits were then isolated from the

unbound genomic DNA using Dynabeads MyOne Streptavidin C1

beads. A higher wash stringency, using a five-fold dilution of 340 μl

0.1× SSC and 1,360 μl 0.1% SDS, was used during the recovery of the

captured targets. After three washes, the beads were resuspended in

20 μl of a buffer solution of 1 M NaCl, 10 mM Tris–HCl (pH 7.5), and

1 mM EDTA, and incubated at 65�C for 2 min. This entire volume was

transferred to the hybridization solution at 65�C for 45 min, after

which it was immediately pelleted with a magnetic particle stand for

2 min. Preheated 0.1× SSC and 0.1% SDS (500 μl) was added to the

mixture and incubated for 5 min at 65�C. The beads were pelleted with

a magnetic particle stand for 2 min to remove the supernatant. This

step was repeated twice for a total of three washes. The enriched DNA

was eluted in 30 μl of molecular biology grade water. The postcapture

amplification was similar to the indexing PCR with 15 μl of library tem-

plate, 25 μl of a 2× KAPA HiFi Uracil+ Master Mix, 5.5 μl H2O, 1.5 μl

DMSO, 1 μl BSA (20 mg/ml), and 1 μl each of a forward and reverse

indexing primer (10 μM). Thermocycling conditions were as follows:

5 min at 98�C, followed by 10–12 cycles of 15 sec at 98�C, 20 sec at

60�C, 20 sec at 72�C, and a final 1 min elongation step at 72�C. The

enriched libraries were quantified using a TapeStation 2200 (Agilent

Technologies) run in high-sensitivity mode.
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2.5 | High-throughput sequencing and initial data
processing

Preenrichment and postenrichment libraries were pooled separately

in equimolar amounts and sequenced on an Illumina HiSeq 2500 in

rapid run mode (2 × 150) at the Yale Center for Genome Analysis in

West Haven, CT, generating between 1.5 M and 65 M paired-end

reads per library. Illumina sequencing adapters, low quality stretches

and leading and trailing Ns were trimmed from the reads using Adap-

terRemoval 2.0 (Schubert, Lindgreen, & Orlando, 2016). Paired-end

reads with a minimum overlap of 10 bp were collapsed into single

reads. After collapsing, reads shorter than 25 bp and nonoverlapping

read pairs were discarded. The resulting analysis-ready reads were

mapped to the human reference genome (hg19) using bwa aln

(0.7.5a) (Li & Durbin, 2009). To improve the mapping sensitivity of

reads with an excess of 50 terminal substitutions, caused by DNA

damage, bwa seeding was disabled (−l = 1,000). Reads with mapping

quality lower than 30 were discarded, and PCR duplicates were iden-

tified and removed using Picard-tools 1.130 (http://picard.

sourceforge.net). Finally, reads were realigned around indels using

Genome Analysis Toolkit 3.3 (DePristo et al., 2011), and the MD-tag

was recalculated using samtools 1.2 (Li et al., 2009). To overcome

the problem of uneven pooling prior to sequencing, we selected a

random subset of 5 million (5 M) read pairs from each sample for all

downstream analyses, unless otherwise noted. For the five dentin

samples that produced fewer than 5 M read pairs, we used the total

number of reads available (Supporting Information Tables S2 and

S3). Summary statistics (depth of coverage, average read length, and

GC content) were estimated on the final 5 M dataset alignments

using samtools 1.2 (Li et al., 2009).

2.6 | mapDamage 2.0 analysis

We used mapDamage2.0 (Jonsson et al., 2013) to quantify postmor-

tem DNA damage patterns (e.g., deamination rates) for each DNA

library and to rescale base quality scores of Ts and As based on their

probability of resulting from molecular damage.

2.7 | Contamination estimates

We used contamMix 1.05 (Fu et al., 2013) to estimate the level of

modern human DNA contamination. In brief, a consensus sequence

was built using reads with mapping quality ≥30, base quality ≥20, and

a minimum per-site depth of coverage of three. Additionally, sites with

consensus concordance lower than 70% were set to N. Next, mtDNA

reads were extracted from the original alignments and re-mapped to

the newly created mtDNA consensus sequence as described above.

Then, a second majority count consensus sequence was created from

the resulting alignments. Finally, the resulting consensus sequence

was aligned to a reference panel containing 311 human mitochondrial

DNAs (Green et al., 2008) using mafft (Katoh, Misawa, Kuma, &

Miyata, 2002) with default parameters and the contamination was

estimated using contamMix.

2.8 | Chromosomal sex determination

To determine chromosomal sex, we used the method described by

Skoglund et al. (2013), which calculates the fraction of sex chromo-

some reads that align to the Y chromosome. The analysis was

restricted to reads with a mapping quality ≥30.

2.9 | mtDNA haplogroup assignment

To determine mtDNA haplogroups, mtDNA variant sites were called

using samtools 1.2 and bcftools 1.9 (Li et al., 2009), allowing for recal-

culation of the extended BAQ, and excluding bases with quality lower

than 20 and reads with mapping quality lower than 30. Genotypes were

compared with the revised Cambridge Reference Sequence (Andrews

et al., 1999), and variants with depth of coverage lower than 3 and

“allelic balance” lower than 70% were discarded. HaploGrep2.0

(Weissensteiner et al., 2016) was run on the list of filtered variants to

assign the most likely haplogroup for each sample. Because of the low

number of mtDNA reads for several individuals, we assessed the accu-

racy of haplogroup assignment at different depths of coverage by carry-

ing out an in silico downsampling experiment on the full datasets

generated for individuals H10 and S40. For each sample, 15,000,

10,000, 5,000, 1,000, 500, 100, and 50 mtDNA reads were randomly

subsampled from the total reads, and each downsampled dataset was

used to perform haplogroup assignment as described above

(Supporting Information Table S4).

2.10 | Genome-wide clustering analysis
(ADMIXTURE)

We used the model-based clustering algorithm ADMIXTURE

(Alexander, Novembre, & Lange, 2009) to explore the continental level

ancestry components of the ancient samples, using the Human

Genome Diversity Panel (HGDP) as a reference. Given the low depth

of human genome coverage in the ancient samples (Supporting Infor-

mation Tables S2 and S3), we did not rely on called genotypes, but

rather used a genotype likelihood-based approach to estimate the

ancestry proportions, based on the allele frequencies inferred for the

modern genotype panel. To do so, we first ran ADMIXTURE

(Alexander et al., 2009) on the reference panel assuming three ances-

tral populations (K = 3). In order to prevent suboptimal solutions, we

performed 100 replicates with a different seed value and kept the rep-

licate with the highest likelihood. Then for each of the ancient sam-

ples, we estimated the three possible genotype-likelihoods (GL) at the

sites included in the reference panel, using the GATK model imple-

mented in ANGSD v.0.614 (Korneliussen et al., 2014). Bases with a

quality score lower than 20 and reads with mapping quality lower than

30 were excluded from the analysis. Finally, we estimated the ances-

try proportions in the ancient samples using an expectation maximiza-

tion method (Skotte, Korneliussen, & Albrechtsen, 2013), as

implemented in fastNGSadmix (Jørsboe, Hanghøj, & Albrechtsen,

2017). For dentin sample S40, we explored three different datasets:

data derived from shotgun sequencing, from WGE and the combina-

tion of both. Additionally, for sample H10 we explored the effect of

sequencing depth in the accuracy of the admixture proportion esti-

mates. To do so, we randomly sampled 5,000,000, 1,000,000,
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500,000, 100,000, 50,000, 10,000, and 5,000 reads from the mapped

and filtered reads, and obtained 10 independent replicates for each

number of reads. For each dataset, we estimated admixture propor-

tions assuming three populations as previously described, and com-

pared the obtained values with the expected proportions estimated

on all available reads (Supporting Information Figure S2).

2.11 | Microbial profiling

Analysis-ready reads from the full dataset were aligned locally (--no-

unal --local) to the subset of the Silva SSU 111 reference dataset

(Quast et al., 2013) using Bowtie2 (Langmead & Salzberg, 2012) using

default parameters. Reads mapping to the 16S rRNA gene were then

assigned to OTUs following the closed-reference OTU pipeline in

QIIME v.1.8 (Caporaso et al., 2010) using 97% similarity threshold

with “uclust” (Edgar, 2010) and 500 max accepts, 500 max rejects and

Greengenes 13.8 as the reference database (DeSantis et al., 2006).

Resulting OTU tables were rarefied to 1,697 (lowest number of reads

assigned to OTUs for dental calculus samples), and were summarized

at the taxonomic level of phylum.

3 | RESULTS

3.1 | Ancient DNA recovery

The total amount of DNA extracted from dental calculus (5.4–

72.1 ng/mg) significantly exceeded that recovered from dentin (0.1–

1.9 ng/mg) in all cases (Wilcoxon signed-rank test, p < .001;

Figure 2a; Supporting Information Table S2), a finding consistent with

previous studies (Mann et al., 2018; Ozga et al., 2016; Warinner et al.,

2014). The DNA in dental calculus was primarily of microbial origin,

but human reads were also present, and the relative proportion of

human DNA was significantly lower in dental calculus (0.005–0.35%)

than dentin (0.04–66.95%; Wilcoxon signed-rank test, p < .01;

Figure 2b; Supporting Information Table S2). When normalized by

sample mass input, however, the estimated absolute quantity of

human DNA in dental calculus (0.5–210 pg/mg) and dentin

(0.5–130 pg/mg) was similar (Wilcoxon signed-rank test, p > .3), albeit

highly variable, with 4 of 12 sample pairs containing more human

DNA in dental calculus, and eight sample pairs containing more human

DNA in dentin (Figure 2c). As expected, we observed that the human

DNA in dental calculus samples from older contexts (i.e., Camino del

Molino, Spain) or warmer climates (i.e., Anse à la Gourde, Guadeloupe)

were generally less well-preserved (as indicated by lower human DNA

contents, shorter average fragment lengths, and higher deamination

rates) than the DNA recovered from younger samples or those from

colder climates (e.g., Nepal or the Netherlands). However, contrary to

our expectations we did not observe the same pattern for the dentin

samples (Supporting Information Table S2).

3.2 | Whole human genome enrichment

Whole genome enrichment resulted in uneven enrichments in the

human DNA content of both dentin and dental calculus libraries and

for three of the dentin libraries (S108, F349A, and S41) capture did

not lead to any significant enrichment at all (see Table 1). Generally,

we observed higher enrichment factors for the dental calculus libraries

than the dentin libraries, but due to the low starting amount of human

DNA in the dental calculus libraries the absolute gains were relatively

low (Figure 3a). Enrichment of mitochondrial DNA (up to 140-fold)

was higher than nuclear DNA (up to four-fold) (Supporting Informa-

tion Tables S2 and S3), but still relatively low when compared with

previous studies specifically targeting the mitochondrial genome

(Ozga et al., 2016).

As observed elsewhere (Mann et al., 2018), average human DNA

fragment lengths in the precapture libraries were found to be signifi-

cantly shorter (Wilcoxon signed-rank test, p < .01) in dental calculus

(73 bp) compared with dentin (85 bp) (Figure 3b), and dental calculus

samples exhibited a significant increase in average fragment length

after capture (dental calculus 80 bp; dentin 93 bp) (Wilcoxon signed-

rank test, p < .01). However, no correlation was found between frag-

ment length in precapture libraries and capture success (enrichment),

nor was there any correlation between fragment length in precapture

libraries and endogenous human DNA content (Wilcoxon signed-rank

test, p > .01).

Clonality markedly increased with capture in both dentin and den-

tal calculus (Wilcoxon signed-rank test, p < .001 for dental calculus;

p < .01 for dentin) (Figure 3c), and the GC content of human reads

was significantly higher in postcapture than precapture libraries

(Wilcoxon signed-rank test, p < .01; Figure 3d). The GC content of

human reads in dental calculus (median 45% in precapture and 47%

postcapture libraries) was also significantly higher than in dentin

(median 40% in precapture and 42% postcapture libraries; Wilcoxon

signed-rank test, p < .05 for both precapture and postcapture). To

ensure that the elevated GC content of human reads in dental calculus

was not a consequence of mismapping of bacterial reads (which have

a higher median GC content) to the human genome, we performed a

BLASTn search of 10,000 randomly sampled dental calculus human

reads against the NCBI nt database, and confirmed that most

(97–98%) uniquely mapped to human (Supporting Information

Figure S1).

Terminal damage rates were significantly lower in dental calculus

than in dentin (Wilcoxon signed-rank test, p = .01), and WGE did not

significantly influence damage rates (Wilcoxon signed-rank test,

p > .1) (Figure 3e).

3.3 | Contamination estimates

Due to the low sequencing depth per sample, we were only able to

estimate mitochondrial contamination rates for half of the dentin sam-

ples and none of the calculus samples. In the precapture dataset, con-

tamination estimates were generally low and ranged from 0.6 to 4.1%

(Supporting Information Table S2). After capture, we observed higher

contamination rates, ranging from 1 to 15.7% (Supporting Information

Table S3).

3.4 | Sex identification

Previous studies (Skoglund et al., 2013) suggest that a minimum of

3,000 reads mapping to the sex chromosomes are required to
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accurately identify the chromosomal sex of ancient remains from

high-throughput sequencing data. For the calculus libraries, we recov-

ered less than 300 sex chromosome reads per sample prior to capture.

This increased slightly after capture, to a maximum of 892 reads for

S41, but was still not sufficient to obtain reliable estimates (Table 2).

For the dentin libraries, we recovered significantly more sex chromo-

some reads, averaging around 13,000 reads per sample prior to cap-

ture, and 17,000 reads after capture (Table 2). This was sufficient to

obtain reliable sex estimates for 8 of the 12 individuals (Table 2, of

which, 4 were identified as female and 4 as male.

3.5 | Mitochondrial haplogroup determination

Similar to obtaining sex estimates from high-throughput sequencing

data, a minimum number of reads mapping to the mitochondrial

genome are needed to confidently assign a mitochondrial haplogroup.
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FIGURE 2 Ancient DNA recovery and human endogenous content from archaeological dental calculus. Bar charts summarizing: (a) Total DNA

yield (ng/mg) in dental calculus (filled bars) and dentin samples (hollow bars) on a log 2 scale. Dental calculus samples show a higher total DNA
yield compared with dentin samples in all cases. (b) Endogenous human DNA content (%) in dental calculus (filled bars) and dentin samples (hollow
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variation. Archaeological sites are ordered from left to right by continent (Europe, Americas, Asia). Data are provided in Supporting Information
Table S2
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To determine how many mitochondrial reads are needed, we serially

downsampled the total mitochondrial reads of two well-preserved

dentin samples, H10 and S40, from approximately 15,000 to 50 mito-

chondrial reads and observed how this affected haplogroup assign-

ment and scoring using the program HaploGrep (Weissensteiner et al.,

2016). We found that at least approximately 500 mitochondrial reads

are needed to obtain haplogroup assignments with a HaploGrep score

greater than 0.5, and at least 1,000 mitochondrial reads are

recommended for more confident assignments (Supporting Informa-

tion Table S4). Depending on aDNA fragment length, this corresponds

to an average depth of coverage of approximately 1–4×. However,

we note that other factors, such as the number of sequencing errors,

deamination rates (postmortem damage), and contamination will also

affect the accuracy of the haplogroup assignment.

As expected, we recovered significantly more mitochondrial reads

from dentin than from dental calculus (Wilcoxon signed-rank test,

TABLE 1 Endogenous human DNA content in percent (%) before and after whole genome capture for 12 paired dentin and dental calculus

libraries

Dentin Calculus

Sample Precapture Postcapture Enrichment Precapture Postcapture Enrichment

C53 12.3 16.4 1.3 0.01 0.02 4.2

C214 0.0 0.1 2.5 0.01 0.02 3.7

S108 5.4 4.7 0.9 0.02 0.09 3.5

S454 0.1 0.1 2.4 0.35 0.54 1.6

F349A 1.0 0.7 0.7 0.01 0.03 3.1

F1948 2.1 7.6 3.6 0.01 0.02 4.4

NF47 0.9 2.3 2.7 0.05 0.13 2.8

NF217 0.1 0.4 3.1 0.07 0.28 4.0

H10 33.4 35.3 1.1 0.03 0.11 3.2

H24 8.7 25.1 2.9 0.01 0.03 2.6

S40 6.0 15.3 2.5 0.02 0.04 2.1

S41 66.9 54.2 0.8 0.22 0.70 3.2
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FIGURE 3 Box plots showing the impact of whole genome capture on sequencing results in the 5 M dataset. (a) The proportion of human DNA

(%) increases in the capture dataset by approximately four-fold for both dental calculus and dentin. Three dentin samples (S41, F349A, and C53)
did not show any enrichment or declined in human DNA content following capture. (b) Fragment lengths (bp) are longer in the capture dataset for
both dental calculus and dentin. (c) Clonality significantly increases as a result of capture for both substrates. (d) GC content (%) is significantly
higher for dental calculus samples and is higher than the average GC content of the human genome. After capture, GC content increases in both
dentin and dental calculus libraries. (e) Cytosine deamination (C > T) at 50 position one of the reads is slightly lower in calculus than dentin and
does not change as a result of whole human genome enrichment. (f) The proportion of 16S rDNA reads assigned to OTUs (%) decreases after
capture for both dental calculus and dentin. Data are available in Supporting Information Tables S2 and S3
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p < .001 for both precapture and postcapture libraries; Supporting

Information Table S2). Whole genome capture led to substantial

enrichments of mitochondrial reads (6- to 139-fold for dental calculus

and 2- to 99-fold for dentin) (Table 1). However, even with capture

we still did not recover enough mitochondrial reads from the dental

calculus libraries to confidently determine mitochondrial haplogroups,

and only one sample, NF217, allowed a low confidence assignment to

haplogroup A2 (HaploGrep score 0.5). For dentin, five of the 12 sam-

ples yielded sufficient mitochondrial reads without capture to deter-

mine the haplogroup with a HaploGrep score greater than 0.6

(Supporting Information Table S5). After capture, we were also able to

obtain haplogroup assignments for five out of the 12 samples. The

assignments were consistent before and after capture, and the identi-

fied haplogroups are found among contemporary populations in the

sampled regions today (Supporting Information Table S5).

3.6 | Genome-wide ancestry estimation

Ancestry estimation programs like ADMIXTURE (Alexander et al.,

2009) rely on reference panels to provide genome-wide ancestry esti-

mates for ancient samples. Among other things, the accuracy of these

estimates depends on the intersection between the data that were

generated from the ancient samples and the reference panel used.

Simply speaking, the larger the overlap is, the more accurate the esti-

mates are. Using a series of randomly downsampled datasets gener-

ated from the total human reads of dentin sample H10 and the

Human Genome Diversity Panel (HGDP) as a global reference, we

found that at least 100,000 total mapping nuclear reads (correspond-

ing to ~2,500 overlapping sites) are needed in order to obtain consis-

tent admixture proportions at K = 3 with low standard errors using

the clustering algorithm ADMIXTURE (Figure 4a,b; Supporting Infor-

mation Figure S2) (Alexander et al., 2009). Below 100,000 reads, the

estimated admixture proportions became increasingly variable with

large standard errors and, therefore, unreliable.

In accordance with the mtDNA results, we recovered significantly

more nuclear reads from dentin than calculus (Wilcoxon signed-rank

test, p < .01 for precapture and postcapture libraries). However, at a

sequencing depth of 5 M paired-end reads, only 6 out of 12 (precap-

ture) and 7 out of 12 (postcapture) dentin samples and none of the

calculus samples yielded more than 100,000 autosomal reads. Whole

genome capture generally led to modest enrichments in autosomal

TABLE 2 Reads mapping to sex chromosomes in precapture and postcapture libraries from 5 M dataset

Precapture Postcapture

Sample X + Ya Ryb SE Sexc X + Ya Ryb SE Sexc

Calculus

C53 8 n.d. n.d. n.d. 54 n.d. n.d. n.d.

C214 11 n.d. n.d. n.d. 25 0.040 0.039 Femaled

S108 19 0.158 0.084 Maled 73 0.055 0.027 Maled

S454 279 0.118 0.019 Maled 447 0.119 0.015 Maled

F349A 6 n.d. n.d. n.d. 34 0.118 0.055 Maled

F1948 20 n.d. n.d. n.d. 45 n.d. n.d. n.d.

NF47 64 n.d. n.d. n.d. 274 0.007 0.005 Femaled

NF217 65 0.154 0.045 Maled 327 0.107 0.017 Maled

H10 44 0.091 0.043 Maled 146 0.151 0.030 Maled

H24 14 0.071 0.069 Maled 33 0.182 0.067 Maled

S40 34 n.d. n.d. n.d. 66 0.015 0.015 Femaled

S41 207 0.087 0.020 Maled 892 0.148 0.012 Maled

Dentine

C53 25,168 0.004 0.001 Female 40,096 0.013 0.001 Female

C214 93 0.022 0.015 Femaled 151 0.026 0.013 Femaled

S108 5,141 0.096 0.004 Male 4,765 0.117 0.005 Male

S454 35 0.086 0.047 Maled 33 0.151 0.062 Maled

F349A 1,142 0.096 0.009 Maled 955 0.157 0.012 Maled

F1948 4,404 0.005 0.001 Female 16,675 0.009 0.001 Female

NF47 1,493 0.009 0.002 Femaled 4,144 0.015 0.002 Female

NF217 121 0.099 0.027 Maled 454 0.121 0.015 Maled

H10 34,928 0.096 0.002 Male 36,034 0.129 0.002 Male

H24 10,014 0.095 0.003 Male 10,668 0.134 0.003 Male

S40 10,719 0.004 0.001 Female 31,031 0.012 0.001 Female

S41 66,225 0.093 0.001 Male 64,243 0.116 0.001 Male

a Total number of reads mapping to the sex chromosomes after removing PCR duplicates and reads with mapping quality <30.
b Ry observed fraction of Y chromosome alignments compared with the total number of alignments to the X and Y chromosome (Skoglund et al., 2013).
c Typical Ry for males is an Ry over 0.09. Ry values under 0.02 are considered female.
d Sex predicted by Ry value, but insufficient X + Y reads are available for confident assignment. A minimum of 3,000 R + Y reads are recommended for sex
assignment (Skoglund et al., 2013).
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reads for both dental calculus (five-fold) and dentin (four-fold) and,

therefore, also led to greater overlap between the ancient samples

and the reference panel. In cases where the capture worked, we

recovered roughly twice as many sites after capture (Supporting Infor-

mation Tables S2 and S3), given the same sequencing effort, which

also improved the accuracy of the ADMIXTURE-based ancestry esti-

mates. This can be most clearly seen in the case of S40 dentin where

the results from ADMIXTURE analysis performed on the precapture

dataset erroneously assigned a higher proportion of European ances-

try to an individual of Asian ancestry (Figure 4c).

3.7 | Microbial profile

The effect of WGE on off-target microbial DNA sequences was evalu-

ated by comparing the taxonomic assignment of 16S rRNA gene

sequences (16S rDNA) before and after human enrichment on the

total sequencing dataset. Contrary to expectations, the proportion of

16S rDNA sequences did not decrease in the captured libraries, as

might be expected for this off-target and relatively high GC content

gene (Supporting Information Tables S2 and S3). However, taxonomic

analysis of these 16S rDNA reads using the QIIME pipeline (Caporaso

et al., 2010) revealed that the proportion of 16S rDNA reads assign-

able to OTUs using a closed reference 97% identity clustering

approach did decrease significantly from 45.5 to 23.1% for dental cal-

culus and from 19.6 to 5.3% for dentin (Wilcoxon signed-rank test,

p < .00003 for dental calculus, p < .004 for dentin; Figure 3f; Support-

ing Information Table S2). These results are broadly consistent with

analyses performed using the MetaBIT pipeline (Louvel et al., 2016),

where the median postcapture OTU assignment rate fell by half for

dental calculus (from 44.9 to 23.4%) and by more than four-fifths for

dentin (from 21.9 to 3.1%) (Supporting Information Tables S2 and S3).

Although higher rates of OTU assignment for dental calculus com-

pared with dentin in both precapture and postcapture libraries are not

unexpected because the host-associated taxa present in dental calcu-

lus are better represented in reference databases than the environ-

mental taxa present in dentin, the reason for the overall drop in OTU

assignment rates observed after capture is unclear.

As a consequence of the very low numbers of 16S rDNA reads

recovered from the dentin samples, further taxonomic analysis was

restricted to the dental calculus samples only. Precapture and post-

capture dental calculus datasets were rarefied to a depth of 1,697 and

assigned taxonomy using the QIIME pipeline and the Greengenes

database (Caporaso et al., 2010). Despite significant differences in

OTU assignment rates before and after capture, overall phylum-level

taxonomic proportions were similar between precapture and

postcapture libraries (Figure 5). This suggests that off-target microbial

sequences obtained through WGE of dental calculus may be suitable

for phylum-level microbial community structure analysis of the

ancient human oral microbiome.

4 | DISCUSSION

The principal aim of this study was to evaluate whether dental calcu-

lus could serve as a viable alternative source of human DNA for whole

human genome reconstruction and to explore the efficacy of WGE on

dental calculus. To do so, we characterized the human DNA content

in a diverse set of archaeological dental calculus and dentin samples,

before and after WGE. In agreement with previous studies (Mann

et al., 2018; Ozga et al., 2016; Warinner et al., 2014), we observed

that the total extracted DNA yield of dental calculus far exceeds that

of dentin—up to 375-times higher as in the case of NF47. Additionally,

we found that although the proportion of human DNA in the samples

is generally lower in dental calculus than dentin, the absolute amount

of human DNA in both substrates is comparable (cf., Mann

et al., 2018).
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Whole genome capture resulted in up four-fold enrichment of the

human endogenous content in both dental calculus and dentin librar-

ies, with the exception of three dentin samples that either showed no

enrichment (S108) or, in fact, were depleted in human DNA content

(F349A, S41) following capture. These enrichments are comparable to

those observed in previous studies using a whole genome capture

approach (Carpenter et al., 2013; Schroeder et al., 2015; �Avila-Arcos

et al., 2015; Schroeder et al., 2018), but significantly lower than those

reported for mitochondrial genome capture (Ozga et al., 2016) or the

targeted capture of specific SNPs (Mathieson et al., 2015). This sug-

gests that current WGE methods are not as effective as other forms

of targeted enrichment, which might be at least partially explained by

the size and complexity of the target, the low copy number of nuclear

DNA (when compared with mtDNA), the presence of repetitive sec-

tions in the genome, and the presence of homologous regions in non-

human/bacterial taxa.

Previous studies have reported that an initial endogenous content

of 1–25% resulted in higher enrichment factors (�Avila-Arcos et al.,

2011; Cruz-Dávalos et al., 2016); however, we found no correlation

between initial endogenous content and enrichment. The overall low

levels of enrichment observed in this study for both dentin and dental

calculus samples suggest that current WGE techniques are not effi-

cient at enriching the human DNA in either sample material.

To further investigate the effects of in-solution capture on

ancient DNA libraries, we compared variables such as contamination,

average fragment length, clonality, GC content, and deamination rate

before and after capture (Supporting Information Tables S2 and S3).

As observed previously, we find slightly higher contamination esti-

mates for postcapture libraries (Supporting Information Tables S2 and

S3) (�Avila-Arcos et al., 2015), and we found that postcapture average

fragment lengths were longer (Supporting Information Tables S2 and

S3), which is consistent with the known bias toward longer fragments

when using a capture approach (Cruz-Dávalos et al., 2016; Ozga et al.,

2016). While we found no correlation between average DNA frag-

ment length and initial endogenous human DNA content or capture

performance (enrichment rate), we agree with previous studies that

fragment length might be a limiting factor when applying WGE on

extremely degraded ancient DNA samples (Cruz-Dávalos et al., 2016;

Enk et al., 2014). In addition, the significantly shorter (Wilcoxon

signed-rank test, p < .01) average human DNA fragment lengths in the

precapture dental calculus libraries could be the result of the active

incorporation of human DNA in dental calculus through host inflam-

matory responses and, in particular, the release of neutrophil extracel-

lular traps (NETosis) (Mann et al., 2018).

After capture, we find that clonality increases approximately

50-fold (Supporting Information Tables S2 and S3). This is likely due

to the high number of PCR cycles used for samples with relatively low

initial endogenous DNA contents, which has been previously shown

to result in increased clonality (�Avila-Arcos et al., 2015). However, a

high number of PCR cycles can be necessary to reach the required

amount of input DNA for hybridization capture.

Interestingly, we find that prior to enrichment the median GC con-

tent of human DNA in the calculus libraries (45%) is significantly higher

than in the dentin libraries (39.5%), as well as higher than the average

GC content of the human genome (40.9%). Previous studies have

shown that the GC content of DNA retrieved from dentin typically

reflects that of the reference genome (Cruz-Dávalos et al., 2016). How-

ever, a recent study (Mann et al., 2018) observed an inverse relation-

ship between DNA fragment length and GC content in ancient DNA

derived from microbial taxa. The systematic loss of AT-rich fragments

in taxa with low- and medium-GC genomes may be partially explained

by the susceptibility of short fragments with low GC content to loss

through denaturation (Mann et al., 2018). The high GC content of

human DNA in dental calculus might be related to factors specific to

the manner in which human DNA is incorporated into dental calculus.

However, it remains unclear whether these patterns are produced

through the sequencing preparation or a naturally occurring tapho-

nomic process (Mann et al., 2018). Furthermore, we note that capture

slightly increased the overall GC content of the ancient DNA libraries.

Regarding postmortem damage, we did not observe any changes

in the frequency of typical damage patterns following enrichment (cf.,

Carpenter et al., 2013). We did, however, detect significant differ-

ences in terminal damage rates between dental calculus and dentin,

whereby human DNA in dental calculus appears to be less damaged

than in dentin (cf., Mann et al., 2018). It is possible, therefore, that the

human DNA trapped in dental calculus is somehow more protected

from various degradation processes (e.g., hydrolytic damage) than

human DNA in dentin. Overall, despite some differences that may be

intrinsic to biological differences between dental calculus and dentin,

we find that in-solution WGE affects dental calculus in a similar way

as dentin or bone.

With respect to sex and ancestry estimates, we find that WGE

marginally improved the reliability of these assignments by enabling

the generation of more data for the same sequencing effort. As such,

we recovered approximately twice as many sex chromosome reads on

average with WGE than without. This was sufficient to reliably deter-

mine the biological sex of 8 of the 12 individuals, 4 of whom were

identified as female, and 4 as male. While we were unable to recover

sufficient X and Y chromosome reads from the calculus samples to

obtain confident sex estimates, we note that sex chromosome reads

were present and that given the appropriate sample size and sequenc-

ing effort, high-throughput sequencing of archaeological dental calcu-

lus samples could be used for sexing ancient human remains. With

respect to genome-wide ancestry estimates, we note that WGE

increased the overlap between the ancient samples and the modern

reference panel and, therefore, also improved the accuracy of the

ADMIXTURE-based ancestry estimates. We also recovered signifi-

cantly more mitochondrial reads after capture, resulting in more reli-

able mtDNA haplogroup estimates.

Finally, in regard to the sample microbial profile, we found that

although the proportion of 16S rDNA reads assigned to OTUs signifi-

cantly decreased after capture, no major differences were observed in

microbiome profiles at the phylum level, indicating that off-target

reads in libraries enriched for the human genome may still be useful

for investigating the ancient oral microbiome.

Overall, we note that our WGE experiment was notably less

effective than other forms of capture targeting the mitochondrial

genome (Maricic et al., 2010; Ozga et al., 2016) or specific SNPs

(e.g., Mathieson et al., 2015). We believe that this might at least
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partially be due to the small starting amount of target DNA pre-

sent in many of the samples. In addition, the efficiency of WGE

might be limited by the size and complexity of the human genome,

the low copy number of nuclear DNA (when compared with

mtDNA), the presence of repetitive sections in the genome, and

the presence of homologous regions in nonhuman, including bacte-

rial taxa. Regardless of the precise cause, further optimization is

clearly needed before WGE can be more widely applied. Two pos-

sible modifications for in-solution based WGE include (1) increasing

the amount of starting DNA, and (2) optimizing hybridization tem-

peratures and incubation times. For example, Paijmans et al. (2016)

found the best results with hybridization temperatures of 65�C for

degraded samples, while Cruz-Dávalos et al. (2016) found that

longer incubation times (40 hr instead of 24) at lower tempera-

tures (50�C) led to higher enrichment rates. A third option would

be to perform two or more consecutive rounds of capture

(Li et al. 2013; Templeton et al., 2013) to increase enrichment

rates.

5 | CONCLUSION

Whole human genome capture performed on a set of 24 paired

human dental calculus and dentin samples resulted in up to four-fold

enrichments of the human endogenous content. These kinds of

enrichment rates are orders of magnitude lower than those achieved

with other kinds of capture targeting the mitochondrial genome

(Maricic et al., 2010; Ozga et al., 2016) or specific SNPs (Mathieson

et al., 2015). We conclude that while archaeological dental calculus

does contain ancient human DNA, current WGE techniques are not

effective at retrieving it, and further optimizations are needed before

WGE can be more widely applied. The low relative proportion of

human DNA in dental calculus clearly poses challenges for retrieving

host genome information using both shotgun and capture enrichment

approaches. However, in the absence of other resources or when

sampling of other tissues is restricted, dental calculus can serve as a

viable source of human ancient DNA. The ability to recover both

human DNA and microbial DNA from the same archaeological sub-

strate opens new avenues of research for studying the relationships

between the genetic information of the host and microbiome compo-

sition, function and evolution. However, to fully realize the potential

of dental calculus for human genome-wide analyses, optimization of

DNA enrichment techniques is necessary.
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