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Abstract

Introduction
Rising global temperatures might contribute to the current worldwide diabetes epidemic, as higher
ambient temperature can negatively impact glucose metabolism via a reduction in brown adipose
tissue activity. Therefore, we examined the association between outdoor temperature and diabetes
incidence in the United States of America (USA) as well as the prevalence of glucose intolerance
worldwide.

Methods
Using meta-regression, we determined the association between mean annual temperature and dia-
betes incidence during 1996-2009 for each USA state separately. Subsequently results were pooled
in a meta-analysis. On a global scale, we performed a meta-regression analysis to assess the asso-
ciation between mean annual temperature and the prevalence of glucose intolerance.

Results
We demonstrated that on average per 1°C increase in temperature age-adjusted diabetes incidence
increased with 0.314 (95% CI 0.194, 0.434) per 1000. Similarly, the worldwide prevalence of glucose
intolerance increased by 0.170% (95% CI 0.107, 0.234) per 1°C rise in temperature. These associa-
tions persisted after adjustment for obesity.

Conclusion
Our findings indicate that diabetes incidence rate in the USA and prevalence of glucose intolerance
worldwide increase with higher outdoor temperature.
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Introduction
The worldwide prevalence of type 2 diabetes is rapidly increasing. In 2015, 415 million

adults globally were suffering from diabetes, and expectations are that the prevalence will

rise by almost 55%, up to 642 million cases by 2040. [1] In high-income countries, 91% of

adults affected by diabetes have type 2 diabetes. [1] The type 2 diabetes epidemic accom-

panies the increasing prevalence of obesity. [2]

With increasing body mass index (BMI), glucose and lipids are initially stored in expanding

(subcutaneous) adipose tissue compartments. However, according to the lipid overflow

hypothesis, when the storage capacity of adipose tissue is exceeded, lipids can accumu-

late in organs (steatosis) including the pancreas, liver, heart and skeletal muscle, resulting

in insulin resistance of those organs. [3] The variability in the degree of steatosis and the

heterogeneity of body fat distribution over subcutaneous and visceral fat depots probably

explains the only modest association between measures of overall body fat and insulin re-

sistance. [3–5] For example, South Asians are prone to develop type 2 diabetes at a relatively

low BMI, presumably because of the limited lipid storage capacity of their adipose tissue

depots. [6] Interestingly, a very low-calorie diet can rapidly diminish steatosis and insulin re-

sistance independent of weight loss [7], indicating dissociation between insulin resistance

and obesity per se.

Recently, brown adipose tissue (BAT) has emerged as an organ that is capable of com-

busting large amounts of lipids to generate heat. [8] Physiologically, BAT is activated by cold

exposure. [9? ] Indeed, prolonged cold acclimatization recruits BAT activity [10] and is able to

induce modest weight loss. [11] A recent landmark paper showed that acclimatization of pa-

tients with type 2 diabetes to moderate cold for only ten days already improved insulin sen-

sitivity as determined by a markedly higher glucose infusion rate during a hyperinsulinemic-

euglycemic clamp, while body weight was unaltered. [12] It is conceivable that an increased

flux of fatty acids towards BAT will result in a compensatory increased flux of glucose to

other metabolically active tissues, thereby improving systemic insulin sensitivity. [13]

It has previously been shown that BAT activity is negatively associated with outdoor tem-

perature and is highest in winter. [14–16] Considering the putative role of BAT in the control

of insulin action, combined with the effect of ambient temperature on BAT activity, we hy-

pothesized that the global increase in temperature contributes to the current type 2 dia-

betes epidemic. Recently, a positive association was found between outdoor temperature

and glycated haemoglobin (HbA1c), [17] indicating that systemic glucose homeostasis is

influenced by environmental temperature. However, the importance of this association,

especially in relation to the increasing diabetes burden, has never been studied on the
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population level. Therefore, in the present study we aimed to assess the association be-

tween outdoor temperature and glucose metabolism on a country-wide as well as a global

scale. We specifically hypothesized that diabetes incidence and prevalence of glucose

intolerance increase with rising outdoor temperatures.

Materials and Methods

Diabetes incidence rate in the USA
Data on diabetes incidence in 50 states of the United States of America (USA) and three

territories (i.e. Guam, Puerto Rico and Virgin Islands) were available for the years 1996-

2013. Via the National Diabetes Surveillance System of the Centers for Disease Con-

trol and Prevention (CDC) age-adjusted diabetes incidence rates per 1000, along with the

corresponding 95% CI, were available for all states and territories per year. [18] The dia-

betes incidence rate was self-reported via the Behavioral Risk Factor Surveillance System

(BRFSS) and defined as the rate of adults (18-76 years) who reported to be told by a health

professional in the last year they had diabetes (type 1 or 2). Data were age-adjusted to

the 2000 USA standard population using age strata of 18-44, 45-64 and 65-76. Detailed

information on survey methods can be found elsewhere. [19] We restricted our analysis to

the 1996-2009 period as major changes in the survey methods were implemented between

2010 and 2011. Data on mean the annual temperature per state were collected through

the National Centers for Environmental Information. [20] Obesity prevalence (i.e. BMI ≥30)

per state or territory per year, expressed as a percentage with corresponding 95% CI, was

also obtained via the BRFSS of the CDC. [19,21]

Prevalence of raised fasting blood glucose worldwide
Data on country-wise prevalence rates of raised fasting blood glucose and obesity (i.e. BMI

≥30) were available and obtained through the World Health Organization’s Global Health

Observatory online data repository system, which provides various health-related statistics

for its member states. [22] In this database, the prevalence of raised fasting blood glucose

is defined as the percentage of the population with fasting blood glucose ≥7.0 mmol/L or on

medication for raised blood glucose. [23] We used the most recent age-adjusted and sex-

adjusted estimates available which were based on data from 2014. Country-wise mean

annual temperature data for 2014 were obtained via the Climatic Research Unit, University

of East Anglia, using the 3.23 release of its data set. [24,25]

Statistical analyses
First, for each state or territory of the USA separately, we performed a weighted meta-

regression analysis to estimate the association between mean annual temperatures (°C)
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and age-adjusted diabetes incidence rates, both measured yearly during the period 1996-

2009. Age-adjusted diabetes incidence rate was included as the dependent variable and

mean annual temperature was included as the independent variable. Moreover, in order

to adjust for the underlying secular trends in temperature and diabetes incidence, all meta-

regression models were adjusted for the effect of time passage by including the variable

year as an additional independent variable in the models. For Guam, Illinois and the Virgin

Islands, there were insufficient data to perform a meta-regression analysis, and therefore

these were excluded from further analyses.

Second, a meta-analysis was performed to integrate the results of the meta-regression

analyses into an overall effect estimate, representing the mean strength of the association

between mean annual temperature and diabetes incidence rate in the USA during the pe-

riod 1996-2009. For the worldwide data, we performed a meta-regression analysis with

age-adjusted and sex-adjusted country-wise prevalence of raised fasting blood glucose as

the dependent variable and mean annual temperature as well as the World Bank income

group (i.e. low-, lower-middle-, upper-middle- and high-income) [22] as the independent

variables. For both meta-regression analysis and meta-analysis, the DerSimonian and

Laird random-effects model was used. [26,27] Weights were calculated as with 𝜎 be-

ing the standard error of the age-adjusted incidence rate in year 𝑖 and 𝜏 the estimated

between-study variance. [28] Standard errors of the age-adjusted incidence rates were un-

known and therefore estimated as . ( )
. with UL the upper limit and LL the lower limit

of the 95% CI of the age-adjusted incidence rate.

To establish whether the association between mean annual temperature and diabetes in-

cidence rate was mediated through effects on body weight, we first calculated an overall

effect estimate for the association between mean annual temperature and obesity preva-

lence in the USA using a similar approach as described above. Since this overall effect size

significantly differed from zero, we added obesity prevalence as an independent variable

in the meta-regression models relating mean annual temperature and diabetes incidence

rate. Subsequently, we again performed a meta-analysis to integrate the estimates of the

obesity prevalence corrected meta-regression analyses into an overall effect estimate for

the association between mean annual temperature and diabetes incidence rate adjusted

for obesity prevalence in the USA during the period 1996-2009. For the global data we

performed a similar analysis by considering obesity prevalence as a mediator variable in

the meta-regression models.

We also composed a map of the USA showing the mean annual temperature over the pe-

riod 1996-2009 and beta coefficients from the obesity-adjusted meta-regression analyses

per state. This map provides insight into potential geographically determined confounding
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factors (e.g. sea influences, biomes or altitudes), which could be apparent from a non-

random distribution of beta coefficients overlapping with geographical patterns.

Programming was performed in STATA Statistical Software version 12.0 (Statacorp, Col-

lege Station, Texas, USA) ) and R version 3.1.0 using the ‘metafor’ package. [29] Maps were

computed using MATLAB version R2015a (The MathWorks Inc., Natick, Massachusetts,

USA).

Results

National level: USA
Table 7.1 shows data on annual temperature, diabetes incidence rate and obesity preva-

lence in the period 1996-2009 for each included USA state or territory. During these four-

teen years, the age-adjusted diabetes incidence rate was highest in Puerto Rico, West

Virginia and South Carolina, and lowest in Minnesota, Massachusetts and Colorado. The

mean change (Δ) in annual temperature between two consecutive years ranged from -

0.11°C (Minnesota) to +0.09°C (Hawaii).

Both diabetes incidence rate (Figure 7.1) and obesity prevalence (Supplemental figure

7.A.1) increased with higher mean annual temperature. The overall effect estimate for

the association between mean annual temperature and diabetes incidence rate was 0.314

(95% CI 0.194, 0.434), indicating a 0.314 increase in the diabetes incidence rate per 1000

for each degree Celsius increase in mean annual temperature. Similarly, obesity preva-

lence increased by 0.173% (95% CI 0.050%, 0.296%) for each degree Celsius increase in

mean annual temperature. After adjustment for obesity prevalence the positive associa-

tion between mean annual temperature and diabetes incidence rate attenuated only slightly

(Supplemental figure 7.A.2). Per degree Celsius increase in mean annual temperature the

obesity-adjusted diabetes incidence rate increased by 0.290 (95% CI 0.164, 0.416) per

1000.

Figure 7.2 shows a map of the USA, illustrating the relation between the mean annual

temperature per state over the period 1996-2009 and the magnitude of the corresponding

change in obesity-adjusted diabetes incidence rate. As can be appreciated from this figure,

the diabetes incidence rate increases in most states with higher mean annual temperature,

while there is no apparent geographical pattern which could explain this association.

Global level
Prevalence data on raised fasting blood glucose and obesity were available for 190 coun-

tries. The worldwide aggregated age-adjusted and sex-adjusted prevalences of raised
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fasting blood glucose levels and obesity were 9.65% (95% CI 9.11%, 10.13%) and 19.51%

(95% CI 17.94%, 21.07%), respectively. There was a positive association between mean

annual temperature and country-wise age-adjusted, sex-adjusted and income-adjusted

prevalence of raised fasting blood glucose. The prevalence increased by 0.170% for each

degree Celsius rise in temperature (95% CI 0.107, 0.234).

There was also a positive association between mean annual temperature and country-wise

age-adjusted, sex-adjusted and income-adjusted obesity prevalence. For each degree

Celsius rise in temperature, the obesity prevalence increased by 0.295% (95% CI 0.137%,

0.454%). Interestingly, the increase in obesity prevalence for each degree Celsius rise in

average temperature was larger in women (0.503%) as compared with men (0.111%; mean

difference 0.391%, 95% CI 0.160%, 0.622%). After additional adjustment for obesity preva-

lence, the association between mean annual temperature and country-wise age-adjusted,

sex-adjusted and income-adjusted prevalence of raised fasting glucose only slightly at-

tenuated (0.106% increase for each degree Celsius rise in temperature, 95% CI 0.057%,

0.155%) (Figure 7.3).

Given the extremely high prevalence of raised fasting glucose in some relatively small coun-

tries (Figure 7.3), we performed a sensitivity analysis excluding all countries (n=29) with

a prevalence of raised fasting blood glucose higher than 15%. Under this restrictive sce-

nario the association between mean annual temperature and country-wise age-adjusted,

sex-adjusted, income-adjusted and obesity-adjusted prevalence of raised fasting blood glu-

cose remained present: 0.051% increase in prevalence for each degree Celsius rise in

temperature (95% CI 0.003%, 0.099%; see Supplementary figure 7.A.3).
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Table 7.1: Temperature characteristics, mean diabetes incidence and mean obesity prevalence in the
United States of America over the period 1996-2009.

Mean annual Temperature Age adjusted diabetes Obesity prevalence (%)
temperature (°C) per year (°C)b incidence rate per 1000

Alabama 17.46 -0.03 9.7 26.3
Alaska -2.48 -0.07 6.5 23.5
Arizona 16.13 0.03 7.7 19.3
Arkansas 16.11 -0.02 8.6 24.6
California 14.85 0.03 8.6 20.9
Colorado 7.86 0.03 5.2 15.9
Connecticut 9.78 -0.02 6.5 18.3
Delaware 13.27 -0.06 8.2 22.1
Florida 21.72 -0.05 8.4 20.8
Georgia 17.74 -0.03 9.2 23.0
Hawaii 23.32 0.09 6.4 17.9
Idaho 6.54 0.01 7.3 21.1
Indiana 11.26 -0.05 8.3 24.4
Iowa 9.12 -0.07 6.6 23.4
Kansas 12.81 -0.02 7.2 22.2
Kentucky 13.46 -0.04 8.1 25.3
Louisiana 19.48 -0.03 9.5 25.7
Maine 5.37 0.00 7.9 21.1
Maryland 12.87 -0.06 8.1 22.1
Massachusetts 9.16 -0.02 5.1 17.8
Michigan 7.37 -0.05 8.5 24.9
Minnesota 5.48 -0.11 4.6 20.9
Mississippi 17.82 -0.03 9.1 27.7
Missouri 12.88 -0.04 7.5 24.3
Montana 5.91 -0.08 5.6 18.9
Nebraska 9.76 -0.04 6.1 22.8
Nevada 10.50 0.05 7.7 20.3
New Hampshire 6.59 0.00 6.4 19.9
New Jersey 11.84 -0.05 7.0 19.8
New Mexico 12.42 0.02 7.6 20.2
New York 7.73 -0.02 8.2 20.4
North Carolina 15.17 -0.05 8.8 23.9
North Dakota 5.04 -0.09 5.9 23.1
Ohio 10.84 -0.04 8.4 23.9
Oklahoma 15.71 -0.02 8.9 23.9
Oregon 8.75 0.02 6.7 21.7
Pennsylvania 9.61 -0.04 7.5 23.2
Puerto Rico 26.94 -0.07 10.9 22.7
Rhode Island 10.20 -0.03 7.6 18.8
South Carolina 17.28 -0.04 10.2 24.6
South Dakota 7.71 -0.08 5.9 22.3
Tennessee 14.63 -0.04 9.6 24.9
Texas 18.74 -0.01 9.0 24.4
Utah 9.55 0.00 6.4 19.4
Vermont 6.07 -0.01 5.9 19.0
Virginia 13.20 -0.05 7.7 21.8
Washington 8.36 -0.03 8.1 21.2
West Virginia 11.34 -0.04 10.7 26.8
Wisconsin 6.68 -0.08 7.0 22.3
Wyoming 5.70 0.00 6.9 20.2

Results are presented as mean values over the period 1996-2009.
a 49 states and one territory (Puerto Rico): insufficient data were available for Guam, Illinois and the Virgin Islands.
b Mean change ( ) over the period 1996-2009 in mean annual temperature between two consecutive years.
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Figure 7.1: The association between mean annual temperature and diabetes incidence in the United
States of America over the period 1996-2009. The forest plot represents the differencea,b in diabetes
incidence ratec per 1°C increase in temperature.

a Beta coefficient from meta-regression analysis. Error bars represent 95% CI.
b Adjusted for the effect of time passage.
c Diabetes incidence rate is the age-adjusted diabetes incidence rate per 1000.
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Figure 7.2: Map of the Unites States of America (including Alaska, Hawaii and Puerto Rico), showing
the mean annual temperature and the magnitude of the beta coefficientsa from the obesity-adjusted
meta-regression analysisb, per state or territory over the period 1996-2009.

a Beta coefficient from meta-regression analysis, representing the difference in diabetes incidence ratec per 1°C
increase in temperature; red circles indicate a positive beta coefficient, blue circles indicate a negative beta
coefficient.

b Adjusted for the effect of time passage.
c Diabetes incidence rate is the age-adjusted diabetes incidence rate per 1000.
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Figure 7.3: The worldwide association between mean annual temperature and age-, sex-, income-
and obesity-adjusted prevalence of raised fasting blood glucose (FBG), for 190 countries in 2014.
Colours indicate the six World Health Organization regions. [30] The size of each circle is inversely
proportional to the standard error of the estimate of the prevalence of raised fasting blood glucose.
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Discussion
The association between outdoor temperature and fasting blood glucose concentration

has rarely been examined in the past, and studies showed discordant results. [31,32] These

studies were performed in selected study populations from specific cities and the conflict-

ing results indicate that the results are not generalizable to other places. To the best of our

knowledge, the present study is the first to assess the association of outdoor temperature

with diabetes incidence and the prevalence of raised fasting blood glucose on both a na-

tional and global level. Using fourteen-year longitudinal state level data from the USA, we

show that the overall diabetes incidence rate is higher in warmer years. Per 1°C increase

in temperature, we found an overall increase in age-adjusted diabetes incidence of 0.314

per 1000.

Importantly, we expect confounding in this association to be minimal, as temperature it-

self is hardly influenced by any extraneous factors, apart from the passage of time and

geographical location. Hence, we adjusted the models for the underlying secular trends

in temperature and diabetes incidence by adjusting for time passage. Also, by first deter-

mining the association for each state separately before pooling for obtaining the overall

effect estimate, we minimized the effect of potential geographically determined confound-

ing factors, and in this way we also precluded all other differences between states that

could influence or bias the association between temperature and diabetes incidence. Fur-

thermore, the distribution of the magnitudes and directions of the beta coefficients over the

USA (Figure 2) appeared to be random as we could not distinguish a pattern overlapping

with geographic (e.g. sea influences, biomes or altitudes) or demographic characteristics,

indicating that these factors do not explain the association. Our results are therefore un-

likely to be merely due to interstate demographic, socioeconomic or other differences.

On the global scale, detailed longitudinal international data on diabetes incidence rates

were unfortunately unavailable for a large number of countries. Therefore, we used country-

wise estimates of the prevalence of raised fasting blood glucose instead. In accordance

with the results of the USA, we found that on a global level the prevalence of glucose in-

tolerance is higher in warmer countries. This association between temperature and raised

fasting blood glucose cannot be merely due to international differences in age, sex, income

or obesity prevalence, as our analyses were adjusted for these variables. Although we can-

not exclude residual confounding by population stratification, the fact that this association

closely parallels our findings in the USA supports the notion that the ambient temperature

affects the occurrence of glucose intolerance worldwide.

The associative design of our study does not allow us to draw conclusions on causality.
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However, it is tempting to speculate that the mechanism underlying our present findings

is related to an interplay between BAT activity and glucose clearance from the circula-

tion by metabolically active tissues. Recently, peripheral insulin sensitivity in patients with

type 2 diabetes was shown to increase markedly after ten days of mild cold exposure. [12]

These patients had an increased glucose uptake by skeletal muscle, probably explained

by an increased overall flux of fatty acids towards BAT, reducing the fatty acid flux to other

tissues. [13] Interestingly, in this short-term cold acclimation study body weight was unaf-

fected [12], indicating that the effects of temperature on glucose metabolism can occur in-

dependently of body weight. This is further supported by another study showing that higher

BAT activity after cold exposure was associated with lower blood glucose and HbA1c levels

independent of body fat. [33] In line with these findings we found that adjustment for obesity

prevalence only slightly attenuated the association of outdoor temperature with both dia-

betes incidence in the USA and prevalence of glucose intolerance worldwide. Therefore,

our data are consistent with the hypothesis that a decrease in BAT activity with increas-

ing environmental temperature may deteriorate glucose metabolism and increase the in-

cidence of diabetes. The role of BAT activity as an underlying pathway in the association

between outdoor temperature and diabetes incidence, may even be genetic in origin. Ac-

cording to the cold climate genes hypotheses, DNA areas involved in thermogenesis may

have encountered selection pressure during evolution in areas with cold climates. [34] The

biological effects of the gene products may also decrease the susceptibility to diabetes.

Interestingly, DNA areas that regulate uncoupling proteins, including uncoupling protein

1 that drives heat production in BAT, have been proposed as candidates for these cold

climate genes. [34]

Besides BAT activity, physical activity could be a potential mediator in the association be-

tween temperature and diabetes incidence, as physical activity varies with environmental

temperature. [35] Although a decrease in physical activity with increasing mean annual tem-

perature may theoretically explain our findings, physical activity has been shown to be

highest between daily temperatures of 15°C and 20°C and decreases with higher but also

lower temperatures. [36,37] Therefore, we do not expect that physical activity completely

explains the positive association between outdoor temperature and diabetes incidence.

Unfortunately, data on physical activity for the USA were not available for the period of

1996-2009 and therefore we were not able to further elucidate the mediating effects. This

topic evidently requires further investigation.

There are several potential limitations to our study. First, we used state-level and country-

level aggregated data on incidence and prevalence rates. Although individual-level data

would have yielded more accurate results, acquiring individual-level data on such a large
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scale was not feasible. Moreover, we used statistical techniques, that is meta-regression

and meta-analysis, which can appropriately account for the uncertainty in the aggregated

effect estimates. Second, available data on BMI were categorically organized (i.e. obesity

prevalence) and BMI could therefore not be applied as a continuous variable in the models.

Although continuous data would have been more accurate, the prevalence of obesity is by

definition closely related to the average BMI and its distribution in the general population,

implying that obesity prevalence can be used as a valid surrogate measure for average

BMI in a given population. It should be emphasized that we were not able to evaluate

the linearity of the association between BMI and diabetes incidence or prevalence in our

models, as continuous data on BMI were not available. Although adjustment for obesity

prevalence only slightly attenuated the association between outdoor temperature and dia-

betes, mediation via BMI should be further evaluated in future studies to assess whether

a non-linear association between BMI and diabetes might account for our results. Third,

owing to the observational nature of our analyses we cannot exclude residual confounding.

For the USA, however, we largely circumvented this issue by analysing longitudinal state-

level data for each state separately before pooling the results. Furthermore, adjustment for

important intercountry differences, that is age, sex, income and obesity, did not materially

change the results on the global level. Importantly, adjusting for income also takes along

other inter-country differences, as many surrogate measures which are often applied for

adjusting for global inequalities in the degree of social development are based on the gross

national income (GNI) per capita. In fact, the World Health Organization uses a four-group

classification scheme, based on the Work Bank Atlas methodology to estimate GNI per

capita, [38] according to which each country is categorized as either low-, lower-middle-,

upper-middle- or high-income. [22]

In conclusion, diabetes incidence rate in the USA and prevalence of glucose intolerance

worldwide increase with higher outdoor temperature. On the basis of our results, a 1°C rise

in environmental temperature would account for over 100,000 new diabetes cases per year

in the USA alone, given a population of nearly 322 million people in 2015. [16] These findings

emphasize the importance of future research into the effects of environmental temperature

on glucose metabolism and the onset of diabetes, especially in view of the global rise in

temperatures with a new record set for the warmest winter in the USA last year. [37]
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Supplemental figure 1 The association between mean annual temperature and

obesity prevalence in the United States of America over the period 1996-2009. The

forest plot represents the differencea,b in obesity prevalence per 1°C increase in

temperature.

a
Beta coefficient from meta-regression analysis. Error bars represent 95% CI.

b
Adjusted for the effect of time passage.

Obesity prevalence is expressed as percentage.
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Figure 7.A.1: The association between mean annual temperature and obesity prevalence in the
United States of America over the period 1996-2009. The forest plot represents the differencea,b

in obesity prevalencec per 1°C increase in temperature.

a Beta coefficient from meta-regression analysis. Error bars represent 95%CI.
b Adjusted for the effect of time passage.
c Obesity prevalence is expressed as percentage.
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Supplemental figure 2 The association between mean annual temperature and

diabetes incidence in the United States of America over the period 1996-2009,

adjusted for obesity prevalence. The forest plot represents the differencea,b in

diabetes incidence rate per 1°C increase in temperature.

a
Beta coefficient from meta-regression analysis. Error bars represent 95% CI.

b
Adjusted for the effect of time passage.

Diabetes incidence rate is the age-adjusted diabetes incidence rate per 1000.

0.290 (0.164, 0.416)
South Carolina

Idaho

South Dakota

Texas
Florida

Missouri
Indiana

North Carolina

Connecticut
Hawaii

Delaware
Colorado

New Mexico

Wisconsin
Montana

New Hampshire
Iowa

Pennsylvania

Minnesota
Ohio

New York
Massachusetts

Arkansas

West Virginia
Mississippi

Vermont
Nebraska

Michigan

Kentucky
Nevada

New Jersey
Alabama

Puerto Rico

California
Washington

Kansas

North Dakota
Rhode Island

Virginia
Maryland

Maine

Georgia
Utah

Wyoming
Alaska

Tennessee

Arizona
Oklahoma

Oregon
Louisiana

Overall effect (95% CI)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Difference in diabetes incidence rate per 1°C increase in temperature

Page 32 of 34

https://mc.manuscriptcentral.com/bmjdrc

BMJ Open Diabetes Research & Care

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 7.A.2: The association between mean annual temperature and diabetes incidence in the
United States of America over the period 1996-2009, adjusted for obesity prevalence. The forest
plot represents the differencea,b in diabetes incidence ratec per 1°C increase in temperature.

a Beta coefficient from meta-regression analysis. Error bars represent 95%CI.
b Adjusted for the effect of time passage.
c Diabetes incidence rate is the age-adjusted diabetes incidence rate per 1000.
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Figure 7.A.3: The worldwide association between mean annual temperature and age-, sex-, income-
and obesity-adjusted prevalence of raised fasting blood glucose (FBG), for 161 countries in 2014, after
exclusion of countries with a prevalence of raised fasting blood glucose >15%. Colours indicate the
six World Health Organization regions. The size of each circle is inversely proportional to the standard
error of the estimate of the prevalence of raised fasting blood glucose.


