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Scientific progress is the basis for our ever-increasing understanding of the world surround-

ing us. The desire to find answers and keep asking questions is the heart of science. Re-

garding the specific area of science that covers human biology, there is an ultimate goal:

understanding human biology to increase our life span, spent in good health. Looking back

at the past century, we can convincingly state that science succeeded, as life expectancy

in developing countries increased with around thirty years. [1] In the 21st century, we long

outlive reproductive age. The human genome has been modified over hundred thousands

of years to make us the prosperous species that we are now, but in the current era of wel-

fare evolution cannot keep up with our rapidly changing lifestyle and increasing longevity.

While most infectious diseases have been combatted in the past centuries, mankind is now

facing epidemics of non-communicable diseases. [2] This epidemiological transition is strik-

ingly reflected in the global rise of cardiometabolic disorders. The prevalence of obesity

has been doubled in over seventy countries since 1980. [3] By 2015, overweight and obe-

sity were estimated to contribute to 4 million deaths worldwide, with cardiovascular disease

(CVD) being the leading cause of death (2.7 million deaths), followed by diabetes (0.6 mil-

lion deaths). [3] Although the numbers are evident, the underlying biological mechanisms

and the risk factors of these adverse cardiometabolic phenotypes are far less understood.

The interplay between physiological factors, environmental factors, and genetic predispo-

sition determines the individual risk of developing cardio- metabolic disease. Amplified in-

sight in these factors will facilitate the search for preventive and curative strategies. There-

fore, the aim of this thesis is to further disentangle the interwoven physiological, environ-

mental and genetic factors that determine cholesterol and energy metabolism to increase

our understanding of their contribution to cardiometabolic health, thereby coming one step

closer to the ultimate goal of biomedical science.

Physiological factors
The total individual risk for developing CVD is multifactorial and highly heterogeneous be-

tween individuals. In clinical practice, the preventive treatment of CVD is therefore adapted

to an individual risk estimation, which is assessed with the general systematic coronary risk

estimation (SCORE) chart. [4] The SCORE chart was designed to estimate an individual’s

10-year risk of fatal CVD, based on their age, sex, smoking habits, plasma total cholesterol

concentration and systolic blood pressure. [5] Dependent on risk prediction clinicians can

advise lifestyle changes for individuals at low to moderate risk (SCORE<5%), recommend

intensive lifestyle changes or consider drug treatment for individuals at high risk (SCORE

≥5% and <10%), or start drug treatment for individuals at very-high risk (SCORE ≥10%). [4]

Both the pharmacological control of circulating cholesterol concentrations and blood pres-
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sure have been proven effective in reducing CVD risk, and are therefore keystones of

preventive therapy. [4]

Statins are the most prescribed drugs to lower the risk of CVD. [6] These drugs reduce

low-density lipoprotein cholesterol (LDL-C) concentration by inhibiting 3-hydroxy-3-methyl-

glutaryl-coenzyme A reductase, which functions as the rate-limiting enzyme in cholesterol

synthesis. LDL particles are the main carriers of cholesterol in the circulation, and it has

been firmly established that elevated LDL-C concentration fulfils a causal role in the devel-

opment of CVD. [7] Although an effective reduction of LDL-C concentration by statins lowers

CVD risk by around 40%, a significant residual risk is left. [6] For that reason, the search for

additional lipid lowering drugs went on, and currently fibrates, bile acid sequestrants, niacin

and selective cholesterol absorption inhibitors are available on the market for the treatment

of dyslipidaemia. [4] Still, the development of LDL-C lowering medication is ongoing. In the

beginning of 2017, the FOURIER trial with the proprotein convertase subtilisin–kexin type

9 (PCSK9) inhibitor evolocumab was completed, showing an additional 59% reduction in

LDL-C on a background of statin therapy, and a reduced risk of cardiovascular events

(hazard ratio 0.85; 95% confidence interval (CI) 0.79, 0.92). [8] Another potential therapeu-

tic target to further reduce the risk of CVD is cholesteryl ester transfer protein (CETP),

which is a main focus of this thesis. Given the failure of the first clinical trials with CETP

inhibitors, [9–11] it is crucial to obtain further insight in the physiology of CETP and study the

causal role of CETP in lipid metabolism and CVD.

Cholesteryl ester transfer protein
CETP is a protein that is known to transfer neutral lipids between circulating lipoproteins.

This protein was isolated and characterized from human plasma back in 1978, [12,13] and its

deoxyribonucleic acid (DNA) sequence was determined nine years later. [14] Shortly there-

after, a point-mutation in the CETP gene, leading to CETP deficiency, was described in a

family that had a marked increase in the amount and size of their high-density lipoprotein

(HDL) particles. [15] From then on, the role of CETP in lipid metabolism has been extensively

studied.

The molecular shape of CETP resembles a boomerang with two pores at the far ends of the

molecule that give access to a central cavity along its long-axis. [16–18] Via this central cav-

ity, CETP is able to transfer cholesteryl esters from HDL towards apolipoprotein B (ApoB)

containing triglyceride-rich lipoproteins, mainly very low-density lipoproteins (VLDL). In ex-

change, triglycerides are transferred from VLDL towards triglyceride-poor particles, such

as HDL. [17,19,20] By the action of CETP the clearance of HDL is accelerated, as enrich-

ment of HDL with triglycerides makes it a better substrate for hepatic triglyceride lipase. [21]
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Catabolism of triglyceride-rich HDL by hepatic triglyceride lipase leads to the formation of

very small HDL remnants that are rapidly cleared by the liver and kidneys. [16,21–25] On the

other hand, CETP modulates the core composition of VLDL in opposite direction, by in-

creasing its cholesteryl ester content while decreasing the triglyceride content. [20] These

cholesteryl esters can subsequently be delivered to the liver via uptake of (V)LDL parti-

cles by the LDL receptor, a process referred to as indirect reverse cholesterol transport

that is potentially antiatherogenic. [26,27] However, modulation of LDL and HDL particles is

regarded to contribute to an overall proatherogenic action of CETP. By transferring triglyc-

erides from VLDL to LDL, CETP modifies the LDL particle composition and enlarges the

total LDL pool in plasma. Specifically in the context of hypertriglyceridemia, when more

VLDL particles are present that can accept cholesteryl esters from CETP, the net transfer

of triglycerides to LDL is high. [26,27] Since triglyceride-enriched LDL particles are better sub-

strates for hepatic triglyceride lipase, LDL are converted into small dense particles that are

thought to be especially proatherogenic, as they are more easily deposited in the arterial

wall. [26,28,29] Thus, by reducing the amount of HDL, and modifying the size and increasing

the amount LDL particles, CETP is able to induce a proatherogenic lipoprotein profile.

CETP as a target to reduce cardiovascular disease
Given the well-established inverse association between HDL-C concentration and CVD, [30]

it was reasoned years ago that pharmacological inhibition of CETP could be a novel ther-

apeutic strategy to prevent the development of CVD by raising HDL-C. Indeed, preclin-

ical studies showed that CETP inhibition largely reduces atherosclerotic plaque forma-

tion. [31,32] Therefore, pharmaceutical companies have massively invested in the develop-

ment of compounds that inhibit CETP. Since 2005, four clinical trials with CETP inhibitors

have been launched. Unfortunately, the first trial with torcetrapib was terminated, because

of increased mortality and morbidity in the torcetrapib-treated participants, possibly due

to off-target effects on blood pressure and aldosterone concentrations. [9] The second and

third trial with the CETP inhibitors dalcetrapib and evacetrapib, respectively, were also ter-

minated, as both drugs lacked efficacy in reducing cardiovascular events on top of statin

treatment. [10,11] After the failure of three clinical trials, the effectiveness of CETP inhibition

therapy was largely doubted.

The origin of circulating CETP
To fully understand the role of CETP in CVD, its physiology and biological function should

be fully unravelled. In addition, elucidating the genetic basis of serum CETP concentration

is of importance to provide further insight in the underlying pathways that regulate CETP

metabolism, which we will discuss later in more depth.
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Although CETP inhibitors have been tested in clinical trials for over a decade, strikingly,

it was only recently elucidated which cells in the body are responsible for the production

of CETP. Adipose tissue, in particular subcutaneous adipose tissue, and the liver are the

most abundant sources of CETP mRNA expression, and hence they were both postu-

lated to contribute substantially to the plasma CETP pool. [20,33,34] Lately, it was shown in

humans that the number of resident macrophages in the liver, which are referred to as

Kupffer cells, correlates strongly with both hepatic CETP expression and plasma CETP

concentration. [35] In the same study, waist circumference did not associate with plasma

CETP concentration. [35] These findings indicate that circulating CETP is predominantly

derived from Kupffer cells, and that adipose tissue may not significantly contribute to the

circulating pool of CETP. However, it is unclear whether and to what extent different body

fat depots contribute to plasma CETP concentration, and this needs to be established in

large populations.

Regulation of CETP expression and CETP production
Besides its established role in lipid metabolism, accumulating evidence suggests that CETP

is involved in immunity and inflammatory processes. [36] This is in line with the primary

expression of CETP by Kupffer cells, which comprise the largest set of resident tissue

macrophages in the body and play a pivotal role in inflammation and host defence against

e.g. Gram-negative infections. [37,38] Kupffer cells can detect lipopolysaccharide (LPS), a

potent endotoxin released from Gram-negative bacteria, and induce an antibacterial re-

sponse via the release of pro-inflammatory cytokines such as tumor necrosis factor α

(TNF-α) and interleukin-1β (IL-1β). [37] Interestingly, LPS reduces liver CETP expression

and circulating CETP concentrations in CETP-transgenic mice. [39] Similarly, LPS, TNF-α

and IL-1β decrease CETP expression and CETP concentration in hamsters. [40] Collec-

tively, inflammatory stimuli seem to downregulate CETP expression by Kupffer cells.

Apart from their beneficial role in host defence, [37] Kupffer cells play a detrimental role

in the progression of non-alcoholic fatty liver disease (NAFLD) from simple steatosis to

non-alcoholic steatohepatitis (NASH), which is characterized by liver inflammation. [41–46]

With the growing prevalence of obesity worldwide, an increasing number of individuals

suffer from NAFLD. [47] The central role of Kupffer cells in NAFLD is partly explained by

excess free cholesterol that cannot be detoxified by esterification, leading to cholesterol

crystallization not only within hepatocytes but also within Kupffer cells, and consequently

activates inflammatory pathways. [42,48,49] As it has been shown that infection-related stimuli

(i.e. LPS, TNF-α and IL-1β) decrease CETP expression, it would be interesting to study

whether metabolic liver inflammation, as a component of NAFLD, is also associated with a

decrease in circulating and hepatic CETP.
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A more firmly established regulatory mechanism of CETP expression is mediated through

the liver X receptor (LXR) via an LXR response element that is located in the promotor re-

gion of the CETP gene. [50,51] Natural ligands for LXR are oxidized derivatives of cholesterol

(oxysterols) and the cholesterol precursor desmosterol. [52–54] Activation of LXR by these

ligands, and subsequent binding of LXR to the LXR response element in the CETP gene,

inducesCETP expression. [50,51] LXRs regulate a variety of genes to control cholesterol and

lipid homeostasis, thereby protecting cells from an overload of toxic free cholesterol. [55] In-

terestingly, in vitro exposure of murine macrophages to LPS, TNF-α or interferon γ (IFN-γ)

supresses an LXRα-induced increase in CETP expression. [56] Taken together, CETP ex-

pression is increased by LXRα which may be counteracted by inflammatory stimuli.

Environmental factors
The environment we live in contains major risk factors for the development of cardio-

metabolic disease. Most well-known risk factors have been extensively described, and

include among others excess caloric intake and low physical activity. [57] These risk factors

contribute to an adverse positive energy balance by increasing energy intake and decreas-

ing energy expenditure, respectively, consequently leading to weight gain. [58] Total daily

energy expenditure is the sum of basal metabolic rate, diet-induced thermogenesis, and

physical activity. [58] The basal metabolic rate makes the largest contribution to total energy

expenditure (55-65%), and is defined as the rate at which energy is expended when an

individual is lying down at rest in the postabsorptive state, in the morning at thermal neutral

conditions. [58,59] When the basal metabolic rate is measured under less strict conditions, it

is referred to as resting metabolic rate. [59]

One of the many contributors to resting energy metabolism is brown adipose tissue (BAT),

which contributes to non-shivering thermogenesis. BAT has been estimated to contribute

up to 5% of the basal metabolic rate. [59] In response to cold, BAT combusts energy stored

in glucose and triglycerides into heat instead of adenosine triphosphate (ATP), by virtue of

the unique presence of uncoupling protein 1 (UCP1) that uncouples β-oxidation from ATP

synthesis. [60,61] BAT is located in the thorax around the aorta and subclavian arteries. [60]

Apart from these classical BAT depots, so called beige adipocytes are scattered within

white adipose tissue. [62] These beige cells have a low basal expression of UCP1, but upon

cold stimulation the expression is markedly increased and their thermogenic capacity is

induced. [62] Prolonged exposure to cold leads to a rise in BAT activity and a consequent

modest reduction in fat mass in humans. [63] Also, preclinical studies showed that activation

of BAT protects against the development of adiposity, insulin resistance, and atherosclero-

sis. [61,64] In this thesis, we focus on the associations of two environmental factors, namely
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outdoor temperature and smoking, with resting energy expenditure and diabetes, which

are potentially explained by changes in BAT activity as described below.

Effects of temperature on cardiometabolic health
As the world is facing an era of climate change, the health effects of the global rise in tem-

perature and extreme weather conditions are an important topic of research. [65] It has been

shown that extreme heat increases the hospital admissions and mortality risk for patients

with CVD and diabetes, possibly due to a reduced capacity to dissipate heat. [66–69] On the

other hand, an interesting recent landmark paper showed that acclimatisation of patients

with type 2 diabetes to moderate cold for ten days already improved their insulin sensitiv-

ity, as demonstrated by a markedly higher glucose infusion rate during a hyperinsulinemic-

euglycemic clamp. [70] It is conceivable that due to cold exposure, an increased flux of fatty

acids is directed towards BAT, resulting in a compensatory increased flux of glucose to

other metabolically active tissues, thereby improving systemic insulin sensitivity. [71]

It has previously been shown that BAT activity is negatively associated with outdoor tem-

perature and is highest in winter. [72–74] Considering the putative role of BAT in the control

of insulin action, combined with the effect of ambient temperature on BAT activity, it is pos-

sible that the global increase in temperature contributes to the current epidemic of type 2

diabetes. Recently, a positive association was found between outdoor temperature and

glycated haemoglobin (HbA1c), [75] which suggests that systemic glucose homeostasis is

influenced by environmental temperature. Therefore, studies on the relation between out-

door temperature and incidence of diabetes are warranted.

Effects of smoking on cardiometabolic health
The harmful effects of cigarette smoking are generally well-established. Half of all smokers

die from a smoking-related disease, mainly CVD, lung disease and cancer. [76] In the case

of CVD, smoking interacts with other risk factors in a multiplicative fashion, whereby the

combination of smoking and either dyslipidaemia, hypertension or diabetes quadruples the

risk of CVD. [76] Although the detrimental health effects of smoking are obvious, the fear of

gaining weight after cessation is a commonly reported reason to keep on smoking, [77] as

smoking cessation is associated with weight gain. [78,79]

Nicotine is thought to be the most important mediator of the effects of smoking on body

weight. [78,80] Nicotine acts by various mechanisms on the body’s energy balance and af-

fects both the central nervous system and peripheral tissues by regulating the release of

a wide range of neurotransmitters and hormones. [78] Studies in mice suggest that the ef-

fects of nicotine on energy metabolism mostly involve the central nervous system. More
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specifically, nicotine-induced weight loss was shown to be related to inactivated hypotha-

lamic AMP-activated protein kinase (AMPK). Inactivation of AMPK resulted in decreased

appetite, while energy expenditure was increased as a result of increased locomotor and

BAT activity. [81]

In humans, smoking has been shown to suppress appetite. [80] Smoking also seems to have

a direct effect on energy expenditure. A study with eight healthy cigarette smokers showed

an increase in total 24-hour energy expenditure after the participants smoked 24 cigarettes

in 24 hours, compared with a 24-hour period without cigarette smoking [82]. In another study

with 18 male smokers there was an increase in resting energy expenditure demonstrated

directly after a nicotine dose via nasal spray, compared with placebo [83]. Further studies

have shown that cigarette smoking increases REE in small (i.e. n ≤ 147) selected patient

populations. [84–87] Overall, in several studies a positive association between smoking and

REE was observed, which may contribute to the lower body weight of smokers and weight

gain after smoking cessation. However, such a relationship has not been confirmed as

yet in a large cohort, neither have long-term effects of smoking been investigated at the

population level.

Genetic predisposition
As environmental factors play a major role in the onset of obesity and CVD, lifestyle in-

terventions are the keystones of prevention. However, a considerable part of the inter-

individual differences in obesity and CVD risk have a genetic basis. It is therefore of great

importance for future intervention strategies to unravel genetic factors and related biologi-

cal pathways involved in obesity and CVD.

For obesity, it has been estimated that 40-70% of the inter-individual risk differences are

explained by genetics. [88] In addition, a family history of CVD is an established risk factor

for developing the disease later in life. [89] Family studies showed that individuals with a

positive family history of coronary artery disease had a 1.5-fold to 2.5-fold increased risk of

developing the disease themselves. [89–92] Although family aggregation studies give a good

estimation of the heritability of disease, the clustering of environmental risk factors within

families may induce confounding, which often leads to overestimation of the true genetic

component of disease. [89,92] A more in-depth approach to determine genetic risk factors

for disease became available with the tremendous progress in genome sequencing tech-

niques. In the beginning of the 21th century, the initial sequencing of the human genome

was performed. [93–95] Soon afterwards, whole-genome sequencing data from larger groups

of individuals with different ethnic backgrounds were collected by the International HapMap

Consortium, aiming to determine the common patterns of DNA sequence variation and to
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make these data freely available for future studies. [96,97]

Single nucleotide polymorphisms and genome-wide association studies
Although humans are highly diverse in their appearance, 99.5% to 99.9% of the human

genome is identical between individuals. [89,96] All of our unique characteristics are defined

by the remaining 0.1-0.5% of the DNA sequence. The total DNA sequence consists of

3.2×10 base pairs, and most of the inter-individual heterogeneity is caused by common

variations in this sequence, i.e. variations occurring in more than 1% of the population. [98,99]

The most commonly occurring variation in the DNA is the substitution of one base for an-

other, which is called a single nucleotide polymorphism (SNP). [89,100] Around 10×106 com-

mon SNPs occur in the world’s human population, which are estimated to explain 90% of

the worldwide population heterogeneity. [96,99] SNPs arise from the incorrect incorporation

of a base during DNA replication, and can be inherited when occurring in the germ cell

lines. [89] When inherited, SNPs are exposed to selection pressure and depending on po-

tential beneficial, neutral or detrimental effects on survival and fitness, their frequency ei-

ther increases or decreases over time. [89,101] Until now, a large number of SNPs has been

identified that affect health and disease status. For SNPs that associate with diseases that

develop after the reproductive age, there is no selection pressure and SNP frequencies do

not decline over time. This concept, referred to as the selection shadow, specifically holds

for SNPs that associate with CVD. [89,102]

With the publication of the HapMap Project in 2003, which is an extensive database of SNP

allele frequencies that cover the entire genome, [96,97] and the development of cost-efficient

genotyping arrays, genome-wide association studies (GWAS) were introduced to study the

causal effects of genetic variation on phenotypic traits and disease outcomes. GWAS are

based on the principle that genetic variation at one locus of the DNA can predict genetic

variation at an adjacent locus with high probability, and therefore it is possible to identify

common SNPs in the genome that associate with disease phenotypes, by genotyping only

around 500,000 well-chosen SNPs out of the total 10×106 SNPs that occur in the world

population. [103] The advantage of GWAS over candidate gene approaches, is that with such

a hypothesis-free approach it is possible to detect variants in genes that are not yet known

to associate with the outcome, while candidate gene studies rely on a priori knowledge to

select genes of interest. [104] However, the value of GWAS has also been questioned, one

of the main reasons being that identified variants often only have small effects on disease

outcomes and explain just a small fraction of heritability. [105] Nevertheless, it can be argued

that the main reason for performing GWAS is not risk prediction, but rather providing clues

for the underlying pathways that lead to disease, [105] which, for example, may assist in

finding potential drug targets.
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GWAS on cardiometabolic disease: illumination of biological pathways
In 2007, the first GWAS on coronary artery disease was performed by two groups simulta-

neously, both identifying the top genetic variants for coronary artery disease to be located

on the short arm of chromosome 9 (i.e. 9p21). [106,107] The nearest genes for these iden-

tified loci were CDKN2A and CDKN2B that were previously not known to be associated

with cardiovascular risk, and therefore the functional relevance of the identified variants re-

mained to be established at that time. Some years later, a potential underlying mechanism

was elucidated, as the 9p21 risk allele was shown to increase smooth muscle cell prolifer-

ation, which is involved in atherosclerosis and aneurysm formation. [108,109] This sequence

of events clearly illustrates the added value of GWAS in identifying novel pathways that

underlie disease or phenotypic traits.

In the search for genetic factors contributing to inter-individual differences in obesity risk,

genetic variation in the fat mass and obesity-associated gene (FTO) was identified through

GWAS as being the top common genetic determinant of body mass index (BMI) and obe-

sity risk. [110–112] SNPs that cluster in the first intron of this gene are robustly associated

with obesity. The top hit showed an increase in BMI of 0.39 kg/m and a 1.2-fold increased

obesity risk, per additional copy of the risk allele. [112] In addition, these SNPs associate

with CVD, metabolic syndrome and diabetes, mostly mediated by BMI. [113] Although FTO

was already identified in 2007 as an obesity susceptibility gene, [110,111] the biological ex-

planation for the association between genetic variation in FTO and the risk of developing

obesity remained largely unclear. Only recently, a potential underlying mechanism was

illuminated. T to -C allele substitution in the rs1421085 SNP mapped to FTO, was shown

to disrupt the binding of the transcriptional repressor ARID5B to IRX3 and IRX5, which in-

creased their expression specifically in pre-adipocytes. [114] This resulted in a developmen-

tal shift from energy-combusting beige adipocytes towards energy-storing white adipocytes

in vitro, characterized by decreased mitochondrial thermogenesis and increased lipid stor-

age, which may explain the increased obesity risk in C-allele carriers. [114] However, the

effects of carrying the C-allele on energy metabolism in humans have not been established

yet.

The genetic basis of CETP
A GWAS on circulating CETP has never been performed, and therefore the genetic basis of

serum CETP concentration in the general population is largely unknown. The most studied

CETP SNPs are the common variants Taq1B (rs708272) and -629C>A (rs1800775), which

were both identified via hypothesis-driven candidate gene approaches. [115,116] With the

hypothesis-free approach of GWAS, independent genetic determinants of CETP can be
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identified, potentially providing new clues for underlying mechanisms involved in CETP

regulation. In addition, GWAS-identified SNPs can be used as suitable genetic instruments

in Mendelian randomization, as explained in the next paragraph.

Variation in the CETP gene as a genetic instrument in Mendelian random-
ization
When determining the direct association of a phenotypic trait with a disease outcome in ob-

servational studies, confounding factors can conceal a potential causal association. The

definition of confounding, as described by Rothman [117] is: “Confounding in the estimation

of the effect of a given factor (in producing disease) may be defined as distortion in the esti-

mate attributable to an extraneous variate. To produce confounding, an extraneous variate

must be associated -in the subjects actually studied- with the factor (or exposure) under

study, and independent of this association, also be a risk indicator for disease”. Although

confounding factors can be adjusted or stratified for, residual confounding by unknown, un-

measured, or not accurately measured confounding factors may always remain in obser-

vational studies. With the identification of SNPs that are associated with phenotypic traits,

causal associations with disease outcomes can be assessed, according to the concept of

Mendelian randomization. This concept is based on the second law of Mendel, which states

that the segregation of alleles during gamete formation is random. [118,119] With Mendelian

randomization, genetic variation is used to define an exposed and a control group of a cer-

tain phenotypic trait within a population, with the exposed group carrying the risk allele and

the control group carrying the non-risk allele of a SNP that is associated with the pheno-

typic trait. [118,119] Based on the random distribution of alleles in a population, which is not

influenced by any environmental factor, there is no confounding in the association of SNPs

and disease or trait outcomes. Another advantage of Mendelian randomization analysis

is that there is no reverse causality, since the effect direction is known: genetic variation

affects the disease or trait outcome and not the other way around. For these reasons, con-

clusions on causality can directly be drawn when comparing the exposed and unexposed

groups on the disease or trait outcome.

It is important to note that for a valid Mendelian randomization analysis, three assumptions

should be met: 1) the genotype is associated with the exposure; 2) there are no common

causes of the genotype and the outcome; 3) the genotype is only associated with the out-

come via the exposure. [120] These assumptions are strong, and violation can lead to signif-

icant bias. Therefore, it is of critical importance to carefully select a genetic instrument. [121]

When this genetic instrument shows a robust association with the exposure, assumption 1

can be verified. Assumption 2 holds in general, based on the random distribution of alleles

in a population. This assumption could be violated, however, in the case that ancestry is
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related to both the genotype and the outcome, which is referred to as genetic confounding

by population stratification. Assumption 3 is violated when biologic pleiotropy is present,

which means that the genotype is associated with the outcome trough phenotypes other

than the exposure.

The importance of the causality principal underlying Mendelian randomization is clearly il-

lustrated by studies on the role of HDL-C in CVD. Whereas epidemiological studies showed

that a low HDL-C concentration is associated with an increased risk of CVD, [30] Mendelian

randomization showed that genetically-determined higher HDL-C concentrations do not

lower the risk of myocardial infarction. [122] This implies that the association between HDL-

C concentration and CVD is not causal, and that intervening on HDL-C concentration per

se, e.g. pharmacological therapy, will not protect against CVD. Similar Mendelian random-

ization studies for CETP may shed light on the causal effects of CETP on circulating lipid

concentrations, lipoprotein composition, and CVD risk.

Interestingly, a clear analogy exists between randomized controlled trials and Mendelian

randomization studies (Figure 1.1) that have therefore commonly been referred to as na-

ture’s randomized trials. [123,124] Due to this analogy, Mendelian randomization studies can

anticipate the results of randomized trials. However, results from Mendelian randomization

cannot be directly translated to the results of a randomized trial. [125] The main reason for

this, is that most causal exposures have a cumulative effect over time on the associated

outcome. Since Mendelian randomization is based on carriage of genetic variants that

causally associate with the exposure, risk allele carriers will be subject to life-long expo-

sure, and results from Mendelian randomization will therefore in general overestimate the

effect of short-term randomized intervention studies. [125]

Cohort studies and genetic consortia
The studies described in this thesis were performed with data from cohort studies and

genetic consortia. The study populations and study design of these cohorts and consortia

are summarized below.

The NEO study
To fulfil the aims of the studies described in Chapters 2, 4, 5, 6, 8 and 9 we used data from

the Netherlands Epidemiology of Obesity (NEO) study. [126] The NEO study is a population-

based prospective cohort study including 6,671 men and women in the age of 45 to 65

years. This cohort was designed to study pathways that lead to disease in persons with

overweight or obesity. Therefore, individuals with a BMI of ≥27 kg/m were oversampled.

Participants were recruited in the area of Leiden, The Netherlands, from September 2008
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Mendelian randomization  Randomized controlled trial 

Random segregation of alleles 
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Exposed group 
Carriers of the risk allele 
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Carriers of the non-risk allele 

Random allocation of treatment 
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Figure 1.1: Schematic representation of the clear analogy between Mendelian randomization studies
and randomized controlled trials. Adapted from Davey Smith G, Ebrahim S. BMJ 2005; 330: 1076-9.

until September 2012. At baseline, participants completed questionnaires for demographic,

lifestyle, and clinical information and underwent an extensive physical examination, includ-

ing anthropometric measurements and blood sampling. All participants were genotyped. A

random subgroup of 1,434 participants underwent indirect calorimetry to measure resting

metabolic rate.

Bariatric surgery cohort
For Chapter 3, we used data from a Dutch bariatric surgery cohort. The study population

consisted of 93 severely obese men and women who underwent elective bariatric surgery

between 2006 and 2009 at the Department of General Surgery, Maastricht University Med-

ical Center (Maastricht, The Netherlands). [127] Subjects using anti-inflammatory drugs or

with acute or chronic inflammatory diseases, degenerative diseases, and subjects report-

ing alcoholic intake >10 g/day were excluded. Blood samples were drawn on the morning

of surgery after 8 hours of overnight fasting. During surgery, wedge biopsies of the liver

were taken.

Genetic consortia and GWAS meta-analyses
For the Mendelian randomization studies, which we described in Chapters 4 and 6, we

used publically available summary data from the genetic consortia CARDIoGRAMplusC4D

and GLGC, and the GWAS meta-analysis from the MAGNETIC NMR study. In general,

the aim of genetic consortia is to collect data from a large number of genotyped cohorts
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to perform GWAS on the outcome of interest, and subsequently combine the results in

a meta-analysis to find robust effect estimates. The Coronary ARtery DIsease Genome

wide Replication and Meta-analysis plus The Coronary Artery Disease Genetics (CAR-

DIoGRAMplusC4D) consortium is a collaborative effort to perform a GWAS meta-analysis

on coronary artery disease, including 60,801 cases and 123,504 controls from 48 stud-

ies of mainly European ancestry populations. [128] The Global Lipids Genetics Consortium

(GLGC) was set up to perform a GWAS meta-analysis on concentrations of LDL-C, HDL-C,

triglycerides and total cholesterol. [129] This meta-analysis was based on 188,577 individ-

uals of European ancestry from 60 different studies. The MAGNETIC NMR GWAS is a

GWAS meta-analysis on 123 blood lipid and metabolite concentrations that were quan-

tified by high-throughput nuclear magnetic resonance (NMR) spectroscopy. [130] In total,

24,925 individuals were included from 10 European studies.

Outline of this thesis

The first part of this thesis is focussed on the role of CETP in cardiovascular health, aim-

ing 1) to elucidate the determinants and genetic basis of circulating CETP concentrations,

and 2) to determine the causal effects of CETP on the lipoprotein metabolite profile and on

coronary artery disease. With the recent identification of Kupffer cells as the main contrib-

utors to circulating CETP concentrations, the previously proposed role of adipose tissue

in CETP production was questioned. Therefore, the aim of Chapter 2 was to study the

associations of an extensive range of body fat measures with serum CETP concentration

in a large population-based cohort. Subsequently, based on the primary expression of

CETP by cells of the innate immune system and accumulating evidence suggesting that

CETP is involved in immunity and host-defences, we hypothesized that the presence of

liver inflammation is a determinant of hepatic and circulating CETP. Therefore, in Chapter
3, we describe the associations of metabolic liver inflammation with hepatic CETP expres-

sion and CETP positive cells, using liver biopsy samples collected from a bariatric surgery

cohort, and with plasma CETP concentration. Then, to assess the genetic determinants

of CETP, we performed the first GWAS and exome-wide analysis on serum CETP con-

centration to identify common and rare genetic variants that determine circulating CETP,

as described in Chapter 4 and Chapter 5. With the GWAS-identified SNPs that indepen-

dently determine CETP concentration, we were able to mimic a randomized clinical trial

design by using Mendelian randomization. With this approach, we investigated the causal

effects of a change in CETP concentration on coronary artery disease risk (Chapter 4) and

on the lipoprotein metabolite profile (Chapter 6), which is relevant to better understand the

outcomes of the CETP inhibitor trials that aim to reduce CVD.
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The focus of the second part of this thesis is on energy metabolism in cardiometabolic

health. Specifically, we aimed to study environmental and genetic factors that were pre-

viously described to influence BAT activity, by assessing their association with energy ex-

penditure and disease outcomes. Activation of BAT increases energy expenditure, as this

tissue is capable to produce heat in response to cold by combusting energy that is stored

in glucose and triglycerides. Based on a recent landmark paper, which showed that a 10

day cold acclimatisation period activates BAT and improves insulin sensitivity in patients

with type 2 diabetes, we assessed in Chapter 7 the association of outdoor temperature

with the incidence of diabetes and the prevalence of glucose intolerance, on a country-

wide and global scale. Since cigarette smoking reduces body weight, which is determined

by the balance between energy intake and energy expenditure, we hypothesized that part

of the weight reduction in smokers is explained by a nicotine-induced increase in resting

energy expenditure. Therefore, we studied in Chapter 8 the association between smoking

and resting energy expenditure in 1,189 study participants from the NEO study. Finally,

based on a landmark paper from 2015 that described a potential genetic basis for BAT,

since it was shown that T-to-C substitution in the rs1421085 variant of the FTO gene re-

duced browning of pre-adipocytes in vitro, we aimed to study the metabolic effects of ge-

netic variation in this SNP in humans. Humans who carry the C-allele of rs1421085 may

have reduced browning of their white fat depots, which possibly leads to a lower energy

expenditure and consequently an increased risk of obesity. As brown fat cells selectively

enhance the oxidation of fat over glucose, we studied in Chapter 9 the association be-

tween rs1421085-risk allele carriage and whole-body fat oxidation in 1,246 participants of

the NEO study.

In the last part of this thesis, the study findings, their implications for future research, and

the perspectives for preventive and therapeutic strategies of cardiometabolic disease are

discussed (Chapter 10).
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