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Abstract 

In a randomized, double blind, placebo-controlled, within-subject magnetic resonance 

imaging study, we examined the effect of 20 IU vasopressin on the neural processing of infant 

crying in 25 fathers-to-be. We explored whether familial background modulates vasopressin 

effects, and whether vasopressin differentially affects cry processing coupled with neutral or 

emotional contextual information. Participants listened to cries accompanied by neutral (‘this 

is an infant’) or emotional (‘this infant is sick/bored’) contextual information, and neutral 

control sounds (‘this is a saw’). Additionally, participants reported on their childhood 

experiences of parental love-withdrawal and abuse. Infant crying (vs control sounds) was 

associated with increased activation in the bilateral auditory cortex and posterior medial 

cortex. No effects of vasopressin were found in this ‘cry network’. Exploratory whole-brain 

analyses suggested that effects of vasopressin in the anterior cingulate cortex, paracingulate 

gyrus and supplemental motor area were stronger in fathers who experienced lower (vs 

higher) levels of love-withdrawal. No interaction was observed for abuse. Vasopressin 

increased activation in response to cries accompanied by emotional vs neutral contextual 

information in several brain regions, e.g. the cerebellum, brainstem, posterior medial cortex, 

hippocampus, putamen, and insula. Our results suggest that the experience of love-withdrawal 

may modulate the vasopressin system, influencing effects of vasopressin administration on 

cry processing. Results further suggest a role for vasopressin in the processing of cry sounds 

with emotional contextual information.  
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Introduction 

Whether they are cold, sick, or tired, crying is one of the infant’s most important 

means of soliciting parental attention and care. However, crying can also elicit aversion and 

anger in the parent, and can trigger child abuse and neglect (Barr, Trent, & Cross, 2006).  

How parents process infant cry sounds, therefore, constitutes an important area of study. In 

recent years, fathers have significantly increased their participation in child caretaking. Even 

though there remains large variation in paternal involvement (Hrdy, 2009) and quality of 

caregiving (Lucassen et al., 2011; van Ijzendoorn & DeWolff, 1997), a fathers’ parental role 

is highly relevant for child development (Kok et al., 2015; Ramchandani, Stein, Evans, 

O'Connor, & Team, 2005). In the past decade, a relatively large literature on the neural 

underpinnings of the processing of infant crying in mothers has become available (e.g. Groh 

et al., 2015; Parsons et al., 2017; Wright, Laurent, & Ablow, 2017), however, little is known 

about the way fathers process these cues of infant distress (Li, Chen, Mascaro, Haroon, & 

Rilling, 2017; Mascaro, Hackett, Gouzoules, Lori, & Rilling, 2014; Seifritz et al., 2003). 

Following-up on the Li et al. (2017) study on the effects of neuropeptides oxytocin (OT) and 

vasopressin (AVP) on the processing of infant signals in fathers of toddlers, the present study 

examined the effect of AVP on expectant fathers’ processing of infant cry sounds, and 

explored whether this effect of AVP is moderated by the father’s childhood parenting 

experiences. Moreover, we examined whether accompanying contextual information affects 

expectant fathers’ neural processing of cry sounds, and whether AVP administration 

modulates this effect of context.  

Quality of parenting skills may in part be related to hormonal levels. In fathers, the 

neuropeptide vasopressin has been suggested to play a special role (S. E. Taylor, Saphire-

Bernstein, & Seeman, 2010). Both in rodents and in non-human primates, the transition to 

fatherhood has been associated with changes in AVP signaling (Bamshad, Novak, & De 
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Vries, 1993; Kozorovitskiy, Hughes, Lee, & Gould, 2006; Z. X. Wang, Liu, Young, & Insel, 

2000). In male prairie voles, AVP injections into the lateral septum elicit paternal behavior 

(i.e. crouching over pups, Z. Wang, Ferris, & De Vries, 1994), and AVP-immunoreactive 

staining in the bed nucleus of the stria terminalis has been associated with paternal behavior in 

California mice (Bester-Meredith & Marler, 2003; but see J. H. Taylor & French, 2015 who 

found no effects of intranasal AVP administration on responsiveness to infant stimuli in male 

marmosets).  

Associations between AVP and parenting have also been observed in humans, but 

results have been inconsistent. In expectant fathers, vasopressin administration increased 

fathers’ implicit caregiving interests (Cohen-Bendahan, Beijers, van Doornen, & de Weerth, 

2015). However, in a sample of 15 fathers of 1-2-year-old children, AVP administration 

(compared to placebo administration) did not affect neural processing of infant cry sounds nor 

of own infant photos (Li et al., 2017). As this is one of the few studies examining AVP effects 

in human fathers—and with a relatively small sample—we revisit the questions posed in the 

Li et al. (2017) study (does AVP administration affect processing of infant crying and is its 

effect modulated by familial background?) with a larger sample in a different group of fathers 

(fathers-to-be instead of fathers of toddlers). Moreover, we extend the literature by examining 

the effect of contextual information on cry sound processing in fathers and by assessing 

whether AVP modulates such a ‘context effect’. 

Previous studies from our lab have shown that effects of OT are dependent on 

experienced care, such that positive effects of OT are found in individuals coming from a 

supportive background only (Bakermans-Kranenburg, van Ijzendoorn, Riem, Tops, & Alink, 

2012; M. M. Riem, Bakermans-Kranenburg, Huffmeijer, & van Ijzendoorn, 2013; van 

IJzendoorn, Huffmeijer, Alink, Bakermans-Kranenburg, & Tops, 2011). For example, OT 

administration decreased excessive force on a hand-grip dynamometer when listening to 
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infant cry sounds, but only in individuals who experienced low levels of harsh discipline 

(Bakermans-Kranenburg et al., 2012). Although there is no direct evidence that effects of 

AVP may also be dependent on experiences of childhood care, the association between 

experienced care and own caregiving skills suggest that these experiences affect biological 

properties important to parenting (Kovan, Chung, & Sroufe, 2009; Madden et al., 2015). 

There may be a variety of biological mechanisms explaining increased or decreased 

susceptibility to extraneous hormones, for example, endogenous hormone levels or receptor 

properties. Through gene methylation, experiences of harsh and neglectful care may affect 

properties of systems involved in parenting such as OT, but also AVP (Mulder, Rijlaarsdam, 

& Van IJzendoorn, 2017).  

As the cause of the infant’s distress may be difficult to discern from the infant’s cry, 

contextual information can be an important determinant of parental action. For example, the 

parental response to crying is delayed when the infant has just been fed (Leger, Thompson, 

Merritt, & Benz, 1996), or when the adult is told that the infant needs sleep (Wood & 

Gustafson, 2001). Effects of contextual information have also been found on the neural 

processing of cry sounds (M. M. Riem, Voorthuis, Bakermans-Kranenburg, & van 

Ijzendoorn, 2014). In a sample of nulliparous women, the amygdalae showed an increased 

response to the same cry sound labeled as originating from a sick infant compared to a bored 

infant. In the insula and inferior frontal gyrus, a comparable effect was found after 

administration of OT, a neuropeptide similar to AVP in molecular structure but with different 

behavioral correlates. However, similarly to OT, AVP has been found to alter the 

interpretation of social stimuli (Thompson, Gupta, Miller, Mills, & Orr, 2004), and therefore, 

modulating effects on the processing of contextual information may also be expected of AVP 

administration. 
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The present study assessed the effect of AVP administration on the neural processing 

of infant cry sounds in 25 fathers-to-be. Based on the previous literature in females, we 

expected expectant fathers to show increased activation in response to infant crying 

(compared to control sounds) in regions associated with social information processing, such 

as the amygdala, insula, cingulate cortex and inferior frontal gyrus (Laurent & Ablow, 2012a, 

2012b; Riem et al., 2014; Riem, Pieper, Out, Bakermans-Kranenburg, & van IJzendoorn, 

2011). We hypothesized that activation in these regions would be affected by AVP 

administration and by contextual information accompanying the cry sound. Finally, we 

explored whether experiences of harsh and neglectful parenting modulate the effect of AVP 

administration on the processing of infant cry sounds.  

Methods 

Participants 

Participants were recruited through midwives and ads on Leiden University affiliated 

webpages. They cohabitated with their pregnant partners, spoke Dutch, were in good health, 

without psychiatric, neuroendocrine or neurological disorders, and were screened for alcohol 

and drug use. Twenty-five first time expectant fathers participated in the study. The mean age 

of the participants was 31.9 years (SD = 4.30), and the mean gestational age of the unborn 

infants was 27.02 weeks (SD = 4.91). All participants provided informed consent. This study 

was approved by the Ethics Committees of the Institute for Education and Child Studies at 

Leiden University and the Leiden University Medical Centre, as well as the Dutch Central 

Committee on Research Involving Human Subjects. 

Procedure 

In a randomized, double blind, placebo-controlled, within-subject trial, fathers-to-be 

participated in two sessions in which they self-administered either a nasal spray containing 
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AVP (20 IU) or placebo (PL) using a syringe with a MAD Nasal
TM

 Device. After nasal spray 

administration, participants completed several questionnaires and were familiarized with the 

fMRI protocol outside of the MRI environment. Prior to the cry paradigm, participants 

performed a working memory fMRI paradigm also involving cry sounds as well as a 

paradigm aimed at measuring protective parenting, to be reported separately. The cry sound 

paradigm commenced approximately 94 minutes after nasal spray administration in both the 

AVP and placebo sessions. In a study examining cerebrospinal fluid (CSF) AVP 

concentrations up to 80 minutes after intranasal administration of AVP, 80 and 40 IU of 

intranasal AVP resulted in a significant increase in CSF AVP after 10, and 60 minutes, 

respectively (Born et al., 2002). For both dosages, AVP was still significantly increased after 

80 minutes. We, therefore, believe that the 94 minutes delay after administration of 20 IU of 

AVP in the present study is an appropriate delay.  

Measures 

fMRI paradigm 

For a visual representation of the cry paradigm, see Figure 1. Contextual information 

(emotional: ‘this infant is sick’ or ‘this infant is bored’, neutral: ‘this is an infant’) was 

presented as a white text on a black screen for a duration of 2s. In order to assure that 

participants remained attentive throughout the task, they were instructed to press a button with 

their index right finger when they finished reading the context information. The context 

information was followed by the presentation of a fixation cross hair. After 500 ms, the 

auditory stimulus was presented (10s), while the fixation cross hair remained on the screen. 

Trials were separated by an inter stimulus interval (ISI) of variable length ranging from 4.5-

5.5s. The fixation cross remained visible during the ISI.  
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A total of three cry sounds were recorded from two infants, one male (two sounds) and 

one female (one sound) using a TasCam DR-05 solid state recorder with at a 44.1 Khz 

sampling rate and 16 bit. All sounds were recorded within the first two postnatal days. 

Individual sounds were scaled, the intensity was normalized to the same mean intensity and 

sounds were edited to last for 10s using PRAAT software (Boersma & Weenink, 2017). For 

each cry sound, a neutral auditory control stimulus was created by calculating the average 

spectral density over the entire duration of the original sound. A continuous sound of equal 

duration was re-synthesized from the average spectral density and amplitude modulated by 

the amplitude envelope, extracted from the original sound. After this procedure, all auditory 

stimuli and control stimuli were intensity matched. The neutral auditory control stimuli were 

identical to the original auditory stimuli in terms of duration, intensity, spectral content, and 

amplitude envelope, but lacking the emotional meaning associated with a cry sound. Control 

sounds were presented as the sound of a saw (i.e., ‘this is a saw’). 

Participants received one of four pre-programmed semi-random orders. The three 

infant cry sounds were presented four times with each of the three contextual information 

labels (36 trials). The three corresponding control sounds were also presented four times, 

leading to a total of 48 trials. The task was programmed in E-Prime (Schneider, Eschman, & 

Zuccolotto, 2002). A projector outside of the MRI suite was used to display the task on a large 

screen located at the back of the MRI bore, that was viewable through a mirror mounted on 

the top of the head coil. All responses were registered using a fiber optic response box 

(Current Designs, Philadelphia, PA, USA).  

For one participant, responses in the AVP condition were logged for the first 22 trials 

only. Although the participant did not report having fallen asleep, it is unclear whether the 

lack of responses was due to the participant’s inattention or due to a technical problem. 

Therefore, analyses assessing the effect of AVP on neural processing were performed both 
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including and excluding his data (See Supplemental text 1, Supplemental Figure 1, and 

Supplemental Table 1). As exclusion did not affect the results, the analyses including this 

participant are reported.  

fMRI parameters 

MRI scanning was performed on a 3T Philips Achieva TXMRI system (Philips 

Medical Systems, Best, the Netherlands). For registration purposes, a T1-weighted anatomical 

scan was acquired (TR = 9.7 ms, TE = 4.6 ms, flip angle = 8°, 140 transverse slices, voxel 

size .875 × .875 × 1.2 mm). The fMRI-task utilized a gradient-echo blood oxygen level 

dependent (BOLD) EPI sequence with: TR = 2200 ms, TE = 30 ms, flip angle = 80°, 38 

transverse slices, and voxel resolution of 2.75 × 2.75 × 3.025 mm (including a 10% interslice 

gap). The duration of the fMRI paradigm was 14 min 19s (387 volumes). Participants listened 

to the cry and control sounds through MRI-compatible headphones. 

Questionnaires  

The questionnaires used in the present study were sent to the participant’s e-mail 

address a few days after the first session.  

Conflict Tactics Scale Participants completed the Conflict Tactics Scale – Parent 

Child (CTS), a questionnaire assessing maltreating behaviors that occur in a parent-child 

relationship (Straus, Hamby, Finkelhor, Moore, & Runyan, 1998). In the present study, 

participants were asked whether one or both of their parents behaved in an abusive way 

towards them during their childhood. Only items from the subscales Psychological aggression 

(e.g., “My mother or father cursed or swore at me”), Minor physical assault (e.g., “My mother 

or father spanked me on the bottom with her/his hand”), Severe physical assault (e.g., “My 

mother or father threw or knocked me down”), and Neglect (e.g., “My mother or father wasn’t 

able to give me the food I needed”) were used, resulting in a total of 18 items. Items were 
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answered on a 7-point scale (0 = ‘never’, 1 = ‘once’, 2 = ‘twice’, 3 = ‘3-5 times’, 4 = ‘6-10 

times’, 5 = ‘11-20 times’, 6 = ‘more than 20 times’). Scores on the minor and severe physical 

assault scales were averaged to compute a Physical assault score. An Abuse score was 

computed by averaging the scores on the Psychological aggression and Physical assault 

scales. An overall CTS score was computed by averaging the Abuse and Neglect scales (M = 

0.53, SD = 0.34), which was used for further analysis. One outlier (Z = 4.09) was winsorized 

to match the second highest score. The CTS total was positively correlated with the Abuse 

scale, r = .92, p < .001, and with the Neglect scale, r = .53, p = .006. 

Parental love withdrawal To measure parental use of love-withdrawal, the 

participants completed a questionnaire consisting of 11 items. Seven items from the 

Withdrawal of Relations subscale of the Children’s Report of Parental Behavior Inventory 

were used, of which two items were slightly adapted for a smoother translation (CRPBI, 

Beyers & Goossens, 2003; Schludermann & Schludermann, 1983). To obtain a more 

comprehensive measurement of parental love-withdrawal, the questionnaire was 

complemented with four items from the Parental Discipline Questionnaire (PDQ, Patrick & 

Gibbs, 2007). See (Huffmeijer, Tops, Alink, Bakermans-Kranenburg, & van Ijzendoorn, 

2011; van IJzendoorn et al., 2011) for the resulting scale. Participants rated how well each of 

the statements described their mother's or father’s behavior (e.g., “My mother is a person 

who, when I disappoint her, tells me how sad I make her”) on a 5-point scale ranging from 1 

(not at all) to 5 (very well). The 11 items referring to mother’s behavior were averaged to 

create a maternal love-withdrawal score. The same was done for the items referring to the 

father’s behavior. A parental love-withdrawal score was computed by averaging the maternal 

and paternal score (M = 1.72, SD = 0.47). The maternal and paternal scores correlated with 

the total score r = .74, p < .001, and r = .67, p < .001, respectively.   

Analysis 
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Preprocessing 

Preprocessing and statistical analysis of the imaging data were performed using FSL 

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; Smith et al., 2004). Brain 

extraction was performed via BET, and motion correction using MCFLIRT. Spatial 

smoothing was applied with a Gaussian kernel of 5 mm (FWHM). FMRI data from each 

participant were spatially normalized to their own high resolution T1 image (boundary-based 

registration (BBR, Greve & Fischl, 2009), 90 degree search) and then to MNI space (12 

degrees of freedom (DOF), 90 degree search) using FSL’s FLIRT registration tool.   

Statistical analysis 

After preprocessing, statistical analyses were performed at the single-subject level 

using the general linear model (GLM) within FSL’s FEAT. A total of five EVs (explanatory 

variables) were created, one for each differently labelled sound (‘sick’ cries, ‘bored’ cries, 

‘infant cries’, and white noise ‘saw’ sounds), and one referring to the presentation of the 

contextual information. For each of the differently labelled sounds, temporal derivatives were 

added to the model, as well as both standard motion parameters and additional motion 

confound EVs as obtained from fsl_motion_outliers (DVARS, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers) to address common problems 

resulting from motion (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). For the GLM, 

we contrasted baby cries with the label ‘this is an infant’ (‘infant’ cry sounds) to saw control 

sounds, and both ‘sick’ and ‘bored’ cries were contrasted against ‘infant’ cry sounds. In a 

group-level analysis, we tested the difference between cry sounds with label ‘this is an infant’ 

and ‘saw’ control sounds to assess the network of regions involved in the processing of infant 

crying in the placebo data only. Subsequently, in a within-subject higher-level analysis, 

effects of AVP on the processing of ‘infant’ crying vs control sounds were tested within this 
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infant cry network. The interaction between AVP administration and (demeaned) parental 

love-withdrawal or CTS Total scores were examined in third-level analyses. Additionally, in a 

second-level analysis, participant specific COPES (contrasts of parameter estimates) were 

created for the contrast [(‘infant’ cry – control)AVP – (‘infant’ cry – control)PL]. These 

COPES were then used as the input for a third-level analysis in which caregiving experience 

was used as a covariate.  

In order to examine the effect of contextual information and its interaction with AVP 

administration, a 2 [sick(-infant) vs bored(-infant)] x 2 [AVP vs PL] high-order within-subject 

analysis was performed in regions of the infant cry network using lower-level COPES of 

contrasts [‘sick’-‘infant’] and [‘bored’-‘infant’] as input. Given the exploratory nature of our 

study, we did not examine whether this effect depended upon experiences of harsh and 

neglectful care, as to limit the overall number of tests. 

All analyses in the infant cry network were followed up by exploratory whole-brain 

analyses. As Li et al. (2017) found stronger effects when the hormone (OT) was administered 

in the first rather than the second session, we also assessed whether order of administration 

modulated AVP effects on the processing of ‘infant’ cry sounds vs control sounds in a third-

level analysis.  

Results 

Sample characteristics can be found in Table 1. Thirteen of the 25 participants (52%) received 

AVP during their first session. Our two measures of experienced parental care were positively 

correlated, r = .41, p = .04. 

Neural correlates of infant crying 
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Results of the comparison of cry sounds labelled as ‘infant’ versus control sounds are 

described in Table 2 and Figure 2. This comparison resulted in three significant clusters, 

corresponding to the left (p < .001) and right (p < .001) auditory cortex (i.e. Heschl’s gyrus 

and the superior temporal gyrus), and the bilateral posterior cingulate cortex and precuneus (p 

= .047), further referred to as the infant cry network. AVP administration did not affect 

activation in these regions, nor did we find significant effects of AVP for this contrast in the 

whole brain. Order of administration did not affect the effect of AVP on the processing of 

‘infant’ cry sounds versus control sounds.    

Moderating effects of experienced care 

No moderating effects of harsh parenting or love-withdrawal were found in the infant 

cry network. However, whole-brain analyses suggested that in expectant fathers who 

experienced less (relative to more) parental love withdrawal, AVP had a stronger effect on the 

neural response to ‘infant’ cry sounds versus control sounds in the bilateral anterior cingulate 

cortex, paracingulate gyrus and supplemental motor area (p = .023, see Table 3 and Figure 3).  

Effect of contextual information on the processing of infant crying 

In order to assess the effect of emotional contextual information, lower-level COPES 

of the [‘sick’-‘infant’] contrast and the [‘bored’-‘infant’] contrast were analyzed and 

compared for the AVP and PL sessions. When analyses were restricted to the cry network, 

neither the higher-level main effect of emotional contextual information (controlled for 

neutral contextual information), nor the higher-level main effect of hormone nor their 

interaction were significant. The exploratory whole-brain analyses resulted in a significant 

main effect of AVP in a cluster including the cerebellum, precuneus, posterior cingulate 

cortex, brainstem, lingual gyrus, fusiform cortex parahippocampal gyrus, and hippocampus (p 

< .001), as well as in a cluster including the putamen, insula, and central opercular cortex (p = 
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.004). In these regions, irrespective of the specific emotional contextual information, infant 

cry sounds with emotional contextual information were associated with increased activation 

compared to the ‘infant’ cry sound (Table 4, Figure 4) in the AVP condition relative to the PL 

condition. The higher-level main effect of emotional contextual information and the hormone 

× context higher-level interaction effect were not significant.  

Discussion 

The present study examined the neural processing of infant crying in expectant fathers. 

Specifically, we assessed the effect of AVP administration on the neural response to infant cry 

sounds, and examined whether this effect was modulated by the father’s experienced care. 

Comparable to previous studies, listening to infant cry sounds vs. control sounds was 

associated with increased activation in the bilateral auditory cortex and posterior cingulate. 

Activation in this infant cry network was not affected by AVP administration. However, 

exploratory whole-brain analyses suggest that AVP increases activation in response to cry 

sounds (relative to control sounds) in the ACC, paracingulate gyrus, and supplemental motor 

area. This effect of AVP depended upon the father’s familial background, i.e., AVP had a 

stronger effect in fathers who experienced low levels of parental love-withdrawal.   

While Li et al. (2017) did not find support for a moderating effect of familial 

background on AVP administration, here we report a stronger effect of AVP on the 

processing of infant cry sounds in expectant fathers from a more supportive (relative to a less 

supportive) background. These diverging results could be related to differences in sample 

characteristics or differences in sample size. The present study examined expectant fathers, 

who had no prior exposure to crying of their own child, while Li et al. (2017) studied fathers 

of 1-to 2-year old children. Moreover, the present study presents an increase in sample size of 
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60% relative to the Li et al. (2017) study. While both sample size may be considered small, 

the present study may simply have more power to find this interaction effect.   

The stronger effect of AVP in fathers from a more supportive background were found 

in the ACC, paracingualte gyrus, and supplemental motor area. The ACC and paracingulate 

gyrus have been associated with decision making and empathic behavior, and theory of mind, 

respectively (Lavin et al., 2013; Walter et al., 2004), while the supplemental motor area has 

been associated with motivation and initiation of action (Nachev, Kennard, & Husain, 2008). 

Increased activation in these regions in response to infant crying could, however in the 

absence of a behavioral measure admittedly speculatively, be interpreted as an increased 

empathic response and motivation to relieve the infant’s distress.  

When examining the neural processing of sick and bored cry sounds, no effects of 

contextual information, AVP administration or their interaction were found in the cry 

network. A main effect of AVP was found in exploratory whole-brain analyses, suggesting 

that AVP administration may increase activation in response to emotionally labelled cry 

sounds (versus the same but neutrally labelled cry sounds) in the cerebellum, precuneus, 

posterior cingulate cortex, brainstem, lingual gyrus, fusiform cortex, parahippocampal gyrus, 

and hippocampus, as well as in a cluster including the putamen, insula, and central opercular 

cortex. As especially the first cluster encompasses many different structures which all have 

been implicated in a variety of functions, interpretation would be speculative. Distribution of 

AVP receptors in the human brain has not been fully characterized, but human and animal 

literature suggests availability of receptors in (amongst other regions) the hippocampus, 

thalamus, cerebellum and brainstem (Hernando, Schoots, Lolait, & Burbach, 2001; Loup, 

Tribollet, Duboisdauphin, & Dreifuss, 1991), which may in part explain why findings are 

localized here. Our results do suggest that AVP may play a role in processing of cry sounds 

but only when the father understands the emotional context of the infant’s crying. Of note, 
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AVP effects were hypothesized only in regions involved in processing of infant cry sounds. 

Our findings were exploratory and need confirmation by replication.  

Contrary to Riem et al. (2014), we did not find evidence of differential processing of 

the same cry sound presented as a cry due to sickness or as a cry out of boredom, nor did AVP 

administration result in differential processing of such cries. Riem et al. (2014) examined 

nulliparous women. In general, women are reported to be more empathetic than men 

(Eisenberg & Lennon, 1983), which could result in larger differences in response to cry 

contexts in women compared to men. Moreover, although Riem et al. (2014) found evidence 

for differential processing in the amygdalae in the placebo condition, in the insulae and IFG 

this effect was only found after OT administration. Natural differences in processing of sick 

vs. bored cries may thus be small, and potentially more pronounced after OT administration. 

Here, we find no such evidence for AVP administration.    

Several limitations of the present study should be noted. Participants self-administered 

20 IU of AVP, and the time delay was 94 minutes. This dose is in accordance with prior 

research (e.g. Li et al., 2017; Thompson et al., 2004; Thompson et al., 2006; Uzefovsky et al., 

2012). However, to our knowledge, there are no systematic studies comparing the efficacy of 

different doses and timing of AVP, and it therefore is currently unclear whether this dose and 

time delay were appropriate to find the hypothesized effects. The present sample included 

expectant fathers. The experience of the child’s birth and the exposure to and interaction with 

the child may affect a man’s hormonal levels (Gettler, McDade, Feranil, & Kuzawa, 2011), 

and brain anatomy (Kim et al., 2014), and ultimately his neural response to his own infant’s 

cry sounds. Finally, as noted above, the AVP effects were found in exploratory analyses and 

warrant replication. Despite the powerful within-subject design—which has more power than 

a between-subject design with twice the number of participants (van IJzendoorn & 
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Bakermans-Kranenburg, 2016)—the performance of several exploratory whole-brain analyses 

may increase the risk of false-positive findings.  

In conclusion, the present study reports stronger effects of AVP administration in 

response to infant crying (versus control sounds) in the medial prefrontal cortex in fathers 

from a more supportive, relative to a less supportive, background. As similar findings have 

been reported for OT, experiences of childhood care may broadly and persistently affect 

systems involved in parental care. Our study complements and extends Li et al. (2017), who 

did not find evidence for a role of AVP in the processing of infant signals. We also report a 

specific role for AVP in the processing of cry sounds of which the emotional contextual 

information is known. Compared to the same cry sounds accompanied by an uninformative, 

neutral label, AVP increased the response to cry sounds described as ‘sick’ or ‘bored’ cries. 

AVP, thus, seems to play a role in the processing of cry sounds particularly when the father 

understands the emotional context of the infant’s crying. While the present results await 

replication, in order to understand what it means for a father to show increased activation in 

response to AVP, behavioral correlates of the neural response to cry sounds and its 

implications for paternal caregiving constitute important areas of future research.    
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Table 1. Sample characteristics 

  M(SD)/N(%) Min Max 

Age  31.91 (4.30) 24.65 43.04 

Gestational age  27.01 (4.91) 20.43 36.14 

Education Secondary 5 (20%)   

 Higher 20 (80%)   

Income < €3200 6 (24.00%)   

 €3200 – €4000 10 (40.00%)   

 > €4000 9 (36.00%)   

Handedness Right handed 23 (92.00%)   

Condition 

session 1 

AVP 13 (52%)   

Time since nasal 

spray cry sound 

paradigm 

Placebo 1:34 (0:05) 1:25 1:58 

 AVP 1:34 (0:07) 1:22 1:50 

Harsh parenting  0.56 (0.36) 0.00 1.13 

Love withdrawal  1.72 (0.47) 1.05 2.55 
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Table 2. The ‘infant cry network’  

Cluster 

number 

Region Cluster 

size 

MNI coordinates (mm) z p (corr.) 

x y z   

 ‘Infant’ cry sounds > control sounds       

1 R STG 2221 62 -16 2 5.64 < .001 

 R planum porale  56 4 -2 5.61  

 R Heschl’s gyrus  52 -12 4 5.57  

 R planum porale  54 2 0 5.51  

 R STG  62 4 -4 5.36  

 R STG  66 -20 2 5.28  

2 L planum porale 1479 -54 -6 2 5.68 < .001 

 L planum porale  -58 -20 10 5.30  

 L STG  -60 -2 -4 5.07  

 L precentral gyrus  -54 6 8 5.03  

 L Heschl’s gyrus  -48 -18 6 4.83  

 L planum temporale  -62 -28 12 4.05  

3 L WM/precuneus 446 -14 -50 24 3.20 .047 

 L WM/precuneus  -12 -58 36 3.20  

 L precuneus  -6 -62 26 3.19  

 R PCC  6 -46 32 3.09  

 L WM/precuneus  -10 -60 26 3.08  

 L WM/precuneus  -10 -56 28 3.07  

 ‘Infant’ cry sounds < control sounds: n.s.       
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Note. Table displays the 6 most significant voxels per contrast and is not a conclusive list of 

significant regions. STG = superior temporal gyrus; PCC = posterior cingulate cortex; WM = 

white matter  

Table 3. Experienced care by AVP interaction effect on processing of infant crying 

Cluster 

number 

Region Cluster 

size 

MNI coordinates (mm) z p (corr.) 

x y z   

 CRPBI positive: n.s.       

 CRPBI negative       

1 L ACC 499 -4 20 32 3.38 .023 

 L ACC  -6 18 36 3.36  

 L WM  -12 10 48 3.33  

 L paracingulate gyrus  -8 18 42 3.07  

 L WM  -16 4 48 2.98  

 SMA  0 4 54 2.90  

 CTS positive: n.s.       

 CTS negative: n.s.       

Note. Table displays the 6 most significant voxels per contrast and is not a conclusive list of 

significant regions. ACC = anterior cingulate cortex; WM = white matter; SMA = 

supplemental motor area. 
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Table 4. Effects of emotional contextual information and AVP administration on 

neural processing of cry sounds 

Cluster 

number 

Region Cluster 

size 

MNI coordinates (mm) z p (corr.) 

x y z   

 Main effect hormone       

1 R parahippocampal gyrus 4317 24 -36 -12 4.39 <.001 

 R lingual gyrus  12 -40 -4 4.34  

 R PCC  16 -48 4 4.20  

 PCC  0 -22 34 4.14  

 R hippocampus  12 -10 -22 4.10  

 R brainstem  -2 -20 -20 4.00  

2 L WM/putamen 599 -22 -2 12 4.67 .005 

 L WM  -22 -12 18 3.83  

 L WM/caudate  -20 6 16 3.74  

 L WM/putamen  -28 8 8 3.65  

 L insula  -36 8 -4 3.45  

 L putamen  -28 -12 8 3.41  

 Main effect context: n.s.       

 Interaction effect hormone x context: n.s.       

Note. Table displays the 6 most significant voxels per contrast and is not a conclusive list of 

significant regions. PCC = posterior cingulate cortex; WM = white matter   
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Figure 1. Task design and timing 

 

 

Figure 2. Neural correlates of infant crying vs control sounds 
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Figure 3. Modulatory effect of parental love-withdrawal on AVP effect on cry sounds 

processing 

 

 

Figure 4. Effect of AVP on processing of cry sounds with emotional contextual information 

 


