
Mechanical metamaterials: nonlinear beams and excess zero modes
Lubbers, L.A.

Citation
Lubbers, L. A. (2018, September 13). Mechanical metamaterials: nonlinear beams and excess
zero modes. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/65383
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/65383
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/65383


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/65383 holds various files of this Leiden University 
dissertation. 
 
Author: Lubbers, L.A. 
Title: Mechanical metamaterials: nonlinear beams and excess zero modes 
Issue Date: 2018-09-13 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/65383
https://openaccess.leidenuniv.nl/handle/1887/1�


4
Topology based counting of excess zero

modes

For disordered systems in 2D, the number of zero modes can be deter-
mined exactly from the connection topology [47, 48], but for symmetric
systems we are not aware of general techniques to do so. Here we de-
velop an approximate counting method for the number of zero modes
in diluted symmetric systems consisting of hinging squares. We describe
these systems as a collection of clusters coupled by connectors and use
their topology to iteratively estimate the number of zero modes. We com-
pare the iterative results of our topology based counting method to exact
calculations based on the Hessian matrix, and show that we obtain a tight
lower bound on the number of excess zero modes.

A paper based on the work presented in this chapter is in preparation for submission to
Phys. Rev. Lett. as:

L.A. Lubbers and M. van Hecke, Excess floppy modes in metamaterials with symmetries.
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106 CHAPTER 4. TOPOLOGY BASED COUNTING OF EZMS

4.1 Introduction

The aim of this chapter is to gain insight into the nature and multiplicity
of the excess zero modes that we numerically characterized in chapter
3. First, for the generic case the number of zero modes and states of
self stresses can be determined by the pebble game [47, 48], a discrete
algorithm that is exact in two dimensions and for generic quads. For
symmetric quads however, this algorithm is not suitable. We therefore fo-
cus on gaining an approximate, yet accurate, understanding of the num-
ber of (excess) zero modes in diluted symmetric systems, which will be
topology-based.

We start from the observation that the occurrence of excess modes is
driven by densely connected patches, which are rigid in the generic case
but, irrespective of size, feature a hinging mode in symmetric systems.
Hence, we would like to consider our systems as connected groups of
quads, that we will refer to as clusters, and in section 4.2 we give precise
definitions that allow us to separate any system in a collection of clusters,
connectors and remaining quads. We show examples of this partition,
and point out that the remaining quads do not significantly contribute
to ∆, as they almost equally contribute to ns and ng. We therefore de-
fine so-called pruned systems, where the remaining quads are removed,
and that solely consist of clusters and connectors — we show that ∆ for
the full system and ∆′ for the pruned systems are extremely close in sec-
tion 4.3. In section 4.4 we consider the three distinct type of connectors
that arise between two clusters, and show how they constrain the number
of (excess) zero modes. We find that clusters with a sufficient number of
connectors should be seen as a single cluster, and develop an iterative
cluster merging algorithm. Finally, in section 4.5 we apply this topology-
based iterative algorithm to determine n′s and ∆′ for the pruned systems,
and show very close correspondence to the numerically obtained ∆′.

4.2 Clusters on the square and dual grid

In this section we introduce the notion of 4-blocks, that, once detected,
can be used to unambiguously detect clusters, connectors and remaining
quads. A 4-block consist of four quads connected in a loop [Fig. 4.1(a)]
and has one internal degree of freedom. A quad can belong to one or
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(a) (b) (c)
(i)

Figure 4.1: Detection of 4-blocks. Systems are initialized with grey quads, which
are marked blue if they belong to a 4-block. The square and dual grid associated
with the 4-blocks are respectively shown in black and red. (a-b) The top rows
show unmarked quads of (a) a single 4-block and (b) a strip with one dangling
quad, quad (i). The bottom rows display the associated square and dual grid,
and the marked quads. (c) (Square grid not shown) As an additional example
we show the dual grid of a large system that is not strip-like.

more 4-blocks, as is for example the case for the strips and loops (linearly
connected 4-blocks) described in section 3.1; a quad can also belong to
zero 4-blocks, such as quad (i) of the system shown in Fig. 4.1(b).

Formally, the presence of a quad in a diluted system can be expressed
as the filling of a node on a square-like grid* (Fig. 4.1). Similarly, the pres-
ence of a 4-block can be expressed by filling a node on a dual, square-like
grid, whose nodes lie in the center of each 4-block (Fig. 4.1). In a first
step, we detect all 4-blocks, and track the quads of all 4-blocks [Figs. (4.1-
4.2)]. After detecting all 4-blocks and filling the dual grid accordingly,
we note that adjacent nodes on the dual grid correspond to 4-blocks that
are connected and are part of the same cluster, and we thus connect these
dual nodes [red lines in Figs. (4.1-4.2)]. Subsequently, we assign the same
colour to all quads that belong to these connected 4-blocks, and use differ-
ent colours for 4-blocks that are disconnected on the dual grid (Fig. 4.2).
This procedure yields an unambiguous detection of clusters: As illus-
trated for the systems in Fig. 4.2, we have identified and coloured all
connected 4-blocks, and find that each quad belongs to either zero (grey),
one (colour) or in some cases, two clusters (bi-colour).

*For the generic quads, there is no regular underlying lattice. Nonetheless, the con-
nectivity and topology of such networks are equivalent to that on a square lattice.
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Figure 4.2: Clusters on the dual grid. Distinct clusters are indicated by different
colours; the red nodes and lines display the dual grid. (a-d) Four independent
randomly diluted systems of varying cutting fraction, shown from high to low ρ.
The actual quads of different clusters can connect in three different manners, as
indicated by the numbers 1, 2 and 3: Via a grey quad (type 1), direct connection
(type 2, marked by small circles) or an shared quad (type 3 and bi-coloured). All
grey quads that are not type-1 are remaining quads.
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Distinct clusters can be connected in three different manners, as indi-
cated by the numbers in Fig. 4.2, of which a more detailed overview is
provided in Fig. 4.8. First, a grey quad may connect to two clusters and
we will call this a type-1 connector [Fig. 4.8(a)]. Second, two clusters may
directly be connected, leading to a type-2 connector [Fig. 4.8(b)]. Third,
two clusters may share a quad, leading to a type-3 connector [Fig. 4.8(c)].
These names are not arbitrary — in what follows we will show that these
lead to one, two or three constraints.

Finally, grey quads that are not type-1 connectors are classified as
remaining quads. In the following section we will discuss the relevance
of the remaining quads and show that most of these are not relevant for
∆. Altogether, in this section we have developed the notion of 4-blocks
which allows us to partition any randomly diluted system into clusters,
connectors and remaining quads.

4.3 Pruned systems

We now define pruned systems, where most of the remaining quads are
removed, motivated by the aim to study the nature and multiplicity of the
excess zero modes in the simplest possible setting. We therefore demon-
strate that remaining quads contribute almost equally to ns and ng, and
can thus be pruned without significantly altering ∆. The only remaining
quads that easily can be detected and understood to have the potential
to change ∆, are self-connectors — isolated quads that are connected to
the same cluster [examples are shown in Fig. 4.2(d) and Fig. 4.6(a)]. These
never modify ns, but they may rigidify an otherwise hinging generic clus-
ter, and we have therefore kept these self-connectors in our pruned sys-
tems. All other remaining quads are removed. In the following we de-
scribe the average number of excess zero modes in the pruned systems
by 〈∆′〉(ρ, N), with ρ the cutting fraction of the full systems, to facilitate
comparison with ∆.

In Fig. 4.3 we have visualized the pruned systems that correspond to
the full systems shown in Fig. 4.2. For each of these examples we find
that the number of excess zero modes before and after pruning is the
same (∆ = ∆′). One can understand this intuitively by noting that the re-
maining quads form dangling and floppy groups that equally contribute
to ns and ng. Nonetheless, a quantitative comparison of the ensemble
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Figure 4.3: Pruned versions of the systems show in Fig. 4.2. Note that ∆′ = ∆ for
each of these examples.

averages 〈∆〉 and 〈∆′〉 as function of ρ and N, as obtained from another
series of independent simulations, shows slight differences in the number
of excess modes of pruned and full systems can occur (Fig. 4.4). As can be
observed from panel (a), the curves 〈∆〉(ρ, N) (solid lines) and 〈∆′〉(ρ, N)
(dashed lines) are essentially indistinguishable, but [〈∆′〉 − 〈∆〉]/〈∆〉?, as
plotted in panel (b), reveals differences that are most pronounced for in-
termediate cutting fractions. Here, 〈∆〉? denotes the peak value of 〈∆〉.
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Figure 4.4: Excess zero modes in full and pruned systems, for a range of system
sizes. (a) The average number of excess modes as function of ρ for full (〈∆〉,
solid lines) and pruned (〈∆′〉, dashed lines) systems for a range of system sizes.
(b) Deviations as compared to the peak value of the full systems, 〈∆〉?, show that
relative deviations are maximally 5% for the system sizes considered. (c) The
peak value of 〈∆′〉 − 〈∆′〉 as function of N. (d) Deviations rescaled by N2.

As can be seen, these relative differences never exceed 5% for the sys-
tem sizes considered. In panel (c) we show the peak value of the devi-
ations, [〈∆′〉 − 〈∆〉]?, as function of N. This shows that the deviations
grow rapidly for small N, but for larger N, our data is consistent with a
crossover to N2 scaling — to accurately measure the asymptotic scaling
exponent much larger system sizes are required. For completeness, in
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Figure 4.5: CDFs for the number of internal zero modes (ni
m) in full and pruned

systems, in the peak regime of 〈∆〉. The solid curves display data for the number
of zero modes in the full symmetric (ns) and generic systems (ng); the dashed
curves display data for the pruned symmetric (n′s) and generic systems (n′g). We
show data for system sizes (a) N = 20 and (b) N = 30.

panel (d) we show the deviations rescaled by N2, which leads to a rea-
sonable collapse for large N. Our data thus suggests that the difference
between 〈∆〉 and 〈∆′〉 is extensive. Altogether, these findings demonstrate
that pruned systems accurately capture the excess zero modes of full sys-
tems, which allows us to study the nature and multiplicity of the excess
zero modes in the simpler pruned systems.

To further show that pruned systems well describe the full systems,
we also display some ensemble distributions of ∆ and ∆′ as CDFs in
Fig. 4.5, for ρ that corresponds to the peak location of 〈∆〉. For both sys-
tem sizes that are shown in Fig. 4.5, we observe a very similar translation
of ns and ng as a result of pruning. These findings therefore further sup-
port that the number of excess zero modes in the full and pruned system
are very close.

Finally, to gain insight in the cause of deviations between ∆ and ∆′,
and the role of self-connectors, consider the three examples shown in
Fig. 4.6. First, the strip-like cluster in panel (a) displays a typical ex-
ample illustrating why we do not prune self-connectors; by keeping this
self-connector, we find that ∆ = ∆′ = 1. In contrast, where we to prune
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(a)

∆ = 1, ∆′ = 1, ∆′′ = 0
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Figure 4.6: Cutting patterns that illustrate the role of self-connectors and devia-
tions between ∆ and ∆′. (a) Pruning this system while keeping the self-connector
yields ∆ = ∆′, whereas we would find ∆′′ = 0 if we additionally prune the self-
connector. This illustrates that self-connectors rigidify hinging generic strips.
(b-c) Cutting patterns for which pruning of remaining grey quads changes the
number of excess zero modes (∆ 6= ∆′). Note that these examples do not contain
self-connectors, such that ∆′ = ∆′′.

all remaining quads, we would find that ∆′′ = 0. The second and third
example [panel (b-c)] display cutting geometries that do not contain self-
connectors, but for which ∆ 6= ∆′. These have to do with more com-
plex clusters of remaining quads that, in general, will be hard to detect.
Nonetheless, as we have shown in Fig. 4.4, deviations such as as displayed
in Fig. 4.6(b-c) are rare and ∆ and ∆′ are very close.

4.4 Topology based counting argument

We now explain how we develop a counting argument to estimate n′s from
the topology of the clusters and their connectors. To establish this count-
ing argument we will utilize the generalized Maxwell count [Eq. (3.3)],
which can be adapted to the context of clusters (explicitly indicated by
the superscript c) as:

Nc
dof − Nc

con = ni
m + 3− nc

ss. (4.1)

In the above equation, Nc
dof represents the number of internal and ro-

tational/translational degrees of freedom of the clusters and Nc
con the
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number of constraints of their associated connectors†. We note that large
clusters feature a significant number of internal states of self-stress, but
these we will ignore. However, when clusters are coupled, new states of
self-stress may arise and we count these by nc

ss. Hence, we see the clusters
as ’black boxes’ that can rotate, translate, and hinge — all internal states
of self-stress are ignored. Thus, nc

ss describes the number of redundant
inter-cluster constraints given by the type 1,2 and 3 connectors. Lastly,
recall that ni

m expresses the number of internal zero modes, with ni
m = n′s

for symmetric systems. We furthermore note that Eq. (4.1) also applies to
generic systems with ni

m = n′g, but as motivated already, our main focus
is to count the number of zero modes in symmetric systems, rather than
the zero modes in generic systems where exact algorithms to count these
already exist [47, 48].

Below we first discuss how the number of (excess) zero modes can
be determined in the simplest scenario in which connectors are absent
(Nc

con = nc
ss = 0). Subsequently, we consider systems in which connectors

are present and explain how to correctly take the Nc
con constraints and

nc
ss self-stresses into account. Finally, we present a step-wise analysis of

a (randomly diluted) system that exemplifies how our methodology can
be applied to successfully count n′s.

4.4.1 Counting without connectors

In the simplest scenario, there are no connectors between clusters and
inter-cluster self-stresses are absent (nc

ss = 0) — this typically occurs at
either low [Fig. 4.3(d)] or high cutting fractions [Fig. 4.3(a)]. We now
show that — in the absence of connectors — we can estimate the number
of (excess) zero modes from a simple argument based on the multitude
of clusters.

Using Eq. (4.1) we first note that ni
m = Nc

dof − 3 in the absence of con-
nectors. For symmetric systems, all clusters are hinging, and each cluster
contributes 4 degrees of freedom. For a randomly diluted system that
contains nc clusters, we therefore immediately obtain n′s = 4nc − 3. To
determine the number of excess zero modes we also need to obtain n′g. In
principle, our goal is not to develop a counting argument for n′g, since

†The constraints introduced by the connectors should not be confused with the inter-
nal constraints of an individual cluster. The internal constraints constitute clusters, but
do not constrain the motion between adjacent clusters.
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this is already captured by the pebble game [47, 48]. However, in the
very special case where constraints and inter-cluster self-stresses are ab-
sent, we can approximate the outcome of the pebble game using a simple
argument — which helps us to gain insight into the nature and multi-
plicity of the excess zero modes. We therefore proceed by providing an
approximate counting method for n′g.

To determine n′g we need to distinguish hinging clusters and rigid
clusters. For generic systems we have discussed before that while strips
have one hinging mode, larger clusters are rigid; generic clusters can
therefore either contribute 3 (rigid clusters) or 4 (hinging clusters) degrees
of freedom. Assuming that of the nc clusters, nr are rigid and nh are
hinging, we obtain n′g = 4nh + 3nr − 3. Combining the expressions for
n′s and n′g, this yields the rigid-cluster-based estimate ∆r = n′s − n′g = nr,
demonstrating that the number of excess zero modes is tantamount to
the number of rigid clusters in the absence of connectors. Hence, excess
modes are induced as a result of sufficiently large clusters that are rigid
in the generic case, but retain their hinging mode in the symmetric case.

Comparison of ∆r and exact results — We now systematically compare
the rigid-cluster-based prediction 〈∆r〉(ρ, N) (dashed lines) and the exact
results 〈∆〉(ρ, N) (solid lines) based on the Hessian matrix, as obtained
from a large number of independent simulations. These simulations are
based on two assumptions: First, we did not prune these systems to re-
duce numerical computation time, as this circumvents the need to detect
remaining quads and connectors. This does not affect the outcome for the
number of rigid clusters. Second, counting of the number of rigid clus-
ters is approximate. A sufficient condition for rigidity is that somewhere
in the cluster dual nodes are connected in a loop. We detect the most
common loop that occurs in dense clusters, where one or more primitive
loops of length four occur [Fig. 4.1(c)]. In principle, the smallest loop on
the dual grid can be longer than four [e.g. as in Fig. 3.3(c)]. However,
these cases are rare and yield a negligible overestimation of nr, which
therefore does not affect the main findings we will discuss now.

In Fig. 4.7 we display 〈∆r〉(ρ, N) (dashed lines) and the exact results
〈∆〉(ρ, N) (solid lines). As can be observed from Fig. 4.7(a), 〈∆r〉 quali-
tatively captures the peak behaviour of 〈∆〉 and yields, as expected, an
excellent approximation for large cutting fractions; in this regime the sys-
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Figure 4.7: Comparison of the average number of excess zero modes predicted
by exact calculations 〈∆〉(ρ) (solid lines) and the simultaneous rigid-cluster-
based approximation 〈∆r〉(ρ) (dashed lines), for a range of system sizes. We
have used the same ensemble size for each N as in Fig. 3.12 for the data shown.
(a) 〈∆r〉 shows excellent agreement with 〈∆〉 for cutting fractions beyond the
peak location of 〈∆〉. (b) Scaling collapse of 〈∆〉 and 〈∆r〉 in the N→∞ limit for
the data shown in panel (a).

tems contain a few rigid clusters as well as numerous isolated hinging
clusters and floppy groups of loosely connected quads — only the rigid
clusters contribute to ∆. In contrast, 〈∆r〉 displays significant deviations
from 〈∆〉 for intermediate ρ. Comparison of the large N asymptotics of
〈∆r〉 —which similar to 〈∆〉 scale as N2— with the asymptotics of 〈∆〉
shows that these deviations are characterized by a peak value which is
consistently overestimated, and a peak location with a slight offset to the
left [Fig. 4.7(b)].

The observed deviations expose the effect of connectors. For interme-
diate ρ the clusters are strongly entangled by connectors of type 1,2 and
3 and consideration of their associated self-stresses is necessary to accu-
rately estimate n′s and n′g. As discussed before, in the generic case there
exists an exact algorithm to determine n′g and the self-stresses. However,
in the symmetric case this algorithm is not suitable and our main goal
therefore is to develop an approximate counting argument for the num-
ber of (excess) zero modes and self-stresses in these systems.
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Figure 4.8: Cluster connector types. There exist three distinct manners in which
clusters A and B may be connected, namely via a type-1 (left), type-2 (middle) or
type-3 (right) connector. These connectors, according to their names, introduce
precisely 1, 2 or 3 constraints, as is indicated at the bottom of the figure. In the
main text we provide a derivation for the number of constraints associated with
each connection type.
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Figure 4.9: Step-wise explanation of connection type-3. In step 1, the upper right
quad of the green cluster is removed and two associated bonds are cut. In step 2
both clusters are connected and two bonds are restored, leading to no net change
in the number of bonds and the net removal of 3 degrees of freedom. Hence, the
number of zero modes as a result of the type-3 connection is lowered by 3.

4.4.2 Connectors, constraints and inter-cluster self-stresses

Before presenting a counting argument that takes into account connec-
tors, we now first show that connectors of type 1,2 and 3, conform to
their names, introduce precisely 1, 2 and 3 constraints when connecting
a pair of clusters. Moreover, we explain the appearance of inter-cluster
self-stresses as a result of these connectors.

Connectors and constraints. — To evidence the mentioned number of
constraints associated with each connection type, we consider a system
that consists of two clusters, A and B, and determine how ns of this two-
cluster system is lowered for each connection type. In Fig. 4.8 we display
a detailed graphical representation of the three distinct manners in which
cluster A and B can be connected. Before the clusters are connected
ns = Nc

dof − 3 = 5, where each cluster contributes 4 degrees of freedom.
These 5 zero modes should be interpreted as the independent hinging of
both clusters (2 zero modes) and relative translations or rotations of the
clusters (3 zero modes). After the clusters are connected by a type 1, or 2
or 3 connector, some of their relative motions become constrained, and ns
will respectively be lowered by one, two or three — which is equivalent
to the presence of one, two or three constraints. To understand these
connectors add one, two or three constraints, consider the zoomed areas
in Fig. 4.8. First, for a type-1 connection the grey quad adds 3 degrees
of freedom and 2 extra bonds, hence we lose one zero mode. Second, a
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type-2 connection introduces a single additional bond, hence we lose two
zero modes. Third, a connection type-3 is more subtle and can be seen
as removing a single quad (three degrees of freedom), without adding
new bonds, thereby lowering the number of zero modes by three. This is
illustrated in more detail in Fig. 4.9.

Inter-cluster self-stresses. — Above we have illustrated the lowering
of ns as a result of a single type-1, or type-2, or type-3 connector. To un-
derstand the role of self-stresses we now consider the same two-cluster
in the presence of multiple connectors and note that the lowering of ns
is bound to the minimum ns = 1; coupled symmetric clusters always at-
tain a global hinging mode, regardless of the number of constraints these
share. As an example, consider the two-cluster system shown in Fig. 4.10

that contains two type-3 connectors (6 constraints). For this system one
can readily envision that the connectors constrain all relative motions of
the green cluster with respect to the blue cluster (and vice versa); the sys-
tem only allows for a single dependent internal zero mode in which the
motions of both clusters are coupled — global hinging. The cluster pair is
dependent, acts as a single cluster with ns = 1, and from Eq. (4.1) we ac-
cordingly find that the clusters share 2 inter-cluster self-stresses (nc

ss = 2).
Hence, the system contains 2 degenerate (redundant) constraints.

The example discussed above illustrates a general observation which
is most easily understood by the consideration of Table 4.1. Here we tab-
ulated ns and nc

ss as function of the number of constraints (Nc
con), where

Figure 4.10: The clusters in this system exhibit no relative motions (ns = 1) due
to two type-3 connectors and effectively thus behave as a single cluster.
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two-cluster system

Nc
con ns nc

ss

0 5 0
1 4 0
2 3 0
3 2 0

↓ ns constant ↓
4 1 0
5 1 1
6 1 2

Table 4.1: Number of zero modes (ns) and inter-cluster states of self-stress (nc
ss),

as function of the number of constraints (Nc
con) for a two-cluster system. For

Nc
con ≥ 4 the number of internal zero modes becomes constant, as indicated by

the shaded region.

we note that Nc
con is related to the number of type-1,2 and 3 connectors

via
Nc

con = n1 + 2n2 + 3n3, (4.2)

with n1,n2 and n3 the number of type 1,2 and 3 connectors. Starting
from two unconnected clusters (n1 = n2 = n3 = 0), Table 4.1 clearly shows
that for each constraint added, ns is lowered by one. The lowering of
ns persists until all relative motions of the clusters become constrained
(ns = 1), which requires precisely 4 constraints. From this point, the
presence of any additional constraints does no longer affect ns, but leads
to the development of inter-cluster self-stresses instead.

4.4.3 Counting including connectors

In this section we present a counting argument which is suitable for sym-
metric systems and that takes into account the presence of connectors.
The challenge in counting n′s is that that the number of inter-cluster self-
stresses generally is non-zero: Whereas the left hand side of Eq. (4.1) is
easily calculated based on the number of clusters and constraints of the
connectors, we need to know nc

ss in order to calculate n′s. In what fol-
lows we therefore develop a counting method that iteratively eliminates
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the inter-cluster self-stresses, yielding an hierarchy of predictions for n′s,
based on the following methodology:

(i) Given a randomly diluted system, we first partition the system into
clusters, connectors and remaining quads, and subsequently prune
the system.

(ii) We merge clusters that share four or more constraints. This cluster
coarsening eliminates (some of the) the inter-cluster self-stresses.

(iii) After the merging of clusters, we may find that new clusters have
formed that again share four or more constraints — we iterate until
no more clusters can be merged.

(iv) In each iteration step, we calculate the estimate for n′s from the topol-
ogy of the clusters and their connectors, according to

ns,i = 4nc,i − Nc
con,i − 3, (4.3)

where nc,i and Nc
con,i are the number of clusters and constraints as-

sociated with iteration step i.

We will now first clearly motivate this methodology, and then provide
a worked-out example. Step (i) is straightforward and already explained
in Sections (4.2-4.3). The merging of cluster pairs as described in steps (ii)
and (iii) ensures inter-cluster states of self-stress become internal and do
no longer contribute to nc

ss, which circumvents the need to explicitly count
these. For example, we could treat the system in Fig. 4.10 as two distinct
clusters with 8 degrees of freedom, 6 constraints, 4 zero modes and 2 self-
stresses, but the simpler approach is to merge the clusters into a single
(unconstrained) cluster that features 4 degrees of freedom and zero inter-
cluster self-stresses. A sufficient condition for merging is that two clusters
share 4 (or more constraints); this condition is based on Table 4.1, which
we used previously to motivate that clusters with four or more constraints
are dependent and develop inter-cluster self-stresses. Finally, Eq. (4.3) as
given in step (iv) is based on Eq. (4.1), where we note that the number
of inter-cluster self-stresses does not appear in Eq. (4.3) as we tentatively
assume nc

ss = 0 after the cluster merging in each iteration step.
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(a) dilution geometry

nc,0 = 6, Nc
con,0 = 18

1↔ 4 : 5 constraints

(b) partioned + pruned

cluster labels

1 2 3 4 5 6

nc,1 = 5, Nc
con,1 = 13

1↔ 6 : 4 constraints

(c) Iteration 1

nc,2 = 4, Nc
con,2 = 9

(d) Iteration 2

Figure 4.11: Visualization of the iterative merging of clusters to estimate n′s (see
main text). At the bottom of each of the respective panels we provide the number
of clusters nc,i and constraints Nc

con,i. The text ’A↔B’ additionally indicates the
labels of cluster pairs AB that share sufficient constraints for merging. (a) Initial
random dilution geometry. (b) Partitioned and pruned system. (c-d) Subsequent
merging of clusters. For simplicity, the dual grid is only shown in panel (b).
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Worked-out example. — To gain intuition for the iterative counting
argument, we finalize this section by calculating the hierarchy of predic-
tions ns,i for the system shown in Fig. 4.11(a). We will show that this
system requires two merging iterations and that the result as obtained
from the final iterated topology of the clusters and their connectors is in
agreement with exact results based on the Hessian matrix, namely n′s = 4.

initial estimate (no iterations) (ns,0). — To obtain the initial estimate
for n′s we partition the randomly diluted system and prune the remain-
ing quads [Fig. 4.11(b)]. From the resulting topology of the clusters and
their connectors, we note that there are nc,0 = 6 clusters and Nc

con,0 = 18
constraints, tantamount to 1 type-1 connector, 7 type-2 connectors and 1
type-3 connector, and determine accordingly that ns,0 = 4×6− 18− 3 = 3.

estimate for one iteration (ns,1). — By inspection of the clusters and
their connectors in Fig. 4.11(b) we find that clusters 1 and 4 are quali-
fied for merging; these share 5 constraints (one type-2 and 3 connector),
whereas all other cluster pairs share less than 4 constraints. We therefore
merge cluster 1 and 4 by assigning these the same colour, which leads to
the (new) topology of the clusters and their connectors as displayed in
Fig. 4.11(c). Due to the cluster merging we lose 1 cluster, 1 type-2 con-
nector and 1 type-3 connector, such that we now obtain that nc,1 = 5 and
Nc

con,1 = 13. The new estimate therefore yields ns,1 = 4×5− 13− 3 = 4.

estimate for two iterations (ns,2). — Due to the formation of new clus-
ters in the previous iteration [Fig. 4.11(c)], we now also find that clusters
1 and 6 qualify for merging. We therefore also merge these clusters to ob-
tain the topology as shown in Fig. 4.11(d), for which we accordingly find
that nc,2 = 4 and Nc

con,2 = 9. This yields the estimate ns,2 = 4×4− 9− 3= 4,
which is also the final estimate since Fig. 4.11(d) contains no more clus-
ters that satisfy the merging rule. We thus find that our result as obtained
via counting is in agreement with the exact result based on the Hessian
matrix, demonstrating that we can count n′s from the topology of the clus-
ters and their connectors. In the next section we test the general accuracy
of this approach.
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4.5 Counting of (excess) zero modes

In this section we compare exact results for the number of (excess) zero
modes in symmetric systems, based on the Hessian matrix, against the
topology based estimates that have been developed above. We in particu-
lar focus on the sequence of predictions for ∆′, rather than n′s itself, since
the main goal of this chapter is to gain insight in the nature and multiplic-
ity of the excess zero modes. We therefore define ∆i = ns,i − n′g, where ns,i
follows from the iterative counting argument and n′g from exact Hessian
based calculations, and show that ∆∞ (final iterated result) yields a tight
lower bound on the exact ∆′. Finally, to understand deviations between
∆∞ and ∆′, we compare ns,∞ to n′s and discuss a number of examples for
which our iterative counting method is inaccurate.

4.5.1 Results

Here we test the accuracy of ∆i as function of system size N and cutting
fraction ρ, by comparing the average estimates 〈∆i〉(ρ, N) to the exact
results 〈∆′〉(ρ, N). In order to obtain 〈∆i〉, we have numerically imple-
mented the iterative counting method. This Python-based code automat-
ically partitions each randomly diluted systems into clusters, connectors‡

and remaining quads, and subsequently iteratively merges clusters that
satisfies the merging rule. In this way we acquire ∆i for a large number of
independent randomly diluted systems, allowing us to obtain reasonably
well statistically converged data for 〈∆i〉 (we used the same ensemble
sizes as described in section 3.3.2). Recall that i = 0 corresponds to the
initial system for which no clusters have been merged yet. For i = 1 we
have merged the clusters once, for i = 2 twice, etc. The final topology,
which contains no more clusters that satisfy the merging rule, is denoted
by i = ∞.

In Fig. 4.12 we show the average iterative predictions 〈∆0〉(ρ), 〈∆1〉(ρ),
〈∆2〉(ρ) and 〈∆∞〉(ρ) and the exact result 〈∆′〉(ρ) for two system sizes,
N = 10 and N = 90. For clarity we do not display the estimates that fall
in between i = 2 and i = ∞. As can be observed, the most naive approx-
imation that neglects inter-cluster self-stresses, 〈∆0〉, accurately captures

‡In appendix 4.A we explain how each connection type is numerically detected using
the adjacency matrix of the system and of individual clusters.
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Figure 4.12: Iterative topology based estimates 〈∆0〉, 〈∆1〉, 〈∆2〉 and ∆∞ com-
pared against the exact Hessian-based result 〈∆′〉. We show results for (a) N = 10
and (b) N = 90.

〈∆′〉 for large cutting fractions, but displays significant deviations for in-
termediate cutting fractions. This finding is fully consistent with the ex-
pectation that inter-cluster self-stresses are present for strongly connected
clusters (intermediate ρ), but absent for clusters that share few to none
connectors (large ρ). The estimate after one merging iteration, 〈∆1〉, al-
ready leads to a significantly improved estimate for the number of excess
zero modes for each of the system sizes shown; the cluster merging elim-
inates a large number of self-stresses such that 〈∆1〉 appears much closer
to 〈∆′〉 than 〈∆0〉. However, the new topologies of the clusters and con-
nectors as obtained after one iteration again contain self-stresses such that
〈∆1〉 still deviates from 〈∆′〉. The second merging iteration again elimi-
nates these self-stresses, and as can be seen, 〈∆2〉 yields an improved
estimate for 〈∆′〉. The described improvement persists for the iterations
thereafter (i = 3,4..) (not shown) up to the point where all of the clusters
are merged, yielding the final estimate 〈∆∞〉. Fig. 4.12 demonstrates that
we find very close correspondence of 〈∆′〉 and 〈∆∞〉 (which we will show
to be a lower bound below) for each of the system sizes shown. Nonethe-
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Figure 4.13: Comparison of 〈∆′〉 and 〈∆∞〉 for a range of system sizes. (a) The
final deviations, 〈∆′〉− 〈∆∞〉 as a function of ρ. (b) Deviations as compared to the
peak value of 〈∆′〉, 〈∆′〉?, show that relative deviations are maximally 15% for
the largest system size considered (N = 90). (c) The peak value of 〈∆′〉 − 〈∆∞〉
as function of N. (d) Deviations rescaled by N3.

less, we observe small deviations between 〈∆∞〉 and 〈∆′〉, which implies
the final iterated topologies contain remaining inter-cluster self-stresses.

In Fig. 4.13 we systematically compare 〈∆′〉 and 〈∆∞〉 for system sizes
N = 10,20, . . . ,80,90. Panel (a) shows that the final difference between our
iterative counting method and the exact number of excess zero modes,
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Figure 4.14: Discrete joint probability distributions as function of n′s and ns,∞, for
N = 10 and an ensemble size of 105 independent simulations. The solid black
lines describe n′s = ns,∞ and the shaded areas indicate the regions n′s > ns,∞.
(a) For ρ = 0.24 our counting method is exact for 99% of the simulations and
yields a lower bound on n′s. (b) For ρ = 0.5 our counting argument is exact for
all simulations. Inset graphs: Discrete probability distribution of n′s − ns,∞.

〈∆′〉 − 〈∆∞〉, grows with system size and is strongest for ρ ≈ 0.2 (signifi-
cantly below the peak location at ρ≈ 0.3). As can be seen in panel (b), we
find that the relative deviations [〈∆′〉 − 〈∆∞〉]/〈∆′〉?, with 〈∆′〉? the peak
average of 〈∆′〉, are maximally 15% for the largest system size considered.
Panel (c) shows that the peak value of the deviations, [〈∆′〉 − 〈∆∞〉]?, ini-
tially grows faster than N3, and then slowly crosses over to a smaller
effective exponent; our data shows that this exponent is smaller than 3
[see panel (d)], and it is conceivable that ultimately deviations grow as
N2, i.e., are extensive, similar to the data in, e.g., Fig. 4.4.

Comparison of n′s and ns,∞. — To understand the deviations between
〈∆∞〉 and 〈∆′〉 we now consider the discrete probability distributions as
function of n′s and ns,∞ in Fig. 4.14. Panel (a) demonstrates a general
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and important feature of our iterative counting argument: ns,∞ yields a
strict lower bound on n′s. Deviations are rare, and occur when one or
more connectors are degenerate (examples are discussed below), result-
ing in complex inter-cluster self-stresses that are not eliminated by our
iterative merging method. According to Eq. (4.1) these remaining self-
stresses yield an estimate for n′s which is too low. Therefore, ns,∞ yields
a lower bound on n′s, and accordingly, ∆∞ yields a lower bound on 〈∆′〉.
Nonetheless, our counting method provides an excellent approximation
to n′s — for N = 10 and ρ = 0.24 we find that our counting method is accu-
rate in 99% of the cases [Fig. 4.14(a)]. Note that strongly diluted systems
typically do not contain remaining self-stresses such that our counting
method is exact for all simulations in that case [Fig. 4.14(b)].

We finally discuss two dilution patterns to illustrate the role of de-
generate connectors that lead to complex inter-cluster self-stresses that
are not eliminated by the iterative merging procedure (Fig. 4.15). In
panel (a) we show 3 clusters that are connected in a loop and in this
system none of the clusters satisfies the merging rule. Therefore, we
estimate ns,∞ = 12 − 9 − 3 = 0 (we count 4 clusters and 9 constraints).
However, the correct answer is n′s = 1; the system attains a global hing-

(a) (b)

Figure 4.15: Dilution examples that contain special cases of degenerate con-
nectors. (a) In this example the upper left type-1 connector is degenerate, but
not eliminated by the iterative merging. This system has one excess zero mode
(n′s = 1,n′g = 0). (b) The two clusters shown satisfy the merging rule in principle,
but can nonetheless be sheared with respect to each other. This system has three
excess zero modes (n′s = 3,n′g = 0).
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ing mode. Apparently, the system contains one redundant constraint,
and we have numerically confirmed the upper left type-1 connector (con-
nector between the blue and orange cluster) is redundant; its removal
does not change the numerically obtained value for n′s. In panel (b) we
show two clusters that share 4 type-1 connectors on row 1,3,5 and 7. In
principle, these two clusters satisfy the merging rule, but one can readily
understand that the connectors for this special geometry do not constrain
all of the relative motions — the clusters can always shear with respect to
each other. Therefore, the estimate ns,∞ = 1 is incorrect, and we numer-
ically confirmed that n′s = 3 (global hinging + shear + a quartic mode).
We moreover numerically found that one can add an infinite amount of
type-1 connectors on every odd row (e.g. 1,3,5,7,9, . . . ) without reducing
the number of zero modes; the minimum number of type-1 connectors
for n′s = 3 is two, every connector added thereafter is degenerate. Both
of the discussed geometries show examples of complex inter-cluster self-
stresses that are not correctly taken into account by the iterative merging.
Nonetheless, as we have shown in Fig. 4.13, deviations introduced by
such special dilution geometries are relatively small.

4.6 Conclusions

We developed an approximate counting method for the number of (ex-
cess) zero modes in systems of hinging squares. We therefore first pre-
sented a procedure to partition any randomly diluted system into clus-
ters, connectors and remaining quads. We then showed that pruning of
the remaining quads does not significantly affect the number of excess
zero modes, which allowed us study the nature and multiplicity of the
excess zero modes in the simplest possible setting, where quads that are
irrelevant for ∆ are removed. To develop the counting argument we sub-
sequently treated the clusters as ’black boxes’ that can rotate, translate
and hinge, showed how each of the three types of connectors constrains
the number of zero modes and developed an iterative cluster algorithm to
take into account the inter-cluster self-stresses that appear between suffi-
ciently strongly connected clusters. Finally, we compared the predictions
of our iterative counting argument against exact Hessian-based results for
a large number of independent randomly diluted systems, and showed
that we obtain a tight lower bound on 〈∆′〉.



Appendix

4.A Detecting cluster-constraints

In this appendix we explain the algorithms devised to detect type 1,2
and 3 constraints [Figs. (4.16-4.18)]. To demonstrate these algorithms we
will use a simple system that consists of two clusters, denoted A and B.
Quads that belong to cluster A are coloured blue, quads that belong to
cluster B green, and quads that belong to neither of those are coloured
grey.

4.A.1 Type 3 constraint

Type 3 constraints are fairly easy to detect in comparison to type 2 and
1 constraints. This is because two clusters connected through a type 3
constraint share a quad, as depicted in Fig. 4.16. Therefore, it suffices
to find the intersections of the set of quads that belong to cluster A and
B. For the example shown, the set of quads for both clusters are A =
{0,1,2,3} and B = {3,4,5,6}, such that the intersection equals A ∩ B =
{3}. The number of elements in the intersection then equals the number
of type 3 constraints. When A and B are disjoint (no quads in common),
the clusters encompass no type 3 constraints.

0 1

2 3 4

5 6

Figure 4.16: Type 3 constraint. Quad number 3 is shared between the blue and
green cluster, as indicated by the bi-coloured quad.

4.A.2 Type 2 constraint

To detect type 2 constraints, we use the adjacency matrix of the system,
C. This matrix indicates whether pairs of quads are adjacent: Element Cij
is set to one when quad i is adjacent to quad j, and zero otherwise. For

130
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0 1

2 3 4 5

6 7

Figure 4.17: Type 2 constraint. The blue cluster (A) and the green cluster (B)
are connected via quads 3 and 4.

the system shown in Fig. 4.17, the adjacency matrix is

C =




label 0 1 2 3 4 5 6 7

0 7 1 1 0 0 0 0 0
1 7 0 1 0 0 0 0
2 7 1 0 0 0 0
3 7 1 0 0 0
4 7 1 1 0
5 7 0 1
6 7 1
7 7




, (4.4)

where we only provide the upper triangular part of the symmetric matrix
for clarity. Furthermore, the crosses on the main diagonal indicate that
quads cannot be connected to themselves.

The goal then is to extract all elements from the adjacency matrix
that connect cluster A to B, which, in this case, is C34. In order to find
such elements, we define the adjacency sub-matrices CA en CB that are
constructed from C as follows. We define a sub-matrix A for which we
retain only the rows and columns of C that belong to A, and we follow a
similar procedure to construct B. We then find that

CA =




7 1 1 0 0 0 0 0
7 0 1 0 0 0 0

7 1 0 0 0 0
7 1 0 0 0

7 0 0 0
7 0 0

7 0
7




and CB =




7 0 0 0 0 0 0 0
7 0 0 0 0 0 0

7 0 0 0 0 0
7 1 0 0 0

7 1 1 0
7 0 1

7 1
7




. (4.5)
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Figure 4.18: Type 1 constraint. The blue cluster (A) and the green cluster (B)
are connected via a single quad (4), that is neither a member of A nor of B.

Finally, two clusters share a type 2 constraint for all ij that satisfy CAij =

CBij 6= 0.

4.A.3 Type 1 constraint

We now discuss type 1 constraints [Fig. 4.18], which are most difficult
to detect. To find this constraint type, we first determine the system’s
adjacency matrix, yielding

C =




label 0 1 2 3 4 5 6 7 8

0 7 1 1 0 0 0 0 0 0
1 1 7 0 1 0 0 0 0 0
2 1 0 7 1 0 0 0 0 0
3 0 1 1 7 1 0 0 0 0
4 0 0 0 1 7 1 0 0 0
5 0 0 0 0 1 7 1 1 0
6 0 0 0 0 0 1 7 0 1
7 0 0 0 0 0 1 0 7 1
8 0 0 0 0 0 0 1 1 7




. (4.6)

Subsequently, we eliminate all internal bonds of cluster A and B. Put
differently, we cut all bonds between quads that constitute cluster A and
B. This is equivalent to setting all columns of C associated with quads
in A and B to zero. The resulting reduced matrix then leaves us with
all connections to quads that neither are in A nor in B. Performing this
procedure on C reveals that only elements C34 and C54 would persist.
Since quad 4 is connected to quad 3, which is in A, and quad 5, which is
in B, these clusters must be connected through a type 1 constraint.


