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3
Excess zero modes in metamaterials with

symmetries

We study the excess zero modes that arise for randomly diluted collec-
tions of rigid quadrilaterals, linked by flexible hinges at their tips. For
full filling (no quads removed), large systems built from generic quads
are rigid. In contrast, large symmetric systems featuring regular, identical
squares possess one zero mode [1, 20], irrespective of size. Here we re-
veal the surprising finding that the number of such excess zero modes can
become larger than one in systems where quads are randomly removed,
demonstrating the existence of excess zero modes beyond a global hing-
ing mode. Specifically, we show that the average number of excess modes
for a large ensemble of randomly diluted systems, 〈∆〉, exceeds one and
displays a peak with the fraction of removed quads, ρ, which consistently
grows with the system size N. Interestingly, 〈∆〉 (ρ, N) exhibits finite size
scaling with simple mean field exponents, suggesting the number of ex-
cess modes is an intrinsic quantity, and we obtain similar results for ran-
dom bond (hinge) removal. Finally, we study the distribution of excess
zero modes near the peak and design extreme geometries whose density
of zero modes is six times larger than the peak average.

A paper based on the work presented in this chapter is in preparation for submission to
Phys. Rev. Lett. as:

L.A. Lubbers and M. van Hecke, Excess floppy modes in metamaterials with symmetries.
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66 CHAPTER 3. EZMS IN METAMATERIALS W/ SYMMETRIES

3.1 Introduction

Collections of stiff elements connected by flexible hinges form a basis
model for a wide range of systems, including engineering structures,
complex materials and mechanical metamaterials. Depending on the
multitude and geometry of links between the elements, such structures
can be either floppy or rigid. Here we introduce counting arguments,
that, by comparing the number of degrees of freedom and the number of
constraints, determine the rigidity of such systems. We start by introduc-
ing Maxwell counting, and then show that this simple approach is not
sufficient to determine the number of zero modes, due to the potential
presence of states of self-stress.

3.1.1 Maxwell counting

In 1864 Maxwell laid the foundation for determining the rigidity of frames
[51]. He geometrically described a frame as a system consisting of sites
(points) that are connected by bonds (lines). When the sites are connected
by a sufficient amount of bonds, the frame becomes rigid and no site(s)
can be displaced without stretching or compression of bonds. When the
sites are connected by too few bonds, however, the structure features zero
modes, which are zero energy deformations that do not stretch bonds. A
simple estimate of the relation between the number of sites Ns, bonds Nb
and zero modes nm in d dimensions, is given by the Maxwell count, and

Figure 3.1: Sites, bonds and zero modes. (a) A square frame built from sites
(filled circles) and bonds (black lines) has 4 zero modes (nm = 4). (b-c) Triv-
ial zero modes. Panel (b) shows global translation and panel (c) shows global
rotation. (d) Internal zero mode.
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reads
dNs − Nb = nm. (3.1)

Here, the term dNs represents the total number of degrees of freedom
of the (unconnected) sites, tantamount to d independent translational de-
grees of freedom per site. The second term equals the number of con-
straints and is simply equal to Nb. Hence, the Maxwell count can phys-
ically be interpreted as a balance between the total number of degrees
of freedom and constraints in the system, whose difference yields the
number of zero modes.

We now exemplify the Maxwell count for the two-dimensional frame
depicted in Fig. 3.1(a), which consists of Nb = 4 bonds and Ns = 4 sites.
Applying Eq. (3.1) using d = 2 we find that the frame attains nm = 2×4−
4 = 4 zero modes. Of these, three are trivial zero modes associated with
global translations and rotations [Fig. 3.1(b-c)]. The remaining zero mode
is shown in Fig. 3.1(d), and involves internal displacements of the sites.
Hence, when focusing on internal zero modes, we exclude the d(d + 1)/2
global zero modes, and rewrite the Maxwell criterium as

dNs − Nb = ni
m +

d (d + 1)
2

, (3.2)

where ni
m are the internal zero modes. A frame is called stiff when ni

m = 0.
Internal zero modes that allow for finite-amplitude displacements of the
sites are also called mechanisms, in contrast to infinitesmall zero modes
where changes in the energy are at most quartic in the displacement am-
plitude.

We now present examples that show that Maxwell counting is not
exact. To do so, we add diagonal bonds to the square frame, as shown
in Fig. 3.2. First, for a single diagonal bond [panel (a)] the frame be-
comes stiff and we anticipate ni

m = 0. Indeed, Eq. (3.2) confirms that
ni

m = 2×4− 5− 3 = 0, and Maxwell’s rule applies. For a second diag-
onal bond [panel (b)], we still anticipate ni

m = 0, but the Maxwell count
would predict ni

m = −1. This inconsistency is caused by the second di-
agonal bond, which is redundant, and not needed for the rigidity of the
square frame. Redundant bonds introduce so called states of self-stress
in the system, which are combinations of tensions and compressions on
the bonds that result in a zero net force on all sites. The combination of
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Figure 3.2: States of self-stress. (a) A square frame with a single diagonal bond
is isostatic (ni

m = nss = 0). (b) For two diagonal bonds, the square frame exhibits
a single state of self-stress (ni

m = 0,nss = 1), as indicated by the arrowheads.
(c) Frame with one state of self-stress and one internal zero mode (ni

m = 1,nss =
1).

such tensions and compressions that compose the (single) state of self-
stress for the frame in panel (b), is visualized by the black arrows. In this
state of self-stress, side bonds are placed under compression and diag-
onal bonds under tension. In order to accurately predict ni

m for frames
holding redundant bonds, or rather holding nss self-stresses, a modified
criterium that takes into account these self-stresses is necessary. This
modified criterium is known as the generalized Maxwell equation, and is
given by

dNs − Nb = ni
m +

d (d + 1)
2

− nss. (3.3)

Note that Eq. (3.3) indeed predicts ni
m = 0 for the frame in panel (b) for

nss = 1. Frames that neither attain internal zero modes nor have any
states of self-stress are called isostatic (ni

m = nss = 0). Hence, a square
frame with a single diagonal is isostatic, but a square frame with two di-
agonals is not. Finally, we illustrate the generalized Maxwell relation for
a more complicated frame, which is shown in Fig. 3.2(c). This frame can
be regarded as a combination of an over-constrained region (left square
frame) and a floppy region (right square frame), and consequently has
ni

m = 1 and nss = 1. Based on the global number of sites and bonds,
Eq. (3.3) predicts ni

m − nss = 0, which demonstrates that the generalized
Maxwell equation holds.
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3.1.2 This chapter

In this chapter, we study systems that consist of quadrilaterals (quads)
linked by flexible hinges at their tips. We will consider and compare
generic systems, consisting of irregular quads, to symmetric systems,
consisting of identical squares (regular quads). A special property of
symmetric systems —which plays a central role in this chapter— is that
these systems always feature a hinging zero mode, even for full filling (no
squares removed), and independent of the system size. This is not neces-
sarily true for generic systems, as we will demonstrate now by applying
the generalized Maxwell count to Nx×Ny lattices of quads.

To set up the counting argument we need the following two ingredi-
ents. First, a single quad has 3 degrees of freedom, namely two transla-
tional and one rotational. Second, every hinge, or bond, is equivalent to
two constraints. This is most easily understood by considering two sep-
arate quads: Their translational degrees of freedom couple when joining
any pair of tips, effectively reducing the degrees of freedom by two. Tak-
ing these considerations into account, a system of Nx×Ny squares has a
total of 3Nx Ny degrees of freedom and Nx

(
Ny − 1

)
+ Ny (Nx − 1) bonds,

equivalent to 4Nx Ny− 2
(

Nx + Ny
)

constraints. Adapting the generalized
Maxwell count as given in Eq. (3.3) to the context of quads, we obtain

ni
m − nss = −Nx Ny + 2

(
Nx + Ny

)
− 3, (3.4)

where we note that the above equation holds for generic and symmet-
ric systems. Now, if the balance ni

m − nss exceeds zero the system must
have internal zero modes. If ni

m − nss ≤ 0, the system might attain zero
modes, depending on the number of states of self-stress. Using Ny as the
control parameter, we have evaluated Eq. (3.4) for several values of Ny
and tabulated the results in Table 3.1. We now discuss the implications of

Ny ni
m − nss

1 Nx − 1
2 1
3 3− Nx

Table 3.1: Eq. (3.4) evaluated for Ny = 1,2,3.
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(a)

(b)

(c)
Ny

Nx
i ii

Figure 3.3: Rigidity of strips, 3×3 clusters and looped-strips. (a-c) In each
panel, we compare symmetric (left) and generic (right) systems. The coloured
arrows indicate a global hinging mode, in which quads collectively counter ro-
tate. (a) Strips always attain a global hinging mode, both in the generic and
symmetric case (ns = ng = 1). (b-c) In contrast, 3×3 clusters (b) or looped-
strips (c) only attain a global hinging zero mode when the system is symmetric
(ns = 1,ng = 0). Note that one recovers an ordinary strip (ns = ng = 1) by the
removal of quads i and ii (illustrated by their lower opacity).

this table for the rigidity of the three basic geometries shown in Fig. 3.3,
which will be encountered frequently throughout this chapter.

In the remainder of this thesis, we make a clear distinction between ni
m

for symmetric and generic systems. We will denote ni
m associated with

symmetric systems as ns, and ni
m associated with generic systems as

ng.

Strips [Fig. 3.3(a)]. — From Table 3.1 we infer that 1×Nx and 2×Nx
strips are always floppy, as the balance ni

m − nss is positive. Moreover,
since these strips have no states of self-stress, the number of zero modes
for generic and symmetric strips are equal. For Ny = 1, the number of zero
modes increases with Nx as ns = ng = Nx − 1. Interestingly, for Ny = 2,
strips exhibit a single zero mode (ns = ng = 1), independently of Nx. This
internal zero mode is characterized by the hinging motion of quads, as
depicted by the coloured arrows in Fig. 3.3(a). This hinging mode will be
described in more detail in section 3.2.2.

Clusters of size 3×3 or larger [Fig. 3.3(b)]. — For Ny = 3 and Nx ≥ 3,
the balance ni

m − nss becomes less than or equal to 0. The system then
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only can attain zero modes if a sufficient number of states of self-stress
are present. Let us first inspect Nx = 3. Here, ni

m − nss = 0, and for
generic clusters both ng and nss are zero — the system is isostatic. In
contrast, for symmetric clusters, there is always one hinging mode, and
ns equals one, implying that the system also has a state of self-stress. For
generic clusters, with Nx > 3 and Ny = 3, we have ng = 0, nss = Nx− 3; for
symmetric clusters of the same size, ns = 1, nss = Nx − 2. More generally,
the outcome ns = 1 and ng = 0 persists irrespective of the cluster size,
provided Nx, Ny ≥ 3. This suggests that symmetric clusters attain extra
states of self-stress in comparison to generic clusters in order to maintain
the balance ni

m − nss for a given system.

Looped strips [Fig. 3.3(c)]. — As a third geometry, we consider looped-
strips. Their rigidity is most easily understood by regarding it as a strip
whose head and tail are connected by two extra bonds. Let us first con-
sider the case before quadrilaterals i and ii are present; then, ns = ng = 1
and nss = 0.

When we add quad i in the symmetric case, we add 3 degrees of
freedom, as well as 4 constraints; since ns remains 1, this implies we
create one state of self-stress. Adding quad ii then adds 3 degrees of
freedom and 6 constraints; ns remains one, and nss becomes 4. In the
generic case, the solution is different. Consider the two corners of the
quads that would connect to quad i. In the generic case, their motions
are not correlated, and their distance will be variable. Hence, connecting
these corners with quad i, the system becomes rigid — ng = 0 and the
counting then specifies that nss = 0 as well. Adding quad ii then yields
ng = 0 and nss = 3.

The 3×3 (or larger) clusters and the looped-strips discussed above
illustrate a general observation. For the generic case, strip-like configu-
rations have ng = 1 and nss = 0; think of the looped-strip without quads
i and ii, but also of a 3×3 cluster with one corner removed. Once there
is a loop, generic systems become rigid (ng = 0), but symmetric systems
maintain their hinging mode (ns = 1), implying that these always fea-
ture additional states of self-stress. Moreover, loops and sufficiently large
clusters thus induce differences between ns of symmetric systems and ng
of generic systems.
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3.2 System and methods

In this section we set up the mathematical description for (diluted) col-
lections of rigid quads that are connected by flexible hinges, and review
the basic ingredients of zero mode counting. In section 3.2.1 we present
the mathematical framework which covers both symmetric systems fea-
turing regular, identical squares, and generic systems featuring irregular
quads. Furthermore, we discuss the procedure to construct stress-free
generic systems by the application of small geometric perturbations to
symmetric systems. In section 3.2.2 we distinguish two types of zero
modes; mechanisms and quartic modes. Section 3.2.3 briefly reviews the
standard technique used to count the number of zero modes of symmet-
ric and generic systems. Finally, section 3.2.4 discusses how we choose
the magnitude of the perturbations to properly count excess zero modes
from numerical simulations.

Figure 3.4: System definitions. (a) Generic and (b) symmetric systems of size
Nx×Ny. The opening angle between adjacent squares in symmetric systems is
denoted φ0. (c-d) Connectivity and quad description; these are shown for a sym-
metric system, but equally apply to generic systems. (c) Hinges are modelled by
linear springs of zero rest length which connect the corners of adjacent quads.
Upon relaxation of the springs, the quads’ corners coincide. (d) The coordinate
system used to describe the shape, position and orientation of individual quads
(see main text).
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3.2.1 Mathematical description

To study collections of rigid quads connected by flexible hinges, we model
these systems as Nx×Ny lattices of rigid quads connected by springs of
unit stiffness and zero rest length [Fig. 3.4]. Unless noted otherwise, we
use open boundary conditions, motivated by the goal to obtain designs
for finite-sized metamaterials. For full filling, our systems contain a to-
tal of Nt = Nx Ny quads and Nb = 2Nx Ny − (Nx + Ny) springs (bonds),
where the non-extensive correction term Nx + Ny stems from the missing
bonds of the quads located at the boundaries. For very large systems, the
number of bonds approaches 2Nx Ny

[
1− (Nx + Ny)/(2Nx Ny)

]
≈ 2Nx Ny,

indicating that each quad is connected to 4 neighbouring quads. Note
that the terms hinges, springs and bonds are used synonymously in this
thesis — these terms should all be interpreted similarly.

Quad description and state vector. — To mathematically describe our
systems, we assign each of the Nx Ny quads a label, n, along with a centre
location rn = (xn,yn), a rotation angle ϕn, and the centre-to-corner vectors
en,i (i = 0,1,2,3,4) [see Fig. 3.4(d)]. Note that en,i therefore specifies the
shape of each quad.

Quads are modelled as rigid objects, implying that their shape re-
mains fixed when the system is deformed. In contrast, rn and φn might
change for a given deformation. Having prescribed the shape of the
quads, we can therefore fully characterize our systems by the state vector

X = (x1,y1, ϕ1, x2,y2, ϕ2, ....xN ,yN , ϕN)
T , (3.5)

which is a 3N×1 vector providing the centre location and rotation angle
of each quad.

To build symmetric systems, we use squares of side length 1, which
are described by perpendicular centre-to-corner vectors (en,i ⊥ en,i+1) of
magnitude

√
2/2. The centres of the squares are then stacked on a square-

like, two-dimensional grid, such that the corners of adjacent squares co-
incide, as in Fig. 3.4(b). Note that the grid spacing controls the opening
angle φ0 between adjacent squares, which is related to the rotation angle
of a single square as ϕn =±φ0/2. Here, the sign of ϕn depends on the al-
ternating counter or clockwise rotation of quad n. The procedure to build
generic systems is different. In these disordered systems, the shape and
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(a) (b)

Figure 3.5: Procedure to construct stress-free, generic systems. (a) Starting from
a symmetric system, we randomly displace connected corners by a random vec-
tor ∆en,i, as visualized by the red arrows. Here we have used ε = 0.3 and to
enhance visualization the magnitude of the resulting vectors is shown at 200%.
(b) The resulting generic system (red), superimposed on the symmetric system.

orientation of quads is arbitrary and the corners of adjacent quads gen-
erally do not coincide. In the paragraph hereafter we will motivate and
discuss the procedure to construct arbitrary generic systems for which
the corners of adjacent quads exactly coincide [e.g. as in Fig. 3.4(d)].

Generic, stress-free systems. — We now discuss the procedure to con-
struct stress-free generic systems. In such systems, the corners of adjacent
quads coincide and the springs are not pre-stressed. The design of such
systems is motivated by the significant simplification of the mode count-
ing analysis described in section 3.2.3. Stress-free systems allow for the
random removal of quads while retaining equilibrium, but if pre-stresses
would be present, quad removal could initiate the relaxation to a lower
energy state. This would require the calculation of intermediate equi-
librium configurations with the aid of computationally time-consuming
conjugate gradient techniques — stress-free systems circumvent the need
for such techniques. Note that, as mentioned already, symmetric systems
are automatically stress-free due to the non-generic nature of the squares.

To construct the stress-free, generic systems we systematically perturb
symmetric systems by randomly displacing connected corners, as is illus-
trated in Fig. 3.5. This procedure stretches no springs and thus ensures
no pre-stresses develop when changing the squares to irregular quads.
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0 π/5 π/2 4π/5 φ0

0

0.3

ε

Figure 3.6: Stress-free, generic systems obtained by perturbing symmetric sys-
tems with magnitude ε, for a range of symmetric opening angles. Note that the
top systems do not feature zero modes.

To quantify the magnitude and direction of the random displacements,
we use the random vectors ∆en,i =

(
εx,εy

)T ‖en,i‖ (red arrows in Fig. 3.5).
The centre-to-corner vectors of the perturbed generic quads then readily
follow from the vectorial sum e′n,i = en,i + ∆en,i, where we note that en,i
is associated with the initial symmetric system. Furthermore, εx and εy
represent random numbers sampled from a uniform probability distribu-
tion that lie within the interval [−ε,ε]. In the following section we will
demonstrate that ε = 0.1 is a suitable choice to detect excess zero modes
(the modes that only occur in symmetric systems). Finally, Fig. 3.6 shows
some more examples of generic systems, obtained by perturbing sym-
metric systems of different opening angles. In the remainder of this work
we utilize the technique as described here to construct stress-free, generic
systems.

The energy of the system, E. — The systems introduced in Fig. 3.4
contain Nb springs of unit stiffness and rest length zero. This yields the
following expression for the total energy of a system

E (X) =
1
2

Nb

∑
s=1

`s (X)
2 , (3.6)
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with `s the length of spring s. As mentioned before, for fully filled
systems (no quads removed), Nb = 2Nx Ny − (Nx + Ny), but this num-
ber will be lower in diluted systems. More importantly, it should be
noted that the springs lengths are a function of the state vector X; for the
undeformed symmetric and (stress-free) generic systems no springs are
stretched, hence E(X) = 0. When applying a deformation X changes and
E might change as well. For deformations associated with a zero mode,
E(X) remains unchanged up to quadratic order. In contrast, applying de-
formations that are not associated with zero modes lead to a quadratic
increase of E(X). The actual `s that correspond to a given X are calculated
numerically by subtracting the corner positions of adjacent quads, which
are easily calculated by combining en,i with X. In section 3.2.3 we will use
E(X) to construct the Hessian matrix, which forms the basis of counting
zero modes.

3.2.2 Finite amplitude and quartic modes

The zero modes we encounter in this work can be subdivided in two
types of zero modes: Finite amplitude mechanisms and quartic modes.
A mechanism is a ’finite’ zero mode in which finite-amplitude displace-
ments of quadrilaterals stretch no springs. A quartic mode is an infinites-
imal zero mode in which spring lengths do not change to first order in
the magnitude of quadrilateral displacements, ∆X, but do so to second
order. In the latter case, the energy changes with the quadrilateral dis-
placements as ∆X4, hence the name quartic mode. Below we provide
examples of a mechanism and quartic mode.

Global hinging. — The mechanism we focus on in this paragraph –
global hinging– occurs for arbitrary large symmetric systems with open
boundary conditions. For symmetric systems, the centre coordinates of
the squares compose a square lattice, thereby allowing for a collective
counter rotating motion of the squares without stretching bonds. This
collective motion is illustrated in Fig. 3.7(a), using φ0 ∈ [0,π] as the control
parameter. From these snapshots we observe a non-monotonic unfolding
of the tiling for increasing φ0: Starting from a nearly closed system (φ0 =
π/20), the system unfolds to maximum opening (φ0 = π/2), and then
shrinks again towards the nearly closed system (φ0 = 19π/20). Since this
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Figure 3.7: Global hinging mode in a symmetric 3×3 system. In this mode the
opening angle φ0 can be varied over a finite amplitude without stretching the
bonds. (a) Subsequent snapshots of the tiling when varying φ0 from π/20 to
19π/20. Note that the hinging behaviour for φ0 < π/2 and φ0 > π/2 is related
by symmetry. (b) The numerically obtained energy as function of the opening
angle φ0.

collective motion of squares relies on hinging and involves a global shape
change, we refer to this mode as global hinging.

To confirm that no springs are stretched during the global hinging,
we have plotted the energy as function of φ0 in Fig. 3.7(b). The energy
remains zero (within numerical precision) over the complete range of φ0,
and thus reflects that global hinging of symmetric systems is a mecha-
nism.

Finally, we anticipate that the global hinging mode ceases to exist for
generic systems, as the underlying square lattice becomes distorted for
finite ε. This will be confirmed in section 3.2.4, in which we reveal the
energy increase of the global hinging mode with ε.

Quartic and finite energy modes. — In Fig. 3.8(a) we display an ex-
ample of spurious quartic modes that occur in symmetric systems with
opening angle φ0 = π/2. Due to the symmetry that arises at this open-
ing angle, the two centre squares can undergo a counter rotating motion
while the vertical distance yq is preserved to leading order in the side-
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(a)

yq

dq
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Figure 3.8: Quartic modes in symmetric systems. (a) For φ0 = π/2 the two centre
squares can deflect to the right (coloured red), or equally to the left (not shown),
while yq is preserved to leading order in the sidewards deflection dq. (b) The
energy change of this mode as function dq shows clear powerlaw behaviour with
exponent 4 for φ0 = π/2 (solid line), and exponent 2 for φ0 = π/3 (dashed line).

wards deflection dq. The energy change associated with dq is plotted in
Fig. 3.8(b) (solid line) and shows clear powerlaw behaviour with exponent
4, confirming the zero mode is quartic in nature.

To suppress the spurious quartic modes, we set φ0 = π/3 in the re-
mainder of this work. This (arbitrary) choice destroys the symmetry that
arises in symmetric systems for φ0 = π/2 and kills the quartic modes
related to this symmetry. This is verified by plotting the energy change
associated with dq for φ0 = π/3 in Fig. 3.8(b) (dashed line), which now
shows powerlaw behaviour with exponent 2 rather than exponent 4. The
exponent 2 demonstrates that the springs lengths are changing to first or-
der in the magnitude of the quadrilateral displacements (here expressed
as dq) and this exponent is common for finite energy modes. Even though
we kill quartic modes related to the opening angle φ0 by setting φ0 = π/3,
quartic modes originating from more complex symmetries, although rare,
can still appear in diluted symmetric systems (see chapter 4 for exam-
ples). The appearance of these quartic modes is inevitable and in the
remainder of this thesis we do not distinguish between mechanisms and
quartic modes, unless explicitly noted otherwise.
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3.2.3 Mode counting

We now discuss the technique to detect the number of zero modes and
their spatial structure. For a given tiling in some reference state X [Eq.
(3.5)], deformations associated with zero modes, ∆X, leave the energy E
unchanged up to quadratic order in ∆X. To find all ∆X that satisfy this
criterium, the approach is to analytically expand the energy around state
X, which yields a matrix equation that can be numerically diagonalized.

Starting with the expansion of the energy in Eq. (3.6) about X up to
quadratic order, we obtain

E (X + ∆X) = E (X) + ∆XT∇E (X) +
1
2

∆XTH (X)∆X, (3.7)

with ∇E (X) the gradient and H(X) the Hessian matrix of the energy
evaluated at X. The gradient ∇E = ∂E/∂X is a 3Nx Ny×1 vector that
contains all first derivatives of the energy with respect to the quadrilateral
positions and orientations,

∇E =

[
∂E
∂x1

,
∂E
∂y1

,
∂E
∂ϕ1

, . . . ,
∂E

∂ϕNt

]T

. (3.8)

The Hessian is a 3Nx Ny×3Nx Ny matrix that contains the second deriva-
tives of the energy with respect to the entries of X, which yields

H =




∂2E
∂x2

1

∂2E
∂x1∂y1

∂2E
∂x1∂ϕ1

. . .
∂2E

∂x1∂ϕNt

∂2E
∂y1x1

∂2E
∂2y1

∂2E
∂y1∂ϕ1

. . .
∂2E

∂y1∂ϕNt

∂2E
∂ϕ1∂x1

∂2E
∂ϕ1∂y1

∂2E
∂2ϕ1

. . .
∂2E

∂ϕ1∂ϕNt

...
...

...
. . .

...

∂2E
∂xNt ∂x1

∂2E
∂xNt ∂y1

∂2E
∂xNt ∂ϕ1

. . .
∂2E

∂xNt ∂ϕNt




. (3.9)
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The entries of the gradient and Hessian matrix are complicated functions
of the quadrilateral corner coordinates (xn,i,yn,i) and the rotation angle
ϕn, but can be fully determined analytically. For a detailed analytical
derivation of the gradient and Hessian matrix for the systems considered
in this work, we refer to appendices 3.A and 3.B.

The expansion of the energy in Eq. (3.7) can be simplified as follows.
First, we focus on systems in the absence of external forces for which X is
an equilibrium configuration satisfying ∇E(X) = 0. As such, the second
term on the right hand side of Eq. (3.7) drops out. Second, due to the
procedure described in section 3.2.1 systems are free of internal stresses,
hence E(X) = 0 and the first term on the right hand side drops out as well.
Note that this stress-free condition also ensures the gradient ∇E(X) re-
mains zero when quadrilaterals are removed. Taking both simplifications
into account, the expansion [Eq. (3.7)] turns into

E (X + ∆X) =
1
2

∆XTH (X)∆X. (3.10)

Then, to find all non-trivial ∆X for which the right hand side of Eq. (3.10)
is zero, we consider the eigenvectors and associated eigenvalues of the
matrix H. Any of such eigenvectors ∆Xλλλ has the special property to
preserve direction when multiplied by H, but to be multiplied by a scalar
λ, the associated eigenvalue [123]. More formally, H (X)∆Xλλλ = λ∆Xλλλ,
and substitution in Eq. (3.10) yields

E (X + ∆Xλλλ) =
1
2

λ‖∆Xλλλ‖2, (3.11)

which demonstrates that for λ = 0 the energy is unaltered under a de-
formation ∆Xλλλ. Hence, eigenvectors with associated eigenvalue λ = 0 are
zero modes. While the Hessian can be determined analytically, the 3Nx Ny
eigenvalues and eigenvectors need to be determined numerically. In our
numerics (double precision) a zero mode typically has λ = O(10−16),
which is sufficient to distinguish zero modes from finite-energy modes.
We will elaborate in more detail on this aspect in the following section.

3.2.4 Magnitude of ε and numerical zero modes

For systems consisting of perfect squares, there is a global hinging zero
mode (section 3.2.2) — in generic systems consisting of perturbed quadri-
laterals, this mode attains a finite energy, and should not be counted as
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a zero mode. Once we dilute these systems, new zero modes can arise.
In this section we describe how we numerically distinguish zero modes
from finite energy modes. In particular we motivate our choice for the
magnitude of the perturbations in generic systems and the criterium we
use to distinguish zero from non-zero eigenvalues. We show that pertur-
bations with magnitude ε = 0.1 and a cut-off criterium for the eigenval-
ues λc = 10−10 suffice to unambiguously detect the zero modes of both
generic and symmetric systems. In the remainder of this section we use
Nx = Ny = 10 to exemplify our choices.

We now first elaborate on our choice for the magnitude of ε. To this
end, we determine the eigenvalues of fully-filled, generic systems when
varying ε over 8 orders of magnitude. We present results using a single
simulation per value of ε, because we found (from comparison of multiple
simulations per ε) that their outcome exhibits only very minor scatter (not
shown here). Using single simulations for each ε, we have visualized the
eigenvalues as function of ε in Fig. 3.9(a). From this plot we observe that
for each value of ε, there exists a cluster of eigenvalues with λ of order
1, there are 3 eigenvalues of order 10−15, and in between there is a single
eigenvalue, λh, whose value exhibits power law behaviour: λh ∼ ε2. The
scaling exponent 2 is very robust and does not depend on the particular
value φ0 = π/3 chosen here, but holds for any opening angle within the
accessible range.

In terms of eigenmodes, the clusters of eigenvalues at the top are asso-
ciated with finite energy eigenmodes, while the eigenvalues at the bottom
are associated with the three trivial, global eigenmodes of the systems:
x-translation, y-translation and rotation. The eigenvalue λh arises from
the global hinging mode and becomes increasingly smaller as the per-
turbations decrease. Note that this is what one would expect, since the
centre locations of the quadrilaterals converge towards a perfect square
lattice for decreasing ε. Therefore, the global hinging motion becomes
increasingly ’softer’ and eventually λh becomes of the same order as the
eigenvalues associated with the three trivial eigenmodes. Furthermore,
the scaling between λh and ε with exponent 2 can quantitatively be un-
derstood by noticing that quadrilateral rotations in generic systems, that
arise due to global hinging, involve changes in spring length of order ε.
Hence, the corresponding change in energy scales as ε2, implying that
λh ∼ ε2 by Eq. (3.11).
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Figure 3.9: Eigenvalues of the Hessian for Nx = Ny = 10 and φ0 = π/3. (a) For
a fully-filled, generic system, we plot the eigenvalues for varying ε. Each color
shows the distribution of the 3Nx Ny eigenvalues that belong to a given ε. (b-
c) Eigenvalues for diluted systems as function of the cutting fraction ρ. Here,
each colour is associated with the eigenvalues that belong to a given ρ. We
consider eigenvalues smaller than λc < 10−10 as zero modes, indicated by the
shaded regions. In (b) we show results for generic systems (ε = 0.1) and in (c)
for symmetric systems (ε = 0).

The trivial eigenmodes —global translations or rotation— involve no
energy penalty, allowing us to infer from Fig. 3.9(a) that our numerical
precision for a zero mode is of order 10−15. Hence, to ensure that the hing-
ing mode attains a finite energy in generic systems, and is not counted as
a zero mode, we pick ε such that λh in generic systems remains orders of
magnitude separated from the order 10−15. Therefore, we set ε = 0.1 in
the remainder of this work. The resulting clear separation in eigenvalues
of zero modes versus finite-energy modes occurring for ε = 0.1 allows us
to define a critical eigenvalue λc in order to count the number of zero
modes. Using λc as a cut-off criterium, we count eigenvalues below λc as
zero modes, but eigenvalues above λc as finite energy modes. Fig. 3.9(a)
illustrates that λc = 10−10 is suitable for systems of full filling.

We conclude this section by showing that this cut-off approach re-
mains valid for diluted systems. To study the distribution of eigenvalues
in diluted systems, we randomly remove Nr = ρN quadrilaterals and de-
termine the eigenvalues of the remaining system. We use a single sim-
ulation per value of ρ, because we found that, similar to the eigenvalue
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study for varying ε, eigenvalues exhibit only minor scatter for random
dilution (not shown here). In Fig. 3.9(b-c) we have plotted the eigenval-
ues as function of the cutting fraction ρ using a single simulation per
value of ρ, both for generic (panel b) and non-generic systems (panel c).
This demonstrates that for increasing ρ new zero modes start to appear,
and more importantly, that the clear separation in eigenvalues of zero and
finite-energy modes persists over the range of ρ. Hence, λc = 10−10 is also
a valid cut-off criterium for diluted systems. In summary, we have moti-
vated the choices ε = 0.1 and λc = 10−10 to distinguish true zero modes
from finite energy modes, and in the remainder of this work we will use
these values.

3.3 Random quad removal

In this section we determine the number of zero modes in generic (ng)
and symmetric (ns) systems for random quad removal. In section 3.3.1
we present the phenomenology of random quad removal, demonstrate
that ns can exceed ng, and present the spatial structure of such excess
zero modes. In section 3.3.2 we fully characterize the number of excess
zero modes as function of system size and the fraction of removed quads,
and show that the mean number of excess zero modes exhibits finite size
scaling with mean field exponents.

In what follows we consider systems of square periphery and initial
full-filling, that is Nx = Ny = N with a total number of N2 quads. Fur-
thermore, we use the parameter values φ0 = π/3, ε = 0.1 and λc = 10−10,
as motivated in section 3.2.

3.3.1 Phenomenology

This section presents the phenomenology of random quad removal. To
dilute symmetric and generic systems, we randomly remove Nr = ρN2

quads, where ρ denotes the fraction of removed quads.
Starting with fully filled systems of size N = 10, we track the num-

ber of zero modes in generic (ng) and symmetric (ns) systems for the
subsequent removal of quads, when using the same ensemble of dilution
patterns for both. In Fig. 3.10(a-b) we show the outcome of ns and ng, and
their ensembles averages 〈ns〉 and 〈ng〉, as function of the cutting fraction
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Figure 3.10: Random quad removal in 10×10 systems. (a-b) The number of
zero modes in symmetric (ns) and generic (ng) systems as function of the cut-
ting fraction ρ. Each panel displays the outcome of 103 independent cutting
sequences (curves of low brightness) along with the ensemble averages 〈ns〉 and
〈ng〉 (red curves of high brightness). (c) Subtracting 〈ng〉 from 〈ns〉 yields the
average number of excess zero modes, 〈∆〉.

ρ, for 103 independent cutting sequences. As can be observed, ns and
ng generally increase with ρ, but might incidentally decrease [see lower
curves in Fig. 3.10(a-b)] when a quad associated with a given zero mode
is removed — a simple example being a quad that is only connected at
one corner. The growth of the ensemble averages 〈ns〉 and 〈ng〉 [solid red
curves in Fig. 3.10(a-b)] appear nearly identical, and to reveal differences
between symmetric and generic systems we introduce

〈∆〉 = 〈ns − ng〉. (3.12)

This quantity corresponds to the number of extra zero modes that exist
in symmetric, but not in generic systems, due to the non-generic nature
of the squares. Therefore, we refer to ∆ as the number of excess zero
modes. Interestingly, 〈∆〉 (ρ) [Fig. 3.10(c)], reveals subtle but important
differences between symmetric and generic systems. Whereas 〈∆〉= 1 for
nearly fully filled systems (ρ≈ 0), due to the global hinging mode that is
present in symmetric but absent in generic systems, 〈∆〉 = 0 for strongly
diluted systems (ρ→ 1). The latter limit will be clarified in chapter 4,
where we show this to be due to an absence of sufficiently large clusters
of connected quads. Surprisingly, for intermediate cutting fractions, 〈∆〉
exhibits a peak and exceeds 1, showing that there exist dilution patterns
for which ns − ng ≥ 2.
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∆ = 3

1 2 3

Figure 3.11: Spatial structure of excess zero modes. The randomly diluted 10×10
system (ρ = 0.16) shown at the top row has ns = 3 and ng = 0. The bottom row
visualizes the spatial motions of the excess zero modes by superimposing the
deformed geometry in red. To exclude additional displacements from global
translations and/or rotations to these excess modes, the (x,y) position of the
upper left square and the y position of the square directly next to it are held
fixed (as might be noticed from mode 1).

We now illustrate the spatial structure of some excess zero modes. The
particular cutting pattern shown in Fig. 3.11 features three excess zero
modes, each of which has been visualized by extracting the associated
displacement vector (∆X) from the eigenmode analysis. Mode (1) can
be recognized as the global hinging mode, whereas (2) and (3) are more
complex and rely on the (oblique) sub-hinging of the individual clusters
coloured in red. The observed sub-hinging of clusters plays, as we will
show, a central role for excess zero modes.
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Figure 3.12: Statistics of the excess zero modes. For increasing system size N we
have determined the multitude of excess zero modes as function of the cutting
fraction. The maximum of each curve is marked by a filled circle.

3.3.2 The multitude of excess zero modes

We now reveal the multitude of excess zero modes 〈∆〉 as function of sys-
tem size and cutting fraction. In Fig. 3.12 we show 〈∆ (ρ, N)〉 for system
sizes N = 10,20,30, . . . ,90,100, where we indicate the maximum of each
curve by a filled circle. The number of runs needed to obtain reason-
ably well statistically converged curves decreases with N. To quantify
the statistical convergence, we use the relative variance of ∆ at the max-
imum as a criterium and demand σ < 0.01%. The number of runs that
follows from this criterium is subsequently also used for other values of
ρ (at fixed N). In particular, using σ2 < 0.01%, we have found that an
ensemble of typically 1100 simulations is required for N = 20, while an
ensemble of only 100 simulations is sufficient for N = 100. The lower
number of runs required for larger system sizes presumably is a result
of spatial self-averaging, in which large systems can be regarded as a
collection of smaller subsystems that are sufficiently uncorrelated.

Upon close inspection of the maxima in Fig. 3.12, we can make two
observations. First, the location of the maximum, ρmax, increases with the
system size and eventually converges to ρ ≈ 0.3. Second, the value of the
maximum, 〈∆〉max, grows with the system size, and becomes as large as
〈∆〉max ≈ 100 for the largest system size considered. To characterize the
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Figure 3.13: Peak behaviour of 〈∆〉 (ρ). For the data shown in Fig. 3.12, we have
determined the value and location of the peak with system size. (a) The value
of peak grows linearly with N2 for large N (log scale, slope 1), implying that
〈∆〉max ∼ N2. Inset (linear scale): For small N, the scaling 〈∆〉max ∼ N2 exhibits
finite size corrections proportional to 1/N2. (b) The peak location tends to a
constant as 1/N. Inset: Unit cell to understand the value of ρ∞ (see main text).

behaviour of the maximum in detail, we measured ρmax and 〈∆〉max for
each system size, where we refined our 〈∆〉(ρ) data by a quadratic fit in
the vicinity of the maximum. In Fig. 3.13 we show the obtained results
for the value and position of the peak, from which we infer that

〈∆〉max ≈ 〈∆〉? := β
(
1 + α/N2)N2, (3.13a)

and

ρmax ≈ ρ? := ρ∞ − γ/N, (3.13b)

where α ≈ 51, β ≈ 0.01 and γ ≈ 0.99 denote proportionality constants,
and ρ∞ ≈ 0.31± 0.01 the peak location in the N→ ∞ limit. We have de-
termined the values of these constants by fitting Eqs. (3.13) to our data.
The terms proportional to α and γ should be interpreted as finite size cor-
rections to the large N asymptotics captured by 〈∆〉? = βN2 and ρ? = ρ∞;
the values of α and γ describe the convergence towards these large N
asymptotics. Note that the asymptotic scaling 〈∆〉? = βN2 implies that
the mean number of excess zero modes in the peak regime is an intrin-
sic quantity, indicating roughly one extra excess zero mode for each 100
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Figure 3.14: Scaling collapses for the 〈∆〉 (ρ) curves in Fig. 3.12. (a) Col-
lapses obtained by rescaling the axes with ρ? and ∆? (see main text), using
α = 0.55, β = 0.01, ρ∞ = 0.31 and γ =−0.97. (b) The asymptotic evolution of the
curves 〈∆〉(ρ)/N2 for large N illustrate that, in leading order, 〈∆〉 scales as N2

and ρ tends to a constant.

quads. The fact that there is a peak, its location, and the correspond-
ing spatial structures can be understood by considering periodic samples
with many small clusters. First, the smallest clusters that yield excess
zero modes are of size 3×3. We now assume that the maximum num-
ber of excess zero modes is obtained by filling the system of given size
N with a large number of 3×3 clusters, connected in such a way that
all (symmetric) clusters retain their internal hinging mode. The simplest
and most intuitive topology that satisfies these conditions consists of 3×3
clusters separated by one column and row each, with a few quads placed
on the otherwise empty rows and columns to (weakly) connect adjacent
clusters. To make sure the generic system remains rigid, with the sym-
metric system having many hinging modes, we suggest to connect each
cluster pair by two quads. The resulting unit cell of this dilution geome-
try [see inset of Fig. 3.13(b)] has a cutting fraction ρ = 5/16 ≈ 0.31. This
value shows a surprisingly good agreement with the peak location for
random dilution in the N→∞ limit.

Finally, the relations for peak value and location in Eqs. (3.13) suggest
that the mean number of excess zero modes exhibits finite size scaling, as
〈∆〉/〈∆〉? = f (ρ/ρ?). To demonstrate this, we rescale our 〈∆〉(ρ, N) data
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according to Eqs. (3.13), and plot the result in Fig. 3.14(a). We observe
that the peak positions and values collapse, as expected, but we moreover
observe that the tails of 〈∆〉/〈∆〉? also display a scaling collapse as N→
∞, demonstrating that the mean number of excess zero modes exhibits
finite sizing scaling. For completeness, Fig. 3.14(b) shows the leading
order scaling collapse, 〈∆〉/N2, confirming that 〈∆〉 scales as N2 and ρ
goes to a constant for large N.

3.3.3 Distribution of excess zero modes in the peak regime

Having presented the ensemble averages 〈∆〉 (ρ, N), we now focus on
the ensemble distribution of excess zero modes in the peak regime of
〈∆〉 (ρ, N). To visualize these distributions with system size, we have de-
termined the cumulative distribution functions (CDFs) for the ensembles
of cutting sequences that correspond to ρ = ρ? (Fig. 3.15).

The CDFs in Fig. 3.15(a) display the probability P to encounter a given
∆ which is less than or equal to k times the mean 〈∆〉?. This reveals
that the excess modes in the peak regime are symmetrically distributed
around their mean for system sizes

√
N & 30. In contrast, these appear

asymmetrically distributed for smaller N due to the low number of pos-
sible excess zero modes in small systems. We furthermore observe that
deviations from the mean decrease with system size; the probability to
randomly encounter cutting patterns that strongly deviate from the mean
is much higher in small systems as compared to large systems, due to
the rapid increase of the number of possible cutting patterns with N. In
Fig. 3.15(b) we have re-plotted the data in panel (a) as function of (k− 1)N
and observe a scaling collapse for large N. According to the central limit
theorem [124], the collapse demonstrates that the distribution of excess
zero modes in the peak regime appears Gaussian, with standard devia-
tion σ ∼ 1/N. Note that this standard deviation implies that the number
of independent measures on ∆ scales with N2, confirming our earlier hy-
pothesis that large systems are self-averaging and may be regarded as to
consist of sufficiently uncorrelated subsystems.

The findings presented here naturally raise the question how to ob-
tain extreme designs that have significantly more excess zero modes than
typical, and in section 3.4 we will develop a procedure that allows us to
design geometries featuring ∆/〈∆〉? ≈ 6, even for system sizes as large as
N = 100.
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Figure 3.15: CDFs for ∆(ρ, N) in the peak regime (ρ = ρmax), for the data shown
in Fig. 3.12. (a) The excess zero modes are symmetrically distributed around the
mean 〈∆〉? (k = 1) for sufficiently large system sizes. (b) Re-plotting the data
shown in panel (a) as function of (k− 1)N results in a collapse of the curves.

3.4 Extreme systems

In this section we design systems with a large number of excess zero
modes, where ∆ is significantly larger than the average maximum for
random cutting, 〈∆〉?. To design such systems one could follow two dis-
tinct routes. The first one consists of the brute force calculation of all
possible configurations given a system size. This method is not feasi-
ble, however, as the design space is enormous: The maximum number
of configurations grows exponentially with the system size and already
becomes 2N2

= 2100 for 10×10 systems. This number can be reduced to
(100

21 ) ≈ 1021 by taking into account configurations at the maximum cut-
ting fraction ρ? = 0.21 only, but the number remains enormous. Based on
benchmarks of our Python based code (∼ 200 iterations/s for a 10×10
system) it would take up to 1011 years to examine all configurations. Al-
ternatively (the second route), one can determine the maximum ∆ for a
smaller, feasible system size and utilize it as an unit cell to tile the larger
system — which is the approach we will use in this section.

To minimize finite size effects on the tiled system we apply periodic
boundary conditions on the unit cell and consider a unit cell whose size
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Figure 3.16: Random dilution of a 6× 6 unit cell with periodic boundaries.
(a) Fully filled unit cell where a fixed box size d ensures periodicity. (b) Average
number of excess zero modes as function of the number of randomly removed
quads for 106 realizations. The curve displays a maximum at Nr = N?

r = 10 as
indicated by the grey line.

is as large as possible, while being computationally feasible. Based on
these criteria we use a unit cell of size 6×6 (Nu = 6) confined within a
box of size d, as depicted in Fig. 3.16(a). Here the box size d naturally
arises for periodic boundary conditions as connecting the left/right and
lower/upper boundaries of the unit cell leads to a fixed opening angle
φ0 with corresponding box size d = Nu [cos(φ0) + sin(φ0)]. An important
consequence of periodic boundary conditions with fixed d is that sym-
metric systems lose their global hinging mode, in contrast to systems
with open boundaries which always have ns = 1 for full filling. In or-
der to hinge, symmetric systems need to be able to contract/expand [see
Fig. 3.7(a)], which is not possible at fixed d. Indeed, Fig. 3.16(b) demon-
strates that the number of excess zero modes starts growing from 〈∆〉= 0,
rather than 〈∆〉= 1, as in Fig. 3.10(c). Furthermore, Fig. 3.16(b) shows that
〈∆〉 is maximum when the number of removed quads is Nr = 10. Denot-
ing this maximum by N?

r , our goal is to determine ∆ for all possible unit
cell geometries at Nr = N?

r .
The number of possible unit cell geometries at Nr = N?

r can be reduced
by the consistent removal of the upper left quad (or any other quad) in
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Figure 3.17: Discrete joint probability distribution as a function of ns and ng.
The data comprises all possible geometries in a 6×6 periodic unit cell when 10
quads are removed. The black lines have constant ∆ and its value is indicated by
the arrows. Inset graph: Discrete probability distribution of ∆ for the same data.
Inset dilution geometry: An unit cell featuring ∆ = 3, for periodic boundaries.

each geometry we consider. Without loss of generality, this breaks the
symmetry that comes with periodic boundaries. This leaves us with a
total of (

N2
u − 1

N?
r − 1

)
=

(
35
9

)
≈ 7.1×107 (3.14)

geometries to consider, which takes approximately 4 days for our Python
based code. For each geometry we have tracked ns and ng and their
outcome is graphically displayed by a joint probability distribution in
Fig. 3.17. For discrete variables this is also known as a joint probability
mass function. In Fig. 3.17 black lines of slope unity represent contours
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of constant ∆, with the main diagonal equivalent to ∆ = 0. We thus find
that a periodic 6×6 system comprises maximally 3 excess zero modes,
whereas the probability mass function of ∆ (inset graph of Fig. 3.17) ex-
poses that the appearance of ∆ = 3 constitutes a fraction ∼ 10−4 of the
design space—tantamount to ∼ 7.1×103 unique cutting geometries, of
which the particular unit cell depicted at the right bottom of Fig. 3.17 will
be used to tile larger systems in section 3.4.1. The remaining part of the
design space is mostly occupied by ∆ = 0, since bins of high probabil-
ity are mainly located along the major diagonal of the joint probability
distribution.

Surprisingly, however, Fig. 3.17 reveals that ∆ can also become smaller
than zero, although its appearance is rare, P (∆ = −1) ≈ 10−6. In these
cases generic systems, rather than symmetric systems, attain an extra
near-zero mode that arises due to a special, coincidental combination
of random quad distortions — we have verified these modes disappear
when a different random quad distortion is imposed to the same cutting
geometry. In particular, we found that near-zero modes typically exhibit
λ ≈ 10−12, which is a few orders of magnitude larger than true numer-
ical zero modes (Fig 3.9). Here we note that near-zero modes span a
small part of the design space; their detailed consideration lies outside
the scope of this thesis.

3.4.1 Tiling the unit cell

We now periodically tile the Nu×Nu unit cell to built larger nNu×nNu
systems (n = 2,3, . . . ) [see Fig. 3.18(a) for n = 2], and determine their
number of excess zero modes accordingly. Importantly, note that we use
open boundary conditions for the tiled systems.

In Fig. 3.18(b) we display the number of excess zero modes of the tiled
systems with n, which shows that the tiled systems (open circles, solid
line) exhibit a significantly larger number of excess zero modes as com-
pared to randomly diluted, non-tiled systems of identical size (dashed
blue). Here, the dashed blue line describes the asymptotic growth of the
average number of zero modes according to βN2, with associated den-
sity β = 0.01 (see section 3.3.2). As can furthermore be observed, ∆ of
the tiled systems grows proportionally to (nNu)2, implying these systems
are characterized by a constant density of zero modes. In particular, we
have determined ∆/(nNu)2 ≈ 0.06 — which exceeds the density of zero



94 CHAPTER 3. EZMS IN METAMATERIALS W/ SYMMETRIES

(a)

N
u

∆ = 8 (b)

101 102 103 104

(nNu)2

100

101

102

103

∆

1

Figure 3.18: Excess modes in nNu×nNu systems built by the periodic tiling of
a Nu×Nu unit cell (n = 1,2,3, . . . ). (a) System corresponding to n = 2, resulting
in ∆ = 8. The quads enclosed within the dashed red region display the unit cell.
(b) The number of excess zero modes grows proportionally with (nNu)2 (open
circles, solid line). We display data up to n = 16 (nNu = 96). The blue dashed
line represents the asymptotic growth of excess zero modes in randomly diluted
systems as function of system size.

modes for random cutting by a factor 6. Hence, this procedure allows us
to construct geometries for which ∆ is 6 times larger as compared to the
average maximum for random cutting (∆/∆? ≈ 6), at a given system size.

3.5 Random bond removal

In this section we characterize the number of excess zero modes, ∆b, for
random bond removal, as function of the fraction of removed bonds, ρb,
and system size N, and discuss differences and similarities with random
quad removal.

In Fig. 3.19(a) we display 〈∆b〉 (ρb, N) for system sizes N = 10,20, . . . 80,
which are obtained using a similar procedure as devised for quad re-
moval in section 3.3, now removing bonds rather than quads. Interest-
ingly, these curves are qualitatively similar to results for quad removal
(Fig. 3.12) and demonstrate that the number of excess zero modes may
equally exceed one in systems where bonds are cut: Analogously to
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Figure 3.19: Statistics of the excess zero modes for random bond removal.
(a) The average number of excess zero modes as function of the cutting frac-
tion for a range of system sizes, using the same ensemble size as for random
quad removal. Filled circles mark the maximum of each curve. Inset figure:
Zoom in of 〈∆b〉 (ρb) for N = 10. (b) The peak value grows linearly with N2 for
large N (log scale, slope 1), implying that 〈∆b〉max ∼ N2. For small N, the scaling
〈∆b〉max ∼ N2 exhibits finite size corrections proportional to 1/N2 (not shown).
(c) The peak location tends to a constant as 1/N2.

quad removal, 〈∆b〉 = 1 for ρ ≈ 0 and 〈∆b〉 = 0 for ρb → 0 [see inset of
Fig. 3.19(a)], whereas 〈∆b〉 > 1 for intermediate cutting fractions, albeit
with an amplitude which is roughly 1.5 times smaller than for quad re-
moval at given N. In the low cutting fraction limit (ρ ≈ 0) systems are
over-constrained and retain their rigidity in the generic case, even when
some bonds are missing, leading to 〈∆b〉 = 1. In contrast, systems in the
high cutting fraction limit (ρb → 1) consist of many loosely connected
quads that fail to constitute a rigid system in the generic case, hence
〈∆b〉 = 0.

To quantify differences and similarities between quad and bond re-
moval, we follow section 3.3.2 and determine the peak value and location
of 〈∆b〉, which we denote ρmax

b and 〈∆b〉max, as function of the system
size. The obtained results are shown in Fig. 3.19(b-c), and suggest the
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Figure 3.20: Scaling collapse for the 〈∆b〉 curves in Fig. 3.19(a), obtained by
rescaling the axes according to the relations given in Eqs. (3.15).

following asymptotic scaling relations:

〈∆b〉max ≈ 〈∆b〉? := βb

(
1 +

αb

N2

)
N2, (3.15a)

and

ρmax
b ≈ ρ?b := ρ∞,b − γb/N2, (3.15b)

where αb ≈ 75, βb ≈ 0.007, γb ≈ 8.37 and ρ∞,b ≈ 0.3± 0.01 are constants
with an interpretation similar to their analogues for quad removal in sec-
tion 3.3. The asymptotic scaling relations and the values of their associ-
ated constants as obtained here reveal some contrasts between quad and
bond removal.

First, similar to quad removal [Eq. (3.13a)], the peak value for bond re-
moval grows proportionally to N2, such that βb can again be interpreted
as the intrinsic spatial density of excess zero modes. Interestingly, we
find that the intrinsic spatial density of zero modes for quad removal ex-
ceeds that of random bond removal by a factor β/βb ≈ 1.5, in agreement
with the observation 〈∆〉max > 〈∆b〉max. Apparently, the more correlated
removal of bonds that occurs in quad removal (4 per removed quad) pro-
motes the development of excess zero modes.

Second, the peak locations for bond and quad removal converge dif-
ferently as function of N, but their peak locations in the N→ ∞ are the
same within error bars: Whereas the peak location for quad removal
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tends to the constant ρ∞ ≈ 0.31± 0.01, the peak location for bond removal
tends to the constant ρ∞,b≈ 0.30± 0.01. We note that rescaling 〈∆b〉 (ρb, N)
according to Eqs. (3.15) yields a scaling collapse for large N (Fig. 3.20),
demonstrating that 〈∆b〉, similar to random quad removal, exhibits finite
size scaling with simple mean field exponents.

In short, we have demonstrated that random bond removal qualita-
tively displays the same features as random quad removal. In both cases,
the large N asymptotics prescribe that the peak tends to a constant loca-
tion and that the number of excess zero modes grows proportionally to
N2. Quantitatively, we have found that the asymptotic peak peak loca-
tion for quad and bond removal agrees within error bars, although the
peak locations converge with different exponents. Furthermore, we have
shown that the absolute number of excess zero modes is roughly 1.5 times
larger for quad removal than for bond removal.

3.6 Conclusions

In this chapter we compared the number of zero modes in generic and
symmetric collections of flexibly linked, rigid quads. We showed that
symmetric systems featuring identical squares can possess excess zero
modes that do not exist in generic systems consisting of irregular quads.

We have determined the average number of excess zero modes, 〈∆〉,
for a large ensemble of independent, diluted systems, in which a fraction
ρ of the total number of quads has been randomly removed. By using the
same dilution pattern for symmetric and generic systems, we determined
the ensemble averages 〈∆〉(ρ, N) and revealed subtle but important dif-
ferences between symmetric and generic systems. We found that 〈∆〉 → 1
for small cutting fractions (ρ→ 0), and 〈∆〉 → 0 for large cutting fractions
(ρ→ 1). Interestingly, the number of excess zero modes at intermediate
cutting fractions was shown to exhibit a maximum for which 〈∆〉 > 1.

Subsequently, we determined 〈∆〉(ρ, N) for a range of system sizes
and showed that the peak value and location of 〈∆〉 exhibits simple scal-
ing relations with N. By rescaling 〈∆〉(ρ, N) using the relations for the
peak value and location we obtained a scaling collapse, demonstrating
that the average number of excess zero modes is an intrinsic quantity
which exhibits finite size scaling with mean field exponents. By period-
ically tiling a 6×6 unit cell — with the maximum number of 3 excess
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modes for periodic boundaries — we have also been able to design dilu-
tion geometries with a density of zero modes that is six times higher than
the average for random cutting, independently of system size. Finally, for
random bond removal, we have a found a very similar scaling collapse
and peak location, with a density of zero modes that is roughly 1.5 times
smaller than for random quad removal.



Appendix

3.A Constructing the gradient

The goal of this appendix is to analytically construct the energy gradient
∇E (X) = ∂E/∂X, which we will do by expressing the components of the
gradient exclusively as functions of the corner coordinates of the quads.
This procedure circumvents the need to determine derivatives using finite
differences and leads to a significantly faster and more precise calculation
of the gradient.

To calculate the gradient we use the energy as given in Eq. (3.6), which
yields that

∂E
∂X

=
1
2

∂

∂X

(
Nb

∑
s=0

`s (X)
2

)
. (3.16)

Here `s(X) is some complicated function that describes the spring lengths
as function of X. Since springs are connected the corners of quads, we
can express their square length as

`2
s (X) =

[
xn,i (X)− xm,j (X)

]2
+
[
yn,i (X)− ym,j (X)

]2 , (3.17)

where (xn,i,yn,i) and (xm,j,ym,j) describe the positions of the corners (i =
0,1,2,3) of quad n and the corners (j = 0,1,2,3) of quad m respectively.
Following section 3.2, these corners can be calculated according to

(
xn,i
yn,i

)
=

(
xn
yn

)
+ ‖en,i‖

(
cos (θn,i + ϕn)
sin (θn,i + ϕn)

)
, (3.18)

with θn,i = arg(en,i) the centre-to-corners angles of the quad, and where
Eq. (3.18) similarly applies to quad m. Using the above relations, we now
express the gradient components ∂E/∂xn, ∂E/∂yn and ∂E/∂ϕn in terms
of the corner coordinates xn,i and yn,i. Note that we do not evaluate the
obtained derivatives as function of the corner coordinates; although these
can analytically calculated using Eq. (3.17), this would require specific
knowledge about the dilution pattern as entitled in the adjacency matrix.

99
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Derivatives with respect to xn

Any change in the quad’s coordinate xn involves the x-displacement of
the four corners. Therefore, the associated energy change is

∂E
∂xn

=
∂E

∂xn,1

∂xn,1

∂xn
+

∂E
∂xn,2

∂xn,2

∂xn
+

∂E
∂xn,3

∂xn,3

∂xn
+

∂E
∂xn,4

∂xn,4

∂xn

=
4

∑
i=1

∂E
∂xn,i

∂xn,i

∂xn

=
4

∑
i=1

∂E
∂xn,i

,

(3.19)

where we have used that ∂xn,i/∂xn = 1, by Eq. (3.18).

Derivatives with respect to yn

Similarly, the derivative of the energy with respect to yn can be written as

∂E
∂yn

=
4

∑
i=1

∂E
∂yn,i

∂yn,i

∂yn

=
4

∑
i=1

∂E
∂yn,i

.

(3.20)

Derivatives with respect to ϕn

Last, any change in the rotational angle ϕn introduces changes in both the
x and y corner coordinates of quad n, yielding the following derivative
for ϕn

∂E
∂ϕn

=
4

∑
i=1

[
∂E

∂xn,i

∂xn,i

∂ϕn
+

∂E
∂yn,i

∂yn,i

∂ϕn

]

=
4

∑
i=1

[
‖en,i‖

(
cos (θi + ϕn)

∂E
∂yn,i

− sin (θi + ϕn)
∂E

∂xn,i

)]
,

(3.21)

where we have substituted ∂xn,i/∂ϕn =−‖en,i‖sin (θi + ϕn) and ∂yn,i/∂ϕn =
‖en,i‖cos (θi + ϕn), as obtained from Eq. (3.18).
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3.B Constructing the Hessian matrix

Following the approach of appendix 3.A we now analytically determine
the Hessian by expressing all second order derivatives of the energy in
terms of the quads’ corner coordinates. We therefore consider all pos-
sible second order partial derivatives of the energy with respect to the
degrees of freedom of quad m and n, respectively given by (xn,yn, ϕn)
and (xm,ym, ϕm). Below we determine the derivatives for the cases m = n
and m 6= n, which comprise a total of 12 independent types of partial
derivatives.

Second derivatives with respect to xm and xn

∂

∂xm

(
∂E
∂xn

)
=

∂

∂xm

4

∑
i=1

∂E
∂xn,i

=
4

∑
i=1

∂

∂xn,i

∂E
∂xm

=
4

∑
i=1

[
∂

∂xn,i

4

∑
j=1

∂E
∂xm,j

]
(3.22)

For m = n, this yields:

∂2E
∂x2

n
=

4

∑
i=1

∂2E
∂x2

n,i
, (3.23)

For m 6= n and under the assumption that corner i of quad n is connected
to corner j of quad m, we obtain:

∂2E
∂xn∂xm

=
∂2E

∂xn,i∂xm,j
, (3.24)

Second derivatives with respect to ym and yn.

Following the approach to calculate the second derivatives with respect
to x, we obtain

∂2E
∂y2

n
=

4

∑
i=1

∂2E
∂y2

n,i
, (3.25)
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Under the assumption that corner i of quad n is connected to corner j of
quad m, we obtain:

∂2E
∂yn∂ym

=
∂2E

∂yn,i∂ym,j
. (3.26)

Second derivatives with respect to ϕm and ϕn.

∂

∂ϕm

(
∂E
∂ϕn

)
=

∂

∂ϕm

4

∑
i=1

[
∂E

∂xn,i

∂xn,i

∂ϕn
+

∂E
∂yn,i

∂yi,n

∂ϕn

]
(3.27)

On the right hand side of the above equation, the first term within the
summation represents the x contribution and the second term the y con-
tribution for the derivative of E with respect to ϕn. For clarity we will
first calculate the above derivative leaving out the second term, because
the results for the first and second term will take an identical functional
form. Therefore, we start with:

∂

∂ϕm

4

∑
i=1

∂E
∂xn,i

∂xn,i

∂ϕn

=
4

∑
i=1

[
∂2E

∂ϕm∂xn,i

∂xn,i

∂ϕn
+

∂E
∂xn,i

∂2xn,i

∂ϕm∂ϕn

]

=
4

∑
i=1

[
∂

∂xn,i

(
4

∑
j=1

[
∂E

∂xm,j

∂xm,j

∂ϕm
+

∂E
∂ym,j

∂ym,j

∂ϕm

])
∂xn,i

∂ϕn
+

∂E
∂xn,i

∂2xn,i

∂ϕm∂ϕn

]

=
4

∑
i=1

[
4

∑
j=1

[
∂2E

∂xn,i∂xm,j

∂xm,j

∂ϕm

]
∂xn,i

∂ϕn
+

∂E
∂xn,i

∂2xn,i

∂ϕm∂ϕn

]
.

(3.28)
For m = n, this yields

∂

∂ϕm

4

∑
i=1

∂E
∂xn,i

∂xn,i

∂ϕn
=

4

∑
i=1

[
∂2E
∂x2

n,i

∂2xn,i

∂ϕ2
n

+
∂E

∂xn,i

∂2xn,i

∂ϕ2
n

]
. (3.29)

For m 6= n, and assuming that corner i of quad n is connected to corner j
of quad m, we obtain from Eq. (3.28):

∂

∂ϕm

4

∑
i=1

∂E
∂xn,i

∂xn,i

∂ϕn
=

∂2E
∂xn,i∂xm,j

∂xm,j

∂ϕm

∂xn,i

∂ϕn
. (3.30)
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We have now calculated the outcome of Eq. (3.27) taking into account the
x-contribution only. Because the y-contribution takes the same form as
Eqs. (3.29-3.30), we obtain (m = n):

∂2E
∂ϕ2

n
=

4

∑
i=1

[
∂2E
∂x2

n,i

∂2xn,i

∂ϕ2
n

+
∂E

∂xn,i

∂2xn,i

∂ϕ2
n

+
∂2E
∂y2

n,i

∂2yn,i

∂ϕ2
n

+
∂E

∂yn,i

∂2yn,i

∂ϕ2
n

]
(3.31)

where ∂2xn,i/∂ϕ2
n =−‖en,i‖cos (θi + ϕn) and ∂2yn,i/∂ϕ2

n =−‖en,i‖sin(θi +
ϕn), by Eq. (3.18). For m 6= n we obtain:

∂2E
∂ϕm∂ϕn

=
∂2E

∂xn,i∂xm,j

∂xm,j

∂ϕm

∂xn,i

∂ϕn
+

∂2E
∂yn,i∂ym,j

∂ym,j

∂ϕm

∂yn,i

∂ϕn
. (3.32)

Cross derivatives with respect to xm, xn, ym and yn.

∂

∂ym

(
∂E
∂xn

)
=

∂

∂ym

4

∑
i=1

∂E
∂xn,i

= 0,

(3.33)

for both m = n and m 6= n, because ∂E/∂xn,i does not depend on ym.
Hence,

∂2E
∂x2

n
= 0, (3.34)

and

∂2E
∂xm∂xn

= 0. (3.35)
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Cross derivatives with respect to xm, xn, ϕm and ϕn.

∂

∂xm

(
∂E
∂ϕn

)
=

∂

∂xm

4

∑
i=1

[
∂E

∂xn,i

∂xn,i

∂ϕn
+

∂E
∂yn,i

∂yi,n

∂ϕn

]

=
4

∑
i=1

[
∂2E

∂xm∂xn,i

∂xn,i

∂ϕn
+

∂E
∂xn,i

∂x2
n,i

∂xm ϕn

]

=
4

∑
i=1

[
∂

∂xn,i

(
4

∑
j=1

∂E
∂xm,j

)
∂xn,i

∂ϕn

]

=
4

∑
i=1

[
4

∑
j=1

[
∂2E

∂xn,i∂xm,j

]
∂xn,i

∂ϕn

]
.

(3.36)

For m = n, this yields

∂2E
∂xn∂ϕn

=
4

∑
i=1

∂2E
∂x2

n,i

∂xn,i

∂ϕn
. (3.37)

And for m 6= n, assuming that corner i of quad m is connected to corner j
of quad n, we obtain

∂2E
∂xm∂ϕn

=
∂2E

∂xn,i∂xm,j

∂xn,i

∂ϕn
. (3.38)

Cross derivatives with respect to ym, yn, ϕm and ϕn.

The derivation is identical to the cross derivatives with respect to x and
ϕ. For m = n, the result therefore is

∂2E
∂yn∂ϕn

=
4

∑
i=1

∂2E
∂y2

n,i

∂yn,i

∂ϕn
. (3.39)

And for m 6= n, assuming that corner i of quad m is connected to corner j
of quad n, we obtain

∂2E
∂ym∂ϕn

=
∂2E

∂yn,i∂ym,j

∂yn,i

∂ϕn
. (3.40)


