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2
A nonlinear beam model to describe the

post-buckling of wide neo-Hookean beams

Wide beams can exhibit subcritical buckling, i.e. the slope of the force-
displacement curve can become negative in the post-buckling regime. In
this chapter, we capture this intriguing behaviour by constructing a 1D
nonlinear beam model, where the central ingredient is the nonlinearity
in the stress-strain relation of the beam’s constitutive material. First, we
present experimental and numerical evidence of a transition to subcriti-
cal buckling for wide neo-Hookean [52] hyperelastic beams, when their
width-to-length ratio exceeds a critical value of 12%. Second, we con-
struct an effective 1D energy density by combining the Mindlin-Reissner
kinematics [41] with a nonlinearity in the stress-strain relation. Finally,
we establish and solve the governing beam equations to analytically de-
termine the slope of the force-displacement curve in the post-buckling
regime. We find, without any adjustable parameters, excellent agreement
between the 1D theory, experiments and simulations. Our work extends
the understanding of the post-buckling of structures made of wide elastic
beams and opens up avenues for the reverse-engineering of instabilities
in soft and metamaterials.

The work presented in this chapter has been published as:

C. Coulais, J.T.B. Overvelde, L.A. Lubbers, K. Bertoldi and M. van Hecke, Discontinuous
buckling of wide beams and metabeams, Phys. Rev. Lett. 115, 044301 (2015).

L.A. Lubbers, M. van Hecke and C. Coulais, A nonlinear beam model to describe the post-
buckling of wide neo-Hookean beams, J. Phys. Mech. Solids 106, 191-206 (2017).
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12 CHAPTER 2. NONLINEAR BEAM MODEL FOR WIDE BEAMS

Guide through this chapter: Readers interested in the main findings can
safely skip sections 2.3 to 2.5. These sections are very technical, but
provide essential background information to unambiguously construct
the energy density which forms the basis of our nonlinear beam model.

2.1 Introduction

Recent years have seen an upsurge of interest in the instabilities and post-
instability behaviour of flexible structures. Rather than seeing instabilities
as failure, they recently have been leveraged to achieve novel functional
(meta)materials and structures [31, 53]. As such, materials and structures
featuring snapping [44, 54], wrinkling [55, 56], fingering [57] or buck-
ling [4, 36, 40] have been created. Collectively they constitute a promis-
ing route to develop mechanical devices for sensing [38, 58], actuation [55,
59–61] or soft robotics [62, 63].

These structures harness post-instabilities and their constituents un-
dergo large deformations. A theoretical description of this regime, where
as we will show nonlinearities are key, is not well developed yet. On the
one hand, the description of post-buckling behaviour has been widely in-
vestigated, but for models in which the constitutive material is assumed
to be linearly elastic under small deformations [30, 42, 43, 64–68]. On the
other hand, much attention has been devoted to characterizing the insta-
bilities of nonlinear elastic cellular materials [69–72] or structures [73], but
only for the onset of instability, and not for the post-instability regime.

Euler buckling, known as the phenomenon where an elastic beam
will buckle under a sufficiently large compressive axial load, is perhaps
the simplest and the most widespread instability [24]. Much theoretical
attention has been devoted to describing it using the classical [74, 75],
extensible and shearable [76] elastica problem. Further in-depth studies
have focused on the onset of buckling, the structure of buckled states [77,
78], closed form solutions [79–81], large deformations [82–84] and three-
dimensional [85–88] deformations. In this chapter we investigate the
post-buckling regime of wide beams, where strains are necessarily large.
A salient feature of buckling of slender beams is that the post-buckling
compliance increases tremendously after buckling, yet remains positive.
However, as discussed in the general introduction of this thesis, wide
beams that buckle and undergo large deformations can exhibit a negative
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post-buckling compliance [40]. Although negative compliance is com-
monly observed in buckling of shells [30], pipes [64] and the wrinkling
of membranes [89–91], it has not been reported for Euler beam buckling,
and to the best of our knowledge is not predicted by existing beam mod-
els.

Here we develop a 1D nonlinear beam model based on a nonlinear
constitutive equation, that without adjustable parameters, describes the
post-buckling compliance of wide neo-Hookean beams. In particular,
this model allows to analytically capture the onset of subcritical buck-
ling (post-buckling slope < 0) for widths larger than approximately 15%,
in good agreement with experiments and FEM simulations. First, in sec-
tion 2.2 we present experimental and numerical evidence to show that
for neo-Hookean beams, the post-buckling compliance becomes nega-
tive when the beam width-to-length ratio t exceeds approximately 12%.
Second, in sections 2.3-2.5 we discuss the fundamental ingredients for
our 1D model. We review mathematical beam descriptions based on
Mindlin-Reissner kinematics [41], pinpoint and quantify the role of ma-
terial nonlinearity using extensive 2D simulations, and construct a 1D
energy density that encompasses such nonlinearity by combining the
Mindlin-Reissner kinematics with a nonlinearity in the stress-strain re-
lation. Third, in section 2.6 we establish the governing equations of our
nonlinear 1D beam model that are based on this energy density including
nonlinearity. We then solve the beam equations to obtain the variation
of the post-buckling slope with t and find that, without any adjustable
parameters, our model is in excellent agreement with experiments and
simulations. Our work thus unambiguously unravels the link between
stress-strain nonlinearity and post-buckling behaviour. While we focus
on the buckling of wide neo-Hookean beams, we note that we only need
to include quadratic corrections to the stress-strain relation to correctly
capture the physics. Hence, for materials with other nonlinear consti-
tutive laws, including metamaterials as explored in [40] and [92], our
description is also valid. Our analytical description can be used to ratio-
nally design the post-buckling behaviour of beams, and we hope that it
can inspire work to capture and describe post-instability behaviours of
other elastic systems. More widely, our work may impact the design of
compliant devices, which harness instabilities (e.g. buckling, snapping,
wrinkling) to convey mechanical functionalities that are of use in soft
robotics [62, 63], sensors [38, 58] and actuators [55, 59–61].
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2.2 Phenomenology: Subcritical buckling

In this section, we present and expand the findings from our previous
work on subcritical buckling of wide beams [40]. First, we discuss both
the experimental and numerical protocols to study buckling of rectangu-
lar beams to determine the force-displacement relation. We consider both
the numerical protocol for 3D FEM simulations with boundary condi-
tions that closely model the experimental conditions, and 2D simulations
with simplified boundary conditions. Second, we analyse the onset of
buckling and the post-buckling compliance of beams of varying width-
to-length ratio t. We then show that for both experiments and numerics
the post-buckling compliance varies systematically with t, and becomes
negative for t & 0.12.

2.2.1 Experiments and FEM simulations

In the analysis below, we consider beams of the width-to-length ratio t =
w/` and depth d, under load F and corresponding uniaxial displacement
u, where u, F > 0 correspond to a compressive deformation [Fig. 2.1(a-b)].

Experiments

To perform buckling experiments, we mold 12 solid rectangular beams
of rest length ` = 45 mm, depth d = 35 mm and widths ranging from
w = 1.55 mm to w = 12.85 mm [Fig. 2.1(a)] out of a well-characterized
silicon rubber (Zhermarck, Polyvinyl Siloxane double elite 8, density
1.15×103 kg/m3, Young’s modulus E = 250 kPa, Poisson’s ratio ν ≈ 0.5).
The extremities of the beams are glued on plexiglass plates that are at-
tached to the uniaxial testing device (Instron 5965) in order to approxi-
mate clamped-clamped boundary conditions, and we perform the exper-
iments in a water bath in order to limit the effects of gravity.

3D simulations

We simultaneously carry out a nonlinear analysis using the commercial
finite element package Abaqus/Standard on beams with the exact same
geometry as in the experiments. We determine the buckling point using a
specific algorithm in our finite element code that does not require seeding
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the initial geometry with imperfections (see appendix 2.A and reference
[40]), allowing to obtain a 0.1% accuracy on the buckling onset.

Material model — The rubbers used in our experiments are well de-
scribed by the incompressible neo-Hookean formulation of nonlinear elas-
ticity [93]. We therefore use a neo-Hookean strain energy density [52] of
the form

W =
G
2

(
det(F)−2/3tr(FFT)− 3

)
+

K
2
(det(F)− 1)2, (2.1)

where G is the shear modulus, K the bulk modulus and F≡ ∂x/∂X is the
deformation gradient tensor from the undeformed coordinates X to the
deformed coordinates x. In the numerical analysis, we use the moduli
G = 83 kPa and K = 42 GPa, which models accurately the E = 250 kPa
nearly-incompressible rubber used in the experiments. We note that our
results do not sensitively depend on the precise choice of G and K, as
long as G/K� 1. The overall stiffness, given by the Young’s modulus
E = 9KG/(3K + G), only sets a trivial scale, and to obtain dimensionless
results, we scale the stresses by E for the results presented below.

Boundary conditions. — We numerically impose clamped-clamped
boundary conditions to resemble the experiments where the endpoints
of the beam are glued on plexiglass plates.

Simplified 2D FEM simulations

In addition, we carry out 2D plane stress simulations (Abaqus element
type CPS4) using the same material model, yet with simplified slip bound-
ary conditions at both endpoints of the beam, which allows for free lat-
eral expansion at the clamped-clamped endpoints to avoid barrelling ef-
fects [94]. The choice for plane stress over plane strain conditions is a pri-
ory not obvious because our beams are intermediate between the plane
stress limit (w� d), and plane strain limit (w� d). We therefore used
our 3D simulations to investigate the 3D stresses and strains for beam
thicknesses where the post-buckling slope changes sign (t ≈ 0.1). We
found that in this case there are significant out of plane strains, but that
the out of plane stresses are small (ratio between the lateral and uniax-
ial stresses < 0.1) — this motivates us to focus on the plane stress case.
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Figure 2.1: Buckling of wide neo-Hookean beams. (a) Sketch of a beam in its
initial undeformed state, for which the beam has a rest length `, width w and
depth d. (b) Applying a compressive displacement u, leads to compression and
eventually buckling of the beam. (c-d) Front-view snapshots of (c) the experi-
ment and (d) the simulation for a beam of length ` = 45 mm, depth d = 35 mm
and width w = 11.95 mm, at compressive displacements (from left to right) u = 0,
u = 0.5 uc, u = 0.99 uc, u = 1.1 uc and u = 1.2 uc. (e-f) Scaled compressive force
F/(Ewd) vs. compressive displacement u/` for beams of different width for (e)
the experiments (dashed lines) and 3D simulations (solid lines) and (f) the sim-
plified 2D simulations. As the effects of gravity are negligible in the experiments
and absent in simulations, the choice of the Young’s modulus E is irrelevant and
we scale the forces by E.
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The plane stress condition, which is nontrivial in finite-strain elasticity,
is implemented by requiring that the yy-component [Fig. 2.1(a)] of the
true (Cauchy) stress is zero, which necessitates the iterative computation
of the deformation gradient component Fyy to satisfy this condition [95].
Altogether, these assumptions ensure that more complex 3D and bound-
ary effects can be neglected and allow us to carry out the analysis in
the simplest setting where subcritical buckling can be observed, and will
be used later to pinpoint the physical mechanism at stake in the post-
buckling behaviour of wide beams.

2.2.2 Buckling and Subcritical Buckling

In Fig. 2.1(c-d) we simultaneously display 5 front-view snapshots of ex-
periments and 3D simulations for a beam with t = 0.23 (w = 10.20 mm) at
different compressive displacements, which are in very good qualitative
agreement. Moreover, we plot the obtained force-displacement curves for
the complete range of beam widths in Fig. 2.1(e), which illustrates that
3D simulations and experiments are also in very good quantitative agree-
ment. Hence, the neo-Hookean material model describes the buckling
of wide beams well. For all curves, we observe a near-linear increase
until the onset of buckling, at which the slope abruptly changes. For
thin beams, the force increases after buckling, while for thick beams, the
force decreases. For buckling experiments under controlled force of a
sufficiently wide beam, the post-buckling branch would thus be unstable
and the pitchfork instability would be subcritical. Therefore, we refer to
this type of instability as Subcritical Buckling. The 2D simulations, albeit
considerably simpler, display qualitatively similar behaviour [Fig. 2.1(f)],
which demonstrates that subcritical buckling does originate neither from
boundary-induced singularities nor from 3D effects. To the best of our
knowledge, although subcritical buckling is fairly common in other set-
tings such as the wrinkling instability [96–98] and the wrinkle-to-fold
transition [89–91], such sign change is not predicted by any theory as
of now for the Euler buckling of wide beams for realistic aspect ratios.
Note that Magnusson et al. [42] predicted such transition from supercrit-
ical to subcritical post-buckling, yet for overly large aspect ratios (t=0.24),
and for which the validity of the extensible, non-shearable elastica is not
guaranteed.

We now retrieve the onset of buckling uc and the post-buckling slope
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Figure 2.2: Critical compressive displacement and post-buckling slope as func-
tion of the beam width-to-length ratio, for Euler’s elastica (solid blue), exper-
iments (orange diamonds), 3D FEM simulations (black crosses) and 2D plane
stress FEM simulations (solid black). (a) The onset of buckling, uc, in ex-
periments and simulations qualitatively follows Euler’s elastica. (b) The post-
buckling slope S in experiments and simulations progressively deviates from
the Euler limit S = 1/2 for large t. The transition to subcritical buckling (S < 0)
occurs for t & 0.12, as indicated by the shaded region.

S, using the relation between the load F and the compressive displace-
ment u in the post-buckling regime:

F− Fc

Fc
= S

(u− uc)

`
+O

(
(u− uc)

2
)

, (2.2)

with Fc the critical buckling force. In Fig. 2.2(a) we display the onset
of buckling as a function of the beam width-to-length ratio t, for the
experiments, 3D FEM simulations and the 2D FEM simulations, and ob-
serve quantitative agreement with the prediction of Euler’s elastica for
clamped-clamped boundary conditions, ueuler

c /`= t2π2/3 [30]. While the
onset shows quantitative agreement with Euler’s prediction, the results in
Fig. 2.2(b) show that the post-buckling slope S strongly deviates from Eu-
ler’s prediction S = 1/2 as t increases, and becomes negative for t & 0.12.
Importantly, Fig. 2.2(b) illustrates that subcritical buckling of wide beams
is a robust phenomena: Even with the simplifications made in the 2D
simulations, the differences in the post-buckling slope between 2D and
3D simulations are modest.
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The emergence of subcritical Euler buckling is, as we will show, read-
ily related to nonlinearity in the stress-strain relation [40]. In the fol-
lowing, we will rationalize this behaviour of wide beams—which are 3D
structures undergoing large deformations—by constructing a 1D beam
model that encompasses such a stress-strain nonlinearity. The behaviour
of such a 1D model is more easily tractable than a full tensorial descrip-
tion needed in 3D, and is therefore of significant interest for the design of
post-instabilities.

In conclusion, we have shown in this section that, in experiments, in
fully 3D numerical simulations, and in 2D simulations, the post-buckling
compliance of wide beams varies systematically with the beams aspect
ratio t, and becomes negative for t & 0.12.

Sections 2.3-2.5 provide technical information about the ingredients
of our nonlinear 1D beam model. In subsequent order, we review
mathematical descriptions of beams, pinpoint and quantify material
nonlinearity using extensive 2D simulations and construct a 1D energy
density encompassing such nonlinearity. As mentioned before, the
reader interested in the main findings of this chapter can continue to
section 2.6.

2.3 Mathematical description of beams

In this section we review the basic ingredients and assumptions for 1D
beam models of varying degree of sophistication [24, 42, 43]. First, we
discuss how 2D deformations of (wide) beams can be mapped onto the
deformations of a 1D central beam axis, using the Mindlin-Reissner kine-
matics [41], which captures the extension, shear and bending of wide
beams. Second, we review the governing beam equations that follow
from the combination of Mindlin-Reissner kinematics and a linear con-
stitutive law. Third, we numerically solve the most sophisticated linear
beam model and compare its outcome to our 2D FEM results in the post-
buckling regime. We find that for wide beams, this linear model does not
accurately capture the beam shape. These deviations imply that nonlinear
corrections to the constitutive law must be taken into account.
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2.3.1 Mindlin-Reissner kinematics and strains

We now introduce the Mindlin-Reissner beam kinematics and associated
strains that form the basis of our 1D beam description, presented later in
this chapter.

The buckling regime of slender beams (elastic lines, t→ 0) is bending
dominated. Therefore, their shape can be described by a single kinematic
field, denoted θ(s) [Fig. 2.3(a)], which is the rotation angle with respect to
the z-axis as a function of the curvilinear coordinate s along the beam [99].
Wide beams, however, have additional modes of deformation, which are
dominantly compressive and shear deformations. Following [41, 43, 100],
the shape of such beams can be captured by a central beam axis described
by a deflection and shear angle, respectively defined as θ(s) and χ(s),
along with the stretch λ(s) [Fig. 2.3(c)]. We refer to this kinematic de-
scription as Mindlin-Reissner kinematics. The stretch along the central axis
is defined as the elongation of a beam element of length ds in the un-
deformed state, with respect to the same element in the deformed state
of length ds′, that is, λ(s) = ds′/ds. Furthermore, the sum of the rota-
tion angle and shear angle, θ(s) + χ(s), is defined as the angle enclosed
by the vertical vector ez and the tangent to the central axis, t. The shear
angle can be regarded as the angle enclosed within the normal of the cen-
tral axis, n, and the tangent to the deformed cross-section in the vicinity
of the central axis, n′ [zoomed area in Fig. 2.3(c)]. The rotation angle can
then readily follows from the difference between the sum θ(s)+ χ(s), and
χ(s) itself. Following [41], the Mindlin-Reissner kinematics can be used
to introduce a set of compressive, bending, and shear strains, respectively
denoted ε̃0, ε1 and γ0, and defined as

ε̃0 = λcos(χ)− 1, (2.3)
ε1 = θs, (2.4)
γ0 = λsin(χ). (2.5)

In the reminder of this chapter, we refer to this set of strain-displacement
relations as the Mindlin-Reissner strains. In order to obtain a set of closed
beam equations, these strains should be related to stresses via constitutive
relations. In the following section we review prior (wide) beam models
that are constructed from a combination of Mindlin-Reissner strains and
linear elasticity.
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Figure 2.3: Kinematic description of a slender (t = 0+) and wide beam (here,
t = 0.15). Both beams are compressed equally by a displacement u. (a) The shape
of an undeformed (left) and buckled (right) slender beam. We obtain the buckled
state by solving Euler’s elastica [Eq. (2.6)] for clamped boundary conditions at
both ends. The kinematic description of a slender beam is governed by the rota-
tion angle θ(s). (b) Snapshot from a 2D simulation of a wide neo-Hookean beam
in its undeformed state, where each square represents a simulation element. We
impose clamped boundary conditions at both ends of the beam, but allow free
lateral expansion along the x-direction at top and bottom boundaries. The su-
perimposed, red, solid line depicts the central axis of the beam as obtained from
FEM simulations accordingly. (c) Snapshot from the same simulation as in (b),
depicting the beam in its deformed state. The deflection of the central axis un-
der a compressive displacement u is described by a combination of the rotation
angle, θ(s), and shear angle, χ(s) along the curvilinear coordinate of the beam
as indicated. For a precise definition of θ(s) and χ(s) as well as the vectors n(s),
n′(s) and t(s), see the main text.

2.3.2 Linear beam models

Here we present a number of existing models that combine the Mindlin-
Reissner strains with conventional linear elasticity. We start with a brief
review of the bending of elastic lines (Euler’s elastica), followed by more
complete models that include extensibility and shear effects [42, 43].
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Euler’s limit— Slender beams can be described through a single Mind-
lin-Reissner strain, θs. The governing beam equation to be satisfied by the
bending strain then reads [30]:

EIθss + F sinθ = 0, (2.6)

where I is the second moment of area, which equals I = 1
12 w3d in case of

the rectangular cross-section of width w and depth d considered here.
The above equation is formally known as Euler’s elastica and can be
solved analytically to provide an exact prediction for the critical buck-
ling force [99].

Euler’s elastica rests on two assumptions, which are of importance
as they help us to understand where wide beams start to deviate from
slender beams. First, within the reference frame defined in Fig. 2.3(b), the
elastica tacitly assumes that the axial nominal strain εzz across the beam
is given by

εzz(x) = ε1x, (2.7)

where x is the horizontal coordinate across the beam section and ε1 is the
curvature of the central axis of the beam, as defined by Eq. (2.4). Second,
it assumes a linear constitutive relation between the axial nominal stress
σzz and axial nominal strain, that is,

σzz = Eεzz. (2.8)

This assumption of linear elasticity is common regarding slender beams
and provides an excellent description of their buckling properties, be-
cause the typical strains involved in slender beam buckling are much
smaller than unity, uc/`� 1.

Shearable and extensible beams — Wide beams necessitate the use
of all three Mindlin-Reissner strains due to additional compressive and
shear deformations. Consequently, the governing beam equations now
constitute a set of three coupled equations, rather than a single equation
in the case of slender beams. Since the strains involved in wide beam
buckling can be substantial (e.g. ∼ 10% for a beam with t = 0.17), nonlin-
earities in the stress-strain relation induced by large deformations become
significant. Nonetheless, as a first step, recent work [43] has combined all
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three Mindlin-Reissner strains with linear elasticity,

EIθss + F ((1 + ε̃0)sinθ + γcosθ) = 0, (2.9a)
EAε̃0 + F cosθ = 0, (2.9b)
GAγ + F sinθ = 0, (2.9c)

where, A = wd is the cross-sectional area. In the remainder of this manu-
script we refer to the above set of equations as the linear beam model. Note
that previous work also considered beam models that take into account
exclusively bending and shear [100, 101] deformations, known as Timo-
shenko beams, or solely bending and extensibility [42].

As we will show later in section 2.6, the linear beam model somewhat
improves the post-buckling description in comparison to Euler’s elas-
tica (S = 1/2), but fails to predict the experimentally and numerically
observed subcritical buckling. Specifically, in the following section we
illustrate that the strains predicted by the linear elastic beam model sig-
nificantly deviate from the strains obtained by the 2D FEM simulations,
already for a beam of width-to-length ratio t = 0.1. This evidences that
the Mindlin-Reissner strains given by Eqs. (2.3-2.5) —which remain valid
for large strains [85]— cannot be accurately determined from a closed set
of beam equations based on linear elasticity. Instead, to accurately predict
the post-buckling slope and Mindlin-Reissner strains from a set of beam
equations, one needs to develop a model that takes into account a non-
linear stress-strain relation, which is the main objective of this chapter.

2.3.3 Linear wide beam model compared to 2D FEM simula-
tions

We now compare the Mindlin-Reissner strains predicted by the linear
beam model [Eqs. (2.9)] to our results obtained from the 2D FEM sim-
ulations (Fig. 2.4). Using a shooting method in Mathematica, we solve
numerically the linear beam model, with boundary conditions θ(0) = 0
and θs(0) = θs(1) = C, where C is a constant directly set by the amount
of uniaxial displacement u. Comparing the results from FEM simulations
(solid black lines) in Fig. 2.4(a-c) with those of the linear beam model,
we observe a qualitative agreement for bending and shear deformations.
However, there is a very striking difference between the model predic-
tions and numerical results for the compressive deformations [Fig. 2.4(a)]:
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Figure 2.4: Mindlin-Reissner strains and corresponding beam shapes for a beam
(t = 0.1) which is uniaxially compressed to a displacement of u/uc = 1.3. (a-
c) The solid black curves depict data for the Mindlin-Reissner strains obtained
from FEM simulations, and the blue dashed curves are numerical solutions of
the linear elastic wide beam model [Eqs. (2.9)]. As a function of the curvilinear
coordinate s, we show (a) the compressive strain, (b) the bending strain, and
(c) the shear strain. (d) Shape of the central axis as predicted by the linear beam
model. We have obtained this shape by the integration of the horizontal and
vertical component of the displacement gradient with respect to s, respectively
given by λcos(θ +χ) and λsin(θ +χ) [41]. (e) Beam shape and associated central
axis (solid red) obtained from 2D FEM simulations.

the actual (numerical) modulations of the stretch are much stronger, and
incidentally are opposite, to those predicted by the model. Subtle as this
deviation may be, the linear beam model cannot predict the experimen-
tally and numerically subcritical buckling (see section 2.6). This suggests
that this subtle deviation points to a more fundamental flaw of the linear
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model, which arises due to the large deformations that are unavoidable
in wide-beam buckling. In the following sections we will uncover, clar-
ify and model the role of nonlinearity in the constitutive equation as the
crucial ingredient to describe the post-buckling regime of wide beams.

2.4 Quantifying the role of material nonlinearity

In this section we use FEM simulations to disentangle nonlinearities in
the relation between nominal stress and strain. We focus on a transversal
slice across the middle of the beam, obtain the stress and strain pro-
files for slender and for wide beams, both close to and deep into the
post-buckling regime. These profiles unambiguously show that, for thick
beams, axial stresses and strains are no longer linearly related, but that
rather a neo-Hookean description, where the stress is a nonlinear function
of strain, describes the data with high accuracy, for beam aspect ratios up
to t ≈ 0.2 and for compressions up to 115% of the critical compression
where buckling takes place. We then quantify these axial nonlinearities
by a systematic powerlaw expansion of the nominal strain and stress as
function of the lateral coordinate, thickness and compression. The lead-
ing order terms in this expansion are consistent with Euler’s Elastica, but
it is not a-priori clear what the structure of the higher order terms is.
We therefore use our FEM data to determine the leading order terms in
this expansion. This numerical input circumvents the need for heuris-
tics to guess the important terms, and leads to a greatly simplified model
where the dominant next order terms in t are properly taken into account.
As we will show, these next order terms evidence a nonlinearity in the
stress-strain relation which is consistent with the material nonlinearity
of neo-Hookean materials [52]. Finally, we repeat the above analysis for
the nominal shear strain and stress and show that shear strain and stress
can be related linearly. Hence, the crucial main missing ingredient in the
linear elastic wide beam model is nonlinearity in the axial nominal strain
and stress relation.

2.4.1 Nonlinear uniaxial transverse stress and strain profiles

We start by considering the shape of the transverse profiles of the axial
nominal strain, εzz, and stress, σzz. We restrict our attention to the cross-
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section at the middle of the beam, depicted by the horizontal red lines in
Fig. 2.5(a-b). We found (not shown) that the discrepancy between the ob-
served and predicted sinusoidal modulation of ε̃0, identified in Fig. 2.4(a),
is maximal at the middle of the beam in the immediate post-buckling
regime. We then consider ε(x)≡ εzz(x, s = `/2) and σ(x)≡ σzz(x, s = `/2)
to measure the spatial shape of the axial nominal strain and stress as a
function of the transverse coordinate, x, of the deformed geometry.

In the pre-buckling regime, the uniaxial nominal stresses and strains
are simply constants as function of x as the beam undergoes uniform
uniaxial compression. Under uniaxial uniform compression the neo-
Hookean relation predicts the following nominal stress-strain relation
(see appendix 2.B.1)

σnH(x) =
E
3

(
1 + ε− 1

(1 + ε)2

)
. (2.10a)

The nonlinearity of this stress-strain relation stems from the combination
of large deformations and incompressibility. This nonlinearity can qual-
itatively be understood from the fact that upon compression (tension)
the cross-sectional area increases (decreases) and the stress-strain curve
is therefore effectively stiffening (softening). The above equation can be
expanded for small strain, ε, as

σnH(x) = E
(
ε− ε2)+O(ε3). (2.10b)

Hence, the linear term is consistent with Hookean elasticity and the lead-
ing nonlinear term is quadratic.

In contrast to the uniform uniaxial deformations considered above,
buckled beams experience non-uniform deformations, and spatially vary-
ing stress and strain fields. Therefore we focus in the following on the
evolution of the stress and strain profiles as the excess displacement ∆u
in the post-buckling regime is increased. In Fig. 2.5 we have plotted
the nominal stress rescaled by the Young’s modulus (solid black) and
nominal strain profiles (dashed red) as function of x in the post-buckling
regime, for a slender (t = 0.01) and wide (t = 0.15) beam.

For slender beams, the strains remain sufficiently small for the linear
stress-strain relation to be valid. First, in Fig. 2.5(c) we demonstrate that
the slender beam at small excess displacement has linear nominal stress
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Figure 2.5: Beam shapes, stress-strain relation and stress and strain profiles. (a-
b) Beam shapes for (a) a slender (t = 0.01) and (b) wide (t = 0.15) beam at excess
strains of ∆u = 1×10−4 and ∆u = 0.1. We track the nominal stress and strain
profiles as a function of the transverse coordinate x at the central cross section of
the beam, depicted by the horizontal red lines. (c-d) Rescaled uniaxial nominal
stress (solid black) and strain (dashed red) profiles for a slender beam (t = 0.01)
at an excess strain of (c) ∆u = 1×10−4 and (d) ∆u = 0.1. (e-f) Rescaled uniaxial
nominal stress and strain profiles for a wide beam (t = 0.15) at an excess strain
of (e) ∆u = 1×10−4 and (f) ∆u = 0.1. The green dash-dotted lines correspond
to σnH (ε)/E, obtained by applying the neo-Hookean stress-strain relation in
Eq. (2.10a) to the strain profile obtained from FEM simulations.
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and strain profiles across the beam, and that σ/E = ε is a very good
approximation. In panel (d) we show data for ∆u = 0.1, which results
in a larger average nominal strain and a larger range of nominal strains
across the beam, but the profiles remain linear and σ/E≈ ε. Both panel (c)
and (d) show that the nominal strains involved in slender beam buckling
remain sufficiently small for the nominal stress and strain to be simply
proportional, as σ = Eε. Hence, the stress-strain nonlinearity is negligible
for slender beams, both at small (panel c) and larger (panel d) excess
displacement.

In contrast to slender beams, nonlinearities become important for
thick beams. In Fig. 2.5(e-f) we have plotted the nominal stress and strain
profiles for a wide beam (t = 0.15) at ∆u = 1×10−4 and ∆u = 0.1. For
small excess displacement, ∆u = 1×10−4, the nominal stress and strain
profiles are both linear, but σ/E 6= ε. This is because the strains involved
are sufficiently large for the neo-Hookean nonlinearity to become impor-
tant. Indeed, when calculating σnH (ε) from Eq. (2.10a), using the numer-
ically obtained strain profile, we find that this stress describes the data
extremely well (green dash-dotted curve). For larger excess displacement
(∆u = 0.1), the effect of the nonlinearity is even more pronounced. We
note that here a large range of strain occurs, and that the stress profile
becomes strongly nonlinear in x. Again, using the nonlinear stress-strain
relation in Eq. (2.10a), σnH (ε) describes the numerical stress data very ac-
curately. Taken together, our FEM data provides strong evidence that to
correctly describe the stresses in thick beams in the post-buckling regime,
including the neo-Hookean correction is necessary and sufficient.

2.4.2 Series expansion of the axial nominal stress and strain

In this section we perform a systematic polynomial expansion of the nom-
inal stress and strain profiles in x/w, t and ∆u, and determine all pref-
actors and scaling exponents using our FEM results. Our findings are
consistent with the Euler limit at lowest order in t (quadratic) and con-
firm that stress and strain are nonlinearly related for higher order in t
(quartic and higher).
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Polynomial expansion and asymptotic analysis

As described above, the data in Fig. 2.5 suggests that the nominal stress
and strain profiles are linear in x for (i) small t or (ii) small ∆u, but be-
come nonlinear when t and ∆u are large. It is then natural to expand the
nominal strain and stress around the buckling strain and stress, respec-
tively denoted εb and σb, as function of the (scaled) transverse coordinate
x/w:

ε
(

t,∆u,
x
w

)
− εb = ∑

n=0
Cn (t,∆u)

( x
w

)n
, (2.11a)

and

σ− σb

E

(
t,∆u,

x
w

)
= ∑

n=0
Dn (t,∆u)

( x
w

)n
, (2.11b)

where Cn and Dn are the coefficients of the expansion in x/w of order n.
In the remainder of this manuscript, we will refer to these coefficients as
the post-buckling profile coefficients. At buckling (∆u = 0), Cn = Dn = 0, so it
is natural to assume that the post-buckling profile coefficients Cn and Dn
grow as power laws in t and ∆u in the post-buckling regime. Therefore,
we postulate:

Cn (t,∆u) = C̄ntαn ∆uβn , (2.12a)

and

Dn (t,∆u) = D̄ntρn ∆uτn . (2.12b)

Here, αn, βn, ρn and τn are post-buckling profile scaling exponents and C̄n and
D̄n are the post-buckling profile prefactors which we will now determine up
to the order n = 5 from our numerical simulations. Because of the nature
of the Euler buckling instability, we expect that the exponents βn and
τn for all value of n will be half integers. Furthermore, as nominal stress
and strain are linearly related in lowest order, stress and strain expansions
should have the same post-buckling profile scaling exponents with t and
∆u for every order, that is αn = ρn and βn = τn. We also notice that the
order n = 1 corresponds to the post-buckling stress and strain profiles of
Euler’s elastica, for which the post-buckling profile coefficients C1 and D1
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Figure 2.6: Expansion of the nominal strain and stress profiles obtained by FEM
simulations, according to Eqs. (2.11-2.12). We plot the post-buckling profile coef-
ficients Cn and Dn in each order as a function of ∆u and t. In black, blue, green
and red we have plotted Cn (solid lines) and Dn (dashed lines), corresponding
to the order n = 0, n = 1, n = 2 and n = 3 respectively. (a-b) We have plotted |Cn|
and |Dn| as function of ∆u for a (a) slender beam (t = 0.02) and (b) thick beam
(t = 0.15). (c) Dependence of Cn and Dn on the beam’s aspect ratio t.

can be calculated analytically; below we find that the numerical results
for C1 and D1 are consistent with their analytical predictions.

To determine all the constants, we use the numerical protocol de-
scribed in section 2.2.1 and perform N = 102 simulations for beams with a
logarithmically spaced width-to-length ratio in the range from t = 0.01 up
to t = 0.25, and with an excess strain that is increased from ∆u = 10−3 up
to ∆u = 1 in 3×102 subsequent steps. For each simulation we extract the
spatial shape of the nominal stress and strain as function of x/w across
the middle of the beam at s = `/2 and fit ε(x) and σ(x)/E to polynomials
of order n = 5, by which we obtain the post-buckling profile coefficients
Cn(t,∆u) and Dn(t,∆u) for each specific set of parameter values t and ∆u.

One subtle point is that such powerlaw fits are very sensitive to the
determination of the point ∆u = 0. To accurately determine ∆u, we need
an accurate measurement of the critical displacement uc, as ∆u and uc are
related through ∆u = u/uc− 1. The numerical estimation, un

c , determined
in FEM simulations through the nonlinear buckling analysis, typically
has a relative error of 10−3 which is not sufficient when considering the
scaling near the critical point. Therefore, we correct uc = un

c − 1+ δ, where
the correction δ ensures an increased accuracy for ∆u. For each beam we
have determined δ from fitting Eq. (2.13a) to our numerical data for C1.
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We choose n = 1 to determine ∆u, because the linear order is the most
pronounced (Fig. 2.6) and therefore gives the most accurate measurement
of δ. Having determined δ for n = 1, we subsequently fix δ to the same
value for n = 0,2,3,4,5.

Scaling of the coefficients Cn and Dn with ∆u

In this section we describe the scaling of the post-buckling profile coeffi-
cients Cn and Dn with ∆u for fixed t, i.e., we determine the post-buckling
profile exponents βn and τn. In Fig. 2.6(a-b) we plot the coefficients Cn
and Dn as function of ∆u, for fixed t. In panel (a) and (b) we show results
for a slender (t = 0.02) and wide (t = 0.15) beam, respectively. To uncover
power law behaviour for ∆u in Cn and Dn we use a log-log scale and
then plot |Cn (∆u)| (solid lines) and |Dn (∆u) | (dashed lines). Note that
both panels show results up to n = 3 — for higher order terms the scal-
ing exponents and prefactors are provided in Tables (2.1-2.2)). From the
straight lines on the log-log scale in Fig. 2.6(a-b) it becomes apparent that
Cn and Dn show power law behaviour in ∆u as was postulated already in
Eqs. (2.12).

Fitting protocol — To determine the post-buckling profile scaling expo-
nents, βn and τn, we first take the absolute sign and log on both sides of
Eqs. (2.12) which yields

log (|Cn|) = βn log (∆u) + log
[∣∣C̄n

∣∣ tαn
]

, (2.13a)

and

log (|Dn|) = τn log (∆u) + log [|D̄n| tρn ] , (2.13b)

and then fit our numerical data for the post-buckling profile coefficients
Cn and Dn to their respective equations as given directly above. We have
tabulated the scaling exponents βn and τn in Table 2.1 up to n = 5.

Results — With a fitting range for ∆u in [10−3,10−1] at fixed t, we mea-
sure identical exponents for nominal stress and strain within their error
bars: β0 = τ0 ≈ 1.0 [black lines in Fig. 2.6(a-b)], β1 = τ1 ≈ 0.5 (blue lines),
β2 = τ2 ≈ 1.0 (red lines), and β3 = τ3 ≈ 0.5 (green lines). This is con-
sistent with our earlier assertion that these exponents can be expected
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∆u t
n βn τn αn ρn

0 1.03 ± 0.1 1.05 ± 0.1 4.06 ± 0.4 4.09 ± 0.4
1 0.51 ± 0.03

[ 1
2

]
0.51 ± 0.03

[ 1
2

]
2.00 ± 0.1 [2] 1.99 ± 0.1 [2]

2 1.03 ± 0.1 1.02 ± 0.1 4.02 ± 0.4 4.00 ± 0.4
3 0.51 ± 0.05 0.51 ± 0.05 4.00 ± 0.4 3.99 ± 0.4
4 1.0 ± 0.15 1.01 ± 0.15 6.05 ± 0.9 6.00 ± 0.9
5 0.51 ± 0.15 0.52 ± 0.16 6.20 ± 1.9 5.82 ± 1.7

Table 2.1: Post-buckling profile scaling exponents of ∆u and t, for the expansion
of the nominal strain and stress profiles as defined in Eqs. (2.11-2.12). Each
row corresponds to a different order of n and values within the square brackets
represent analytical results as predicted by Euler’s elastica. The error in the
relevant scaling exponents is an estimation which we assign to a combination of
uncertainties: (i) The error in ∆u, which is particularly important for the scaling
near the critical point; (ii) The finite range of ∆u and t over which the scaling
holds is at most 2 decades; (iii) The quantities C̄ntαn and D̄ntαn , necessary to
determine the scaling exponents for t, are obtained by extrapolating Cn and Dn
to ∆u = 1 [Eqs. (2.13)], hence this error propagates when determining the scaling
exponents for t. Taking all effects into account, we estimate an fitting error of
5% for n = 1, 10% for n = 0,2,3, 15% for n = 4 and 30% for n = 5.

to be half-integers, and we will now assume they are. As we will fur-
ther discuss in the following, while the n = 1 term dominates for slender
beams [Fig. 2.6(a)] and corresponds to Euler’s elastica, other orders n 6= 1
become significant for wider beams [Fig. 2.6(b)].

Scaling of the coefficients Cn and Dn with t

The next step is to determine how the post-buckling profile coefficients
Cn and Dn scale with the beam’s aspect ratio t, hence determining the
post-buckling profile exponents αn and ρn.

Fitting protocol — The first step is to refine the fit of Eqs. (2.13) to our
numerical data for Cn and Dn. To do so, we fix the post-buckling profile
exponents βn and τn to their nearest half integer values, which results in
alternating exponents 1 or 1/2: β0 = τ0 = 1, β1 = τ1 = 1/2, β2 = τ2 = 1,
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and so on. This procedure reduces the number of fitting parameters and
thus provides a more accurate measure of the constants log [C̄ntαn ] and
log [D̄ntρn ], where t is held fixed in this fitting procedure. By repeating
this analysis for t in the range [10−2,0.25], we determine the constants
C̄ntαn and D̄ntρn for each t and plot them versus t on a log-log scale in
Fig. 2.6(c). Obviously, the straight lines in Fig. 2.6(c) on the log-log scale
suggest that Cn and Dn show power law behaviour in t as well. Fitting
this data to

log
(∣∣C̄n

∣∣ tαn
)
= log

(∣∣C̄n
∣∣)+ αn log(t), (2.14a)

and

log (|D̄n| tρn) = log (|D̄n|) + ρn log(t), (2.14b)

with t in the range [10−2,10−1]. An overview of the scaling exponents αn
and τn up to order n = 5 is provided in Table 2.1.

Results — We measure identical post-buckling profile exponents for
stress and strain within their error bars: α0 = ρ0 ≈ 4.0 (black lines), α1 =
ρ1 ≈ 2.0 (blue lines), α2 = ρ2 ≈ 4.0 (red lines), α3 = ρ3 ≈ 4.0 (green lines).
Similarly to the exponents of ∆u, we find correspondence for the expo-
nents of t with Euler’s elastica for n = 1, and identical exponents for
stress and strain, i.e., αn = ρn—moreover, all numerical values for the
exponents are consistent with half integers. In the remainder of this
manuscript, we will fix the exponents αn and ρn to their nearest integer
values: α1 = ρ1 = 4, α1 = ρ1 = 2, α2 = ρ2 = 4, and so on.

So far, we have determined the scaling exponents βn, τn, αn and ρn,
but the post-buckling profile prefactors C̄n and D̄n remain to be deter-
mined. In fact, they simply follow from the fit of the data in Fig. 2.6(c) to
Eqs. (2.14). For the most accurate determination of the prefactors, how-
ever, we refine our fit by using the fixed exponents αn and ρn, and sub-
sequently redo the fit. In Table 2.2 a summary of the prefactors C̄n and
D̄n, as well as their ratios are given. Note that for the order n = 1, such
values are in good agreement with those predicted by Euler’s elastica for
clamped-clamped boundary conditions.
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n C̄n D̄n C̄n/D̄n

0 72.0 ± 25 38.3 ± 13 1.88 ± 0.9

1 21.3 ± 3.2
[

4π2√
3
≈ 22.8

]
21.1 ± 3.2

[
4π2√

3
≈ 22.8

]
1.01 ± 0.2 [1]

2 −116 ± 41 −553 ± 194 0.21 ± 0.1
3 320 ± 112 254.9 ± 89 1.26 ± 0.6
4 −6.1 · 103 ± 2.4 · 103 −1.4 · 104 ± 5.6 · 103 0.42 ± 0.2
5 1.1 · 104 ± 5.5 · 103 1.2 · 104 ± 6 · 103 0.99 ± 0.7

Table 2.2: Post-buckling profile prefactors C̄n and D̄n and their ratio, for the
expansion of the nominal strain and stress profiles as defined by Eq. (2.11-2.12).
Each row corresponds to a different order of n and values within the square
brackets represent analytical results, predicted by Euler’s elastica for clamped-
clamped boundary conditions. The errors in the prefactors are an estimation,
similar to the estimate made in Table 2.1. Here, however, the errors are larger
than for the post-buckling profile exponents, because Cn and Dn follow from
extrapolating our data up to t = 1 [Eqs. (2.14)]. Therefore, we estimate an error
of 15% for n = 1, 35% for n = 0,2,3, 40% for n = 4 and 50% for n = 5.

Discussion

We have quantified how the nominal stress and strain profiles arise be-
yond buckling and observed intricate powerlaw scaling with the transver-
sal coordinate x/w, beam width-to-length ratio t and post-buckling strain
∆u:

ε
(

t,∆u,
x
w

)
− εb = ∑

n=0
C̄ntαn ∆uβn

( x
w

)n
, (2.15a)

and

σ− σb

E

(
t,∆u,

x
w

)
= ∑

n=0
D̄ntρn ∆uτn

( x
w

)n
. (2.15b)

Our results in Table 2.1 indeed confirm that stress and strain share
the same exponents in every order n, both in ∆u and t. On the one hand,
the scaling exponents for ∆u of the nominal stress and strain equal 1 for
even n, and 1/2 for odd n. On the other hand, the scaling exponents for t
show that the linear order (n = 1) carries the lowest exponent in t, namely
α1 = τ1 = 2, while the zeroth, quadratic and cubic order (n = 0,2,3) carry
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a scaling exponent in t which equals 4 and the quartic and quintic orders
(n = 4,5) carry a higher scaling exponent in t of 6. We discuss further
below how our results establish in detail the nonlinear corrections of the
stress and strain profiles beyond the Euler limit.

Euler’s limit, O(t2) — The dominant term of the asymptotic expansion
given by Eqs. (2.15) is quadratic in t and corresponds to linear stress
and strain profiles (n = 1, see Table 2.1), whereby the Euler’s limit in-
troduced in section 2.3.2 is recovered. This is further confirmed by the
quantitative agreement between the measured and theoretical values of
the post-buckling profile exponents and prefactors, that is, β1 ≈ τ1 ≈ 1/2,
α1 ≈ ρ1 ≈ 1/2 [30] and C̄1 ≈ D̄1 ≈ 4π2/

√
3. Note that as C̄1/D̄1 ≈ 1, stress

and strain are linearly related for n = 1, which confirms that linear elas-
ticity is a correct approximation within Euler’s limit.

Leading order nonlinear correction, O(t4) — The next contribution to
Eqs. (2.15) is quartic in t and contains the zeroth, quadratic and cubic
corrections in x/w to the stress and strain profiles (n = 0,2,3). A closer
inspection of Table 2.2 reveals that, in contrast to n = 1, the post-buckling
profile prefactors C̄n and D̄n are different. Because a linear constitutive
relation would imply that Eq. (2.15a) and Eq. (2.15b) are equal, hence
would have equal prefactors C̄n and D̄n, such a difference between the
prefactors again evidences a nonlinear relation between stress and strain.

Next orders and convergence of the series expansion, O(t6) — Finally,
we have carried out the fitting procedure up to sixth order in t and find
that it involves the order n = 4 and n = 5 corrections in the stress and
strain profiles. We have checked that for realistic values of beam width-
to-length ratio (t = 0.15), these corrections are of relative magnitude . 2%
and thus can be neglected. Therefore, in the remainder of the analysis we
will neglect the orders n ≥ 4, in other words, assume that the stress and
strain profiles are accurately described by cubic polynomials.

2.4.3 Effective stress-strain law for the axial component

Above we argued that the difference between C̄n and D̄n evidences non-
linearity in the stress-strain relation. In this section we set up the appro-



36 CHAPTER 2. NONLINEAR BEAM MODEL FOR WIDE BEAMS

priate nonlinear stress-strain relation. Because the post-buckling slope
[Eq. (2.2)] is defined in the vicinity of the buckling point, the starting
point is to write a Taylor series for the normal stress around the buckling
strain εb up to quadratic order, which yields

σ = σb +
∂σ

∂ε

∣∣∣∣
ε=εb

(ε− εb) +
1
2

∂2σ

∂ε2

∣∣∣∣
ε=εb

(ε− εb)
2 +O (ε− εb)

3 . (2.16)

Defining the slope of the stress-strain curve at εb as an effective Young’s
modulus Eb, and the nonlinearity η as 1

2

(
∂2σ/∂ε2), Eq. (2.16) can be writ-

ten more compactly as

σ− σb

Eb
= (ε− εb) + η (ε− εb)

2 +O (ε− εb)
3 . (2.17)

We can calculate Eb and η analytically by evaluating the expansion in
Eq. (2.16) using the stress-strain relation for uniaxially compressed neo-
Hookean materials [Eq. (2.10a)]. This yields:

Eb (εb) =
E
3

(
1 +

2

(1 + εb)
3

)
, (2.18a)

and

η (εb) = −
3

2 (1 + εb) + (1 + εb)
4 . (2.18b)

Eqs. (2.18) show that as εb becomes increasingly negative, both the effec-
tive stiffness Eb and the magnitude of nonlinearity parameter η increase.
In particular, we find, by expanding Eqs. (2.18) for small εb, that the lead-
ing order corrections to Eb and η are linear in εb:

Eb/E = 1− 2εb +O
(
ε2

b
)

, (2.19a)

η = −1 + 2εb +O
(
ε2

b
)

. (2.19b)

Furthermore, note that as εb → 0, we retrieve Eb/E = 1 and η = −1,
in agreement with the small strain limit of uniaxally compressed neo-
Hookean materials given by Eq. (2.10b). In the following, we will take the
first order corrections to η and E for finite εb into account. However, we
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will show in section 2.6.2 that these εb corrections are subdominant for
our theoretical prediction of the post-buckling slope.

Our previous expansion of the strain and stress profiles, and our de-
termination of the post-buckling profile prefactors C̄n and D̄n, provide
a self-consistency check on the nonlinearity parameter η, detailed in the
following. Using the scaling expressions given by Eq. (2.15), we can write
the series expansion for the nominal strain, Eq. (2.15a), as:

ε(x)− εb = C̄0t4∆u + C̄1t2∆u
1
2

( x
w

)
+ C̄2t4∆u

( x
w

)2

+ C̄3t4∆u
1
2

( x
w

)3
+O

(( x
w

)4
)

.
(2.20a)

Similarly, we can write the series expansion for the nominal stress [Eq.
(2.15b)] as:

σ(x)− σb

E
= D̄0t4∆u + D̄1t2∆u

1
2

( x
w

)
+ D̄2t4∆u

( x
w

)2

+ D̄3t4∆u
1
2

( x
w

)3
+O

(( x
w

)4
)

.
(2.20b)

Substituting Eq. (2.20a) into Eq. (2.17) and comparing the post-buckling
profile coefficients in each order of x with those of the proposed stress
expansion of Eq. (2.20b), yields the following equalities in lowest order in
∆u and t:

D̄0 = C̄0, (2.21a)
D̄1 = C̄1, (2.21b)

D̄2 = C̄2 + ηC̄2
1 , (2.21c)

D̄3 = C̄3. (2.21d)

The above equalities for the order n = 0,2,3 are consistent with the values
of C̄1 and D̄1 in Table 2.2, within error bars, thus showing consistency
with Eq. (2.17). Furthermore, the equality for n = 2, Eq. (2.21c), provides
us with the following relation between Cn, Dn and η:

η =
D2 − C2

C2
1

, (2.22)
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from which we then estimate, using Table 2.2, that η≈−1.0± 0.6. Though
the deformations are not homogeneous in a buckled beam, we thus find
that this indirect determination of η is consistent with the expected non-
linearity parameter for homogeneous uniaxial compression of neo-Hook-
ean materials, raising further hope that our expansion scheme is consis-
tent and correct.

2.4.4 Series expansion of the nominal shear stress and strain

As we had seen earlier (Fig. 2.4), shear effects become substantial for wide
beams—the nominal shear and compressive strains have the same mag-
nitude for a beam of t = 0.1. In this section we therefore analyse in detail
how the nominal shear strain and stress profiles evolve with (i) the beam’s
width-to-length ratio t, and (ii) the post-buckling displacement, ∆u. We
find that the nominal shear strain and stress profile evolve similarly with
∆u and t, which implies a linear stress-strain relation for the shear.

We consider the shear profile at an inflection point of the beam (x, s =
`/4), where the shear is maximal [see Fig. 2.4(c)]. We consider then the
profiles γ(x) ≡ εxz(x, s = `/4) and τ(x) ≡ σxz(x, s = `/4) to measure the
spatial shape of the nominal strain and stress as a function of the scaled
transverse coordinate x/w.

Polynomial expansion and asymptotic analysis

Following a similar series expansion as in Eqs. (2.11-2.12), we expand the
nominal shear strain and stress profiles as:

γ
(

t,∆u,
x
w

)
= ∑

n=0
Jn (t,∆u)

( x
w

)n
, (2.23a)

and

τ

G

(
t,∆u,

x
w

)
= ∑

n=0
Kn (t,∆u)

( x
w

)n
, (2.23b)

where Jn and Kn are the post-buckling profile coefficients of the expan-
sion at order n. Note that prior to buckling, the beam simply undergoes
uniform uniaxial compression and has not developed any curvature yet.
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Figure 2.7: Dependence of the spatial nominal shear strain and stress profiles on
∆u and t, obtained by FEM simulations. In black, blue and green we have plot-
ted the post-buckling profile coefficients Jn (solid lines) and Kn (dashed lines),
corresponding to order n = 0, n = 1 and n = 2 respectively. (a-b) We have plotted
|Jn| and |Kn| as function of ∆u for (a) a slender beam (t = 0.02) and (b) a thick
beam (t = 0.15). (c) Dependence of Jn and Kn on the beam’s aspect ratio t.

Therefore, unlike the uniaxial nominal strain and stress which are con-
stant across the beam in the prebuckling regime, the shear stress and
strain are strictly zero for ∆u ≤ 0.

Similarly to the post-buckling profile coefficients Cn and Dn [Eqs.
(2.12)], we use that Jn = Kn = 0 at buckling, and we assume that the
post-buckling profile coefficients Jn and Kn grow as power laws in t and
∆u in the post-buckling regime:

Jn (t,∆u) = J̄ntξn ∆uΞn , (2.24a)

and

Kn (t,∆u) = K̄ntυn ∆uΥn . (2.24b)

Here, ξn, Ξn, υn and Υn are the post-buckling profile scaling exponents,
and J̄n and K̄n are the post-buckling profile prefactors which are yet to be
determined from numerical simulations.

To determine all the constants, we use the same set of N = 102 FEM
simulations as before, from which we now extract the spatial shape of the
nominal shear stress and strain as function of x/w along a cross section at
one quarter of the beam, s = `/4, and fit γ(x) and τ(x)/G to polynomials
of order n = 3. From the resulting fits we then obtain the post-buckling
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∆u t
n Ξn Υn ξn υn

0 0.49 ± 0.02 0.49 ± 0.02 3.02 ± 0.15 3.01 ± 0.15
1 1.03 ± 0.05 1.06 ± 0.05 3.98 ± 0.20 3.98 ± 0.20
2 0.50 ± 0.03 0.50 ± 0.03 3.02 ± 0.15 3.01 ± 0.15
3 1.02 ± 0.26 0.93 ± 0.23 5.93 ± 1.48 5.70 ± 1.43

Table 2.3: Post-buckling profile scaling exponents of ∆u and t, for the expansion
of the nominal shear strain and stress profiles as defined by Eqs. (2.23-2.24). Each
row corresponds to a different order of n and results are provided up to cubic
order (n = 3). We estimate the errors using the same arguments as in Table 2.1,
and estimate an error of 5% for n ≤ 2 and 25% for n = 3.

profile coefficients Jn and Kn for a specific set of parameter values t and
∆u. From these quantities we subsequently deduce the post-buckling
profile scaling exponents and prefactors up to order n = 3.

Fitting protocol — In Fig. 2.7 we plot |Jn| (solid lines) and |Kn| (dashed
lines) as function of ∆u and t, from which we observe power law be-
haviour in ∆u and t. To determine the post-buckling profile scaling ex-
ponents and prefactors we perform the same fitting procedure as in the
previous section and provide the results in Tables (2.3-2.4), up to n = 3.
Note that Fig. 2.7 shows results up to n = 2 for clarity.

Results — First, note from Fig. 2.7 that the curves for the shear stress
and strain coincide. Similarly, J̄n/K̄n ≈ 1, and we conclude that a lin-
ear relation governs the leading order relation between nominal shear
stress and strain. Second, we find that the post-buckling profile scaling
exponents for ∆u equal 1 for even n, and 1/2 for odd n which is pre-
cisely opposite to the situation for the uniaxial nominal stress and strain
exponents. Third, the scaling exponents for t show that the zeroth and
quadratic order (n = 0,2) together carry the lowest exponent in t, namely
ξ0 = ξ2 = υ0 = υ2 = 3, followed by the linear order (n = 1) which scales
as t4, and the cubic order (n = 3) which scales as t6.
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n J̄n K̄n J̄n/K̄n

0 −18.9 ± 1.9 −18.8 ± 1.9 1.0 ± 0.14
1 −45.3 ± 4.5 −45.3 ± 4.5 1.0 ± 0.14
2 205.9 ± 20.6 204.3 ± 20.4 1.0 ± 0.14
3 −4.4 · 103 ± 1.8 · 103 −3.7 · 103 ± 1.5 · 103 1.2 ± 0.68

Table 2.4: Post-buckling profile prefactors J̄n and K̄n and their ratio, for the
expansion of the nominal shear strain and stress profiles as defined by Eqs. (2.23-
2.24). Each row corresponds to a different order of n and results are provided
up to cubic order (n = 3). Using the same arguments as in Table 2.2 we estimate
an error of 10% for n ≤ 2 and 40% for n = 3.

Discussion

We have quantified how the nominal shear stress and strain profiles
arise beyond buckling and observed intricate powerlaw scaling with the
transversal coordinate x/w, beam width-to-length ratio t and post-buck-
ling strain ∆u:

γ
(

t,∆u,
x
w

)
= ∑

n=0
J̄ntξn ∆uΞn

( x
w

)n
, (2.25a)

and

τ

G

(
t,∆u,

x
w

)
= ∑

n=0
K̄ntυn ∆uΥn

( x
w

)n
. (2.25b)

First, we observe that the post-buckling profile exponents and prefactors
of the expansions given by Eqs. (2.25) are equal (Table 2.4). Therefore, the
nominal shear strain and stress are linearly related, hence we can assume

τ(x) = Gγ(x), (2.26)

which is the result as predicted by [52] in the case of simple shear for
neo-Hookean materials. We will use this linear constitutive equation for
the shear in the remainder of this chapter.

Upon further inspection of the exponents in Table 2.4 we notice that
the zeroth and quadratic order (∼ t3) are dominant at small t. The linear
order (∼ t4) then serves as a first order correction to the shear profile,
while the cubic order (∼ t6) represents a higher order correction.
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Timoshenko’s limit, O(t3) — The dominant terms within the expan-
sions given by Eqs. (2.25) encompass both the polynomial order n = 0 and
n = 2, which show the same scaling with t and ∆u. The quadratic (n = 2)
contribution to the nominal shear strain and stress is the strongest (Table
4). As a matter of fact, such a quadratic shear profile is in agreement with
the textbook approach for the bending of linear elastic bars [100]. We will
show later that this agreement is also quantitative.

Higher order corrections O(t4) and convergence — The next contribu-
tion to Eqs. (2.25) is quartic in t and contains the linear correction to the
shear stress and strain profiles (n = 1). We will take this term into account
throughout the remainder of this manuscript. Lastly, to ensure the con-
vergence of the asymptotic approach, we also carried out the expansion
up to sixth order in t, and showed that it results in a cubic, negligible cor-
rection to the shear stress and strain profiles — for a beam with t = 0.15
and an ∆u = 0.1, its relative magnitude is . 1%.

In conclusion, we have developed a systematic expansion of the stress
and strain profiles that allow us to capture the leading order effect of finite
beam width for the post-buckling regime. This expansion involves terms
of the form tp∆uq(x/w)n, and we use our FEM simulations to determine
the exponents p and q for the uniaxial and shear components of the strain
and stress at each power n. This procedure circumvents the need for
heuristics to guess the important terms, and leads to a greatly simplified
model where the dominant next order terms in t are properly taken into
account.

2.5 Energy density including material nonlinearity

In this section, we construct the 1D energy density which includes mate-
rial nonlinearities, which come in two flavours. We first present the sim-
plest version of the energy density, which has zero free parameters and
does not need numerical input, and which is based on the combination of
stress-strain nonlinearity and Mindlin-Reissner strains. The second ver-
sion of the model takes corrections to the Mindlin-Reissner strains, such
as Timoshenko’s shear correction factor, into account, and it is this version
that needs numerical input. Finally, this section ends with a discussion
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of the physical interpretation of these corrections and a clear overview of
the dominant next order terms in t and ∆u to the energy density.

We start by expressing the total increase of the elastic energy beyond
buckling. This increase follows from an integral of the respective prod-
ucts of stress and strain, integrated over the surface area of the beam, that
is,

E/d =
∫

ds dx
(∫ εxx

0
dε′xxσxx +

∫ εyy

0
dε′yyσyy +

∫ εzz

εb

dε′zzσzz

+
∫ εxy

0
dε′xyσxy +

∫ εyz

0
dε′yzσyz +

∫ εxz

0
dε′xzσxz

)
.

(2.27)

Even though we consider 2D beams, we keep a factor d (the depth) here to
facilitate comparison to 3D beam results. For 2D beams, the ‘yy’, ‘xy’ and
‘yz’ contributions are zero. Moreover, since the beam can freely expand
along the x direction without any barrelling effects near the boundaries,
we expect that σxx ≈ 0 at each point of the beam, which we have verified
numerically. As a result, we are left with the ‘zz’ and ‘xz’ terms, which
correspond to the uniaxial and shear deformations, respectively.

Our aim is to set up an energy functional using the Mind-lin-Reissner
strains — 1D fields describing the shape of the beam along the curvilinear
coordinate s. Therefore we define a linear energy density ε(s) as follows:

E =
∫ `

0
ds ε(s), (2.28a)

where

ε(s)
d

=
∫ w

2

− w
2

dx
∫ εzz(x)

εb

σ
(
ε′zz
)

dε′zz +
∫ w

2

− w
2

dx
∫ γ(x)

εb

τ
(
γ′
)

dγ′. (2.28b)

Here, ε(s) represents the linear energy density that captures the amount
of energy in a cross sectional area of the beam per unit length of the
curvilinear coordinate s.

2.5.1 1D energy density without distortions

Here we present the energy density constructed from the Mindlin-Reissner
strains without additional distortions. In that case, the nominal axial
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and shear strain profiles across the beam equal εzz(x) = εb + ε0 + ε1x and
εxz(x) = γ0. We then evaluate the energy density in Eq. (2.28b) using
these strain profiles in combination with the nonlinear axial stress-strain
relation given by Eq. (2.17) and the linear shear stress-strain relation given
by Eq. (2.26), and find that

ε

Eb
= Aεb ε0 +

1
2

Aε2
0 + I

(
1
2
+ η ε0

)
ε2

1 +
GA
2Eb

γ2
0. (2.29)

As can be seen from the above expression, the nonlinearity η introduces
a coupling between the compressive strain ε0 and the bending strain ε1,
and such coupling is absent in previous, linear, beam models [42, 43].
The energy density given by Eq. (2.29) forms the basis of our nonlinear
beam model we will derive in section 2.6, and, as mentioned above, this
energy density has zero free parameters and therefore does not rely on
numerical input.

2.5.2 1D energy density including distortions

We now present the energy density comprising distortions from the Mind-
lin-Reissner strains and built with the aid of numerical results. To this
end, we substitute the respective stress-strain relations [Eq. (2.17) and
Eq. (2.26)] in Eq. (2.28b) and carry out the integration with respect to the
nominal strains εzz and γ. Second, we integrate with respect to x by using
the expansions of the uniaxial and shear strain profiles up to cubic order
[Eq. (2.15a) and Eq. (2.25a)]. This yields:
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(2.30)

We have now carefully established the beam’s energy density up to sec-
ond order in excess strain and eighth order in the beam’s width-to-length
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ratio, O
(
∆u2t8). The above analysis identifies and quantifies precisely

how nonlinearity in the stress-strain laws and distortions to the Mindlin-
Reissner kinematics alter the 1D energy density formulation. While the
order O

(
∆ut4) corresponds exactly to Euler’s elastica, the order O

(
∆ut6)

comprises the classical Timoshenko beam contribution as well as distor-
tions from the linear bending profile. The order O

(
∆u2t8) contains the

nonlinearity η as well as further distortions for bending and shear.
After a few manipulations which we explain hereafter, it can be shown

that Eq. (2.30) can be converted in terms of the Mindlin-Reissner strains
as:

ε
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2
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(
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2

ζ1(t) + η ε0

)
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0
(
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0
)

,
(2.31a)

where the coefficients ζ1(t) and ζ2(η) are given by

ζ1(t) = 1 + 2
(
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t4, (2.31b)
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)
, (2.31c)

and where k1 and k2 are given by

k1 = 1 +
1
6

J̄2

J̄0
+

1
80

(
J̄2

J̄0

)2

, (2.31d)

and

k2(t) =
1
12

J̄2
1

J̄4
0

t−4. (2.31e)

To obtain the above results we have used the fact that there is a clear
pattern in the scaling exponents of the higher order corrections of the
uniaxial and shear strain profiles with the excess displacement ∆u, which
alternate between 1/2 or 1 (see Tables 2.1 and 2.3). Consequently, we can
factorize the ∆u dependence and express the higher order corrections in
terms of the Mindlin-Reissner strains. For example, the quadratic post-
buckling profile coefficient of the axial strain profile, C2 = C̄2∆u t4, can be
expressed in terms of ε0 ≡ C0 = C̄0∆u t4 as C2 = (C̄2/C̄0) ε0.
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2.5.3 Discussion

Here we discuss the physical interpretation of the corrections to the Mind-
lin-Reissner strains, and provide a clear overview of the dominant next
order terms in t and ∆u to the energy density.

Shear correction factors— Using Table 2.4, k1 and k2 can be evaluated
as k1 = 0.67 ± 0.15 and k2(t) ≈ 0.0013 t−4. The constant k1 is formally
known as Timoshenko’s shear correction factor and our numerical value
is in agreement with the value known in literature for beams with a rect-
angular cross section [102–104]. The shear correction factor accounts for
the strongly quadratic, rather than uniform, shape of the shear profile
across the beam [100]. This strong quadratic shape is also directly re-
flected by the data shown in Fig. 2.7, where the quadratic component is
dominant over the zeroth and linear order component.

The quantity k2(t) corrects for the linear component of the shear strain
profile and represents a higher order correction to the shear profile. Note
that even though k2(t) is singular for t→ 0, k2(t) appears only within the
product k2γ4

0 in Eq. (2.31a) (with γ0 ∼ t4), such that the product k2γ4
0 is

regularized for t→ 0.

Bending correction factors— Using Table 2.2, ζ1(t) and ζ2(η) can be
evaluated as ζ1(t) ≈ 1 + 6

(
t2 + t4) and ζ2(η) ≈ 0.8− 0.15η. These quan-

tities, which we refer to as bending corrections factors, describe the dis-
tortion of the linear strain profile, and thus take an analogous role as the
shear correction factors described above, yet for bending. The mapping
of energy contributions that arise from distortions of the linear strain pro-
file onto the Mindlin-Reissner strains is one of the crucial aspects of this
section.

Summary— We summarize our findings in Table 2.5: This clear analysis
of the leading order terms and their relation to Timoshenko (O(∆u t6))
and Mindlin-Reissner (O(∆u2 t8)) beam formulations is one of the key
results of this work.
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Model Euler’s
Elastica

Timoshenko w/
bending correction

This work

Order O(∆u t4) O(∆u t6) O(∆u2 t8)

Terms 1/2 Iε2
1

1/2 I (ζ1(t)− 1− ζ ′1(t)) ε2
1

+ Aεbε0 + 1/2 GAk1γ2
0/Eb

I (ηε0 + 1/2 I ζ ′1(t)) ε2
1

+ 1/2 Aζ2(η)ε2
0

+ 1/2 GAk2γ4
0/Eb

Table 2.5: Summary of the leading order terms in the expression of the (rescaled)
linear energy density ε/Eb, extracted from Eqs. (2.30-2.31). We have defined

ζ ′1(t) ≡ 3
112

(
C̄3
C̄1

)2
t4 for convenience. While we recover exactly Euler’s elastica

at the order O(∆u t4), our results suggest that Timoshenko’s approximation re-
quires a correction from the nonlinear bending profile at order O(∆u t6). More-
over, this demonstrates that our work encompasses a higher order correction for
the shear and a nonlinear correction for the stress-strain nonlinearity.

2.6 1D nonlinear beam model

In this section we formulate a 1D nonlinear model to describe the post-
buckling of wide beams. Our model assumes (i) that the kinematics of
the 1D model are captured by the Mindlin-Reissner strains, namely axial
strain, curvature and shear [41]; (ii) that axial stress and strain are related
nonlinearly. Based on these assumptions, we derive an expression for the
1D energy density as well as the governing equations for the mechani-
cal equilibrium of wide beams. We then analytically solve the govern-
ing equations and find excellent agreement with 2D simulations for the
post-buckling behaviour, without any adjustable parameters. Finally, we
refine our beam model using extensive 2D simulations and show that dis-
tortions from Mindlin-Reissner kinematics have a negligible effect on the
predictions by the model.

2.6.1 Mindlin-Reissner beam with a nonlinear stress-strain re-
lation

Mindlin-Reissner kinematics describe beams that can be compressed, bent
and sheared. These three deformation modes are quantified by a com-
pressive ε̃0(s), curvature ε1(s) ≡ θs(s) and shear strain γ0(s), as function
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of the curvilinear coordinate s along the beam’s central axis, with θ the
deflection angle of the beam’s axis with respect to the vertical. Therefore
the total elastic energy of these beams is a functional of the form

E [ε̃0(s),θ(s), ε1(s),γ0(s)] =
∫ `

0
ds ε [s, ε̃0(s),θ(s), ε1(s),γ0(s)] , (2.32)

where the 1D energy density of the beam ε [s, ε̃0(s),θ(s), ε1(s),γ0(s)] ex-
clusively depends on these strains.

The second key assumption is that stress and strain are related nonlin-
early. To describe the vicinity of post-buckling, we set up an expansion of
the nominal stress σ around the buckling strain εb up to quadratic order.
This expansion, as derived already in section 2.4.3, yields

σ− σb

Eb
= (ε− εb) + η (ε− εb)

2 +O (ε− εb)
3 , (2.17)

where Eb and σb are the effective Young’s modulus and nominal stress
at buckling. In the case of neo-Hookean materials under plane stress
conditions, the coefficients of this expansion can be determined analyt-
ically and read η = −1 + O (εb) and Eb = E + O (εb) (see section 2.4.3
for a demonstration). In the case of plane strain conditions, not consid-
ered here, it can be shown that η = −3/2 +O (εb) (see appendix 2.B.2).
The nonlinearity of the above stress-strain relation stems from the combi-
nation of large deformations and incompressibility and can qualitatively
be understood from the fact that upon compression (tension) the cross-
sectional area increases (decreases) and the stress-strain curve is therefore
effectively stiffening (softening). In addition, we assume a linear relation
between the nominal shear stress τ and shear strain γ, τ = Gγ in agree-
ment with the elasticity of neo-Hookean materials [52].

Based on these two assumptions, we find that the 1D energy density
describing post-buckling reads (see section 2.5):

ε [ε0(s), ε1(s),γ0(s)] =Eb A εb ε0 +
1
2

Eb Aε2
0

+ Eb I
(

1
2
+ η ε0

)
ε2

1

+
GA

2
γ2

0,

(2.33)
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with ε0(s) = ε̃0(s)− εb, A = wd (the cross-sectional area) and G is the shear
modulus. Note that the nonlinear correction proportional to η introduces
a coupling between the compressive and bending strain, given by ε0ε2

1,
and such coupling is absent in previous linear beam models [42, 43].

To establish the governing beam equations, the total elastic energy E
has to be minimized under the geometrical constraint set by the boundary
conditions. In the case of Euler buckling, a uniaxial displacement is ap-
plied along the vertical axis of the beam and is associated to the following
geometrical constraint:

Π = F
(

u−
(
`−

∫ `

0
ds ((1 + εb + ε0)cosθ − γ0 sinθ)

))
, (2.34)

where F is the Lagrange parameter associated with the axial displacement
u that corresponds to the external axial force applied on the beam. We
use the fact that ε1 ≡ θs to apply the Euler-Lagrange formulation [105] on
the energy functional including the constraint:

Ẽ [ε0(s),θ(s), ε1(s),γ0(s)] =
∫ `

0
ds ε−Π, (2.35)

which yields the governing equations of the beam:

Eb Iθss + F{(1 + εb + ε0)sinθ + γ0 cosθ}+ 2ηEb I (θsε0)s = 0, (2.36a)

F cosθ + Eb A (εb + ε0) + ηEb Iθ2
s = 0, (2.36b)

GAγ0 − F sinθ = 0. (2.36c)

This set of three coupled equations determine the beam’s central axis in
the post-buckling regime of wide beams. We will refer to this set of equa-
tions as the 1D nonlinear beam model, since it includes the nonlinearity
η.

Please note that in the limit of linear materials (η = 0 and Eb = E),
Eqs. (2.36) correspond to the equations for a shearable and extensible
beam derived by [43]. If additionally the beam is assumed non-shearable,
γ0(s) = 0 and Eq. (2.36c) drops out, leaving us with a simpler model
derived by [42]. Finally, for inextensible beams ε0(s) = εb = 0, Eq. (2.36b)
drops out, and we recover Euler’s elastica EIθss + F sinθ = 0 [24]. Our
beam model thus correctly captures all these linear models.



50 CHAPTER 2. NONLINEAR BEAM MODEL FOR WIDE BEAMS

2.6.2 Solutions to the 1D nonlinear beam model

In this section we solve the 1D nonlinear beam model given by Eqs. (2.36)
and show that the post-buckling slope is dramatically changed and the
compressive Mindlin-Reissner strain significantly improved, when incor-
porating a nonlinearity η.

Dimensionless form

The results below will be presented in dimensionless form and we intro-
duce the following dimensionless quantities:

s̄ =
s
`

; F̄ =
F`2

Eb I
; Λ−2 =

I
A`2 . (2.37)

The quantities s̄ and F̄ represent the dimensionless curvilinear coordinate
and force respectively, and Λ∼ `/w can be recognized as the slenderness
ratio [30]. Using the dimensionless quantities, the set of scaled beam
equations that follows from Eqs. (2.36) reads:

θs̄s̄ + F̄{(1 + εb + ε0)sinθ + γ0 cosθ}+ 2η(θs̄ ε0)s̄ = 0, (2.38a)

ε0 = −
(

F̄Λ−2 cosθ + ηΛ−2θ2
s̄ − εb

)
, (2.38b)

γ0 = F̄Λ−2 Eb

G
sin(θ). (2.38c)

In the remainder of this chapter we drop the over-bars, unless if noted
otherwise. For convenience, we additionally define:

r ≡ Eb

G
= 2 (1 + ν) +O (εb(t)) , (2.39)

where ν is the Poisson’s ratio.
In Eqs. (2.38) we use Euler’s prediction for εb that accurately describes

the onset of buckling, even for wide beams [Fig. 2.2(a)]. Furthermore, all
the parameters Eb, r and η can be determined theoretically to leading
order in the beam width-to-length ratio t. In what follows we use these
predictions as input parameters and solve Eqs. (2.38) to obtain a closed-
form expression for the post-buckling slope as function of and to leading
order in t.
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Closed-form expression for the post-buckling slope as a function of t.

Here we derive our main result, namely the post-buckling slope as a func-
tion of beam width-to-length ratio t. In deriving the post-buckling slope,
we are interested only in the mechanical response of the beam infinites-
imally beyond buckling. Therefore, we only need to solve Eqs. (2.38)
for small (θ(s)� 1), yet nonlinear beam deflections. As a first step, we
expand the governing beam equations up to the cubic order in θ, and
substitute Eqs. (2.38b-2.38c) into Eq. (2.38a) to obtain:

0 = θss

(
1− 2η

(
FΛ−2 + εb

)
− 6θ2

s Λ−2η2
)
+ θ

(
F + (r− 1)F2Λ−2

)

− θ3
(

1
6

F +
2
3
(r− 1)F2Λ−2

)
+ θ5

(
1

12
F2Λ−2 (r− 1)

)

+

(
θ2θss + θθ2

s +
1
6

θ3θ2
s

)
FΛ−2η.

(2.40)

We now solve this expanded equation using a perturbative expansion that
is consistent with the symmetry of Eq. (2.40), which only contains odd
powers in θ, and that matches the imposed clamped-clamped boundary
conditions, θ(0) = θ(1) = 0:

θ(s) = αsin2πs + βsin6πs. (2.41)

Here, α and β physically correspond to the maximum deflection angle of
the first and third harmonic of the Fourier series which describe the beam
shape θ(s). To see how α and β are coupled, we substitute the perturba-
tive expansion for θ(s) in Eq. (2.40). By collecting all terms proportional
to sin(6πs), and setting the sum of their coefficients to zero, we found
that β is coupled to a higher power of α, specifically β ∼ α3. Therefore,
since α� 1, β� α, and in the following we set β = 0.

Under the assumption β = 0, Eq. (2.40) leads to an explicit equation re-
lating the force F to the deflection α. Expanding F(α) for small deflection
α, yields the shape of the pitchfork bifurcation [106]:

F (α,Λ,η,r) = Fc + κα2 +O(α4), (2.42)

where κ is the curvature of the pitchfork. To connect this excess force to
the axial displacement u, we establish the relation between the deflection
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Figure 2.8: Post-buckling slope S as function of the beam width-to-length ratio
t, for five different models. In the Euler limit S = 1/2, while in 2D simulations
(open circles) S varies with t. Solutions to our model, given by Eq. (2.44), are
shown for η = 0 (dashed blue) and η =−1 (solid red). Finally, we also show data
for an extension of our model discussed in section 2.6.3 (dash-dotted red). (a-b)
Panel (a) shows a close-up for 0 < t < 0.10 and panel (b) shows a wider range of
width-to-length ratio (0 < t < 0.25). The shaded region indicates the cross-over
to subcritical buckling (S < 0) for the 2D simulations.

angle α and the axial displacement using the geometrical relation

u/` = 1−
∫ 1

0
ds{(1 + εb + ε0)cosθ − γ0 sinθ} , (2.43)

which upon small deflections, can be expanded to obtain the desired
relation u(α, F,Λ,η,r). We then invert this relation to α(u, F,Λ,η,r) and
substitute it in Eq. (2.42), resulting in an equation that needs to be solved
for F(u,Λ,η,r). The final step is then to expand the solution for F in the
limit u→ u+

c , which leads to an equation of the form as in Eq. (2.2), with
the post-buckling slope S equal to:

S =
1
2
−
(

1
12

+ 2η2
)

π2 t2 +O(t4). (2.44)

This result confirms that Euler’s elastica prediction (S = 1/2) is recov-
ered in the limit of slender beams (t→ 0) and shows that the leading
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order correction to the post-buckling slope S is quadratic in t. Notice
that such correction comprises the stress-strain nonlinearity η. Does this
correction bring an improvement for the prediction of the post-buckling
slope? To check this, we compare the value of the post-buckling slope S
obtained from 2D simulations to the prediction of Eq. (2.44), where the
value of η is independently determined using the neo-Hookean model
under the simplifying assumption that the neo-Hookan material is uni-
axially compressed (see section 2.4.3). The comparison shown in Fig. 2.8
shows excellent agreement between the simulations and our prediction
in Eq. (2.44), namely the quadratic correction matches the data very well
for small t and remains accurate up to t ≈ 0.1 [Fig. 2.8(a)]. Although we
should not expect our prediction to be accurate for wider beams, it re-
mains in qualitatively agreement with the simulations and succeeds in
predicting subcritical buckling at a critical width-to-length ratio t ≈ 0.15
[Fig. 2.8(b)].

Beyond the success of our asymptotic approach, a closer inspection of
the quadratic correction to the post-buckling slope S [Eq. (2.44)] allows
us to infer three important conclusions. First, the quadratic correction
is independent of the ratio of moduli r, given by Eq. (2.39). Since r sets
the magnitude of shear deformations with respect to uniaxial compres-
sion, we conclude that shear is subdominant in the lowest order terms
of S(t). Second, the coefficient of the quadratic correction is quadratic
in η [Eq. (2.44)], suggesting the sign of the nonlinearity does not play
a role. This finding is consistent with earlier simulations and experi-
ments on metabeams characterized by a positive nonlinearity (η > 0) [40],
which similar to plain neo-Hookean beams (η < 0) were found to dis-
play a decreasing post-buckling slope as function of beam width. Third,
the coefficient of the quadratic correction confirms our initial hypothesis
that the stress-strain nonlinearity is the crucial ingredient to capture S(t)
correctly: The magnitude of this coefficient is entirely determined by the
nonlinearity parameter η. In the absence of η the magnitude of the coef-
ficient is much smaller, and S(t) would be only weakly decreasing with
t (see Fig. 2.8). We thus conclude that the nonlinearity η ensures that
our theoretical prediction in Eq. (2.44) is able to capture the subcritical
buckling at realistic aspect ratios, in contrast to earlier linear theories [41–
43].
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Figure 2.9: Mindlin-Reissner strains as a function of s, for four different models.
We consider a wide (t = 0.1) beam which is compressed to an axial displacement
of u/uc = 1.06. We show results for 2D simulations (solid black), and compare
them to numerical solutions to our beam model in Eqs. (2.38) for η = 0 (dashed
blue) and η = −1 (solid red). Finally, we also show numerical solutions to an
extension of our beam model in Eqs. (2.48) discussed in section 2.6.3 (dash-
dotted red). (a-c) We have respectively plotted the compressive, bending and
shear Mindlin-Reissner strain along the beam.

Mindlin-Reissner strains in the nonlinear beam model

We will now illustrate that the prediction for the compressive Mindlin-
Reissner strain ε0(s) is significantly improved by the nonlinearity η. In
Fig. 2.9(a-c) we plot the compressive, bending and shear Mindlin-Reissner
strain for the 2D simulations and the beam model in Eqs. (2.38). First,
panel (a) shows a significant qualitative difference in the Mindlin-Reissner
strain ε0(s) between the linear and nonlinear beam model. In contrast to
the linear beam model, the nonlinear beam model is in good qualitative
agreement with the FEM simulations and the prefactors of the sinusoidal
modulations all carry the same sign, albeit with a slightly smaller am-
plitude. This confirms our earlier assertion that the nonlinearity η is
the crucial factor to capture correctly the large deformations of wide neo-
Hookean beams. Finally, panel (b) and (c) show that the Mindlin-Reissner
strains ε1(s) and γ0(s) remain essentially unchanged due to the nonlin-
earity and the model shows excellent agreement with the 2D simulations.
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2.6.3 Distortions from Mindlin-Reissner kinematics with non-
linear stress-strain relation

The previous derivation of the 1D nonlinear beam model in Eqs. (2.38)
is simple and directly follows from the use of two basic assumptions. In
particular, using Mindlin-Reissner kinematics is a customary yet not con-
trolled assumption. In this section, we investigate the validity of such a
choice by using extensive numerical simulations and demonstrate that
distortions from the Mindlin-Reissner kinematics systematically occur,
modifying the 1D energy density and governing equations, albeit with
a subdominant effect.

To explore deviations from Mindlin-Reissner strains, we have system-
atically investigated the stress and strain profiles in section 2.4. In partic-
ular, we find that the axial strain profile at the centre of the beam takes
the form

ε(x) = ε̃0 + ε1x + ε2x2 + ε3x3 + · · · , (2.45)

where x ∈ [−w
2 , w

2 ] is the transverse coordinate across the beam width.
Furthermore, ε̃0 = εb + ε0 and ε1 are Mindlin-Reissner strains introduced
in section 2.3, and ε i (with i ≥ 2) correspond to distortions from a lin-
ear axial strain profile. In section 2.4 we have also performed a similar
systematic analysis for the shear profile.

Based on the extensive simulations and thorough asymptotic analysis
procedure in sections (2.4-2.5), we found that the 1D energy density takes
the form:

ε [ε0(s), ε1(s),γ0(s)] =Eb A εb ε0 +
1
2

Eb A (1 + ζ2(η)) ε2
0

+ Eb I
(

1
2
(1 + ζ1(t)) + η ε0

)
ε2

1

+
GA

2
γ2

0
(
k1 + k2γ2

0
)

,

(2.46)

where the coefficients Eb, η, ζ1(t), ζ2(η), G, k1 and k2 can be determined
numerically. Note that in the limit when ζ1,ζ2 and k2 are zero, we re-
cover Eq. (2.33). Eq. (2.46) is very similar to Eq. (2.33) and the numerical
values of the coefficients Eb, η, and G match the values that come from
the neo-Hookean material model [52] (see section 2.4). In addition we see
that the differences associated to distortions from the Mindlin-Reissner
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kinematics can be captured by the coefficients ζ1(t), ζ2(η), k1 and k2.
While k1 = 0.67± 0.15 is a classical coefficient known as the shear correc-
tion factor [100, 102] whose value quantitatively matches Timoshenko’s
prediction [103, 104], ζ1(t), ζ2(η), and k2 are undocumented and corre-
spond to higher order distortions of the strain profiles. They have been
determined in section 2.4 as:

ζ1 (t) = 6
(

t2 + t4
)

, (2.47a)

ζ2 (η) = −0.2− 0.15η, (2.47b)

k2 (t) = 0.0013t−4. (2.47c)

Note that even though k2(t) is singular for t→ 0, γ0 scales as t4, such
that the product k2γ4

0 that arises in Eq. (2.46) is regularized for t→ 0.
Nonetheless, we see that the distortions in Eqs. (2.47) introduce minor
modifications to the prefactors in Eq. (2.46) and in what follows we show
that they do not play a major role in the model.

We now carry out the same Euler-Lagrange approach as previously
and find the refined governing equations:

ζ1(t)Eb Iθss + F{(1 + εb + ε0)sinθ + γ0 cosθ}+ 2ηEb I (θsε0)s = 0, (2.48a)

F cosθ + Eb A (εb + ζ2(η)ε0) + ηEb Iθ2
s = 0, (2.48b)

GAγ0
(
k1 + 2k2γ2

0
)
− F sinθ = 0. (2.48c)

This set of equations is the equivalent of the previously established beam
equations [Eqs. (2.38)] and has been determined through a well defined
and rigorous set of assumptions. Unfortunately, the coefficients ζ1(t),
ζ2(η) and k2 have to be determined numerically. Following the procedure
in section 2.6.2 we linearise and solve Eqs. (2.48) and find that

S =
1
2
+

(
−3 + 2 (1 + ζ2(η))− 24η2)π2

12 (1 + ζ2(η))
t2 +O(t4), (2.49)

which reduces to Eq. (2.44) by setting ζ2 = 1. We have plotted Eq. (2.49)
in Fig. 2.8 and see that the corrections ζ1,ζ2 and k2 result in a minor im-
provement to the post-buckling prediction for S. Finally, we numerically
solved Eqs. (2.48) to obtain the Mindlin-Reissner strains and plotted the
result for η =−1 in Fig. 2.9. Again, we find that the corrections result in a
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minor improvement to the post-buckling prediction, now for the Mindlin-
Reissner strains. Altogether, this illustrates that the corrections ζ1,ζ2 and
k2 have a subdominant contribution to the post-buckling behaviour.

2.7 Conclusions and discussion

We have presented a thorough investigation of the post-buckling of non-
linear elastic beams, using experiments, finite element simulations and
theory. In particular we have focussed on subcritical buckling, where, for
neo-Hookean beams, the slope of the force-displacement curve becomes
negative beyond buckling when the beam width-to-length ratio exceeds
12%. The main result of this chapter is a 1D nonlinear beam model that
includes a material nonlinearity η. We constructed the model by build-
ing the beam’s energy density using Mindlin-Reissner kinematics with a
nonlinearity in the stress-strain relation, and demonstrated that this non-
linearity is crucial to accurately capture the post-buckling behaviour of
wide beams and in particular to predict subcritical buckling. In contrast
with previous works that have reported a significant effect of the ratio
E/G on the flexure response [80] and the critical buckling force [43] of
extensible and shearable beams, we found that E/G has a subdominant
effect on the post-buckling slope.

Though our model has been established in the case of neo-Hookean
material nonlinearity (η < 0), our findings could be generalized to a
wider class of nonlinear elastic materials, such as cellular materials with
nonlinear effective properties [21, 92, 107]. We expect this generaliza-
tion to hold provided that the leading nonlinearity of the elastic material
is quadratic in nature and that the material strains do not significantly
deviate from the Mindlin-Reissner strain decomposition (as is shown in
section 2.6.3 for 2D plane stress beams). For example, in recent work by
[40], beams patterned with a periodic 2D pattern of pores were shown to
exhibit positive, geometrically induced nonlinearity (η > 0). They found
that a sufficiently strong nonlinearity leads to subcritical buckling, even
when the beam width-to-length ratio is small. Such a transition to sub-
critical buckling for η > 0 is in qualitative agreement with our theory
that predicts that the post-buckling slope essentially decreases quadrat-
ically in η with its maximum at η = 0 (Fig. 2.10). The present work ra-
tionalizes those findings and provide strong guidelines for the design of
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Figure 2.10: Post-buckling slope as a function of the nonlinearity η. Using
Eq. (2.44) we have plotted S(η) for t = 0.01, t = 0.1 and t = 0.15. The curves
show that the post-buckling slope is quadratic in η and that the post-buckling
slope does not exceed S = 1/2.

post-instability regimes in soft structures and metamaterials [108], where
arbitrary values of η can be achieved [92]. We envision in particular that
our description could be of interest for the design of compliant hierar-
chical cellular materials, which often rely on the buckling instability for
their functionality [109, 110].

In addition, we note that other types of material nonlinearities could
be explored and addressed within our framework, for instance, plasticity,
stress-relaxation, swelling [111–115] or even growth and activity, which
are ubiquitous in biological solids [116, 117]

Finally, while our work could be of great use for the engineering of
systems that draw on Euler buckling for their functionality [36, 118], a
plethora of compliant metamaterials harness the snapping instability [36,
44, 54, 58, 61, 119–122]. In order to understand the role of material nonlin-
earities on such instabilities and to devise mechanical design guidelines,
our present framework should be generalized to pre-curved geometries,
such as curved beams and shells.



Appendix

2.A Numerical protocol for nonlinear buckling analysis

To determine the numerical force-displacement curve, we develop a two-
step protocol. First, we perform a step-wise nonlinear stability analysis to
approach the buckling displacement, uc, with a relative accuracy of 10−3.
Such a step-wise nonlinear stability analysis consists of successive linear
buckling analysis steps to take into account the change in beam geome-
try for large deformations. Subsequently, we perform an eigenfrequency
analysis to determine numerically the proximity of the critical point.

Second, we probe the (stable) post-buckling branch for axial displace-
ments u > uc. One problem that arises in the FEM simulations, however,
is that the beam will not automatically jump to one of the two new sta-
ble branches that occur once the compression of the initial configuration
exceeds uc: The beam’s symmetry is retained even for u > uc and the
beam remains on the unstable branch. One possibility to circumvent this
problem would be to seed the initial configuration with imperfections
that ensure that the beam selects one of the two stable post-buckling
branches. A major drawback of this approach is that it destroys sym-
metry, hence unfolding the pitchfork bifurcation that underlies buckling,
and consequently makes it impossible to study the post-buckling branch
in the vicinity of the critical point. In this chapter we crucially need to
be able to probe the post-buckling branch in the vicinity of the critical
point; we investigate the buckling properties of beams down to a relative
post-buckling displacement as small as 10−3. To probe the post-buckling
branch with high accuracy, we make use of a temporary transverse per-
turbation at the centre of the beam: Having obtained uc from the nonlin-
ear stability analysis, we compress the initial configuration up to 0.95uc.
Next, we force the beam in the bifurcated, buckled state by subsequently
applying the transverse pertubation, increasing the compression up to
1.05uc and releasing the transverse pertubation again. We then further
probe this particular post-buckling branch by the increase of the com-
pressive displacement up to u = 2uc. Finally, we smoothly decrease the
axial displacement from u = 2uc back to u = 0.95uc from which we can
precisely backtrack the post-buckling branch. Altogether, this protocol
allows to determine the location of the instability and the post-buckling
behavior with high accuracy.

59
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2.B Nonlinear stiffening of hyper-elastic beams

In this appendix we demonstrate for a neo-Hookean material model how
the leading nominal stress-strain nonlinearity, η, manifests itself in the
pre-buckling regime for beams under (i) plane stress and (ii) plane strain
conditions. The focus of our work presented in this chapter lies on
plane stress conditions, but we also determine η for the plane strain case
which could be used as a further generalization to our model given by
Eqs. (2.38).

In the derivation below we consider a beam under unaxial loading in
the z-direction with its depth parallel to the y-axis [e.g. as in Fig. 2.1(a)],
and allow for free lateral expansion at the boundaries unless noted oth-
erwise. We then determine the leading nonlinearity η by expanding the
axial nominal stress-strain relation σzz (εzz) for small strains as

σzz/E = εzz + ηε2
zz +O(ε3

zz), (2.50)

where εzz and σzz are the vertical nominal strain and stress. Since the
rubbers used in our experiments are well described by the incompress-
ible formulation of nonlinear elasticity [93], we employ the strain energy
density for an incompressible neo-Hookean material [52]

W =
E
6
(
λ2

1 + λ2
2 + λ2

3 − 3
)

, (2.51)

with E Young’s modulus and λi the stretch in the principal direction êi.
The stretch λ is defined as the length ratio given by the length of a de-
formed line element to the length of the corresponding undeformed line
element. Hence, λi < 1 expresses compression and λi > 1 extension of
an element oriented along direction êi. For an incompressible material
the volume must remain unchanged under any deformation, which in
terms of the principal stretches translates into the constraint λ1λ2λ3 = 1.
Enforcing the constraint with the aid of a Lagrange multiplier Π, the
stress-stretch relation for an incompressible, isotropic neo-Hookean ma-
terial may be expressed concisely in terms of the Cauchy stresses as [52]

σc
i = λi

∂W
∂λi
−Π, (2.52)

with σc
i the Cauchy stress and Π the Lagrange multiplier. The principal

Cauchy stresses are readily related to the principal nominal stresses σi
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through
σi = σc

i /λi. (2.53)

Now, in the pre-buckling regime deformations are spatially homoge-
neous, hence λi is constant and the principal directions (ê1, ê2, ê3) coin-
cide with the main axes (êx, êy, êz) for each material point in the beam. In
that case, adopting (êx, êy, êz) as the new principal directions, λz simply
relates to the vertical nominal strain εzz by

λz = 1 + εzz, (2.54)

whereas Eq. (2.53) can be equally written as [52]

σzz = σc
z /λz. (2.55)

Using these simplifications, the desired relation σzz (εzz) is readily ob-
tained by calculating σc

z . Below we determine σc
z and distinguish between

plane stress and plane strain conditions.

2.B.1 Plane stress

For plane stress conditions and free lateral expansion at the boundaries,
the transverse stresses σc

x and σc
y must be zero. Therefore, evaluating

Eq. (2.52) for the x and y component of the Cauchy stress provides us the
constraint

Π =
E
3

λ2
x =

E
3

λ2
y. (2.56)

The above relation implies that λx = λy, as anticipated, and we proceed
using λx as the independent stretch parameter. Having identified the
constraint, the z component of the Cauchy stress follows as

σc
z = λz

∂W
∂λz
−Π

=
E
3
(
λ2

z − λ2
x
) (2.57)

To express σc
z solely in terms of λz we combine the incompressibility con-

dition λxλyλz = 1 with the relation λx = λy, and obtain λ2
x = λ−1

z , so that

σc
z =

E
3

(
λ2

z − λ−1
z

)
. (2.58)
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Finally, using the relations in Eqs. (2.54-2.55), we can write

σzz =
E
3

(
1 + εzz −

1

(1 + εzz)
2

)
, (2.59)

which is the result as given by Eq. (2.10a). Expansion of the above equa-
tion for small εzz yields

σzz/E = εzz − ε2
zz +O

(
ε3

zz
)

, (2.60)

hence we conclude that η = −1 in the pre-buckling regime of beams un-
der plane stress conditions.

2.B.2 Plane strain

In the plane stress case a beam has no deformations in the y-direction and
no stresses in the x-direction, owing to the confinement in y-direction.
Summarizing these conditions as σc

x = 0 and λy = 1, we identify the con-
straint as

Π = λx
∂W
∂λx

. (2.61)

Therefore, the z component of the Cauchy stress equals

σc
z = λz

∂W
∂λz
− λx

∂W
∂λx

=
E
3
(
λ2

z − λ2
x
) (2.62)

To express σc
z solely in terms of λz we combine the incompressibility con-

dition λxλyλz = 1 with the condition λy = 1, and obtain λx = λ−1
z , so

that
σc

z =
E
3
(
λ2

z − λ−2
z
)

. (2.63)

Following section 2.B.1, the above equation can be converted in terms of
nominal stress and strain as

σzz =
E
3

(
1 + εzz −

1

(1 + εzz)
3

)
. (2.64)
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Note that the only difference with the result for plane stress in Eq. (2.59)
is the exponent of the most right term. This exponent equals 3 for plane
strain, but 2 for plane stress. Finally, expansion of Eq. (2.64) for small εzz
yields

σzz/E =
4
3

εzz − 2ε2
zz +O

(
ε3

zz
)

, (2.65)

where the factor of 4/3 in front of εzz is introduced by the plane strain
assumption — a beam supported on both sides is stiffer by a factor 1/(1−
ν2) [2]. Defining an effective Young’s modulus E′ = E/(1− ν2), the result
in Eq. (2.66) can be rewritten as

σzz/E′ = εzz −
3
2

ε2
zz +O

(
ε3

zz
)

, (2.66)

from which we conclude that η = −3/2 in the pre-buckling regime of
beams under plane strain conditions.




