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1
Introduction

Mechanical metamaterials are man-made materials which derive their un-
usual properties from their structure rather than their composition. Their
spatial structure, or architecture, often consists of periodically arranged build-
ing blocks whose mutual interactions realize unusual properties, such as zero
or negative elastic parameters [1].

Anyone playing with a piece of rubber will have noticed that its sides
expand when squeezing it. This is because rubber is essentially incom-
pressible: Volume changes are energetically much more expensive than
volume-preserving deformations. This example demonstrates material
behaviour which is characterized by a positive Poisson’s ratio (defined
as the negative ratio of the transverse to axial strain [2]): Compressing
(stretching) the material in one direction leads to the expansion (contrac-
tion) in directions transverse to the applied force [Fig. 1.1(a)]. Although
a positive Poisson’s ratio is a material property shared among the vast
majority of conventional materials, the recent development of mechanical
metamaterials realized the practical design of negative Poisson’s ratio ma-
terials [3, 4]. These are counter-intuitive materials that either contract or
expand in all directions when a force is applied [Fig. 1.1(b)], and are also
known as auxetic materials or simply auxetics. Auxetics are widely stud-
ied because they feature enhanced properties in comparison to traditional
materials, such as a higher indentation [5, 6] and fracture resistance [7],
improved energy absorption [8] and the ability to perfectly wrap around
objects such as spheres or domes [9–11]. The latter characteristic is for
example exploited in industry to optimize the fit of footwear and pros-
thetics [12], but also for the design of curved aircraft wings and helicopter
rotor blades [10, 13, 14].
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Initial and deformed shapes for the uniaxial compression of (a) con-
ventional and (b) auxetic materials. Dashed lines plotted on top of the deformed
shapes indicate initial material geometry.

The first development of an artificial auxetic metamaterial was re-
ported in 1987 by Lakes [3]. His famous work outlines how auxetic foams
can be produced from conventional foams by designing a structure con-
sisting of three-dimensional, re-entrant unit cells (unit cells with inward
deflected sides), and thus demonstrates how structure rather than com-
position determines the properties of the metamaterial. The regular, two-
dimensional equivalent of the underlying re-entrant unit cell is shown
in Fig. 1.2(a), which illustrates how a lattice of inverted honeycomb cells
obtains its negative macroscopic Poisson’s ratio. Followed by the work
of Lakes, several other structures have been presented to architect auxet-
ics [15–19]. Auxetic behaviour is particularly pronounced for the hinging
motion of a collection of rigid squares [20] linked at their tips by flexible
hinges [Fig. 1.2(b)]. This freely hinging, zero-energy motion, known as
a mechanism, is characterized by the counter-rotations of squares (as in-
dicated by circle-shaped arrows) that leads to a uniform contraction or
expansion of the structure.

The key aspect that facilitates the auxetic behaviour for the model
of hinged squares, are the sharp tips which connect adjacent squares
[zoomed area in Fig. 1.2(b)]. These tips introduce strongly localized de-
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Figure 1.2: Auxetic metamaterials. (a) Structure with inverted honeycomb
cells, which expands (shrinks) in the lateral direction when stretched (com-
pressed) [21]. (b) A collection of squares linked at their tips exhibits a free
hinging motion (indicated by the coloured arrows), which allows the structure
to uniformly contract or expand [20]. Zoomed areas: The sharp tips localize
bending and approximate ideal hinges (left). Finite-width tips can be regarded
as beams (right).

formations, in contrast to the uniform deformation of a homogeneous
sample of rubber. As a result deformations are non-affine [22, 23] and the
macroscopic response becomes qualitatively different from its constituent
material. Put simply, sharp tips approximate ideal hinges that allow for
zero-energy rotational motion of the squares [1]. Moving away from the
limit of sharp-tips, finite-width tips [Fig. 1.2(b)] lead to a finite-energy
motion which closely resembles the underlying mechanism. Nonetheless,
finite-width tips, which can effectively be seen as beams, add complexity
to the mechanical properties of the metamaterial. Whereas deformations
in sharp tips are entirely bending dominated, the beams in finite-width
tips also undergo compressive deformations when excited by an exter-
nal axial force. The mechanical complexity then arises from the ener-
getic competition between compressive and bending deformations, and
can lead to spontaneous symmetry breaking from straight to bent beams.
This phenomenon is known as the buckling instability [24], which is as-
sociated with a strongly nonlinear relation between macroscopic stresses
and strains. Metamaterials that encompass such a buckling instability are
known as buckling-based metamaterials [1].
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Figure 1.3: Buckling-based auxetic metamaterial. (a-c) Subsequent snapshots for
the uniaxial compression of an elastic sheet patterned by circular holes. Under a
sufficient load the beam elements undergo a collective buckling instability which
induces a pattern transformation from holes to orthogonal ellipses. This pattern
switch underlies the mechanism of rotating squares and results in an auxetic
response (note how the sides move inwards). (d) Corresponding (experimental)
force-strain relation with the (relative) forces and strains associated with panels
(a-c) indicated by filled circles. Reproduced from reference [28] with permission
from The Royal Society of Chemistry.

The simplest example of a buckling-based metamaterial is an elastic
sheet patterned by a square array of circular holes [4, 25–28] as displayed
in Fig. 1.3(a), which effectively resembles a structure of rigid squares con-
nected by beams. When uniaxially compressed, the structure undergoes
a pattern transformation, as shown in Fig. 1.3(a-c), which is triggered by
a collective beam buckling instability. The scenario of collective beam
buckling is reflected by the kink (at the maximum force) in the force-
strain curve shown in panel (d), which is typical for a buckling instabil-
ity [24]. Importantly, the characteristics of this pattern transformation are
determined by the underlying mechanism. Hence, the properties of this
metamaterial are determined by the interplay between the mechanical
functionality of the beam elements, and the shape-changing properties
of the underlying mechanism [29]. Both of these ingredients play a cen-
tral role in this thesis, and in the sections hereafter we will discuss their
properties in more detail.

1.1 Structural elastic instabilities

The loss of mechanical stability in elastic structures is widely studied and
traditionally driven by the desire to design workarounds that can pre-
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Figure 1.4: Snapping of a jumping popper toy. In order to jump, the shell like-
structure first needs to be turned inside out to store elastic energy. Subsequently,
the snap-through instability can be triggered by dropping it from a small height.
The associated rapid change in curvature converts elastic energy into kinetic
energy with an audible pop and causes the toy to jump. Image courtesy of
D. Holmes, Boston University; the image has been published in reference [35].

vent structural failure [30]. Objects of focus have mainly been slender
structural elements which are prone to buckling and snap-through in-
stabilities, such as beams, plates, shells and frames [30]. More recently,
structural instabilities of slender structures are recognized as an opportu-
nity to generate new modes of functionalities in advanced materials [31].
In fact, biological systems make use of instabilities to obtain their func-
tionality. Examples include the Venus fly trap [32] and the waterwheel
plant [33], which exploit the rapid dynamics of a snap-through instabil-
ity to catch their prey. Moreover, snapping lies at the basis of jumping
bimetallic disks [34] and rubber popper toys [35] (Fig 1.4), which snap
back towards their stable state after being turned inside-out.

Metamaterials that utilize structural instabilities for their function-
ality are known as instability-based metamaterials [1]. Buckling-based
metamaterials [4, 25–28, 36–38] constitute a subclass of instability-based
metamaterials that rely specifically on Euler buckling — known as the
phenomenon where an elastic beam buckles under a sufficiently large
compressive axial load [24], which is perhaps the simplest and most
widespread instability. This type of metamaterials exhibit post-instabilities
when subjected to compression, due to the collective buckling of beam
ligaments which connect adjacent building blocks (e.g. as in Fig. 1.3).
Although the pre-buckling regime and the onset of buckling is well un-
derstood, their post-buckling behaviour, which usually occurs far from
equilibrium accompanied by large beam deformations, is not well devel-
oped yet [39]. In particular, the negative post-buckling stiffness, char-
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Figure 1.5: Force-displacement curves for the buckling of (a) slender beams,
(b) wide beams and (c) metabeams. The post-buckling stiffness is quantified by
the slope after buckling, S. For plain beams the post-buckling slope is a function
of the beam width. The post-buckling slope of metabeams, however, can be
tuned independently of beam width by changing their elliptical pore shapes.
Other than utilizing instabilities, metamaterials can thus also be leveraged to
change elastic instabilities. Image adapted from [40].

acterized by a decreasing force after buckling [Fig. 1.3(d)], is not well
understood. Recently, we showed that the simplest possible setting in
which the negative stiffness can be reproduced is on the level of a single
beam ligament [40]. Fig. 1.5(a-b) shows how beam width crucially in-
fluences the post-buckling stiffness of beams: Slender beams display an
increasing force after buckling (positive stiffness), but for wide beams the
force after buckling decreases (negative stiffness). Metabeams [Fig. 1.5(c)],
which are beams patterned with elliptical holes, can even be used to ra-
tionally design any post-buckling stiffness [40]. To our surprise negative
post-buckling stiffness in the context of beams is not captured by existing
models [41–43] and needless to say, a full understanding of the post-
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buckling behaviour of beams is necessary to take full advantage of the
buckling instability in the design of buckling-based metamaterials.

In conclusion, sufficiently wide beams exhibit a negative post-buckling
stiffness. This intriguing post-buckling behaviour is accompanied by
large deformations, a combination which is theoretically not well de-
scribed. Motivated by the role of (wide) beam ligaments in buckling-
induced metamaterials, analysis of the post-buckling properties of beams
plays a central role in this thesis. In chapter 2, we first identify the phys-
ical ingredient that induces negative post-buckling stiffness, followed by
the development of a 1D model that accurately predicts the experimen-
tally and numerically observed negative stiffness without adjustable pa-
rameters.

1.2 Role of geometry

In this section we zoom in on the role of geometry in the micro structure
of mechanical metamaterials. We focus on the micro structure consisting
of hinged square tiles [Fig. 1.2(b)], which composes the backbone of a
range of 2D auxetic metamaterials [4, 20, 25–28] and which has inspired
the design of programmable [44] and 3D mechanical metamaterials [36,
38]. Owing to its geometric design, the model of hinged squares pro-
vides a single zero-energy motion when connected by flexible linkers,
also known as a mechanism or zero mode [1]. Consequently, metama-
terials underlying the micro structure of hinged squares feature a single
predefined mode of deformation. The natural question that arises is then
whether new metamaterials can be constructed which are able to morph
into multiple predefined shapes when excited by external forces.

To answer this question, we enlarge the design space and study me-
chanical metamaterials composed of aperiodic, rather than periodic micro
structures. Recently, aperiodicity originating from unit cell orientations
was applied to 3D mechanical metamaterials for the rational design of ar-
bitrary pre-programmable shape changes [38] — featuring a single mode
of deformation per chosen geometry. In this thesis, we construct 2D ape-
riodic micro structures by diluting (removing squares) the mechanism
of hinged squares in order to pre-program multiple shape changes per
geometry. Obviously, aperiodicity opens up pathways for the possible
design of such structures, since the design space is greatly increased as a
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Figure 1.6: Symmetric versus generic systems. (a) The symmetric system (left)
allows for a global hinging zero mode in which quads collectively counter ro-
tate (indicated by the coloured arrows), but the generic system (right) is rigid.
(b) Removing a quad from the top row allows the remaining quad on top to
freely hinge (indicated by the green arrow), introducing an extra zero mode in
both the symmetric and generic system.

result of square removal: For full filling, there exists only one way to tile
space, but this number grows rapidly when squares are removed.

The resulting diluted systems comprise a two-fold problem. First,
as mentioned, the diluted systems are interesting from the metamaterials
perspective. Second, the non-generic nature of the square building blocks
provides potential to unravel the rigidity of (randomly) diluted symmet-
ric systems. The work presented in this thesis studies both of these as-
pects and will build a bridge between them. The rigidity of random
spring networks has been widely studied [45–50], and is known as rigid-
ity percolation. So far, the focus has been on generic disordered systems,
in order to avoid degeneracies arising when symmetries are present. In
this thesis however, we study the differences that arise between the rigid-
ity of symmetric and generic systems.

Fig. 1.6 demonstrates two geometries for which the rigidity of sys-
tems composed by symmetric squares behave differently from systems
composed by generic quads. First, panel (a) shows that sufficiently large
generic systems are rigid, in contrast to symmetric systems that always
exhibit a hinging mechanism, independently of system size. Using Max-
well counting [51], as will be discussed in chapter 3, it can readily be
shown that the minimum system size to ensure rigidity of generic sys-
tems is 3× 3. Next, panel (b) shows that removing a quad from the
top row introduces an additional zero mode in both the symmetric and
generic system. Thus, panel (a-b) show two examples in which symmet-
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ric systems exhibit one excess zero mode in comparison with its generic
counterpart. It is conceivable, however, that the number of excess zero
modes is not bounded to one, but can become larger for more complex
geometries — examples will be discussed in chapter 3.

The above examples demonstrate some of the complexity occurring in
the rigidity of symmetric systems and several open questions arise. Can
the number of excess zero modes become arbitrary large? What are the
necessary ingredients that facilitate the excess zero modes? How can we
count the number of excess zero modes given a random dilution pattern?
A comprehensive treatise on these questions, and more, are devoted to
chapters 3 and 4 of this thesis.

1.3 In this thesis

In this thesis we investigate two aspects of mechanical metamaterials:
The role of beam ligaments and the role of symmetries. As motivated
above, both aspects play an important role in mechanical metamaterials,
and give rise to several open questions.

We first elucidate the negative post-buckling stiffness of wide neo-
Hookean beams in chapter 2. We show that the negative stiffness occurs
in experiments, 3D simulations and simplified 2D simulations, demon-
strating that negative post-buckling stiffness is a robust phenomenon that
does not originate from boundary-induced singularities or 3D effects. Us-
ing the simplified 2D simulations we then identify the missing physical
ingredient — which we will show to be a material nonlinearity — that un-
derlies the negative post-buckling stiffness. Finally, we use this material
nonlinearity to build a 1D nonlinear beam model that, without adjustable
parameters, successfully captures the intriguing post-buckling behaviour
of wide neo-Hookean beams.

In the remainder of this thesis we turn to collections of hinging quadri-
laterals in order to probe the role of symmetries. In chapter 3 we investi-
gate randomly diluted lattices of hinging squares, and compare these di-
rectly to generic systems featuring irregular quads, when using the same
dilution pattern for both. We then demonstrate that symmetric systems
exhibit excess zero modes as compared to the generic systems, with their
multitude satisfying simple scaling relations with mean field exponents.

Finally, in chapter 4 we develop an approximate, yet accurate method
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to count the number of excess zero modes in diluted systems of hing-
ing squares. We note that these modes are driven by densely connected
patches of quads — clusters — and develop a procedure to separate any
system into clusters, connectors and remaining quads. Using the topol-
ogy of the clusters and their connectors we then iteratively estimate the
number of (excess) zero modes, which allows us to obtain a tight lower
bound on the exact, numerical results for their multitude.


